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1 Introduction

We consider the viscous incompressible magneto-hydrodynamics (MHD) equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
− 1

Re
Δu + u(·∇)u − S(B · ∇)B + ∇(p +

S

2
|B|2) = f,

∂B

∂t
− 1

Rm
ΔB + (u · ∇)B − (B · ∇)u = 0,

div u = 0, div B = 0.

(1.1)
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Here u, p, B are non-dimensional qualities corresponding to the velocity of the fluid, its
pressure and the magnetic field, respectively. f(x, t) represents a non-dimensional vol-
ume density force. The non-dimensional number Re is the Reynolds number, Rm is the
magnetic Reynolds and S = M2/(ReRm) with M being the Hartman number.

In this paper, we will discuss two classes of sufficient conditions which guarantee the
weak solutions are regular. At first, we will present some results about the relationship
between the regularity for weak solution to the MHD equations and the smoothness of the
direction of vorticity for large vorticity field. Secondly, we will show the smoothness of
solutions to the MHD equations when the velocity field u belongs to Lp(0, T ; Lq(R3)) with
1/p + 3/2q ≤ 1/2 for q ≥ 3. In general, it is not known whether the smooth solution of
the Cauchy problem exists for all time, for given sufficient smooth, divergence free initial
data. Duvaut and Lions [8] constructed a class of global weak solutions, similar to the
Leray-Hopf weak solutions to the three dimensional Navier-Stokes equations. But the
strong solution is only local, in general. For the two dimensional case, the smoothness
of solutions have been shown. And same results hold in the case of three dimensional
case under the assumption that (u, B) belongs to L∞(0, T ; H1(R3)). For details, see
Sermange & Teman [12]. As pointed out by Constantin and Fefferman [4] in the case of
incompressible Navier-Stokes equations, the main difference between the two dimensional
and three dimensional cases can be well understood by considering the dynamics of the
fluid vorticity. In the two dimensional case, the vorticity field is perpendicular to the plane
of motion and its magnitude is uniformly bounded, while in the three dimensional case,
there exists a stretching mechanism for the vorticity magnitude which is nonlinear and
potentially capable of producing finite time singularities. At the same time, Constantin
and Fefferman showed that the solution is smooth, if the direction of vorticity is sufficiently
well behaved in the region of high vorticity magnitude, i.e., they obtained the smoothness
of solution if the direction field ξ of the vorticity w(x, t) satisfies that

|ξ(x) − ξ(y)| ≤ |x − y|/ρ (1.2)

for some positive constant ρ when |w(x, t)| ≥ Ω and |w(y, t)| ≥ Ω for some Ω > 0. Similar
results were given in [5] for three dimensional incompressible Euler equations and for
quasi-geostrophic active scalar equation in [6][7].

The first purpose of this paper is to discuss the important role of the smoothness of
direction of vorticity in the region of the large vorticity in the regularity theory for the
incompressible magnetohydrodynamics equations. Comparing with the incompressible
Navier-Stokes equations, a important characteristic of the magneto-hydrodynamics is the
induction effect. This effect brings about the coupling of the magnetic field and the
velocity field. As a result of the inclusion of the magnetic field, the equation of magneto-
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hydrodynamics are considerably more complicated than those of ordinary hydrodynamics.
This first resulting difficulty is that, there is no global L1− estimate about the vorticities;
The second, that is the key new difficulties come from the appearance of the strong coupled
terms of vorticities of the velocity u and magnetic field B. We use the fine estimate of
singular integral to overcome the difficulties resulting from the lack of the L1−estimate
of the vorticity. Furthermore, some integral formulas are deduced for the coupling terms.
By a careful of the kernels of these integrals, we show that the solution is smooth, if the
vorticity field w+(x, t) of velocity field u satisfies the following estimate: there exist three
positive constants K, ρ, Ω, such that

|w+(x + y, t)/|w+(x + y, t)| − w+(x, t)/|w+(x + y, t)|| ≤ K|y|1/2 (1.3)

when |y| ≤ ρ and |w+(x, t)| ≥ Ω for some positive constants Kρ, and ω.
The second purpose of this paper is to show the smoothness of weak solutions in

Lp(0, T ; Lq(R3)). Many authors have studied the regularity for weak solutions of the
Navier-Stokes equations as long as any one of following three conditions hold:

1) u ∈ Lp(0, T ; Lq(R3)) for 1/p + 3/2q ≤ 1/2 and q > 3,
2) u ∈ C([0, T ]; L3(R3)),
3) ∇u ∈ Lα(0, T ; Lβ(R3)) for 1/α + 3/2β = 1 with 1 < α ≤ 2.
See [13],[9], [14] and [2]. It must be noticed that case 3) can not be included into

case 1) and case 2). Moreover, the borderline case α = 2 is significant. It shows that
L2(0, T ; W 1,3(R3)) is a regularity class. This can not be deduced from 1) and 2), since
W 1,3(R3) can not be imbedded into L∞(R3). In this paper, we also show that one of 1)-3)
is sufficient condition for regularity of the solution to MHD equations. As pointed out by
H. Beirão da Veiga, 3) shows that the loss of regularity in time turns out to be balanced
by some additional regularity in space.

