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1 Introduction

We will consider the question of the existence of self-similar solutions to the three dimensional
initial value problem of incompressible magneto-hydrodynamics (MHD) equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
− 1

Re
Δ u + (u · ∇)u − S(b · ∇)b + ∇p = 0,

∂b

∂t
− 1

Rm
Δ b + (u · ∇)b − (b · ∇)u = 0,

divu = 0, divb = 0

(1.1)

with initial data {
u(x, 0) = u0(x),

b(x, 0) = b0(x).
(1.2)

Here u, p and b are nondimensional qualities corresponding to the velocity of the fluid, its
pressure and the magnetic field. The nondimensional number Re is the Reynolds number,
Rm is the magnetic Reynolds and S = M2/(ReRm) with M being the Hartman number.
For simplicity, let Re = Rm = S = 1.

As for the incompressible Navier-Stokes system, the incompressible MHD system (1.1) is
dialation invariant in the sense that if if (u, b, p) is a solution to (1.1), then so is (ur, br, pr)
defined by scaling ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ur(x, t) Δ= ru(rx, r2t),

br(x, t) Δ= rb(rx, r2t),

pr(x, t) Δ= r2p(rx, r2t)

(1.3)

for each r > 0 and any (x, t) ∈ R
3×R

+. It is well-known that solutions invariant under diala-
tions are important for regularity and asymptotic behavior of general solutions to underlying
nonlinear partial differential equations such as Navier-Stokes system, see [8]. Then it is of
interests to study the existence of such dialation invariant solutions for the incompressible
MHD system (1.1).

The first purpose of this paper is to study the question whether there exists a class of
backward self-similar solutions of the magneto-hydrodynamic equations. Duvaut and Li-
ons [7] constructed a class of global weak solutions, which is similar to the Leray-Hopf weak
solutions to the Navier-Stokes equations, and a class of local strong solutions to initial bound-
ary value problems of the magneto-hydrodynamic equations. However, it remains to know
whether there is a solution which can develop singularities in finite time, even if all the given
data, such as initial and boundary values, are sufficient smooth. Due to the scaling property,
it is natural to look for the existence of backward self-similar solutions as an good exam-
ples constructing singular solutions. Thus, Leray [15] raised his famous question about the
existence of backward self-similar solutions for the Navier-Stokes equations in 1934. And
this question was answered by Nečas, Ružička and Šverák [16] in 1996. They showed that
the only backward self-similar solution satisfying the global energy estimates is zero. Same
results also were obtained by Tsai [21] in 1998, under very general assumptions, for example,
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if the solutions satisfy the local energy estimates. One of the main ingredients in their proof
is the partial regularity theory established in [3].

For the incompressible magneto-hydrodynamic equations, although the theory of partial
regularity as in [3] has been developed by the authors in [12], yet, it seems quite difficult to
apply the ideas in [16] [21] to study the backward self-similar solutions to this case due to the
presence of the magnetic field. In this paper, we will use the energy estimates to show that
there is only trivial backward self-similar solution in Lp(R3) for p ≥ 3, under some smallness
assumption on the kinetic energy of the backward self-similar solution. Namely, we will first
show that, if U ∈ Lr(R3) with 3 ≤ r ≤ ∞ and B ∈ Lp(R3) with 3 ≤ p < ∞ with ‖U‖r small,
then there is only trivial backward self-similar solution. This reveals that the velocity field
should play a more important role in the regularity theory of the magneto-hydrodynamic
equations than the magnetic field. And this also coincides with the partial regularity theory
obtained in [12] and the regularity criteria obtained in [13]. At the same time, we will show
that, if U ∈ Lr(R3) with 3 < r < ∞ and B ∈ Lp(R3) with p ∈ (6r/(r + 1), 2r] with ‖B‖p

small, then there is only trivial backward self-similar solution also. This implies that there
is only trivial backward self-similar solution to the Navier-Stokes equations under the small
perturbation in some sense.

The second purpose of this paper is to construct a class of global forward self-similar
solutions to the magnetohydrodynamics equations (1.1). For incompressible Navier-Stokes
system, there are extensive literatures on the studies of forward self-similar solutions. It
started with Giga and Miyakawa who showed the existence and uniqueness of global forward
self-similar solution in the Morrey-type spaces of measures as the initial vorticity is small in
some sense [10]. This is then followed by extensive studies on the existence and uniqueness
of the forward self-similar solutions in a variety of spaces including the homogeneous Besov
spaces under the assumption that the initial data is small in some sense by many people, see
[1], [6], [9], etc., which was surveyed by Cannone in [4] [5] where an abstract framework is
presented. In particular, Barraza [1] showed that there exists a unique self-similar solution
in weak-Lq(3 < q < ∞) provided the initial data belongs to weak-L3 and is small in some
sense. Recently, Grujić [11] constructed a global regular forward self-similar solutions ema-
nating from arbitrary large initial data which is homogeneous of degree −1 and belongs to
L2

loc,unif (R3)∩L3
w(R3)(here Lp

w(R3) denotes the weak-Lp(R3) space). It should be noted that
the forward self-similar solutions constructed in [10], [14], [6] and [1] are unique for small
initial data in some sense, while Grujić’s forward self-similar solution exists for any large
initial data in L2

loc,unif (R3)∩L3
w(R3) and is smooth, but the uniqueness of such a solution is

not known. The Grujić’s idea is as follows: First, by the modified Navier-Stokes equations,
one can show the existence of “partially self-similar” solution on (0, T ) with some positive T .
This solution is also a suitable weak solution in the sense of Caffarelli, Kohn and Nirenberg
[3]. Then by the partial regularity theory [3] and the “partial self-similarity”, it can be shown
that the set of possible singular points for this solution is empty, so the local “partial self-
similar” solution is infinitely differentiable with respect to spatial variables and then to time
variables. Finally, the spatial continuity and “partial self-similarity” imply that the local
“partial self-similar” solution can be extended to be a global full self-similar solution. Moti-
vated by the Grujić’s work [11], we establish the existence of forward self-similar solutions to
the incompressible magneto-hydrodynamics equations (1.1) under the assumptions that the
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initial data are homogeneous of degree −1 and belong to L2
loc,unif (R3). It should be noted that

our results are new even for the incompressible Navier-Stokes system since we do not require
that initial data in L3

w(R3), which is the assumption by Grujic in [11]. This is so due to that
we can construct the approximate solutions by studying the solutions to a linearized magneto-
hydrodynamic equations instead of the solutions to the modified Navier-Stokes equations as
in [11]. The advantage of our arguments is that our approximate solutions remain invariant
under the scaling. By generalizing the ideas and techniques in [14] constructing the suitable
local square-integrable weak solutions for the Navier-Stokes equations, we then show the local
existence of “partial self-similar” solutions to the incompressible MHD equations. The other
parts of our analysis will be based on the partial regularity theory established in [12] and the
regular criteria obtained in [13] for incompressible magnetohydrodynamics equations.

The paper is organized as follows: some basic concepts and mathematical preliminaries are
introduced in section 2. Then in section 3, we show the non-existence of backward self-similar
solutions. And finally we study the forward self-similar solutions in section 4.

2 Mathematical Preliminaries

First, we recall the notations of some function spaces. Let Lp(R3), 1 ≤ p ≤ ∞, represent the
usual Lesbegue space of scalar functions as well as that of vector-valued functions with norm
denoted by ‖ · ‖p. Let C∞

0,σ(R3) denote the set of all φ ∈ C∞
0 (R3) (the set of all real vector-

valued functions with compact support in R
3) such that div φ = 0. Let Lp

σ(R3), 1 < p < ∞,
be the closure of C∞

0,σ(R3) in Lp(R3). H1(R3) denotes the usual L2−Sobolev Space. Finally,
for a given Banach space X with norm ‖ · ‖X , we denote by Lp(0, T ; X), 1 ≤ p ≤ ∞, the set
of function f(t) defined on (0, T ) with values in X such that

∫ T
0 ‖f(t)‖p

Xdt < ∞. For x ∈ R
3,

we denote Br(x) = {y ∈ R
3, |y − x| < r}. For point (x, t) ∈ R

3 × R+, the parabolic ball
centered at point (x, t) with radius r will be denoted as Qr(x, t) = Br(x) × (t − r2, t). Let
Lp

loc,unif (R3) be the space of uniformly locally square integrable vector fields with norm

‖f‖Lp
loc,unif (R3) =: sup

x∈R3

sup
0<R<1

( ∫
BR(x)

|f(y)|pdy
) 1

p

for p ∈ [1,∞). Set Ep be the closure of Schwartz test functions in Lp
loc,unif (R3). So f ∈

Ep(p < ∞) if and only if f is locally Lp integrable and f vanishes at ∞ in the sense of
limx0→∞

∫
|x−x0|<1 |f(x)|pdx = 0.

Due to the scaling property (1.3), the backward self-similar solutions to (1.1) are of the
forms ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(x, t) =
1√

2a(T − t)
U(

x√
2a(T − t)

),

b(x, t) =
1√

2a(T − t)
B(

x√
2a(T − t)

),

p(x, t) =
1

2a(T − t)
P (

x√
2a(T − t)

).

(2.1)
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Where T > 0 and a > 0. Thus U = (U1(y), U2(y), U3(y)), B = (B1(y), B2(y), B3(y)) and
P (y) are all defined in R

3. The magneto-hydrodynamic equations require that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ΔU + aU + a(y · ∇)U + (U · ∇)U − (B · ∇)B + ∇P = 0,

−ΔB + aB + a(y · ∇)B + (U · ∇)B − (B · ∇)U = 0,

divU = 0, divB = 0.

(2.2)

It is obvious that a nonzero (U, B, P ) would produce a solution (u, b, p) of (1.1) with a
singularity point (0, T ).

For simplicity, assume a = 1. For general case, one can use the transform

(U(x), B(x)) 	−→ (√
aU((

√
a)x),

√
aB((

√
a)x)

)
,

to reduce to the case of a = 1.

