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Abstract: In this paper, we study the local behavior of the solutions to the
3-dimensional magnetohydrodynamic equations. We are interested in both
the uniform gradient estimates for smooth solutions and regularity of weak
solutions. It is shown that, in some neighborhood of (x0, t0), the gradients of
the velocity field u and the magnetic field B are locally uniformly bounded
in L∞ norm as long as that either the scaled local L2− norm of the gradient
or the scaled local total energy of the velocity field is small, and the scaled
local total energy of the magnetic field is uniformly bounded. These estimates
indicate that the velocity field plays a more dominant role than that of the
magnetic field in the regularity theory. As an immediately corollary we can
derive an estimates of Hausdorff dimension on the possible singular set of a
suitable weak solution as in the case of pure fluid. Various partial regularity
results are obtained as consequences of our blow-up estimates.
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1 Introduction

We are concerned with the uniform gradient estimations and the partial regularity of weak
solutions to the three dimensional viscous incompressible magneto-hydrodynamics (MHD)
equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
− 1

Re
Δu + (u · ∇)u − S(B · ∇)B + ∇(p +

S

2
|B|2) = 0,

∂B

∂t
− 1

Rm
ΔB + (u · ∇)B − (B · ∇)u = 0,

divu = 0, divB = 0

(1.1)

with the homogeneous boundary conditions and the following initial conditions
⎧⎨
⎩

u(x, 0) = u0(x),

B0(x, 0) = B0(x).
(1.2)

Here u, p, and B are nondimensional quantities corresponding to the velocity of the fluid,
its pressure, and the magnetic field. The nondimensional number Re is the Reynolds
number, Rm is the magnetic Reynolds number and S = M2/(ReRm) with M being the
Hartman number. For simplicity of writing, let Re = Rm = S = 1, and p denotes term
p + S|B|2/2.

There have been extensive mathematical studies on the solutions to MHD equations
(1.1). In particular, Duvaut and Lions [4] constructed a global weak solution and the local
strong solution to the initial boundary value problem, and properties of such solutions
have been examined by Sermange and Temam in [12]. Furthermore, some sufficient con-
ditions for smoothness were presented for the weak solutions to the MHD equations in
[3]. However, in the case that the spatial dimension is three, a large gap remains between
the regularity available in the existence results and additional regularity required in the
sufficient conditions to guarantee the smoothness of weak solutions. In the absence of the
magnetic fields, (1.1) is reduced to the three dimensional incompressible Navier-Stokes
equations, this gap has been narrowed by the works of Scheffer [11], Caffarelli, Kohn and
Nirenberg[1], Tian and Xin [15], see also [8], [2] and [13], and a deeper understanding has
been achieved. In particular, some local partial regularity results and Hausdorff dimension
estimates on the possible singular set have been obtained for a class of suitable weak so-
lutions defined and constructed in [1], and the local regularity theorems [15] showed that
there is an absolute constant ε such that the following statement is true: for any suitable
weak solution u of Navier-Stokes equations, if one of the following conditions holds
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1) Either r−1
∫ ∫

Qr(x0,t0)
|∇u|2dxdt or sup

t0−r2≤t<t0

r−1
∫

Br(x0)
|u(x, t)|2dx is uniformly

bounded and the scaled local energy sup
r≤r0

r−3
∫ ∫

Qr(x0,t0)
|u(x, t)|2dxdt < ε,

2) sup
r≤r0

r−1
∫ ∫

Qr(x0,t0)
|curl u|2dxdt < ε or sup

r≤r0

r−1
∫ ∫

Qr(x0,t0)
|∇u|2dxdt < ε,

3) sup
r≤r0

r−2
∫ ∫

Qr(x0,t0)
|u(x, t)|3dxdt < ε,

for some r0 > 0, then u is regular in some neighborhood of point (x0, t0). Here Br(x0) is a
ball with radius r and center at x0, while Qr(x0.t0) denotes the parabolic ball with radius
r and center at (x0, t0). These results imply that, for any suitable weak solutions, the pos-
sible singularity set has one-dimensional Hausdorff measure zero and the uniform gradient
estimations also yield the possible pattens of singularity if they exist. The principal tools
in this theory are the so-called generalized energy inequality and a scaling argument.