It should be noted that the condition (1.3) is somewhat stronger than condition (1.2),
while the conditions for our second results are the same as those for the Navier-Stokes
equations. However, it is worthy to emphasize that there are no assumptions on the
magnetic field B. In other word, our results demonstrate that the magnetic field plays
less dominant role than the velocity field does in the regularity theory of solutions to the
magneto-hydrodynamics equations. In a certain sense, our results are consistent with the
recent numerical simulations of Politano et in [11]. Furthermore, observations of space and
laboratory plasmas alike reveal that the magnetic field of the plasma tends to self-organize
through a turbulent phase of relaxation into a simple spiral contiguration [10]. Thus,
an incompressible three dimensional magneto-hydrodynamics equations should exhibits
a greater degree of regularity than does an ordinary incompressible three dimensional
Navier-Stokes equation, in some sense. However, we can not show this here.
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Finally, it will follow easily from our proofs that for the three dimensional incompress-
ible Navier-Stokes equations, the Hölder continuity of the direction of the vorticity with
exponent 1/2, in the high vorticity magnitude region and a ball of every point with fixed
radius, is sufficient to ensure the regularity of the solution.

2 Mathematical Preliminaries

Let w+(x, t) = curl u(x, t), w−(x, t) = curl B(x, t). Then the vorticity equations for the
three dimensional incompressible magneto-hydrodynamics equation can be written

⎧⎪⎪⎨
⎪⎪⎩

∂w+

∂t
− 1

Re
Δw+ + (u · ∇)w+ − (w+ · ∇)u − S(B · ∇)w− + S(w− · ∇)B = F,

∂w−

∂t
− 1

Rm
Δw− + (u · ∇)w− − (w− · ∇)u − (B · ∇)w+ + (w+ · ∇)B = 2T (B, u)

(2.1)
with

T (B, u) =

⎛
⎜⎜⎜⎝

∂2B · ∂3u − ∂3B · ∂2u

∂3B · ∂1u − ∂1B · ∂3u

∂1B · ∂2u − ∂2B · ∂1u

⎞
⎟⎟⎟⎠ and F = curl f.

Here ∂i denote ∂/∂xi for i = 1, 2, 3.
Let C∞

0,σ(R3) denote the set of all C∞ real vector-valued functions φ = (φ1, φ2, φ3) with
compact support in R

3, such that divφ = 0. Let H and V be the closure of C∞
0,σ(R3) in

L2(R3) and H1(R3) respectively. And let ‖ · ‖p denote the norm in Lp(R3) for 1 ≤ p ≤ ∞.
If the initial data (u0, B0) belong to H and f ∈ L2(0,∞; V ′), it is well known that there
exists a global weak solution (u, B) in L∞(0,∞; H) ∩ L2

loc(0,∞; V ), which satisfies the
energy inequality

‖u(t)‖2
2 + S‖B(t)‖2

2 + 2
∫ t

0

( 1
Re

‖∇u(s)‖2
2 +

S

Rm
‖∇B(s)‖2

2

)
ds

≤ ‖u0‖2
2 + S‖B0‖2

2 + 2
∫ t

0
(u(s), f(s))ds (2.2)

for any t ≥ 0 (Cf. [8]). If (u0, B0) ∈ V and f ∈ L2(0,∞; L2(R3)), then there exists a
unique solution (u, B), such that

u, B ∈ L∞(0, T ∗; V ) ∩ L2(0, T ∗; H2(R3)) (2.3)

for some T ∗ > 0. According to the regularity result obtained in [12], u and B are sufficient
smooth, if (u0, B0) and f are sufficient smooth.
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By the Biot-Savart law, the velocity field and the magnetic field can be expressed in
terms of their vorticities respectively as follows:

u(x, t) = − 1
4π

∫
∇(

1
|y|) × w+(x + y)dy,

B(x, t) = − 1
4π

∫
∇(

1
|z|) × w−(x + z)dz.

(2.4)

As in [4], the gradient matrix can be decomposed as the strain matrix and the antisym-
metric parts ⎧⎪⎨

⎪⎩
∇u(x, t) = S+(x, t) +

1
2
w+(x, t) × ·,

∇B(x, t) = S−(x, t) +
1
2
w−(x, t) × ·,

(2.5)

with

S+(x, t) =
1
2

(
∇u(x, t) + (∇u(x, t))T

)
, S−(x, t) =

1
2

(
∇B(x, t) + (∇B(x, t))T

)
. (2.6)

The following two integral equations were obtained in [4]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w+(x, t) =
1
4π

P.V.

∫
σ(ŷ)w+(x + y, t)

dy

|y|3 ,

w−(x, t) =
1
4π

P.V.

∫
σ(ẑ)w−(x + z, t)

dz

|z|3 ,

S+(x, t) =
3
4π

P.V.

∫
M(ŷ, w+(x + y, t))

dy

|y|3 ,

S−(x, t) =
3
4π

P.V.