Definition 2.1: A pair (U, B) ia called a weak solution to (2.2) in R
3, if

i) U and B belong locally to H1(R3),
ii) U and B are divergence free,
iii) for any φ = (φ1, φ2, φ3) ∈ C∞

0 (R3) with divφ = 0 and any ψ = (ψ1, ψ2, ψ3) ∈ C∞
0 (R3)∫

R3

(
∇U · ∇φ + Uφ + (y · ∇)U · φ + (U · ∇)U · φ − (B · ∇)B · φ

)
dy = 0,

∫
R3

(
∇B · ∇ψ + Bψ + (y · ∇)B · ψ + (U · ∇)B · ψ − (B · ∇)U · ψ

)
dy = 0.

Employing the regularity theory for the linear Stokes operator, one can show that every
weak solution (U, B) of (2.2) is smooth, cf. [9]. It should be noted that the pressure P does
not appear explicitly in the definition of weak solutions. But the first equation of (2.2) implies
formally that

−ΔP =
3∑

i,j=1

∂2

∂yi∂yj

(
UiUj − BiBj

)
. (2.3)

Obviously, P is unique up to an addition of a harmonic function. In this paper, let P
belong to Lp(R3) for some p > 1. Then one can solve equation (2.3) by the classical Riesz
transformation Rj , that is,

P = RiRj

(
UiUj − BiBj

)
. (2.4)

By the Lp−boundedness of the Riesz transformation (cf. [18]), one has

‖P‖r ≤ C
(
‖U‖2

2r + ‖B‖2
2r

)
, 1 < r < ∞ (2.5)

and
‖∇P‖r ≤ C

(
‖U · ∇U‖r + ‖B · ∇B‖r

)
, 1 < r < ∞ (2.6)

if the right terms are well-defined. Here ‖ · ‖r denotes the norm in Lr(R3). By the classical
regularity theory for the Laplance equation, P is smooth, as long as U and B are smooth.

5



Similar to the discussion of Lemma 3.1 in [16], one can show that (U, B, P ) solves the equation
(2.2) in the classical sense.

Lemma 2.1 Let (U, B) be a weak solution of (2.2) in Lp(R3) with p ≥ 3, and P be
defined in (2.4). Then (U, B, P ) is smooth, and solve the equations (2.2).

The proof is similar to that of Lemma 3.1 in [16].
Next we recall the definition of suitable weak solutions to the magneto-hydro-dynamics

equations (1.1) given in [12].

Definition 2.2. The pair (u, b, p) is called a suitable weak solution of the magneto-
hydro-dynamic equations (1.1) in an open set D ⊂ R

3 × R
+, if

1) p ∈ L5/3(D) with
∫ ∫

D
|p(x, t)|5/3dxdt ≤ C1, and for some positive constants C2 and

C3, ∫
Dt

(|u(x, t)|2 + |b(x, t)|2)dx ≤ C2,

∫ ∫
D

(|∇u(x, t)|2 + |∇b(x, t)|2)dxdt ≤ C3 (2.7)

for almost every t such that Dt = D ∩ {Ω × {t}} = ∅.
2) (u, b, p) satisfies (1.1) in the sense of distribution on D.
3) For each real-valued φ ∈ C∞

0 (D) with φ ≥ 0, the following generalized energy inequality
is valid:

2
∫ ∫

D
(|∇u(x, t)|2 + |∇b(x, t)|2)φdxdt

≤
∫ ∫

D
(|u(x, t)|2 + |b(x, t)|2)(φt(x, t) + Δφ(x, t))dxdt

+
∫ ∫

D
(u(x, t) · ∇φ)(|u(x, t)|2 + |b(x, t)|2 + 2p(x, t))dxdt

−2
∫ ∫

D
(b · ∇φ)(u · b)dxdt. (2.8)

4) For any χ ∈ C∞
0 (D), the equation

∂bχ

∂t
− Δ(bχ) = b(

∂χ

∂t
− Δχ) − 2∇χ · ∇b − χ(u · ∇)b + χb · ∇u (2.9)

holds in the sense of distribution. Now we recall one of the main results on partial regularity
given in [12], which will be used later.

Theorem 2.1. There exists an absolute constant ε with the following property. Let
(u, b, p) be a suitable weak solution to (1.1), suppose further that, for some r0 > 0,

1
r

∫ ∫
Qr(x0,t0)

|∇u(x, t)|2dxdt ≤ ε for all 0 < r ≤ r0,

and
sup

0<r≤r0

1
r3

∫ ∫
Qr(x0,t0)

|b(x, t)|2dxdt < ∞,
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then, there is a r1 ≤ r0, such that

sup
Qr/2(x0,t0)

(|∇u(x, t)| + |∇b(x, t)|) ≤ Cr−2 (2.10)

for all r ≤ r1. This implies that the one- dimensional Hausdorff measure of the set of
possible singular points of u and b is zero, following the arguments given in [3]. Where a
point (x, t) ∈ R

3 × R
+ is called singular if (u, b) is unbounded in any neighborhood of point

(x, t); otherwise, if (u, b) is locally bounded in some neighborhood of point (x, t), then (x, t)
is called a regular point.

See Theorem 2.3 and remarks 2 in [12]. Following the arguments [13], we can establish
the local regularity criteria.

Theorem 2.2. Let (u, b) be a weak solution in some open region Ω× (t1, t2) with Ω ⊂ R
3

and 0 < t1 < t2. If u ∈ Lp(t1, t2, Lq(Ω)) for 1/p+3/2q ≤ 1/2 and q > 3, then (u, b) is of class
C∞ with respect to space variables, and each derivative is bounded on compact subdomains of
Ω × (t1, t2).

The proof is similar to that of Theorem 3 in [13].

3 Backward Self-similar Solutions

In this section, we present and prove our main result on backward self-similar solutions to
(1.1).

Theorem 3.1 Let (U, B) be a weak solution of (2.2) with U ∈ Lr(R3) for 3 ≤ r ≤ ∞
and B ∈ Lp(R3) for 3 ≤ p < ∞. Then if

‖U‖r <

⎧⎪⎨
⎪⎩

c−1
0 ; r = 3;( p − 3
p(p − 1)

) r−3
2r

c
− 3

r
0 r > 3 and p > 3,

with c0 = 3
√

4/ 3
√

π
√

3, then
U = B = 0, P = 0 (3.1)

if r < ∞ and p > 3 or r = p = 3;

U = constant; B = 0, P = constant (3.2)

if r = ∞ and p > 3.

Proof First we consider the case of p > 3. We multiply both sides of the second equation
of (2.2) by |B|p−2B, then integrate over R

3 to get, with the help of integrations by parts,
that

‖B‖p
p −

3
p
‖B‖p

p +
∫

R3

∇B · ∇(|B|p−2B)dy =
∫

R3

(B · ∇U) · |B|p−2Bdy.

Thus
p − 3

p
‖B‖p

p + (p − 1)
∫

R3

|B|p−2|∇B|2 dx ≤ (p − 1)
∫

R3

|U ||B|p−1|∇B| dx. (3.3)
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By the Hölder’s inequality, the right hand term of (3.3) can be estimated as

I =: (p − 1)
∫

R3

|U ||B|p−1|∇B| dx ≤ (p − 1)‖U‖r‖B‖
p
2
rp

r−2

( ∫
R3

|B|p−2|∇B|2 dx
) 1

2
.

By the interpolation inequality,

‖B‖ rp
r−2

≤ ‖B‖
r−3

r
p ‖B‖

3
r
3p = ‖B‖

r−3
r

p ‖|B| p
2 ‖

6
rp

6 .

By the Sobolev inequality (see [19])

‖f‖6 ≤ c0‖∇f‖2 (3.4)

with c0 = 3
√

4/ 3
√

π
√

3, one has

‖B‖ rp
r−2

≤ c
6
rp

0 ‖B‖
r−3

r
p

( ∫
R3

|B|p−2|∇B|2 dx
) 3

rp
.

Therefore,
p − 3

p
‖B‖p

p + (p − 1)
∫

R3

|B|p−2|∇B|2 dx

≤ (p − 1)c
3
r
0 ‖U‖r‖B‖

p(r−3)
2r

p

( ∫
R3

|B|p−2|∇B|2 dx
) r+3

2r
. (3.5)

If r = 3, taking
‖U‖r ≤ c−1

0 ,

then (3.5) give us that ‖B‖p = 0, i.e., B = 0 a.e. in R
3; While if r > 3, by the Young’s

inequality,

I ≤ (p − 1)
∫

R3

|B|p−2|∇B|2 dx + (p − 1)c
6

r−3

0 ‖U‖
2r

r−3
r ‖B‖p

p.

So taking

‖U‖r ≤
( p − 3

p(p − 1)

) r−3
2r

c
− 3

r
0 ,

then (3.5) implies that B = 0 a.e. in R
3.

In the case of p = r = 3, taking in (3.5)

‖U‖3 < c−1
0 ,

then ∫
R3

|B||∇B|2 dx = 0

which and B ∈ L3(R3) imply that B = 0 a.e. in R
3.