The main purpose of this paper is to study the effect of the presence of the magnetic
field and to establish a theory of partial regularity for the weak solutions to the three
dimensional incompressible magneto-hydrodynamic equations. The important character-
istic of the magneto-hydrodynamics is the induction effect, which brings about the strong
coupling of the magnetic field and velocity field. Therefore, the magneto-hydrodynamic
equations are not only much complex, but the main estimates depend strongly on each
other for the magnetic field and velocity field. This coupling has important effects in
our discussion later. However, in view of the sufficient conditions for the regularity ob-
tained in [3] and the numerical simulations in [10], the velocity field should play a more
prominent role in the regularity theory of the magneto-hydrodynamic equations than the
magnetic field. Some experiment also revealed this phenominon, see [7]. One of the main
objectives of this paper is to confirm this for the local theory of partial regularity, i.e.,
we don’t required the smallness of nondimensional quantities related to magnetic field for
the regularity of suitable weak solutions. One of the main difficulties lies in the estimates
about the nondimensional quantities involving the magnetic field. Due to technical diffi-
culties in our analysis, we were not able to establish the local theory of partial regularity,
for the weak solutions to the magneto-hydrodynamic equations, without any a priori as-
sumptions on the nondimensional quantities of magnetic field. However, we will establish
the local theory of partial regularity under much weaker conditions about the magnetic
field than that of velocity field. In fact, we obtain the local partial regularity results un-
der the assumption about the velocity field, which is same as that of the incompressible
Navier-Stokes equations in the absence of the magnetic field, and the boundedness as-
sumption of some scaled nondimensional quantities of magnetic field. As in the treatment
of the incompressible Navier-Stokes equations, the bases of our analysis is the generalized
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energy inequality. To this end, one also needs the concept of suitable weak solutions.
So we first introduce and construct the suitable weak solutions to the incompressible
magneto-hydrodynamic equations. Then, by iteration, we derive some basic estimates on
the boundedness of some important scaled quantities involving both the velocity field and
the magnetic field, with the help of the various assumptions that some scaled quantities of
the velocity field are small and some scaled quantities of the magnetic field are bounded.
Further, we can get some dimensionless estimates on the pressure. Making using of these
estimates and the generalized energy inequality, we obtain the refined estimates that some
non-dimensional quantities involving the magnetic field are in fact small. These estimates,
together with the smallness assumptions on some scaled quantities of velocity field, yield
the local theory of partial regularity for the suitable weak solutions to the incompressible
magneto-hydrodynamic equations, by a similar discussion as that in [15]. It should be
noted that the iteration will be used many times, and some ideas and techniques will be
borrowed and generalized from [15].

Furthermore, we establish the further regularity results for solutions to the magneto-
hydrodynamic equations with additional hypothese on the given initial data, as doing for
the incompressible Navier-Stokes equations in [1]. Following the discussion in section 8
in [1], we show that the solution is regular in the region {(x, t) | |x|2t > N1} with an
absolute constant N1 as the initial data decaying sufficiently rapidly, in a sense, at ∞, or
in the region {(x, t) | |x|2 < N2t} with an absolute constant N2 as the initial data is not
too singular, in some sense, at the origin. These results are the direct extensions of the
corresponding results on incompressible Navier-Stokes equations in [1] to the magneto-
hydrodynamic equations.

The rest of the paper is organized as follows. The main results are started in section
2. In section 3, we define and construct the suitable weak solutions to the magneto-
hydrodynamic equations. The estimates of some important scaled quantities will be given
in section 4. And the boundedness and smallness of some scaled quantities of the magnetic
field and the pressure will be obtained in section 5 and section 6 respectively. Then we
will prove our main theorems in section 7. Some extensions and consequences will be
presented in the last section.

We conclude this introduction by listing some notations used in the rest of the paper.
Let Ω be one of the following domains in R3,
(Ω1) R3,
(Ω2) a bounded domain in R3,
(Ω3) a halfspace in R3,
(Ω4) an exterior domain in R3.
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Then let Lp(Ω), 1 ≤ p ≤ +∞, represent the usual Lesbegue space of scalar functions as
well as that of vector-valued functions with norm denoted by ‖·‖p. Let C∞

0,σ(Ω) denote the
set of all C∞ real vector-valued functions φ = (φ1, φ2, φ3) with compact support in Ω, such
that divφ = 0.

o
J p(Ω), 1 ≤ p < ∞, is the closure of C∞

0,σ(Ω) with respect to ‖ ·‖p. W s,p(Ω)
denotes the usual Sobolev Space. Finally, given a Banach space X with norm ‖ · ‖X , we
denote by Lp(0, T ; X), 1 ≤ p ≤ +∞, the set of function f(t) defined on (0, T ) with values
in X such that

∫ T
0 ‖f(t)‖p

Xdt < +∞. For x ∈ Ω, we set Br(x) = {y ∈ Ω, |y − x| < r}.
For point (x, t) ∈ Ω × R+, the parabolic ball centered at point (x, t) with radius r will
be denoted as Qr(x, t) = Br(x) × (t − r2, t). In the case of no confusion, we will skip the
center of the ball from the notation and simply write by Br or Qr. At last, by symbol C,
we denote a generic constant whose value is unessential to our analysis, and it may change
from line to line.