∫
M(ẑ, w−(x + z, t))

dz

|z|3 ,

(2.7)

where the matrixes ⎧⎪⎨
⎪⎩

σ(ŷ) = 3ŷ ⊗ ŷ − I,

M(ŷ, w) =
1
2
(
ŷ ⊗ (ŷ × w) + (ŷ × w) ⊗ ŷ

) (2.8)

with ŷ = y/|y|, I is the identity matrix and the tensor product simply denotes the matrix
(ŷ⊗ ŷ)ij = ŷiŷj . Moreover, the matrix σ is symmetric, traceless and has zero mean on the
unit sphere. The matrix M is also traceless and symmetric; Its mean on the unit sphere
is zero when the second variable w is held fixed and M is viewed as a function of ŷ alone.
The property with zero mean on the unit sphere is very important to deduce the necessary
estimates about the coupling terms.

In the following, we deduce the integral representations for coupling terms. For this
purpose, let T (B, u) = (T1(B, u), T2(B, u), T3(B, u)). Differentiating the Biot-Savart law
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(2.4), one can obtain that

∂B

∂xi
=

1
4π

P.V.

∫
∇∂i(

1
|z|) × w−(x + z)dz

here the property of zero mean of σ on unit sphere has been used. Note that

∇ ∂

∂zi
(

1
|z|) = (−ei + 3ẑiẑ)/|z|3 Δ= vi

with ei the unit vector along the zi−axis. Then

T1(B, u) = ∂2B · ∂3u − ∂3B · ∂2u

=
1
4π

P.V.

∫ (
v2 × w−(x + z) · ∂3u − v3 × w−(x + z) · ∂2u

)
dz

=
1
4π

P.V.

∫ (
∂3u × v2 − ∂2u × v3

)
· w−(x + z)dz

=
1
4π

P.V.

∫ (
−∇u1 · w−(x + z) + 3(ẑ2∂3u × ẑ − ẑ3∂2u × ẑ) · w−(x + z)

) dz

|z|3

=
1
4π

P.V.

∫ (
−∇u1 · w−(x + z) + 3(ẑ2∂3u − ẑ3∂2u) · (ẑ × w−(x + z)

) dz

|z|3 .

Similarly,

T2(B, u) =
1
4π

P.V.

∫ (
−∇u2 · w−(x + z) + 3(ẑ3∂1u − ẑ1∂3u) · (ẑ × w−(x + z)

) dz

|z|3

T3(B, u) =
1
4π

P.V.

∫ (
−∇u3 · w−(x + z) + 3(ẑ1∂2u − ẑ2∂1u) · (ẑ × w−(x + z)

) dz

|z|3
Thus,

T (B, u) · w−(x, t) =
1
4π

P.V.

∫ (
− w−(x + z, t) · ∇u · w−(x, t)

+3(w−(x, t) × ẑ) · ∇u · (ẑ × w−(x + z, t)
) dz

|z|3 . (2.9)

In (2.9), the vectors at the right hand side of matrix ∇u are viewed as column vector.
Applying representations (2.5)-(2.7), it follows that

T (B, u) · w−(x, t) = − 1
4π

P.V.

∫ (
w−(x + z, t) · S+(x, t) · w−(x, t)

) dz

|z|3

− 1
8π

P.V.

∫
Det(w−(x, t), w−(x + z, t), w+(x, t))

dz

|z|3

+
3
4π

P.V.

∫ (
(w−(x, t) × ẑ) · S+(x, t) · (ẑ × w−(x + z, t))

) dz

|z|3

+
3
8π

P.V.

∫
(ẑ, w+(x, t))Det(ẑ, w−(x, t), w−(x + z, t))

dz

|z|3 (2.10)
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where Det denotes the determinant of the matrix whose columns are the three column
vectors in the bracket.

3 The Main Result

In this section, we intend to present our main results. Our major assumption about the
vorticity w+(x, t) of the velocity field u(x, t) is .

Assumption A. There exist three positive constants K, ρ and Ω such that

|w+(x + y, t) − w+(x, t)| ≤ K|w+(x + y, t)||y|1/2 (3.1)

holds if both |y| ≤ ρ and |w+(x, t)| ≥ Ω for any t ∈ [0, T ].
Under this assumption on w+(x, t), one can show the following a priori estimate.

Theorem 1. Let u0, B0 ∈ V and f ∈ L2(0, T ; L2(R3)). Assume that (u, B) is a
smooth solution of MHD equations (1.1) on some interval [0, T ] with 0 < T ≤ ∞. Then
if the Assumption A holds on [0, T ], one has

w+, w− ∈ L∞(0, T ; L2(R3)), (3.2)

∇w+,∇w− ∈ L2(0, T ; L2(R3)) (3.3)

Moreover, for t ∈ [0, T ],

‖w+(t)‖2
2 + S‖w−(t)‖2

2 +
∫ t

0

(
(1/Re)‖∇w+(s)‖2

2 + (S/Rm)‖∇w−(s)‖2
2

)
ds

≤ C
(
‖w+(0)‖2

2 + S‖w−(0)‖2
2 +

∫ T

0
‖f(s)‖2

2ds
)
eCA0 (3.4)

with A0 = (Ω1/2 + (K + ρ−1/2)2)(‖u0‖2
2 + S‖B0‖2

2 +
∫ T
0 ‖f(s)‖V ′ds) and C is an absolute

constant.