In all the cases considered above, B = 0 a.e. in R
3, then the equations is only about

(U, P ). By the results obtained in [21] for the incompressible Navier-Stokes equations, we
have

U = P = 0,
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if r < ∞, and
U = constant, P = constant

if r = ∞. Then we complete the proof. �
Next we turn to the problem when the magnetic is small in some sense. Namely, we have

Theorem 3.2 Let (U, B) be a solution to (2.2) with U ∈ Lr(R3) and B ∈ Lp(R3) for
some 3 < r < ∞ and p ∈ (6r/(r + 1), 2r]. Then there is a constant ε = ε(r, p) such that if

‖B‖p < ε(r, p)

then
U = B = P = 0. (3.6)

Proof We view the first system in (2.2) for unknown vector U with nonhomogeneous
term (B · ∇)B. Since B ∈ Lp

σ(R3), we choose that Bk ∈ C∞
0,σ(R3) such that Bk converge

strongly to B in Lp
σ(R3) and

‖Bk‖p ≤ ‖B‖p, ∀k ≥ 0. (3.7)

Now we linearize the convection (U · ∇U) to construct the approximate solutions as follows:

{ −ΔU0 + U0 + (y · ∇)U0 + ∇P 0 = (B0 · ∇)B0,

div U0 = 0
(3.8)

and { −ΔUk + Uk + (y · ∇)Uk + (Uk−1 · ∇)Uk + ∇P k = (Bk · ∇)Bk,

div Uk = 0
(3.9)

for k ≥ 1. Note that
(Bk · ∇)Bk = ∇(

Bk ⊗ Bk
) ∈ C∞

0,σ(R3)

since Bk ∈ C∞
0,σ(R3). By the theory on steady Stokes equations (see section 2 in chapter IV

in [9]), there is a unique solution U0 to (3.8) with U0,∇U0 ∈ Lq(R3) for any q ≥ 1. By
induction, there is a unique solution Uk to (3.9) with Uk,∇Uk ∈ Lq(R3) for any q ≥ 1 also.

In the following, we only need to establish the uniform estimates for approximate solutions
Uk. For r > 3, we multiply both sides of (3.9) by |Uk|r−2Uk, and integrate over R

3 to get
that

r − 3
r

∫
R3

|Uk(y)|r dy + (r − 1)
∫

R3

|Uk|r−2|∇Uk|2 dy

≤ (r − 1)
∫

R3

|Bk|2|Uk|r−2|∇Uk| dy + (r − 1)
∫

R3

|P k||Uk|r−2|∇Uk| dy

=: I1 + I2. (3.10)
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It follows from equations (3.9), the pressure P k obeys that

−ΔP k =
3∑

i,j=1

∂2

∂xi∂xj

(
uk−1

i uk
j − Bk

i Bk
j

)
=: P1 + P2

with

P1 =
1
4π

3∑
i,j=1

∫
R3

Uk−1
i (y)Uk

j (y)
|x − y| dy

P2 = − 1
4π

3∑
i,j=1

∫
R3

Bk
i (y)Bk

j (y)
|x − y| dy. (3.11)

By the Calderón-Zygmund theory on singular integral, we have{ ‖P1‖(r+2)/2 ≤ c1( r+2
2 )‖Uk−1‖r+2‖Uk‖r+2,

‖P2‖2q ≤ c1(2q)‖Bk‖2
4q

(3.12)

for q > 1, with

c1(l) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( 4l2

l − 2
) l−1

l

(
25 + 4J + 233

3
2

) l−2
2l

, as l > 2;

1, as l = 2,

( 2l

l − 1
+

4l

2 − l

) 1
l
(
25 + 4J + 233

3
2

) 2−l
2l

, as 1 < l < 2

and
J = sup

ξ �=0,1≤i,j≤3

1
4π

∫
|x|≥2|ξ|

∣∣∣∂2
ij

1
|x − ξ| − ∂2

ij

1
|x|

∣∣∣ dx < ∞.

Now we estimate I1. For q ∈ (3r/2(r + 1), r/2], by Hölder inequality, we have

I1 ≤ (r − 1)M
1
2
k ‖Bk‖2

4q‖Uk‖
r−2
2

q(r−2)/(q−1)

with
Mk :=

∫
R3

|Uk(y)|r−2|∇Uk(y)|2 dy.

By the interpolation inequality and Sobolev inequality (3.4), we deduce that

‖Uk‖q(r−2)/(q−1) ≤ ‖Uk‖
2qr+2q−3r

2q(r−2)
r ‖Uk‖

3(r−2q)
2q(r−2)

3r ≤ c
3(r−2q)
rq(r−2)

0 ‖Uk‖
2qr+2q−3r

2q(r−2)
r M

3(r−2q)
2qr(r−2)

k .

Thus,

I1 ≤ (r − 1)c
3(r−2q)

2qr

0 ‖Bk‖2
4q‖Uk‖

2qr+2q−3r
4q

r M
3r+2qr−6q

4qr

k .

By the Young’s inequality, we deduce that

I1 ≤ r − 1
4

3r + 2qr − 6q

4qr
Mk + (r − 1)4

3r+2qr−6q
2qr+6q−3r c

6(r−2q)
2qr+6q−3r

0 ‖Bk‖
8qr

2qr+6q−3r

4q ‖Uk‖
r(2qr+2q−3r)
2qr+6q−3r

r .
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Let p = 4q. By (3.7), we obtain that

I1 ≤ r − 1
4

Mk + (r − 1)4
6r+pr−3p
pr+3p−6r c

6(2r−p)
pr+3p−6r

0 ‖B‖
4pr

pr+3p−6r
p ‖Uk‖

r(pr+p−6r)
pr+3p−6r

r . (3.13)

Applying (3.12), one can estimate I2 as

I2 ≤ (r − 1)
(
‖P1‖2q‖Uk‖q(r−2)/(q−1)M

1
2
k + ‖P2‖(r+2)/2‖Uk‖

r−2
2

r+2M
1
2
k

)
≤ (r − 1)

(
c1(2q)‖Bk‖2

p‖Uk‖q(r−2)/(q−1)M
1
2
k + c1(

r + 2
2

)‖Uk−1‖r+2‖Uk‖
r
2
r+2M

1
2
k

)
:= I21 + I22.

Similar to the estimate of I1, one has for I21 that

I21 ≤ r − 1
4

Mk

+(r − 1)4
6r+pr−3p
pr+3p−6r c

6(2r−p)
pr+3p−6r

0

(
c1(

p

2
)
) 2pr

pr+3p−6r ‖B‖
4pr

pr+3p−6r
p ‖Uk‖

r(pr+p−6r)
pr+3p−6r

r .

It follows from the interpolation and Sobolev inequalities (3.4)that

‖Uk‖r+2 ≤ ‖Uk‖
r−1
r+2
r ‖Uk‖

3
r+2

3r ≤ c
6

r(r+2)

0 ‖Uk‖
r−1
r+2
r M

3
r(r+2)

k .

Then I22 can be estimated as

I22 ≤ (r − 1)c1(
r + 2

2
)c

3
r
0 ‖Uk−1‖

r−1
r+2
r M

3
r(r+2)

k−1 ‖Uk‖
r(r−1)
2(r+2)

2 M
r+5

2(r+2)

k

≤ r − 1
4

Mk + (r − 1)4
r+5
r−1

(
c1(

r + 2
2

) 2(r+2)
r−1

c
6(r+2)
r(r−1)

0 ‖Uk−1‖2
rM

6
r(r−1)

k−1 ‖Uk‖r
r.

Therefore we obtain the estimate on I2 as

I2 ≤ r − 1
2

Mk + (r − 1)
{

4
r+5
r−1

(
c1(

r + 2
2

) 2(r+2)
r−1

c
6(r+2)
r(r−1)

0 ‖Uk−1‖2
rM

6
r(r−1)

k−1 ‖Uk‖r
r

+4
6r+pr−3p
pr+3p−6r c

6(2r−p)
pr+3p−6r

0

(
c1(

p

2
)
) 2pr

pr+3p−6r ‖B‖
4pr

pr+3p−6r
p ‖Uk‖

r(pr+p−6r)
pr+3p−6r

r

}
. (3.14)

Substituting (3.13) and (3.14) into (3.10), we deduce that

min{r − 3
r

,
r − 1

4
}
(
‖Uk‖r

r + Mk

)

≤ (r − 1)4
6r+pr−3p
pr+3p−6r c

6(2r−p)
pr+3p−6r

0

{(
c1(

p

2
)
) 2pr

pr+3p−6r + 1
}
‖B‖

4pr
pr+3p−6r
p ‖Uk‖

r(pr+p−6r)
pr+3p−6r

r

+(r − 1)4
r+5
r−1

(
c1(

r + 2
2

) 2(r+2)
r−1

c
6(r+2)
r(r−1)

0 ‖Uk−1‖2
rM

6
r(r−1)

k−1 ‖Uk‖r
r. (3.15)
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Let⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2(r, p) := (r − 1)
(

min{r − 3
r

,
r − 1

4
}
)−1

4
6r+pr−3p
pr+3p−6r c

6(2r−p)
pr+3p−6r

0

{(
c1(

p

2
)
) 2pr

pr+3p−6r + 1
}

,

c3(r, p) := (r − 1)
(

min{r − 3
r

,
r − 1

4
}
)−1

4
r+5
r−1

(
c1(

r + 2
2

) 2(r+2)
r−1

c
6(r+2)
r(r−1)

0 .

By a similar argument, we can show that

‖U0‖r
r + M0 ≤ c2(r, p)‖B‖

4pr
pr+3p−6r
p ‖U0‖

r(pr+p−6r)
pr+3p−6r

r

which shows that

‖U0‖r
r + M0 ≤

(
c2(r, p)

) pr+3p−6r
2p ‖B‖2r

p . (3.16)

Therefore, by induction, we can show that

‖Uk‖r
r + Mk ≤

(
2c2(r, p)

) pr+3p−6r
2p ‖B‖2r

p (3.17)

holds uniformly for k ≥ 0, provided that

c3(r, p)
(
2c2(r, p)

) (r+2)(rp+3p−6r)
rp(r−1) ‖B‖

4(r+2)
r−1

p ≤ 1
2
. (3.18)

The uniform estimate (3.17) implies that there is a subsequence (denoted still by Uk) and
two functions U ′ and U such that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|Uk| r−2
2 Uk ⇀ U ′ weakly in L2(R3),

|Uk| r−2
2 Uk ⇀ U ′ weakly in H1(R3),

|Uk| r−2
2 Uk → U ′ strongly in L2

loc(R
3),

Uk ⇀ U weakly in Lr(R3)

(3.19)

as k → ∞. By the Tartar’s inequality

(|a|sa − |b|sb)(a − b) ≥ 2−s|a − b|s+2 s > 0,

we have for any bounded domain Ω,

2
2−r
2

∫
Ω

∣∣Uk − Um| r+2
2 dx ≤

∫
Ω

(
|Uk| r−2

2 Uk − |Um| r−2
2 Um

)(
Uk − Um

)
dx. (3.20)

It is obvious that |Uk|(r−2)/2Uk is a Cauchy sequence in L
r/(r−1)
loc (R3), which and the last one

of (3.19) imply that Uk converges to U for almost every point in R
3. For any φ ∈ C∞

0 (R3),
we have ∫

R3

U ′ · φ dx = lim
k→∞

∫
R3

|Uk| r−2
2 Uk · φ dx =

∫
R3

|U |r−2U · φ dx (3.21)
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by the first relation of (3.19) and Lebesgue dominated convergence theorem. By the arbi-
trariness of φ, we deduce that

U ′ = |U | r−2
2 U a. e. R

3.