2 The Main Results

In this section, we present our main results in this paper. To the end, we first introduce
the definition of suitable weak solutions and the notations of some scaled dimensionless
quantities.

Definition. The triplet (u, B, p) is called a suitable weak solution of the magneto-
hydrodynamic equations (1.1) in an open set D ⊂ Ω × R+, if

1) p ∈ L5/3(D) with
∫ ∫

D
|p(x, t)|5/3dxdt ≤ C1, and

∫
Dt

(|u(x, t)|2 + |B(x, t)|2)dx ≤ C2,

∫ ∫
D

(|∇u(x, t)|2 + |∇B(x, t)|2)dxdt ≤ C3 (2.1)

for almost every t such that Dt = D ∩ {Ω × {t}} 	= ∅, where C1, C2 and C3 are some
positive constants.

2) (u, B, p) satisfies (1.1) in the sense of distribution on D.
3) For each real-valued φ ∈ C∞

0 (D) with φ ≥ 0, the following generalized energy
inequality is valid:

2
∫ ∫

D
(|∇u(x, t)|2 + |∇B(x, t)|2)φdxdt

≤
∫ ∫

D
(|u(x, t)|2 + |B(x, t)|2)(φt(x, t) + Δφ(x, t))dxdt

+
∫ ∫

D
(u(x, t) · ∇φ)(|u(x, t)|2 + |B(x, t)|2 + 2p(x, t))dxdt

−2
∫ ∫

D
(B · ∇φ)(u · B)dxdt. (2.2)
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4) For any χ ∈ C∞
0 (D), the equation

∂Bχ

∂t
− Δ(Bχ) = B(

∂χ

∂t
− Δχ) − 2∇χ · ∇B − χ(u · ∇)B + χB · ∇u (2.3)

holds in the sense of distribution.
For a given solution (u, B, p) to the magneto-hydrodynamic equations, the scaled total

energy, the scaled vorticity and other scaled quantities, which will be used later, are defined
to be the following dimensionless quantities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(r) ≡ sup
t0−r2≤t<t0

1
r

∫
Br(x0)

|u(x, t)|2dx,

Ep(r) ≡ 1
r5−p

∫ ∫
Qr(x0,t0)

|u(x, t)|pdxdt,

E∗(r) ≡ 1
r

∫ ∫
Qr(x0,t0)

|∇u(x, t)|2dxdt,

W (r) ≡ 1
r

∫ ∫
Qr(x0,t0)

|curlu(x, t)|2dxdt,

(2.4)

for the velocity field u and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (r) ≡ sup
t0−r2≤t<t0

1
r

∫
Br(x0)

|B(x, t)|2dx,

Fp(r) ≡ 1
r5−p

∫ ∫
Qr(x0,t0)

|B(x, t)|pdxdt,

F∗(r) ≡ 1
r

∫ ∫
Qr(x0,t0)

|∇B(x, t)|2dxdt,

Pp(r) ≡ 1
r5−2p

∫ ∫
Qr(x0,t0)

|p(x, t)|pdxdt.

(2.5)

for the magnetic field B and the pressure p. Here 2 ≤ p ≤ 10/3. Now the main results in
this paper can be stated as follows.

Theorem 2.1. There exists an absolute constant ε with the following property. Let
(u, B, p) be a suitable weak solution to (1.1) and (1.2), suppose further that, for some
r0 > 0,

1) Either sup
0<r≤r0

(E(r) + F (r)) < +∞ or sup
0<r≤r0

(E∗(r) + F2(r)) < +∞,

2) E2(r) ≤ ε for all 0 < r ≤ r0,
then there exists a positive constant r1 with r1 ≤ r0 such that

sup
Qr/2(x0,t0)

(|∇u(x, t)| + |∇B(x, t)|) ≤ Cr−2 (2.6)

for all r ≤ r1.
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Theorem 2.2. There exists an absolute constant ε with the following property. Let
(u, B, p) be a suitable weak solution to (1.1) and (1.2), suppose further that, for some
r0 > 0, any one of the following three conditions is satisfied

1) For some p satisfying 3 ≤ p ≤ 10/3, sup
0<r≤r0

Ep(r) ≤ ε and sup
0<r≤r0

F2p/(p−1)(r) < +∞,

2) For some p satisfying 5/2 ≤ p < 3, sup
0<r≤r0

Ep(r) ≤ ε and sup
0<r≤r0

F3(r) < +∞,

3) For some p satisfying 5/2 < p ≤ 3, sup
0<r≤r0

Ep(r) ≤ ε and sup
0<r≤r0

F (r) < +∞,

then
sup

Qr/2(x0,t0)
(|∇u(x, t)| + |∇B(x, t)|) ≤ Cr−2 (2.7)

for all r ≤ r1 with r1 ≤ r0.