Theorem 2. a) Let u0, B0 ∈ V and f ∈ L2(0, T ; L2(R3)). Assume that (u, B) is a
smooth solution of MHD equations (1.1) on some interval [0, T ] with 0 < T ≤ ∞. Assume
that one of the following two conditions holds

1) u ∈ Lp(0, T ; Lq(R3)) for 1/p + 3/2q = 1/2 and q > 3,
2) u ∈ C([0, T ]; L3(R3)),
then

u ∈ L∞(0, T ; H1(R3)) ∩ L2(0, T ; H2(R3)). (3.5)

7



Moreover,

‖∇u(t)‖2
2 + S‖∇B(t)‖2

2 +
∫ t

0

( 1
Re

‖D2u(s)‖2
2 +

S

Rm
‖D2B(s)‖2

2

)
ds

≤ C0

(
‖∇u0‖2 + ‖∇B0‖2

2

)
+ C

∫ T

0
‖f‖2

2ds (3.6)

holds for any t ∈ [0, T ]. Here D2 =
3∑

i,j=1

∂i∂j and C0 is a constant depending on

∫ T
0 ‖u(s)‖p

qds in case 1) and ‖u‖2
C([0,T ];L3(R3))T in the case 2) respectively.

b) Let u0, B0 ∈ Lβ(R3) for some β ≥ 3. If ∇u ∈ Lα(0, T ; Lβ(R3)) for 1/α + 3/2β = 1
with 1 < α ≤ 2, then

u, B ∈ L∞(0, T ; Lβ(R3)); |u|β−2
2 ∇u, |B|β−2

2 ∇B ∈ L2(0, T ; L2(R3)).

Moreover,

‖u(t)‖β
β + ‖B(t)‖β

β +
β(β − 1)

2Re

∫ t

0
‖|u|β−2

2 ∇u(s)‖2
2ds +

β(β − 1)
2Rm

∫ t

0
‖|B|β−2

2 ∇B(s)‖2
2ds

≤ C
(
‖B0‖β

β , ‖u0‖β
β , e

∫ T
0 ‖∇u‖α

βdτ
)

(3.7)
for any t ∈ [0, T ].

Employing the above a priori estimates, one can show that

Theorem 3. Let u0, B0 ∈ V and f ∈ L2(0, T ; L2(R3)). Suppose that (u, B) is the
weak solution of MHD equations (1.1) on [0, T ). If w+(x, t) satisfies the assumption A on
[0, T ], then

w+, w− ∈ L∞(0, T ; L2(R3)), ∇w+,∇w− ∈ L2(0, T ; L2(R3)) (3.8)

Moreover,

‖w+(t)‖2
2 + S‖w−(t)‖2

2 +
∫ t

0

(
(1/Re)‖∇w+(s)‖2

2 + (S/Rm)‖∇w−(s)‖2
2

)
ds

≤ C
(
‖w+(0)‖2

2 + S‖w−(0)‖2
2 +

∫ T

0
‖f(s)‖2

2ds
)
eCA0 (3.9)

with A0 = (Ω1/2 + (K + ρ−1/2)2)(‖u0‖2
2 + S‖B0‖2

2 +
∫ T
0 ‖f(s)‖V ′ds) and C is an absolute

constant. Therefore (u, B) is the unique strong solution to the MHD equations on [0, T ].

Theorem 4. Let u0, B0 ∈ V and f ∈ L2(0, T ; L2(R3)). Assume that (u, B) is a
weak solution of MHD equations (1.1) on some interval [0, T ] with 0 < T ≤ ∞. Assume
that one of the following two conditions holds
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1) u ∈ Lp(0, T ; Lq(R3)) for 1/p + 3/2q = 1/2 and q > 3,
2) u ∈ C([0, T ]; L3(R3)),
then

u ∈ L∞(0, T ; H1(R3)) ∩ L2(0, T ; H2(R3)). (3.10)

Moreover,

‖∇u(t)‖2
2 + S‖∇B(t)‖2

2 +
∫ t

0

( 1
Re

‖D2u(s)‖2
2 +

S

Rm
‖D2B(s)‖2

2

)
ds

≤ C0

(
‖∇u0‖2 + ‖∇B0‖2

2

)
+ C

∫ T

0
‖f‖2

2ds (3.11)

hold for any t ∈ [0, T ]. Here C0 is a constant depending on
∫ T
0 ‖u(s)‖p

qds in case 1) and
‖u‖2

C([0,T ];L3(R3))T in the case 2) respectively.
b) Let u0, B0 ∈ Lβ(R3) for some β ≥ 3. If ∇u ∈ Lα(0, T ; Lβ(R3)) for 1/α + 3/2β = 1

with 1 < α ≤ 2, then

u, B ∈ L∞(0, T ; Lβ(R3)); |u|β−2
2 ∇u, |B|β−2

2 ∇B ∈ L2(0, T ; L2(R3)).

Moreover,

‖u(t)‖β
β + ‖B(t)‖β

β +
β(β − 1)

2Re

∫ t

0
‖|u|β−2

2 ∇u(s)‖2
2ds +

β(β − 1)
2Rm

∫ t

0
‖|B|β−2

2 ∇B(s)‖2
2ds

≤ C
(
‖B0‖β

β , ‖u0‖β
β , e

∫ T
0 ‖∇u‖α

βdτ
)

(3.12)
for any t ∈ [0, T ].