Now it is routine to show that U is a solution of the first equation of (2.2) by passing the
limit k → ∞, provided B satisfies (3.18). Moreover

‖U‖r
r +

∫
R3

|U |r−2|∇U |2 dx ≤
(
2c2(r, p)

) pr+3p−6r
2p ‖B‖2r

p . (3.22)

The estimate also tell us that the solution U is unique as long as B satisfies (3.18). Taking
ε = ε(r, p)

ε := min
{(

2c2(r, p)
)− pr+3p−6r

4rp
( p − 3

p(p − 1)

) r−3
4r

c
− 3

2r
0 ,

(
2c3(r, p)

)− r−1
4(4+2)

(
2c2(r, p)

)− rp+3p−6r
4pr

}
,

then we have

‖U‖r ≤
( p − 3

p(p − 1)

) r−3
2r

c
− 3

r
0

provided
‖B‖p < ε.

Therefore, the result of Theorem 3.2 follows from Theorem 3.1. �

4 Forward Self-similar Solutions

In this section, we will construct a global forward self-similar solution to the incompress-
ible magneto-hydrodynamics equations (1.1). It should be noted that the usual energy
method cannot yield nontrivial forward self-similar solutions for the incompressible magneto-
hydrodynamics equations (1.1), as which was first pointed out in the case of the Navier-Stokes
equations in [10]. This fact can be shown by following the arguments in [10]. Indeed, suppose
(U, B) is a self-similar solution of the incompressible magneto-hydrodynamics equations (1.1),
which is the scaling invariant, i.e.

λU(λx, λ2t) = U(x, t), λB(λx, λ2t) = B(x, t), ∀λ > 0

and satisfies the energy inequality

‖U(t)‖2
2 + ‖B(t)‖2

2 + 2
∫ t

s

(
‖∇u(τ)‖2

2 + ‖∇B(τ)‖2
2

)
dτ ≤ ‖U(s)‖2

2 + ‖B(s)‖2
2

for some s > 0 and all t ≥ s. By the scaling law, it is easy to verify that (U(·, t), B(·, t))
belong to H1(R3), U(x, t) = (s/t)

1
2 U((s/t)

1
2 x, s) and B(x, t) = (s/t)

1
2 B((s/t)

1
2 x, s) for all
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t ≥ s. Let y = (s/t)
1
2 x, and V (y) = (s/t)

1
2 U((s/t)

1
2 x, s), W (y) = (s/t)

1
2 B((s/t)

1
2 x, s). Then

for some p = p(y),

−ΔV − (1/2s)(1 + y · ∇)V + (V · ∇)V − (W · ∇)W = −∇p,

−ΔW − (1/2s)(1 + y · ∇)W + (V · ∇)W − (W · ∇)V = 0,

div V = 0, div W = 0.

Now we multiply the first equation by V , the second equation by W , then add the resulting
equations and integrate over R

3 to get, with the help of third equation, that

(1/4s)(‖V ‖2
2 + ‖W‖2

2) + (‖∇V ‖2
2 + ‖∇W‖2

2) = 0

which implies that V = W = 0.
The above arguments show that, in order to construct non-trivial forward self-similar

solutions to MHD equations, one should introduce some spaces of non-square summable
functions. Motivated by the studies on self-similar solution for the incompressible Navier-
Stokes equations (cf. [10], [11], [14] and references therein), we will study the existence of
forward self-similar solutions in the space of uniformly locally square integrable vector fields.
Our main results are:

Theorem 4.1 Let u0, b0 ∈ E2 be divergence free and homogeneous of degree −1. Then
there exists a global forward self-similar solution (u, b) to (1.1) on R

3 × (0,∞), satisfying:
1) u, b ∈ C∞(R3 × (0,∞)).
2) lim

t→0+
(‖u(t) − u0‖L2

loc,unif (R3) + ‖b(t) − b0‖L2
loc,unif (R3)) = 0.

3) For any t ∈ (0,∞),

‖u(t)‖∞ = ‖u(1)‖∞t−
1
2 , ‖b(t)‖∞ = ‖b(1)‖∞t−

1
2 .

Remarks
1 The forward self-similar solution in Theorem 4.1 is a classical solution to (1.1) on

R
3 × R

+. However, the uniqueness of such a solution is open.
2 Following the arguments in [14], [6], [1], we also can show that there exists a unique

forward self-similar solution when the initial data (u0, b0) belongs to some homogeneous Besov

space
.
B

3
p
−1

p,∞ (R3) for some p ∈ [1,∞] or weak-L3 space respectively and is suitable small in
some sense. In the present case, L2

loc,unif (R3) coincides with the Morrey’s space M2
2 (R3).

And L3
w(R3) ⊂ .

B
3
p
−1

p,∞ (R3) for p > 3 and
.
B

3
p
−1

∞,∞ (R3) ⊂ .
B

− 3
2

∞,∞ (R3) for any p ∈ [1,∞]. See [14]
and [2].

3 For the incompressible Navier-Stokes equations, Grujic [11] recently construct a class of
global forward self-similar solutions as initial data in L2

loc,unif (R3)∩L3
w(R3). The special case

of Theorem 4.1, with b0 = b(t) ≡ 0, yields the existence of a class of global smooth forward
self-similar solutions for the three-dimensional incompressible Navier-Stokes equations with
initial data u0 ∈ L2

loc,unif (R3), which improves the results obtained by Grujic [11].
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4 The fact that initial data is homogeneous of degree −1 implies that it possess a 1/|x|-
type singularity at origin. Direct calculations show that L2

loc,unif (R3) may contain the vector
possessing a 1/|x|-type singularity at origin. On R

3, typical elementary examples of such
vectors are given by any linear combinations of the vector fields

(0,− x3

|x|2 ,
x2

|x|2 ), (
x3

|x|2 , 0,− x1

|x|2 ), (− x2

|x|2 ,
x1

|x|2 , 0)

which are homogeneous of degree −1 and divergence free, see [10], [20].

Proof : We will construct the approximate solutions by using the solutions to the lin-
earized MHD equations, which remain invariant under the scaling. Borrowing and general-
izing the ideas and techniques in [14] constructing the suitable local square-integrable weak
solutions for Navier-Stokes equations, we then show the local existence of “partial self-similar”
solutions. The details are carried out in the following steps.

Step 1: Approximate solutions
We linearize the magneto-hydrodynamic equations (1.1) to construct the approximate

solutions as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0

∂t
− Δu0 + ∇p0 = 0,

∂b0

∂t
− Δb0 + ∇q0 = 0,

div u0 = 0, div b0 = 0,

(u0(x, 0), b0(x, 0)) = (u0(x), b0(x))

(4.1)

and for any k ≥ 1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uk

∂t
− Δuk + (uk−1 · ∇)uk − (bk−1 · ∇)bk + ∇pk = 0,

∂bk

∂t
− Δbk + (uk−1 · ∇)bk − (bk−1 · ∇)uk + ∇qk = 0,

div uk = 0, div bk = 0,

(uk(x, 0), bk(x, 0)) = (u0(x), b0(x)).

(4.2)

By Proposition A1 in Appendix, there is a unique solution (uk, bk) ∈ C∞(R3 × (0,∞)) to
(4.2) such that

uk, bk ∈ L∞(0, T ; L2
loc,unif (R3)), ∇uk, ∇bk ∈ L2(0, T ; L2

loc,unif (R3))

for any T > 0, as long as (uk−1, bk−1) ∈ C∞(R3 × (0,∞)) and

(uk−1, bk−1) ∈ L∞(0, T ; L2
loc,unif (R3)) ∩ L2(0, T ; L2

loc,unif (R3)).

It is easy to see that (u0, b0, p0, q0) ∈ C∞(R3 × (0,∞)) and

(u0, b0) ∈ L∞(0, T ; L2
loc,unif (R3)) ∩ L2(0, T ; L2

loc,unif (R3)).
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Then by induction, (uk, bk, pk, qk) are well defined for all k ≥ 0, (uk, bk, pk, qk) ∈ C∞(R3 ×
(0,∞), and

(uk, bk) ∈ L∞(0, T ; L2
loc,unif (R3)) ∩ L2(0, T ; L2

loc,unif (R3)).

Step 2: Estimates on the pressure
In order to establish the uniform estimates on the approximate solutions, we first introduce

some cut-off functions and notations. Let

φ0 ∈ C∞
0 (R3) with φ0 ≥ 0 and

∑
k∈Z3

φ0(x − k) = 1.

Define B = {φ(x) =: φ0(x − x0) : x0 ∈ R
3}. Then (see P342 in [14])

‖f‖L2
loc,unif (R3) is equivalent to sup

φ∈B
‖fφ‖2.