Theorem 2.3. There exists an absolute constant ε with the following property. Let
(u, B, p) be a suitable weak solution to (1.1) and (1.2), suppose further that, for some
r0 > 0,

1) E∗(r) ≤ ε for all 0 < r ≤ r0,
2) sup

0<r≤r0

F2(r) < +∞,

then, there is a r1 ≤ r0, such that

sup
Qr/2(x0,t0)

(|∇u(x, t)| + |∇B(x, t)|) ≤ Cr−2 (2.8)

for all r ≤ r1.

Remarks:
1. For the incompressible Navier-Stokes equations, it has been shown that if there is

an absolute constant ε > 0, such that, for any suitable weak solution (u, p), if any one of
the following conditions holds, for all 0 < r ≤ r0 with some r0 > 0: 1) E(r) < +∞ or
E∗(r) < +∞ and E2(r) ≤ ε, 2) W (r) ≤ ε, 3) E3(r) ≤ ε, then u is regular on Qr1 for
some r1 ≤ r0. cf. [1], [15], [8]. Here our assumptions on velocity field are similar.

2. Similar to the discussion in [1], Theorem 2.3 implies that the one- dimension Haus-
dorff measure of the set of possible singular points of u and B is zero.

3. In Theorem 2.2, the restriction “p ≥ 5/2” is due to the fact: in view of Lemma
4.2 later, p must be larger than 5/2, if one want to use Ep(r) and E∗(r) to control the
quantity E3(r). Otherwise, the boundedness of E(r) or E∗(r) is necessary for the same
purpose, as in the case when E2(r) ≤ ε.

4. In view of the discussion in [15], the assumption on E∗(r) can be replaced by the
same assumption on W (r).
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5. In Theorem 2.1 - 2.3, the assumptions, which hold for all 0 < r ≤ r0, can be
weakened by that the assumptions hold only for a sequences {rm} satisfying: 1) 0 <

rm+1 < rm ≤ c0rm+1 for each m ∈ N with some positive constant c0, and 2) lim
m→∞ rm = 0.

6. It should be clear from the statements in Theorem 2.1 - 2.3 that our partial regularity
theory requires much weaker conditions on the magnetic field.

If the solution decays sufficiently rapid at ∞, above results imply that

Theorem 2.4. Let u0 and B0 belong to
o
J 2(R3). Then there is an absolute constant

N0 such that the suitable weak solutions is regular when t ≥ N0(‖u0‖2
2 + ‖B0‖2

2)
3/2.

Moreover, if |x|1/2u0 and |x|1/2B0 belong to L2(R3), then the suitable weak solution is
regular in the region {(x, t) | |x|2t > N1} with absolute constant N1 depending only on
the initial data.

On the other hand, if the solution is not too singular, the above results imply that

Theorem 2.5. Let u0 and B0 belong to
o
J 2(R3), and |x|−1/2u0 and |x|−1/2B0 belong

to L2(R3). Then there exists an absolute constant L0, if

‖|x|−1/2u0‖2
2 + ‖|x|−1/2B0‖2

2 = L < L0

then the suitable weak solution is regular in the region {(x, t) | |x|2 < t(L0 − L)}.
Remarks:
1. For the incompressible Navier-Stokes equations, the same results were obtained

by Caffarelli, Kohn and Nirenberg [1] for cauchy problem, and by Maremonti [9] for the
exterior problem.

2. Theorem 2.4 and 2.5 are valid for the exterior domain by similar discussion given
in [9].

3 Suitable Weak Solutions

In this section, we first define the suitable weak solution to the MHD equations (1.1), then
sketch the construction of the suitable weak solutions.

Duvaut and Lions[4] constructed a class of global weak solutions and local strong
solutions to the initial boundary value of the three-dimensional incompressible magneto-
hydrodynamic equations. General speaking, we call a problem “strong”, if it lies in a
space in which the solution of (1.1) and (1.2) is known to be unique. Otherwise, we call
a solution “weak”. There are many different choices for the function spaces in which to
construct the solution of the initial boundary value problem. The global weak solutions,
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which are similar to the Leray-Hopf weak solutions to the Navier-Stokes equations, are
very important. In fact, the class of weak solutions satisfy: u, B ∈ L∞(0, T ; L2(Ω)) ∩
L2(0, T ; H1(Ω)) for any T > 0,

‖u(t)‖2
2 + ‖B(t)‖2

2 + 2
∫ t

0
(‖∇u(s)‖2

2 + ‖∇B(s)‖2
2)ds ≤ ‖u0‖2

2 + ‖B0‖2
2, (3.1)

and (u, B) satisfy the equation (1.1) in the sense of distribution. In order to develop a
local theory of partial regularity, we need the localized form of the energy inequality (3.1),
which is satisfied by a class of suitable weak solutions.