Remarks:
1. If u0, B0 and f are sufficiently smooth, then the strong solution (u, B) are sufficient

smooth, by the regularity results in [12].
2. Constantin and Fefferman showed the smoothness of solutions to the three dimen-

sional incompressible Navier-Stokes equations under the assumption that

|w(x, t)/|w(x, t)| − w(y, t)/|w(y, t)|| ≤ |x − y|/ρ

if both |w(x, t)| ≥ Ω and |w(y, t)| ≥ Ω for some positive constants Ω and ρ. In view of our
estimate below, it is obvious that, in order to obtain their regularity result, it is sufficient
to assume that

|w(x, t)/|w(x, t)| − w(y, t)/|w(y, t)|| ≤ |x − y|1/2/ρ

holds if both |w(x, t)| ≥ Ω, |w(y, t)| ≥ Ω and |x − y| ≤ δ for some positive constants Ω, ρ

and δ.
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3. A regularity result was obtained in [15] and [3] for inviscid MHD equation in R
3

under the assumption that
∫ T

0
[‖w+(s)‖∞ + ‖w−(s)‖∞]ds < ∞.

But here, in order to obtain the regularity for viscous MHD equations, we only need to
assume that w+(x, t) satisfy Assumption A.

4. Serrin [13], Giga [9], wolf von Wahl[14] etc obtained the regularity of solutions to
the Navier-Stokes equations in the case of 1)–3) in Theorem 3. It is worthy to point out
that the case 3) is a natural extension of 1)-2). Moreover, the borderline case α = 2 is
significant. It follows from Theorem 3 that u and B are regular if ∇u ∈ L2(0, T ; L3(R3)).
This can not be implied by case 1) and 2), since W 1,3(R3) can not be imbedded into
L∞(R3).

The proof of the Theorem 3. Since u0, B0 ∈ V and f ∈ L2(0, T ; L2(R3)), then the
weak solution (u, B) is strong and unique on [0, T1] for some T1 < T . By the a priori
estimate in Theorem 1, together with the assumption A, it follows that estimate (3.9)
is valid on [0, T1], which is independent of T1. Thus, the strong solution (u, B) satisfies
estimate (3.9) as long as w+(x, t) satisfies the Assumption A. By the standard continuation
argument, the strong solution can be extended to [0, T ]. �

The proof of Theorem 4 is completely same with that of Theorem 3. We omit it here.

4 A Priori Estimate I

In this section, we will give the a priori estimate and complete the proof of Theorem 1.
So we assume that the solution (u, B) is sufficient smooth on [0, T ].

For this purpose, we multiply the first equation of (2.1) by w+, the second equation of
(2.1) by Sw−, then add the resulting equations to obtain that

d

dt
(‖w+(t)‖2

2 + S‖w−(t)‖2
2) +

2
Re

‖∇w+(t)‖2
2 +

2
Rm

‖∇w−(t)‖2
2

= 2
∫ (

w+(x, t) · ∇u(x, t) · w+(x, t) + Sw−(x, t) · ∇u(x, t) · w−(x, t)

− Sw−(x, t) · ∇B(x, t) · w+(x, t) − Sw+(x, t) · ∇B(x, t) · w−(x, t)

+2ST (B, u) · w−(x, t) + F · w+(x, t)
)

dx (4.1)

Let φ(r) be a smooth cut-off function such that 1 ≤ φ(r) ≤ 1, φ(r) = 1 for 0 ≤ r ≤ 1,
and φ(r) = 0 for r ≥ 2. In the following, we will estimate all the terms on the right hand
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side of (4.1). By (2.5), the first term at the right hand side can be written as

I1 = 2
∫

w+(x, t) · ∇u(x, t) · w+(x, t) dx

= 2
∫

w+(x, t) · S+(x, t) · w+(x, t) dx

= 2
∫

φ(
|w+(x, t)|

Ω
)(w+(x, t) · S+(x, t) · w+(x, t)) dx

+ 2
∫ (

1 − φ(
|w+(x, t)|

Ω
)
)
(w+(x, t) · S+(x, t) · w+(x, t)) dx

By the Calderon-Zygmund estimate and formula (2.7), we have that
⎧⎨
⎩

‖S+‖p ≤ C(p)‖w+‖p,

‖S−‖p ≤ C(p)‖w−‖p

(4.2)

for any 1 < p < ∞. Then by the Hölder and Sobolev inequalities,

I11 = 2|
∫

φ(
|w+(x, t)|

Ω
)(w+(x, t) · S+(x, t) · w+(x, t)) dx|

≤ CΩ1/5‖w+‖2‖w+‖4/5
24/5‖S+‖3

≤ CΩ1/5‖w+‖8/5
2 ‖∇w+‖6/5

2

≤ δ1‖∇w+‖2
2 + C(δ1)Ω1/2‖w+‖4

2 (4.3)

for any δ1 > 0, where the Young inequality has been used.
Since the mean of M on the unit sphere is zero when the second variable w+ is fixed

and M is viewed as a function of ŷ alone, then its integral vanishes in any ball in this case,
i.e.,

P.V.