We fix ω0 and ψ0 ∈ C∞
0 (R3) so that ω0 is identically equal to 1 in the neighborhood of the

support of φ0 and similarly, ψ0 is identically equal to 1 in the neighborhood of the support
of ω0. Then for any φ ∈ B, φ = φ0(x − xφ), define ψ(x) = ψ0(x − xφ). Let

αk(t) = sup
φ∈B

(‖uk(·, t)φ(·)‖2
2 + ‖bk(·, t)φ(·)‖2

2

)
,

βk(t) = sup
φ∈B

∫ t

0

(‖φ(·)∇uk(·, τ)‖2
2 + ‖φ(·)∇bk(·, τ)‖2

2

)
dτ,

and

βη
k(t) = sup

φ∈B

∫ t

η

(‖φ(·)∇uk(·, τ)‖2
2 + ‖φ(·)∇bk(·, τ)‖2

2

)
dτ.

Since uk, bk ∈ C∞(R3 × [η, T ]) for any 0 < η < T < ∞, then

sup
η<t<T

αk(t) < ∞ and sup
η<t<T

βη
k(t) < ∞.

In the following, we show that, for all φ ∈ B (φ = φ0(x − x0) for some x0 ∈ R
3), there is

a function pk
φ(t) so that for all interval I = (t0, t1) with 0 < t0 < t1 < ∞,

( ∫ t1

t0

∫
R3

∣∣pk(x, t) − pk
φ(t)

∣∣ 3
2 φ(x) dxdt

) 2
3

≤ C
(
‖uk−1‖L6(I,L2

loc,unif (R3))‖uk‖L2(I,L2
loc,unif (R3))

+‖bk−1‖L6(I,L2
loc,unif (R3))‖bk‖L2(I,L2

loc,unif (R3))

+‖ψuk−1‖L6(I,L2(R3))‖ψuk‖L2(I,L6(R3))

+‖ψbk−1‖L6(I,L2(R3))‖ψbk‖L2(I,L6(R3))

)
(4.3)

with C independent of φ, t0, t1 and k.
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For this purpose, we note that the pressure pk obeys the equations

−Δpk =
3∑

ij=1

∂2

∂xi∂xj

(
uk−1

i uk
j − bk−1

i bk
j

)
.

Let Γ(x) be the fundamental solution of the Laplace’s equation in R
3. Then

pk =
∂2

∂xi∂xj

∫
R3

Γ(x − y)
(
uk−1

i uk
j − bk−1

i bk
j

)
(y) dy.

Then
pk(x, t) − pk

φ(t) = pk
1(x, t) + pk

2(x, t)

with

pk
1(x, t) =

∂2

∂xi∂xj

∫
R3

Γ(x − y)
{

ψ2
0(y − x0)

(
uk−1

i uk
j − bk−1

i bk
j

)
(y)

}
dy,

pk
2(x, t) =

∫
R3

( ∂2

∂xi∂xj
Γ(x − y) − ∂2

∂xi∂xj
Γ(x0 − y)

)
×

{(
1 − ψ2

0(y − x0

)
)
(
uk−1

i uk
j − bk−1

i bk
j

)
(y)

}
dy.

It is obvious that there is positive distance between the support of φ and the complement
to the support of ψ2

0. So

( ∫
R3

∣∣∣pk
2(x, t)

∣∣∣ 3
2
φ(x)dx

) 2
3 ≤

( ∫
supp φ

∣∣∣pk
2(x, t)

∣∣∣ 3
2
dx

) 2
3

≤ C
(
‖uk−1‖L2

loc,unif (R3)‖uk‖L2
loc,unif (R3) + ‖bk−1‖L2

loc,unif (R3)‖bk‖L2
loc,unif (R3)

)
.

Thus by Hölder inequality, it follows that

( ∫ t1

t0

∫
R3

∣∣∣pk
2(x, t)

∣∣∣ 3
2
φ(x)dxdt

) 2
3

≤ C
(
‖uk−1‖L6(I,L2

loc,unif (R3))‖uk‖L2(I,L2
loc,unif (R3))

+‖bk−1‖L6(I,L2
loc,unif (R3))‖bk‖L2(I,L2

loc,unif (R3))

)
.

As for pk
1, by the Calderòn-Zygmund theory on singular integrals, we have

‖pk
1‖3/2 ≤ C

(
‖ψ2uk−1uk‖3/2 + ‖ψ2bk−1bk‖3/2

)
≤ C

(
‖ψuk−1‖2‖ψuk‖6 + ‖ψbk−1‖2‖ψbk‖6

)
.
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Therefore, ( ∫ t1

t0

∫
R3

∣∣∣pk
1(x, t)

∣∣∣ 3
2
φ(x)dxdt

) 2
3

≤ C
(
‖ψuk−1‖L6(I,L2(R3))‖ψuk‖L2(I,L6(R3))

+‖ψbk−1‖L6(I,L2(R3))‖ψbk‖L2(I,L6(R3))

)
.

Thus we show (4.3).
Similarly for qk, for all φ ∈ B (φ = φ0(x − x0) with some x0 ∈ R

3), there is a function
qk
φ(t) so that for all interval I = (t0, t1) with 0 < t0 < t1 < ∞,

( ∫ t1

t0

∫
R3

∣∣qk(x, t) − qk
φ(t)

∣∣ 3
2 φ(x) dxdt

) 2
3

≤ C
(
‖uk−1‖L6(I,L2

loc,unif (R3))‖bk‖L2(I,L2
loc,unif (R3))

+‖bk−1‖L6(I,L2
loc,unif (R3))‖uk‖L2(I,L2

loc,unif (R3))

+‖ψuk−1‖L6(I,L2(R3))‖ψbk‖L2(I,L6(R3))

+‖ψbk−1‖L6(I,L2(R3))‖ψuk‖L2(I,L6(R3))

)
(4.4)

with C independent of φ, t0, t1 and k.

Step 3: Local energy estimates.
Since (uk, bk, pk, qk) ∈ C∞(R3 × (0,∞)), we have

∂t

(|uk|2 + |bk|2) + 2
(|∇uk|2 + |∇bk|2) − Δ

(|uk|2 + |bk|2)
= −div

((|uk|2 + |bk|2)uk−1 − 2
(
uk · bk

)
bk + 2pkuk + 2qkbk

)
. (4.5)

Multiplying both sides of (4.5) by φ2, and integrating over R
3 × (η, t) with 0 < η < t < ∞,

we have∫
R3

(
|uk(x, t)|2 + |bk(x, t)|2

)
φ2(x)dx + 2

∫ t

η

∫
R3

(
|∇uk(x, τ)|2 + |∇bk(x, τ)|2

)
φ2(x)dxdτ

=
∫

R3

(
|uk(x, η)|2 + |bk(x, η)|2

)
φ2(x)dx +

∫ t

η

∫
R3

(
|uk(x, τ)|2 + |bk(x, τ)|2

)
Δ

(
φ2(x)

)
dxdτ

+
∫ t

η

∫
R3

{(|uk(x, τ)|2 + |bk(x, τ)|2)uk−1 · ∇(
φ2(x)

) − 2
(
uk · bk

)
bk−1 · ∇φ2(x)

}
dxdτ

+2
∫ t

η

∫
R3

{(
pk − pk

φ

)
uk · φ2(x) +

(
qk − qk

φ

)
bk · ∇φ2(x)

}
dxdτ.

(4.6)
Here we used the facts that

div
(
pkuk

)
= uk · ∇pk = uk · ∇

(
pk − pk

φ

)
= div

(
uk

(
pk − pk

φ

))
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and similarly
div

(
qkbk

)
= div

(
bk

(
qk − qk

φ

))
.

It is obvious for all t ∈ (η,∞) and all φ ∈ B,∣∣∣ ∫ t

η

∫
R3

(
|uk(x, τ)|2 + |bk(x, τ)|2

)
Δ

(
φ2(x)

)
dxdτ

∣∣∣ ≤ C

∫ t

η
αk(τ) dτ. (4.7)

Let ψ0(x) be equal to 1 on the support of φ0. For φ(x) = φ0(x − x0) with some x0 ∈ R
3,

let ψ(x) = ψ0(x − x0). Then∫ t

η

∫
R3

{(|uk(x, τ)|2 + |bk(x, τ)|2)uk−1 · ∇(
φ2(x)

) − 2
(
uk · bk

)
bk−1 · ∇φ2(x)

}
dxdτ

≤ C

∫ t

η

∫
R3

(
|ψuk|2 + |ψbk|2

)(
|ψuk−1| + |ψbk−1|

)
dxdτ

≤ C

∫ t

η

(
‖ψuk‖2

4 + ‖ψbk‖2
4

)(
‖ψuk−1‖2 + ‖ψbk−1‖2

)
dτ

≤ C

∫ t

η

(
‖ψuk‖

1
2
2 ‖∇

(
ψuk

)‖ 3
2
2 + ‖ψbk‖

1
2
2 ‖∇

(
ψbk

)‖ 3
2
2

)(
‖ψuk−1‖2 + ‖ψbk−1‖2

)
dτ

≤ C
{∫ t

η

(
‖ψuk‖2

2 + ‖ψbk‖2
2

)(
‖ψuk−1‖4

2 + ‖ψbk−1‖4
2

)
dτ

} 1
4

×
{∫ t

η

(
‖∇(

ψuk
)‖2

2 + ‖∇(
ψbk

)‖2
2

)
dτ

} 3
4
.

Note that ∫
R3

(
|ψ0(x − x0)|2 + |∇ψ0(x − x0)|2

)(
|uk|2 + |bk|2

)
dx ≤ Cαk(t),∫ t

η

∫
R3

∣∣ψ0(x − x0)
∣∣2(|∇uk|2 + |∇bk|2

)
dxdτ ≤ Cβη

k(t).
(4.8)

then we show that, for all t ∈ (η,∞) and all φ ∈ B,∣∣∣ ∫ t

η

∫
R3

{(|uk(x, τ)|2 + |bk(x, τ)|2)uk−1 · ∇(
φ2(x)

) − 2
(
uk · bk

)
bk−1 · ∇φ2(x)

}
dxdτ

∣∣∣
≤ C

{∫ t

η
αk(τ)

(
αk−1(τ)

)2
dτ

} 1
4
(
βη

k(t) +
∫ t

η
αk(τ) dτ

) 3
4

≤ C
{∫ t

η

(
αk−1(τ)

)3
dτ

} 1
6
{∫ t

η

(
αk(τ)

)3
dτ

} 1
12

(
βη

k +
∫ t

η
αk(τ)dτ

) 3
4
.