But it is not clear whether the known weak solutions are suitable weak solutions. So in
the following, we show the existence of a class of suitable weak solutions to the magneto-
hydrodynamic equations. Since the procedure is similar to one for the incompressible
Navier-Stokes system, we only sketch the proof.

Theorem 3.1 Let u0, B0 ∈ o
J 2(Ω) and u0 ∈ W 4/5,5/3(Ω). Then there exists a suitable

weak solution (u, B, p) to the magneto-hydrodynamic equations in Ω × R+, such that

u, B ∈ L∞(0, +∞;
o
J

2(Ω)), ∇u,∇B ∈ L2(0, +∞; L2(Ω)), (3.2)

u, B ∈ L10/3(0, +∞; L10/3(Ω)), p ∈ L5/3(0, +∞; L5/3(Ω)/R), (3.3)

Further,

‖u(t)‖2
2 + ‖B(t)‖2

2 +
∫ t

0

(
‖∇(s)‖2

2 + ‖∇B(s)‖2
2

)
ds ≤ 4

(
‖u0‖2

2 + ‖B0‖2
2

)
, (3.4)

‖u‖10/3

L10/3(QT )
+ ‖B‖10/3

L10/3(QT )
+ ‖p‖5/3

L5/3(QT )
≤ C

(
‖u0‖W 4/5,5/3(Ω), ‖B0‖2

)
. (3.5)

u(t) and B(t) converge weakly to u0 and B0 in L2(Ω) respectively, as t −→ 0. Moreover,
for φ ∈ C∞

0 (Ω × R+) with φ ≥ 0, it holds that, for 0 < t < +∞,
∫
Ω
(|u(x, t)|2 + |B(x, t)|2)φ(x, t)dx + 2

∫ t

0

∫
Ω
(|∇u(x, s)|2 + |∇B(x, s)|2)φ(x, s)dxds

≤
∫
Ω
(|u0(x)|2 + |B0(x)|2)φ(x, 0)dx

+
∫ t

0

∫
Ω
(|u(x, t)|2 + |B(x, t)|2)(φt(x, t) + Δφ(x, t))dxdt

+
∫ t

0

∫
Ω
(u(x, t) · ∇φ(x, t))(|u(x, t)|2 + |B(x, t)|2 + 2p(x, t))dxdt

−2
∫ t

0

∫
Ω
(B(x, t) · ∇φ(x, t))(u(x, t) · B(x, t))dxdt,

(3.6)
and (2.3) is valid for any χ ∈ C∞

0 (Ω × R+) in the sense of distribution.
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Proof. Since the proof of Theorem 3.1 is similar to that of Navier-Stokes equations,
here we only sketch the construction of the approximate solutions and the deducement of
the main estimates. For this purpose, we select uk

0 and Bk
0 in C∞

0,σ(Ω), such that

lim
k→∞

‖uk
0 − u0‖2 = lim

k→∞
‖Bk

0 − B0‖2 = 0

and
‖uk

0‖W 4/5,5/3(Ω) ≤ 2‖u0‖W 4/5,5/3(Ω), ‖Bk
0‖2 ≤ 2‖B0‖2. (3.7)

Now we linearize the magneto-hydrodynamic equations (1.1) to constructe the approxi-
mate solutions as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0

∂t
− Δu0 + ∇p0 = 0,

∂B0

∂t
− ΔB0 = 0,

divu0 = 0, divB0 = 0,

u0(x, t) = B0(x, t) = 0, on ∂Ω

(u0(x, 0), B0(x, 0)) = (u0
0(x), B0

0(x))

(3.8)

and for any k ≥ 1
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uk

∂t
− Δuk + (uk−1 · ∇)uk − (Bk−1 · ∇)Bk + ∇pk = 0,

∂Bk

∂t
− ΔBk + (uk−1 · ∇)Bk − (Bk−1 · ∇)uk + ∇qk = 0,

divuk = 0, divBk = 0,

uk(x, t) = Bk(x, t) = 0, on ∂Ω

(uk(x, 0), Bk(x, 0)) = (uk
0(x), Bk

0 (x)).