∫
|y|≤ρ

M(ŷ, w+(x, t))
dy

|y|3 = 0. (4.4)

Thus, by formula (2.7) and Assumption A,

∣∣∣(1 − φ(
|w+(x, t)|

Ω
)S+(x, t)

∣∣∣ ≤ CP.V.

∫
|y|≥ρ

M(ŷ, w+(x + y, t))
dy

|y|3

+P.V.

∫
|y|≤ρ

(
1 − φ(

|w+(x, t)|
Ω

)
)
M(ŷ, w+(x + y, t) − w+(x, t))

dy

|y|3

≤ C
(
ρ−1/2 + K

)
P.V.

∫
|w+(x + y, t)| dy

|y|5/2
.

11



Therefore, by Calderon-Zygmund estimate, the Hölder and Sobolev inequalities, we have

I12 = 2
∣∣∣
∫ (

1 − φ(
|w+(x, t)|

Ω
)
)
(w+(x, t) · S+(x, t) · w+(x, t)) dx

∣∣∣
≤ C

(
ρ−1/2 + K

)‖w+‖2‖w+‖6‖
(
1 − φ(

|w+(·, t)|
Ω

)
)
S+(·, t)‖3

≤ C
(
ρ−1/2 + K

)‖w+‖2
2‖∇w+‖2

≤ δ1‖∇w+‖2
2 + C(δ1)

(
ρ−1/2 + K

)2‖w+‖4
2. (4.5)

Therefore,
I1 ≤ 2δ1‖∇w+‖2

2 + C(δ1)[Ω1/2 + (ρ−1/2 + K)2]‖w+‖4
2. (4.6)

Applying formula (2.5) and (2.7), one may rewrite the second term at the right hand
side of (4.1) as

I2 = 2S

∫
w−(x, t) · ∇u(x, t) · w−(x, t)dx

= 2S

∫
w−(x, t) · S+(x, t) · w−(x, t)dx

=
3S

2π
P.V.

∫∫
(ŷ, w−(x, t))Det(ŷ, w+(x + y, t), w−(x, t))

dy

|y|3 dx

Using the cut-off function φ(|w+(x + y, t)|/Ω), one decomposes the last integral into two
parts,

I21 =
3S

2π
P.V.

∫∫
(ŷ, w−(x, t))Det(ŷ, φ(

|w+(x + y, t)|
Ω

)w+(x + y, t), w−(x, t))
dy

|y|3 dx

I22 =
3S

2π
P.V.

∫∫
(ŷ, w−(x, t))Det(ŷ, (1 − φ(

|w+(x + y, t)|
Ω

))w+(x + y, t), w−(x, t))
dy

|y|3 dx

Similar to the treatment of I11, I21 can be estimated as

I21 ≤ CΩ1/5‖w−‖2‖w−‖6‖w+‖4/5
12/5.

By Gagliardo-Nirenberg, Sobolev and the Young inequalities, one has

I21 ≤ δ1‖∇w+‖2
2 + δ2‖w−‖2

2 + C(δ1, δ2)Ω1/2(‖w+‖4
2 + ‖w−‖4

2)

for any δ2 > 0. In order to estimate I22, we need to use the property of zero mean of σ on
unit sphere, i.e., ∫

|y|≤ρ
σ(ŷ)w+(x, t)

dy

|y|3 = 0 (4.7)

12



By the representation (2.7), one has that

(1 − φ(
|w+(x + y, t)|

Ω
))w+(x + y, t)

=
1
4π

P.V.

∫
|z|≤ρ

(1 − φ(|w+(x + y, t)|Ω))σ(ẑ)w+(x + y + z, t)
dz

|z|3

+
1
4π

P.V.

∫
|z|≥ρ

(1 − φ(
|w+(x + y, t)|

Ω
))σ(ẑ)w+(x + y + z, t)

dz

|z|3

Using (4.7) and Calderon-Zygmund estimate, one has that

‖(1 − φ(
|w+(·, t)|

Ω
))w+(·, t)‖3 ≤ C(K + ρ−1/2)‖w+‖2.

Thus we obtain the estimate of I22

I22 ≤ C‖w−‖2‖w−‖6‖(1 − φ(|w+(·, t)|Ω))w+(·, t)‖3

≤ δ2‖∇w−‖2
2 + C(δ2)(K + ρ−1/2)2(‖w+‖4

2 + ‖w−‖4
2).