(4.9)
Next we turn to terms on the pressure. By Hölder inequality, we get that∣∣∣2 ∫ t

η

∫
R3

{(
pk − pk

φ

)
uk · φ2(x)

}
dxdτ

∣∣∣
≤ C

{∫ t

η

∫
R3

∣∣pk − pk
φ

∣∣ 3
2 ω0(x − x0) dxdτ

} 2
3
{∫ t

η

∫
R3

|uk|3ω0(x − x0) dxdτ
} 1

3
.
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Applying (4.3), by the Sobolev inequality and (4.8), we have

{∫ t

η

∫
R3

∣∣pk − pk
φ

∣∣ 3
2 ω0(x − x0) dxdτ

} 2
3

≤ C
{(∫ t

η

(
αk−1(τ)

)3
dτ

) 1
6
( ∫ t

η
αk(τ)dτ

) 1
2

+
( ∫ t

η

(
αk−1(τ)

)3
dτ

) 1
6
(
βη

k(t) +
∫ t

η
αk(τ)dτ

) 1
2
}

.

By the Gagliardo-Nirenberg inequality and (4.8) again, we deduce

{∫ t

η

∫
R3

|uk|3ω0(x − x0) dxdτ
} 1

3 ≤
{∫ t

η

∫
R3

|uk|3ψ3
0(x − x0) dxdτ

} 1
3

≤ C
{∫ t

η
‖ψ0u

k‖
3
2
2 ‖∇(ψ0u

k)‖
3
2
2 dτ

} 1
3

≤ C
{∫ t

η
‖ψ0u

k‖6
2dτ

} 1
12

{∫ t

η
‖∇(ψ0u

k)‖2
2dτ

} 1
4

≤ C
{∫ t

η

(
αk(τ)

)3
dτ

} 1
12

(
βη

k(t) +
∫ t

η
αk(τ)dτ

) 1
4
.

Therefore, we obtain

∣∣∣2 ∫ t

η

∫
R3

{(
pk − pk

φ

)
uk · φ2(x)

}
dxdτ

∣∣∣
≤ C

{∫ t

η

(
αk−1(τ)

)3
dτ

} 1
6
{∫ t

η

(
αk(τ)

)3
dτ

} 1
12

(
βη

k(t) +
∫ t

η
αk(τ)dτ

) 3
4
. (4.10)

Similarly,

∣∣∣2 ∫ t

η

∫
R3

{(
qk − qk

φ

)
bk · φ2(x)

}
dxdτ

∣∣∣
≤ C

{∫ t

η

(
αk−1(τ)

)3
dτ

} 1
6
{∫ t

η

(
αk(τ)

)3
dτ

} 1
12

(
βη

k(t) +
∫ t

η
αk(τ)dτ

) 3
4
. (4.11)

Therefore, substituting (4.7), (4.9) - (4.11) into (4.6), it follows that
∫

R3

(
|uk(x, t)|2 + |bk(x, t)|2

)
φ2(x)dx + 2

∫ t

η

∫
R3

(
|∇uk|2 + |∇bk|2

)
φ2(x)dxdτ

≤ αk(η) + C

∫ t

η
αk(τ)dτ

+C
{∫ t

η

(
αk−1(τ)

)3
dτ

} 1
6
{∫ t

η

(
αk(τ)

)3
dτ

} 1
12

(
βη

k(t) +
∫ t

η
αk(τ)dτ

) 3
4
.
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By taking the supremum on φ ∈ B on the terms at left hand side above shows that

αk(t) + 2βη
k(t) ≤ αk(η) + C

∫ t

η
αk(τ)dτ

+C
{∫ t

η

(
αk−1(τ)

)3
dτ

} 1
6
{∫ t

η

(
αk(τ)

)3
dτ

} 1
12

(
βη

k(t) +
∫ t

η
αk(τ)dτ

) 3
4

for any t ∈ (η,∞). By the Young’s inequality, we obtain that, for any t ∈ (η,∞), the
inequality

αk(t) + 2βη
k(t) ≤ αk(η) + C1

∫ t

η
αk(τ)dτ

+C2

{∫ t

η

(
αk−1(τ)

)3
dτ

} 2
3
{∫ t

η

(
αk(τ)

)3
dτ

} 1
3 (4.12)

holds uniformly for k ≥ 0 with positive constant C independent of t and η. Similar but
simply calculations show that

α0(t) + 2β0(t) ≤ α0(0) + C1

∫ t

0
αk(τ)dτ

which yields that
α0(t) ∈ L∞(0, T )

for any T > 0. By induction, we can show that there is T0 = T0(αk−1), so that for 0 < T ≤ T0,
αk(t) ∈ L∞(0, T ). So αk(t) is bounded in some neighborhood of t = 0. Let η → 0 in (4.12),
we get that

αk(t) + 2βk(t) ≤ α + C1

∫ t

0
αk(τ)dτ + C2

{∫ t

0

(
αk−1(τ)

)3
dτ

} 2
3
{∫ t

0

(
αk(τ)

)3
dτ

} 1
3 (4.13)

holds uniformly for k ≥ 0 with positive constant C independent of t. Here α = αk(0).
An induction argument implies us that

αk(t) + 2βk(t) ≤ α for any t ∈ [0, T ∗] (4.14)

provided
T ∗

(
2C1 + 8C2α

2
)

= 1.

Step 4: Local existence of suitable weak solutions
From now on, we assume that φ is any given one in C∞

0 (R3) with φ(x) ≥ 0 (note that
in general φ /∈ B). Then there are finite points ki ∈ Z, i = 1, · · · I, such that φ(x) =∑I

i=1 φ(x)φ0(x − ki). Based on the uniform estimate (4.14), it follows from (4.3) and (4.4),
that( ∫ T ∗

0

∫
R3

∣∣pk(x, t) − pk
φ(t)

∣∣ 3
2 φ(x) dxdt

) 2
3 +

( ∫ T ∗

0

∫
R3

∣∣qk(x, t) − qk
φ(t)

∣∣ 3
2 φ(x) dxdt

) 2
3 ≤ CT ∗α

(4.15)
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uniformly for k ≥ 0. Therefore, (4.14) and (4.15) imply that there is a subsequence of
(uk, bk, pk, qk), denoted by themselves, such that there is weak limit (u, b, p, q) with

(u, b) ∈ L∞(0, T ∗; L2
loc,unif (R3)), (p, q) ∈ L3/2(0, T ∗; L3/2

loc (R3)),

and ∇u, ∇b ∈ L2(0, T ∗; L2
loc,unif (R3)). Moreover,

(uk, bk) ⇀ (u, b) weak − star in L∞(0, T ∗; L2
loc,unif (R3)), (4.16)

(∇uk, ∇bk) ⇀ (∇u, ∇b) weakly in L2(0, T ∗; L2
loc,unif (R3)), (4.17)

and
(pk, qk) ⇀ (p, q) weakly in L

3
2 (0, T ∗; L

3
2
loc(R

3)) (4.18)

as k → ∞.
In order to show the strong convergence in Lp(0, T ∗; L2

loc(R
3)), we need the following

Friederichs inequality (see Lemma II.4.2 [9]): Let Q be a cube in R
3, then for any ε > 0,

there exist K(ε, Q) ∈ N functions ωi ∈ L∞(Q), i = 1, · · · , K such that

∫ T

0
‖ω(t)‖2

L2(Q)dt ≤
K∑

i=1

∫ T

0

∫
Q

ω(x, t)ωi(x, t)dxdt + ε

∫ T

0

∫
Q

∣∣∇ω(x, t)
∣∣2
L2(Q)

dxdt.

This inequality, together with (4.16) and (4.17), implies that

lim
k→∞

∫ T ∗

0

∫
Q

(∣∣uk(x, t) − u(x, t)
∣∣2 +

∣∣bk(x, t) − b(x, t)
∣∣2)dxdt = 0. (4.19)

By Sobolev embedding theorem, we also have

lim
k→∞

∫ T ∗

0

∫
Q

(∣∣uk(x, t)− u(x, t)
∣∣r +

∣∣bk(x, t)− b(x, t)
∣∣r)dxdt = 0 for any r ∈ [2, 6). (4.20)

Now we will show that q is a constant a.e. in R
3 × (0, T ∗). To this end, we note that

−Δqk = div
(
uk−1 · ∇bk − bk−1 · ∇uk

)
.

By (4.17) and (4.20), uk−1 · ∇bk − bk−1 · ∇uk converges weakly to (u · ∇b − b · ∇u) in
Lr(0, T ∗; Lr

loc(R
3)) for any r ∈ [1, 3/2) as k → ∞. Note that

div
(
u · ∇b − b · ∇u

)
= div

(
curl

(
u × b

))
= 0.