(3.9)

It is obvious that (uk, Bk, pk) are well defined for all k ≥ 0, and (uk, Bk, pk) are sufficiently
smooth. We multiply the first and the second equation of (3.9) by uk and Bk respectively,
and add the resulting equations to obtain, by the integration by parts, that

‖uk(t)‖2
2 + ‖Bk(t)‖2

2 + 2
∫ t

0

∫
Ω
(|∇uk|2 + |∇Bk|2)dxds

≤ ‖uk
0‖2

2 + ‖Bk
0‖2

2 ≤ 4(‖u0‖2
2 + ‖B0‖2

2). (3.10)

By the Gagliardo-Nirenberg inequality,

‖uk‖10/3 ≤ C‖uk‖2/5
2 ‖∇uk‖3/5

2 , ‖Bk‖10/3 ≤ C‖Bk‖2/5
2 ‖∇Bk‖3/5

2 .
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By (3.10), it follows that∫ ∞

0
(‖uk‖10/3

10/3 + ‖Bk‖10/3
10/3)ds ≤ C(‖u0‖2

2 + ‖B0‖2
2)

5/3. (3.11)

In order to estimate the pressure, we observe that Theorem 3.1 in [6] implies that the
pressure pk can be chosen such that∫ ∞

0

∫
Ω
|pk(x, t)|5/3dxdt ≤ C(‖u0‖W 4/5,5/3(Ω), ‖B0‖2). (3.12)

By the Rellich compactness theorem and the Lions-Aubin Lemma, it is routine to show
that ∫ ∞

0

∫
Ω
∇qk · φdxdt −→ 0, as k → ∞

for any φ ∈ C∞
0 (Ω × R+), and there exists (u, B, p), which is a suitable weak solution to

(1.1) in Ω × R+. By the lower semicontinuity of weak convergence, (3.4) and (3.5) are
valid due to estimates (3.10), (3.11) and (3.12). In order to deduce the generalized energy
inequality (3.6), we muitiply the first equation of (3.9) by ukφ, the second equation of
(3.9) by Bkφ for φ ∈ C∞

0 (Ω × R+) with φ ≥ 0, then take the limit as k −→ ∞, after
adding the resulting two equations. The rest can be done in exactly way and in [1]. Once
we omit the details.

4 Some Dimensionless Estimates

In this section, we intend to derive some estimates of scaled dimensionless quantities that
are needed in the analysis later. By the invariance of (1.1) under translation, we may
always shift the center of ball to the point x0 = 0 and t0 = 0. As for the Navier-Stokes
equations, the generalized energy inequality (3.6) will be one of the prinsipal tool in our
discussion. In order to make use of the generalized energy inequality effectively, we must
estimate every terms at the right hand side of (3.6). We start with the terms related to
velocity field.

Lemma 4.1 For r > 0, there is a constant C independent of r, such that

Ep(r) ≤ CE(p−2)/2(r)
(
E

(10−3p)/4
2 (r)E3(p−2)/4

∗ (r) + E2(r)
)

(4.1)

with p ε [2, 10/3].
Proof. By the Sobolev inequality,∫

Br

|u|pdx ≤ C
( ∫

Br

|u|2dx
)(6−p)/4( ∫

Br

|∇u|2dx
)3(p−2)/4

+Cr−3(p−2)/2
( ∫

Br

|u|2dx
)p/2

. (4.2)
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Integrating in time, we obtain, by the Hölder inequality, that
∫ ∫

Qr

|u|pdxdt

≤ C max
−r2≤t<0

( ∫
Br

|u|2dx
)(p−2)/2( ∫ ∫

Qr

|u|2dxdt
)(10−3p)/4( ∫ ∫

Qr

|∇u|2dxdt
)3(p−2)/4

+Cr−3(p−2)/2 max
−r2≤t<0

( ∫
Br

|u|2dx
)(p−2)/2

∫ ∫
Qr

|u|2dxdt

≤ Cr(5−p)E(p−2)/2(r)
(
E

(10−3p)/4
2 (r)E3(p−2)/4

∗ (r) + E2(r)
)
,

which implies (4.1).

Lemma 4.2 If any r > 0, and 5/2 ≤ p ≤ 3, then

E3(r) ≤ CE(2p−3)/2p(r)
(
E

1/p
p (r)E3/2p

∗ (r) + E
(6−p)/p2

p (r)E(2p−3)/2p
∗ (r)

+E
3(p−1)/p2

p (r)E(3−p)/p
∗ (r) + E

(p+3)/p2

p (r)
)

(4.3)

for some positive constant C independent of r.
Proof. Applying the interpolation and Sobolev inequalities, we get

( ∫
Br

|u|3dx
)1/3 ≤ C

( ∫
Br

|u|pdx
)1/(6−p)( ∫

Br

|∇u|2dx
)(3−p)/(6−p)

+Cr−(3−p)/p
( ∫

Br

|u|pdx
)1/p

. (4.4)

It follows from (4.2) and (4.4) that

‖u‖3
L3(Br) ≤ ‖u‖2(2p−3)/p

L3(Br) ‖u‖(6−p)/p
L3(Br)

≤ C
(
‖u‖(2p−3)/p

L2(Br) ‖∇u‖(2p−3)/p
L2(Br) + r−(2p−3)/p‖u‖2(2p−3)/p

L2(Br)

)

×
(
‖u‖Lp(Br)‖∇u‖2(3−p)/p

L2(Br) + r−(3−p)(6−p)/p2‖u‖(6−p)/p
Lp(Br)

)
.