Consequently,

I2 ≤ δ1‖∇w+‖2
2 + 2δ2‖w−‖2

2 + C(δ1, δ2)[Ω1/2 + (K + ρ−1/2)2](‖w+‖4
2 + ‖w−‖4

2). (4.8)

It follows from (2.5) and (2.7) that the third term at the right hand side of (4.1) can
be written as

I3 = −2S

∫
[w−(x, t) · (∇B(x, t) · w+(x, t) + w+(x, t) · ∇B(x, t) · w−(x, t)] dx

= −2S

∫
w−(x, t) · (∇B(x, t) + (∇B(x, t))T ) · w+(x, t) dx

= −4S

∫
w−(x, t) · S−(x, t) · w+(x, t) dx

By (4.2) and (4.7), one has that

I3 ≤ C‖w−‖2‖S−‖6

(
‖φ(

|w+(·, t)|
Ω

)w+(·, t)‖3 + ‖(1 − φ(
|w+(·, t)|

Ω
))w+(·, t)‖3

≤ CΩ1/5‖w−‖2‖∇w−‖2‖w+‖4/5
12/5 + C(K + ρ−1/2)‖w−‖2‖∇w−‖2‖w+‖2

≤ δ1‖∇w+‖2
2 + δ2‖∇w−‖2

2 + C(δ1, δ2)[Ω1/2 + (K + ρ−1/2)2](‖w+‖4
2 + ‖w−‖4

2).
(4.9)

Let
I4 = 4S

∫
T (B, u) · w−(x, t) dx.
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Applying representation (2.10) and taking into account of the facts (4.4) and (4.7), we can
deduce in a similar way as for I3 that

I4 ≤ δ1‖∇w+‖2
2 + δ2‖∇w−‖2

2 + C(δ1, δ2)[Ω1/2 + (K + ρ−1/2)2](‖w+‖4
2 + ‖w−‖4

2) (4.10)

Integrating by part, we get, with the help of the Hölder and Young inequalities, that

I5 = 2|
∫

F · w+(x, t) dx|

≤ 2
∫

|f ||∇w+(x, t)| dx

≤ δ1‖∇w+‖2
2 + C‖f‖2

2.

(4.11)

Substituting above estimates into (4.1) and integrating from 0 to t show that

(‖w+(t)‖2
2 + S‖w−(t)‖2

2) +
∫ t

0

( 1
Re

‖∇w+(s)‖2
2 +

S

Rm
‖∇w−(s)‖2

2

)
ds

≤ ‖w+(0)‖2
2 + S‖w−(0)‖2

2 +
∫ T

0
‖f(s)‖2

2ds

+C
(
Ω1/2 + (K + ρ−1/2)2

) ∫ t

0

(
‖w+(s)‖4

2 + ‖w−(s)‖4
2

)
ds. (4.12)

with δ1 = 1/(6Re) and δ2 = S/(5Rm).
Combining the energy inequality with the fact

‖w+(t)‖2 = ‖∇u(t)‖2, ‖w−(t)‖2 = ‖∇B(t)‖2,

the one deduces estimate (3.9) from (4.12) by Gronwall inequality. �

5 A Priori Estimate II

In this section, we will deduce another kind of a priori estimate and prove Theorem 2.
Here we also assume that (u, B) is sufficient smooth on [0, T ].

First, we differentiate the first equations of (1.1) about xi, then multiply the resulting
equations by ∂iu to get

1
2

d

dt
‖∂iu‖2

2 +
1

Re
‖∇∂iu‖2

2 = −
∫

(∂iu · ∇)u · ∂iu dx + S

∫
(∂iB · ∇)B · ∂iu dx

+S

∫
(B · ∇)∂iB · ∂iu dx +

∫
∂if · ∂iu dx

(5.1)
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Similarly,

1
2

d

dt
‖∂iB‖2

2 +
1

Rm
‖∇∂iB‖2

2 = −
∫

(∂iu · ∇)B · ∂iB dx

+
∫

(∂iB · ∇)u · ∂iB dx +
∫

(B · ∇)∂iu · ∂iB dx (5.2)

Adding (5.1) and S× (5.2), we obtain, by integration by part, that

d

dt
(‖∂iu‖2

2 + S‖∂iB‖2
2) + 2(

1
Re

‖∇∂iu‖2
2 +

S

Rm
‖∇∂iB‖2

2)

= −2
∫

(∂iu · ∇)u · ∂iu dx + 2S

∫
(∂iB · ∇)B · ∂iu dx − 2S

∫
(∂iu · ∇)B · ∂iB dx

+2S

∫
(∂iB · ∇)u · ∂iB dx +

∫
∂if · ∂iu dx

(5.3)
If u ∈ Lp(0, T ; Lq(R3)) with 1/p + 3/2q = 1/2 and q > 3, then p = 2q/(q − 3). We get,

by the integration by part and the Hölder inequality, that

I1 = | − 2
∫

(∂iu · ∇)u · ∂iu dx|

≤ 2|
∫

(u · ∇)∂iu · ∂iu dx| + 2|
∫

(u · ∇)u · ∂i∂iu dx|
≤ 4‖u‖q‖∇u‖ 2q

q−2
‖D2u‖2.