Passing the limit k → ∞, we deduce that

−Δ q = 0
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holds in the sense of distribution. In view of the previous arguments,

qk
φ(t) =

∫
R3

∂2

∂xi∂xj
Γ(x0 − y)

{(
1 − ψ2

0(y − x0

)
)
(
uk−1

i bk
j − bk−1

i uk
j

)
(y)

}
dy

=
∫

R3

∂2

∂xi∂xj
Γ(x0 − y)

{(
1 − ψ2

0(y − x0

)
)
(
uk−1

i bk
j − bk−1

j uk
i

)
(y)

}
dy

which implies that limk→∞ qk
φ(t) = 0 for any x0 in the support of φ. This and (4.15) imply

that q ∈ L3/2(0, T ∗; L3/2
loc,unif (R3)). By the mean value property of harmonic functions, q is

bounded, therefore, q must be a constant. Without loss of generality, let q = 0.
By standard arguments, we can show that (u, b, p) is a weak solutions to (1.1). Here we

omit the details. In the following, we show 2) of Theorem 4.1. From (4.14), we have

‖u(t)‖2
L2

loc,unif (R3) + ‖b(t)‖2
L2

loc,unif (R3) ≤ α, ∀t ∈ [0, T ∗]. (4.21)

By the arguments presented in chap.14 and 32 in [14], it is easy to deduce from the fact that
(u, b) is a weak solution to (1.1) that

(u(t), b(t)) ⇀ (u0, b0) weakly in L2
loc,unif (R3)

as t → 0. This and (4.21) give us that

lim
t→0+

(‖u(t) − u0‖L2
loc,unif (R3) + ‖b(t) − b0‖L2

loc,unif (R3)) = 0.

Now we verifies that the local energy inequality is valid for (u, b, p). Since

(uk, bk, pk, qk) ∈ C∞(R3 × (0,∞)),

a simple calculation shows that (uk, bk, pk, qk) satisfies the localized energy inequality: For
each real-valued φ ∈ C∞

0 (R3 × R
+) with φ ≥ 0,

2
∫ ∞

0

∫
R3

(|∇uk(x, t)|2 + |∇bk(x, t)|2)φdxdt

≤
∫ ∞

0

∫
R3

(|uk(x, t)|2 + |bk(x, t)|2)(φt(x, t) + Δφ(x, t))dxdt

+
∫ ∞

0

∫
R3

(uk−1(x, t) · ∇φ)(|uk(x, t)|2 + |bk(x, t)|2)dxdt

+2
∫ ∞

0

∫
R3

(
pk(uk · φ) + qk(bk · φ) − (bk−1 · ∇φ)(uk · bk)

)
dxdt (4.22)

and for any χ ∈ C∞
0 (R3 × R

+), the equation

∂bkχ

∂t
− Δ(bkχ) = bk(

∂χ

∂t
− Δχ) − 2∇χ · ∇bk − χ(uk−1 · ∇)bk + χbk−1 · ∇uk (4.23)

holds in the sense of distribution.
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Applying (4.16) - (4.20), we deduce, by passing the limit k → ∞, that for each real-valued
φ ∈ C∞

0 (R3 × R
+) with φ ≥ 0, the generalized energy inequality is valid:

2
∫ ∞

0

∫
R3

(|∇u(x, t)|2 + |∇b(x, t)|2)φdxdt

≤
∫ ∞

0

∫
R3

(|u(x, t)|2 + |b(x, t)|2)(φt(x, t) + Δφ(x, t))dxdt

+
∫ ∞

0

∫
R3

(u(x, t) · ∇φ)(|u(x, t)|2 + |b(x, t)|2 + 2p(x, t))dxdt

−2
∫ ∞

0

∫
R3

(b · ∇φ)(u · b)dxdt (4.24)

and for any χ ∈ C∞
0 (R3 × R

+), the equation

∂bχ

∂t
− Δ(bχ) = b(

∂χ

∂t
− Δχ) − 2∇χ · ∇b − χ(u · ∇)b + χb · ∇u (4.25)

holds in the sense of distribution for weak solution (u, b, p). Therefore, (u, b, p) is a suitable
weak solution to (1.1) in the sense of definition 2.2.

Step 5: Regularity of the suitable weak solution
Since the initial data (u0, b0) is homogeneous of degree −1, direct calculation implies that

λuk(λx, λ2t) = uk(x, t), λbk(λx, λ2t) = bk(x, t)

for any t ∈ (0, T ∗) and λ ∈ (0, 1], since the solution to (4.2) is unique. By the convergence
obtained in step 4, for any φ ∈ C∞

0 (R3 × (0, T ∗)), we have

∫ T ∗

0

∫
R3

u(x, t)φ(x, t)dxdt
k→∞←−

∫ T ∗

0

∫
R3

uk(x, t)φ(x, t)dxdt

=
∫ T ∗

0

∫
R3

λuk(λx, λ2t)φ(x, t)dxdt

=
∫ λ2T ∗

0

∫
R3

λ−4uk(y, τ)φ(λ−1y, λ−2τ)dydτ

k→∞−→
∫ λ2T ∗

0

∫
R3

λ−4u(y, τ)φ(λ−1y, λ−2τ)dydτ

=
∫ T ∗

0

∫
R3

λu(λx, λ2t)φ(x, t)dxdt.

Therefore, we deduce that
∫ T ∗

0

∫
R3

u(x, t)φ(x, t)dxdt =
∫ T ∗

0

∫
R3

λu(λx, λ2t)φ(x, t)dxdt
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for any φ ∈ C∞
0 (R3 × (0, T ∗)). It follows from a density argument that

λu(λx, λ2t) = u(x, t) for any t ∈ [0, T ∗] and λ ∈ (0, 1].

Similarly,
λb(λx, λ2t) = b(x, t) for any t ∈ [0, T ∗] and λ ∈ (0, 1].

In the following we show that the set of possible singular points is empty by the partial
regularity theory Theorem 2.1 established in [12]. Suppose that (x0, t0) ∈ R

3 × (0, T0) is
singular point for u for any T0 ≤ T ∗. Then for some r ∈ (0,

√
t0),

‖u‖L∞(Qr(x0,t0)) = ∞.

Then for any fixed λ ∈ (0, 1], u(λx, λ2t) = λ−1u(x, t) for any t ∈ (t0−r2, t0) and almost every
point x ∈ R

3. Thus we have

‖u‖L∞(Qλr(λx0,λ2t0)) = λ−1‖u‖L∞(Qr(x0,t0)) = ∞.

Therefore, we have shown that (λx0, λ
2t0) is a singular point of u for any λ ∈ (0, 1], provided

(x0, t0) is a singular point for u. This implies that the one-dimensional Hausdorff measure of
the set of possible singular points of u will be positive, which contradicts with Theorem 2.1.
Similarly, we can show that the set of possible singular points of b is empty.

By the definition of regular point, (u, b) is locally bounded at each point (x, t) ∈ R
3 ×

(0, T0). Apply the regular criteria Theorem 2.2 obtained in [13], (u, b) is infinitely differen-
tiable with respect to space variables, and each spatial derivatives is bounded on the compact
subdomain of some neighborhood of each point.

From the spatial continuity for (u, b), we have that, for any given λ > 0, λu(λx, λ2t) =
u(x, t) for every t ∈ (0, min{T0, T0/λ2}) and for any x ∈ R

3. By the self-similarity, we can
write (u(x, t), b(x, t)) = 1√

t
(UT ( x√

t
), BT ( x√

t
)) for any (x, t) ∈ R

3×(0, T0), where (UT , BT )(y) =√
T/2(u, b)((

√
T/2)y, T/2). Thus, the fact that (u, b) ∈ C∞

x implies that (UT , BT ) ∈ C∞,
which implies that (u, b) ∈ C∞

t . From the equation on pressure, it is easy to show the pressure
also is infinitely differentiable with respect to spatial and time variables.

Therefore, u, b, and p belong to C∞(R3 × (0, T0)), and for any λ ∈ (0, 1], (x, t) ∈ R
3 ×

(0, T0),

u(x, t) = λu(λx, λ2t), b(x, t) = λb(λx, λ2t), p(x, t) = λ2p(λx, λ2t).

Step 6: Extension to a global solution.
Finally we extend (u, b, p) to be globally in time by the self-similarity. In fact, let

(u(x, t), b(x, t)) =: (
T0

2t
)

1
2

(
u
(
(
T0

2t
)

1
2 x,

T0

2
)
, b

(
(
T0

2t
)

1
2 x,

T0

2
))

and
p(x, t) =:

T0

2t
p
(
(
T0

2t
)

1
2 x,

T0

2

)
for any t ≥ T0, since the right terms are well-defined for any x ∈ R

3. It is obvious that
the global solution obtained by extension remains invariant under scaling, and belongs to
C∞(R3×R

+). Hence it is a classical solution and solves the equations (1.1) pointwisely. The
final result of Theorem 4.1 follows easily from the scaling law. So the proof of Theorem 4.1
is completed. �
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Appendix

In this appendix, we present the results on the existence and uniqueness for solutions to the
linearized magnetohydrodynamics equations⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− Δu + (v · ∇)u − (a · ∇)b + ∇p = 0,

∂b

∂t
− Δb + (v · ∇)b − (a · ∇)u + ∇q = 0,

div u = 0, div b = 0,

(u(x, 0), b(x, 0)) = (u0(x), b0(x))

(A1)

in which v and a are given vectors with

v, a ∈ L∞(0, T ; L2
loc,unif (R3) and ∇v, ∇a ∈ L2(0, T ; L2

loc,unif (R3)) (A2)

for any T > 0. Let
γ(t) =: ‖v(t)‖L2

loc,unif (R3) + ‖a(t)‖L2
loc,unif (R3)

and
α′ =: ‖u0‖2

L2
loc,unif (R3) + ‖b0‖2

L2
loc,unif (R3).

Proposition A1: Let u0, b0 ∈ E2 be divergence free and v, a ∈ C∞(R3 × (0,∞)) satisfy
(A2). Then there exists a unique solution (u, b, p, q) ∈ C∞(R3 × (0,∞)) to (A1) such that

‖u(t)‖2
L2

loc,unif (R3) + ‖b(t)‖2
L2

loc,unif (R3) +
∫ t

0

(
‖∇u(τ)‖2

L2
loc,unif (R3) + ‖∇b(τ)‖2

L2
loc,unif (R3)

)
dτ

≤ α′ exp
{

C
(
1 + ( sup

τ∈[0,T ]
γ(τ))4

)
t
}

(A3)
for all t ∈ [0, T ] with any positive T . Furthermore,

lim
t→0+

(‖u(t) − u0‖L2
loc,unif (R3) + ‖b(t) − b0‖L2

loc,unif (R3)) = 0.