Thus, ∫ ∫
Qr

|u|3dxdt ≤ C(I1 + I2 + I3 + I4). (4.5)

where the terms at the right hand side of (4.5) are defined and can be estimated as follows:

I1 =
∫ 0

−r2
‖u‖(2p−3)/p

L2(Br) ‖u‖Lp(Br)‖∇u‖3/p
L2(Br)ds

≤ r2−5/p max
−r2≤t<0

‖u‖(2p−3)/p
L2(Br)

( ∫ ∫
Qr

|u|pdxdt
)1/p( ∫ ∫

Qr

|∇u|2dxdt
)3/2p

= r2E(2p−3)/2p(r)E1/p
p (r)E3/2p

∗ (r),
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I2 = r−(3−p)(6−p)/p2
∫ 0

−r2
‖u‖(2p−3)/p

L2(Br) ‖u‖(6−p)/p
Lp(Br) ‖∇u‖(2p−3)/p

L2(Br) ds

≤ r−(30−14p+p2)/p2
max

−r2≤t<0
‖u‖(2p−3)/p

L2(Br)

( ∫ ∫
Qr

|u|pdxdt
)(6−p)/p2

×
( ∫ ∫

Qr

|∇u|2dxdt
)(2p−3)/2p

= r2E(2p−3)/2p(r)E(6−p)/p2

p (r)E(2p−3)/2p
∗ (r),

I3 = r−(2p−3)/p
∫ 0

−r2
‖u‖2(2p−3)/p

L2(Br) ‖u‖Lp(Br)‖∇u‖2(3−p)/p
L2(Br) ds

≤ r−(2p−3)/p max
−r2≤t<0

‖u‖(2p−3)/p
L2(Br)

∫ 0

−r2
‖u‖(2p−3)/p

L2(Br) ‖u‖Lp(Br)‖∇u‖2(3−p)/p
L2(Br) ds

≤ Cr1−15/2p+9/p2
max

−r2≤t<0
‖u‖(2p−3)/p

L2(Br)

∫ 0

−r2
‖u‖3(p−1)/p

Lp(Br) ‖∇u‖2(3−p)/p
L2(Br) ds

≤ r5−39/2p+15/p2
max

−r2≤t<0
‖u‖(2p−3)/p

L2(Br)

( ∫ ∫
Qr

|u|pdxdt
)3(p−1)/p2

×
( ∫ ∫

Qr

|∇u|2dxdt
)(3−p)/p

= Cr2E(2p−3)/2p(r)E3(p−1)/p2

p (r)E(3−p)/p
∗ (r),

I4 = r−3(p2−4p+6)/p2
∫ 0

−r2
‖u‖2(2p−3)/p

L2(Br) ‖u‖(6−p)/p
Lp(Br) ds

≤ Cr3(p−6)/2p2
max

−r2≤t<0
‖u‖(2p−3)/p

L2(Br)

∫ 0

−r2
‖u‖(p+3)/p

Lp(Br) ds

≤ Cr−(30+p)/2p2
max

−r2≤t<0
‖u‖(2p−3)/p

L2(Br)

( ∫ ∫
Qr

|u|pdxdt
)(p+3)/p2

= Cr2E(2p−3)/2p(r)E(p+3)/p2

p (r).

Substituting above estimates into (4.5), we get (4.3).
Next we turn to the estimates of the terms involving the pressure function. First, we

have

Lemma 4.3 For 1 < q ≤ 5/3 and μ ≤ ρ/2, then there exists a positive constant C

independent of μ and ρ, such that

Pq(μ) ≤ C(
ρ

μ
)5−2q

(
E2q(ρ) + F2q(ρ)

)
+ C(

μ

ρ
)2(q−1)Pq(ρ). (4.6)