By the Gagliardo-Nirenberg inequality and Young inequality, I1 can be estimated as

I1 ≤ 1
10Re

‖D2u‖2
2 + C‖u‖p

q‖∇u‖2
2. (5.4)

Similarly, we can estimate the other terms in (5.3) and obtain that

I2 = |2S

∫
(∂iB · ∇)B · ∂iu dx|

≤ S

10Rm
‖D2B‖2

2 + C‖u‖p
q‖∇B‖2

2

I3 = | − 2S

∫
(∂iu · ∇B) · ∂iB dx|

≤ S

10Rm
‖D2B‖2

2 + C‖u‖p
q‖∇B‖2

2

I4 = |2S

∫
(∂iB · ∇u) · ∂iB dx|

≤ S

10Rm
‖D2B‖2

2 + C‖u‖p
q‖∇B‖2

2

I5 = |2
∫

(∂if · ∂iu) dx|

≤ 1
10Re

‖D2u‖2
2 + C‖f‖2

2. (5.5)
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Substituting above estimates into (5.3) and summing i from 0 to 3, one gets that

d

dt
(‖∇u‖2

2 + S‖∇B‖2
2) +

1
Re

‖D2u‖2
2 +

S

Rm
‖D2B‖2

2 ≤ C‖u‖p
q(‖∇u‖2

2 + S‖∇B‖2
2) + C‖f‖2

2

(5.6)
which implies that

‖∇u(t)‖2
2 + S‖∇B(t)‖2

2 ≤ (‖∇u0‖2
2 + S‖∇B0‖2

2) exp
{

C

∫ t

0
‖u(τ)‖p

qdτ
}

+C

∫ t

0
‖f(s)‖2

2 exp
{

C

∫ t

s
‖u(τ)‖p

qdτ
}

ds. (5.7)

Thus, we obtain estimate (3.6) in the case of 1).
If u ∈ C([0, T ]; L3(R3)), then we can decompose u = u1+u2 with ‖u1‖C([0,T ];L3(R3)) ≤ ε

and ‖u2‖L∞((0,T )×R3) ≤ C(ε, ‖u‖C([0,T ];L3(R3))) for any ε > 0. Then I1 can be estimated as

I1 ≤ C

∫
|u||D2u||∇u| dx

≤ C‖u1‖3‖∇u‖6‖D2u‖2 + C‖u2‖∞‖∇u‖2‖D2u‖2

≤ Cε‖D2u‖2
2 + C‖u2‖2∞‖∇u‖2

2. (5.8)

Here we have used the Sobolev inequality and Cauchy inequality. The other terms in (5.3)
can be treated as before, so we can obtain an inequality similar to (5.6). Then we deduce
the result by same procedure as before.

Now we consider the case that ∇u ∈ Lα(0, T ; Lβ(R3)) for 1/α + 3/2β = 1 with 1 <

α ≤ 2. We multiply the both sides of the second equation in (1.1), integrate over R
3 and

get by integration by parts,

1
β

d

dt
‖B‖β

β +
β − 1
Rm

‖|B|β−2
2 ∇B‖2

2 ≤
∫

|B|β|∇u|dx ≤ ‖∇u‖β‖B‖β
β2/(β−1)

. (5.9)

By the Gagliardo-Nirenberg inequality,

‖B‖β
β2/(β−1)

≤ C‖B‖
2β−3

2
β ‖|B|β−2

2 ∇B‖
3
β

2 . (5.10)

By the Young’s inequality, we get

1
β

d

dt
‖B‖β

β +
β − 1
2Rm

‖|B|β−2
2 ∇B‖2

2 ≤ C‖∇u‖α
β‖B‖β

β . (5.11)

Therefore

‖B(t)‖β
β +

β(β − 1)
2Rm

∫ t

0
‖|B|β−2

2 ∇B(s)‖2
2ds ≤ C‖B0‖β

βe
∫ T
0 ‖∇u‖α

βdτ (5.12)

for any t ∈ [0, T ].
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Noting that the projector P commutes with ∇, we have

1
β

d

dt
‖u‖β

β +
β − 1
Re

‖|u|β−2
2 ∇u‖2

2

≤
∫

P (u · ∇)u · |u|β−2udx −
∫

P (B · ∇)B · |u|β−2udx

≤ ‖∇u‖β

(
‖u‖β

β2/(β−1)
+ ‖B‖2

β2/(β−1)‖u‖β−2
β2/(β−2)

)

≤ C‖∇u‖β

(
‖u‖

2β
2

β ‖|u|β−2
2 ∇u‖

3
β

2

+‖B‖
2β−3

β

β ‖|B|β−2∇B‖2
6

β2 ‖u‖
(β−2)(2β−3)

2β

β ‖|u|β−2
2 ∇u‖

2(β−2)

β2

2

)
. (5.13)

Thus
1
β

d

dt
‖u‖β

β +
β − 1
2Re

‖|u|β−2
2 ∇u‖2

2

≤ C‖∇u‖α
β‖u‖β

β + C‖∇u‖
2β2

2β2−3β+6

β ‖B‖
2β(2β−3)

2β2−3β+6

β

×‖|B|β−2
2 ∇B‖

12
2β2−3β+6

2 ‖u‖
2β2−7β+6

2β2−3β+6

β . (5.14)

By Gronwall’s inequality and (5.12), we obtain that

‖u(t)‖β
β +

β(β − 1)
2Re

∫ t

0
‖|u|β−2

2 ∇u(s)‖2
2ds ≤ C

(
‖B0‖β

β , ‖u0‖β
β , e

∫ T
0 ‖∇u‖α

βdτ
)

(5.15)

for any t ∈ [0, T ]. This completes the proof of Theorem 2. �
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