Proof Let {(um
0 , bm

0 )}∞m=1 ⊂ C∞
0 (R3) such that

‖(u0 − um
0 , b0 − bm

0 )‖L2
loc,unif (R3) = 0

and for any m ≥ 1

‖um
0 ‖L2

loc,unif (R3) ≤ ‖u0‖L2
loc,unif (R3), ‖bm

0 ‖L2
loc,unif (R3) ≤ ‖b0‖L2

loc,unif (R3). (A4)
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Consider the solutions of the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂um

∂t
− Δum + (v · ∇)um − (a · ∇)bm + ∇pm = 0,

∂bm

∂t
− Δbm + (v · ∇)bm − (a · ∇)um + ∇qm = 0,

div um = 0, div bm = 0,

(um(x, 0), bm(x, 0)) = (um
0 (x), bm

0 (x))

(A5)

for all m ≥ 1. It is known that there is a unique solution (um, bm) ∈ C∞(R3 × (0,∞)) such
that for any t ≥ 0

‖um(t)‖2
2 + ‖bm(t)‖2

2 + 2
∫ t

0

(‖∇um(τ)‖2
2 + ‖bm(τ)‖2

2

)
dτ ≤ ‖um

0 ‖2
2 + ‖bm

0 ‖2
2

for any m ≥ 1. Thus the qualities

α′
m(t) = sup

φ∈B

(‖um(·, t)φ(·)‖2
2 + ‖bm(·, t)φ(·)‖2

2

)
= ‖um(t)‖2

L2
loc,unif (R3) + ‖bm(t)‖2

L2
loc,unif (R3),

β′
m(t) = sup

φ∈B

∫ t

0

(‖φ(·)∇um(·, τ)‖2
2 + ‖φ(·)∇bm(·, τ)‖2

2

)
dτ

=
∫ t

0

(‖∇um(τ)‖2
L2

loc,unif (R3) + ‖∇bm(τ)‖2
L2

loc,unif (R3)

)
dτ

are well-defined for each m ≥ 1. Similar to the derivation of (4.3) and (4.4), for all φ ∈ B,
there are functions pm

φ (t) and qm
φ (t) so that for any t ∈ [0, T ],( ∫

R3

∣∣pm(x, t) − pm
φ (t)

∣∣ 3
2 φ(x) dx

) 2
3 ≤ Cγ(t)

(
(α′

m(t))
1
2 +

(‖ψum‖6 + ‖ψbm‖6

))
(A6)

and ( ∫
R3

∣∣qm(x, t) − qm
φ (t)

∣∣ 3
2 φ(x) dx

) 2
3 ≤ Cγ(t)

(
(α′

m(t))
1
2 +

(‖ψum‖6 + ‖ψbm‖6

))
(A7)

with C independent of φ, t and m.
Next, we establish the uniform energy estimates. For any φ ∈ B, multiplying the first

equations of (A5) by umφ2, the second equations of (A5) by bmφ2, then integrating over
R

3 × (0, t), one can deduce that∫
R3

(
|um|2 + |bm|2

)
φ2(x)dx + 2

∫ t

0

∫
R3

(
|∇um(x, τ)|2 + |∇bm(x, τ)|2

)
φ2(x)dxdτ

=
∫

R3

(
|um(x, 0)|2 + |bm(x, 0)|2

)
φ2(x)dx +

∫ t

0

∫
R3

(
|um|2 + |bm|2

)
Δ

(
φ2(x)

)
dxdτ

+
∫ t

0

∫
R3

{(|um(x, τ)|2 + |bm(x, τ)|2)v · ∇(
φ2(x)

) − 2
(
um · bm

)
a · ∇φ2(x)

}
dxdτ

+2
∫ t

0

∫
R3

{(
pm − pm

φ

)
um · φ2(x) +

(
qm − qm

φ

)
bm · ∇φ2(x)

}
dxdτ. (A8)
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Here one has used the facts that

div
(
pmum

)
= um · ∇pm = um · ∇

(
pm − pm

φ

)
= div

(
um

(
pm − pm

φ

))
and similarly

div
(
qmbm

)
= div

(
bm

(
qm − qm

φ

))
.

Next we estimate the each terms of (A8). It is obvious for all t ∈ (0,∞) and all φ ∈ B,∣∣∣ ∫ t

0

∫
R3

(
|um(x, τ)|2 + |bm(x, τ)|2

)
Δ

(
φ2(x)

)
dxdτ

∣∣∣ ≤ C

∫ t

0
α′

m(τ) dτ. (A9)

Let ψ0(x) be equal to 1 on the support of φ0. For φ(x) = φ0(x − x0) with some x0 ∈ R
3, let

ψ(x) = ψ0(x − x0). Applying (4.8), similar to the derivation of (4.9), we have∫ t

0

∫
R3

{(|um(x, τ)|2 + |bm(x, τ)|2)v · ∇(
φ2(x)

) − 2
(
um · bm

)
a · ∇φ2(x)

}
dxdτ

≤ C

∫ t

0

∫
R3

(
|ψum|2 + |ψbm|2

)(
|ψv| + |ψa|

)
dxdτ

≤ C

∫ t

0

(
‖ψum‖2

4 + ‖ψbm‖2
4

)
γ(τ)dτ

≤ C sup
τ∈[0,T ]

γ(τ)
{∫ t

0
α′

m(τ) dτ
} 1

4
(
β′

m(t) +
∫ t

0
α′

m(τ) dτ
) 3

4

≤ 1
2
β′

m(t) + C
(
1 + ( sup

τ∈[0,T ]
γ(τ))4

) ∫ t

0
α′

m(τ) dτ. (A10)

By the Gagliardo-Nirenberg inequality again, we deduce{∫
R3

|um|3ω0(x − x0) dx
} 1

3 ≤
{∫

R3

|um|3ψ3
0(x − x0) dx

} 1
3

≤ C‖ψum‖
1
2
2 ‖∇(ψum)‖

1
2
2

Therefore, by (4.8) and (A6), we obtain∣∣∣2 ∫ t

0

∫
R3

{(
pm − pm

φ

)
um · φ2(x)

}
dxdτ

∣∣∣
≤

∫ t

0

( ∫
R3

∣∣pm(x, τ) − pm
φ (τ)

∣∣ 3
2 φ(x) dx

) 3
2
( ∫

R3

|um|3φ(x) dx
) 1

3
dτ

≤ C

∫ t

0
γ(τ)

(
(α′

m(τ))
1
2 +

(‖ψum‖6 + ‖ψbm‖6

))‖ψum‖
1
2
2 ‖∇(ψum)‖

1
2
2 dτ

≤ C sup
τ∈[0,T ]

γ(τ)
{(∫ t

0
α′

m(τ) dτ
) 3

4
β′

m(t)
1
4

+(β′
m(t))

1
4

( ∫ t

0
α′

m(τ) dτ
) 1

4
(
β′

m(t) +
∫ t

0
α′

m(τ) dτ
) 1

2
}

≤ 1
4
β′

m(t) + C
(
1 + ( sup

τ∈[0,T ]
γ(τ))4

) ∫ t

0
α′

m(τ) dτ.
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Similarly, ∣∣∣2 ∫ t

0

∫
R3

{(
qm − qm

φ

)
bm · φ2(x)

}
dxdτ

∣∣∣
≤ 1

4
β′

m(t) + C
(
1 + ( sup

τ∈[0,T ]
γ(τ))4

) ∫ t

0
α′

m(τ) dτ.

Substituting above estimates into (A8), we obtain that

α′
m(t) + β′

m(t) ≤ α′
m(0) + C

(
1 + ( sup

τ∈[0,T ]
γ(τ))4

) ∫ t

0
α′

m(τ) dτ

≤ α′ + C
(
1 + ( sup

τ∈[0,T ]
γ(τ))4

) ∫ t

0
α′

m(τ) dτ (A11)

holds uniformly for m ≥ 1 with positive constant C independent of t. By the Gronwall’s
inequality, we deduce that

α′
m(t) ≤ α′ exp

{
C

(
1 + ( sup

τ∈[0,T ]
γ(τ))4

)
t
}

for any t ∈ [0, T ]. This and (A11) give us that

α′
m(t) + β′

m(t) ≤ α′ exp
{

C
(
1 + ( sup

τ∈[0,T ]
γ(τ))4

)
t
}

(A12)

for any t ∈ [0, T ].
By standard arguments, there is a weak limit (u, b) of the subsequences of {(um, bm)}∞m=1,

which is a weak solution to (A1) and satisfies (A3). Since v and a are C∞, we can further show
that (u, b) ∈ C∞(R3 × (0,∞) by the arguments showing the regularity of weak solutions to
magnetohydrodynamics equations, as in [13]. Since (A1) is linear in (u, b), so the uniqueness
of the solution follows from the estimate (A3). Similar to the Step 4 in the proof of Theorem
4.1, we can show that

lim
t→0+

(‖u(t) − u0‖L2
loc,unif (R3) + ‖b(t) − b0‖L2

loc,unif (R3)) = 0.

Then we complete the proof of the Proposition A1. �
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[16] J. Nečas, M. Røužička & V. Šverák, On Leray’s self-similar solutions of the Navier-
Stokes equations, Acta Math., 176(1996), 283-294.

[17] M. Sermange & R. Teman, Some mathematical questions related to the MHD equations,
Comm. Pure Appl. Math., 36(1983), 635-664.

[18] E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton
Math. Ser., 30, Princeton University Press, Princeton, NJ, 1970.

[19] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110(1976),
353-372.

[20] G. Tian and Zhouping Xin, One point singular solutions to the Navier-Stokes equations,
Topological Meth. Nonl. Anal., 11(1998), 135-145.

[21] Tai-peng, Tsai, On Leray’s self-similar solutions of the Navier- Stokes equations satis-
fying local energy estimates, Archive Rational Mech. Anal., 143(1998), 29-51.

31