Proof. We observe that the pressure satisfies the equation

−Δp =
3∑

i,j=1

∂2

∂xi∂xj

(
uiuj − BiBj

)
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from which one can obtain the following representation for pressure

p(x, t) =
∫

Bρ

D2
xΓ(x − y) : (u ⊗ u − B ⊗ B)(y)dy + |u(x, t)|2 − |B(x, t)|2 + H(x, t) (4.7)

for all (x, t) ∈ Qρ, where Γ(x) is the normalized fundamental solution of Laplace’s equa-
tions, and H is harmonic on Bρ for each fixed t ∈ (−ρ2, 0). And the integral is in the
sense of the Cauchy principal value. Let

p0 =
∫

Bρ

D2
xΓ(x − y) : (u ⊗ u − B ⊗ B)(y)dy

Then, by the Calderón-Zygmund theory on singular integrals, one can get

‖p0‖Lq(Bρ) ≤ C(q)(‖u‖2
L2q(Bρ) + ‖B‖2

L2q(Bρ)). (4.8)

Employing the mean value property of harmonic functions, one has, for ∀x ∈ Bμ, that

|H(x, t)| ≤ C

ρ3

∫
Bρ

|H(x, t)|dx

≤ C

ρ3

∫
Bρ

(
|p(x, t)| + |p0(x, t)| + |u(x, t)|2 + |B(x, t)|2

)
dx.

Thus,
‖H‖Lq(Bμ) ≤ C(

μ

ρ
)3/q

(
‖p‖Lq(Bρ) + ‖u‖2

L2q(Bρ) + ‖B‖2
L2q(Bρ)

)
. (4.9)

It follows from (4.7)-(4.9) that

‖p‖Lq(Bμ) ≤ ‖p0‖Lq(Bμ) + ‖u‖2
L2q(Bρ) + ‖B‖2

L2q(Bρ) + ‖H‖Lq(Bμ)

≤ C(
μ

ρ
)3/q‖p‖Lq(Bρ) + C

(
‖u‖2

L2q(Bρ) + ‖B‖2
L2q(Bρ)

)
.

Integrating in time over (−μ2, 0), we get (4.6).

Lemma 4.4 Let μ ≤ ρ/2, then, for any 2 ≤ p ≤ 10/3 and 1 < q ≤ 5/3, one has

μ−2
∫ ∫

Qμ

|u||p|dxdt

≤ C
{(

(
μ

ρ
)2/q−1 + (

ρ

μ
)1/2−3(p−2)(q−1)/2q

)
E1/2−p(q−1)/2q(ρ)E(q−1)/q

p (ρ)P 1/q
q (ρ)

+(
ρ

μ
)5/p−2

(
E1/2(ρ)E1/2

∗ (ρ) + F 1/2(ρ)F 1/2
∗ (ρ)

)
E1/p

p (ρ)

+(
ρ

μ
)7/4E1/2(6−p)

p (ρ)
(
E(14−3p)/4(6−p)(ρ)E(24−5p)/4(6−p)

∗ (ρ)E(p−2)/4(6−p)
2 (ρ)

+F (14−3p)/4(6−p)(ρ)F 1/2
∗ (ρ)E3(4−p)/4(6−p)

∗ (ρ)F (p−2)/4(6−p)
2 (ρ)

)}
(4.10)
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if 1/p + 1/q ≥ 1; and

μ−2
∫ ∫

Qμ

|u||p|dxdt ≤ C
{(

(
μ

ρ
)1−2/p + (

μ

ρ
)1+3/q−5/p

)
E1/p

p (ρ)P 1/q
q (ρ)

+(
ρ

μ
)5/p−2

(
E1/2(ρ)E1/2

∗ (ρ) + F 1/2(ρ)F 1/2
∗ (ρ)

)
E1/p

p (ρ)

+(
ρ

μ
)7/4E1/2(6−p)

p (ρ)
(
E(14−3p)/4(6−p)(ρ)E(24−5p)/4(6−p)

∗ (ρ)E(p−2)/4(6−p)
2 (ρ)

+F (14−3p)/4(6−p)(ρ)F 1/2
∗ (ρ)E3(4−p)/4(6−p)

∗ (ρ)F (p−2)/4(6−p)
2 (ρ)

)}
(4.11)

if 1/p + 1/q < 1. Here the positive constant C is independent of μ and ρ.

Proof. Let f̄r denote the average of f on the ball Br, i.e., f̄r = 1
|Br|

∫
Br

fdx. Thus,

∫ ∫
Qμ

|u||p|dxdt ≤
∫ ∫

Qμ

|u − ūρ||p|dxdt +
∫ ∫

Qμ

|ūρ||p|dxdt. (4.12)

Now the last term at the right hand side of (4.12) can be estimated as

J1 =
∫ ∫

Qμ

|ūρ||p|dxdt

≤ Cμ3−3/q
∫ 0

−μ2
|ūρ|‖p‖Lq(Bμ)ds

≤ Cμ3−3/q
( ∫ 0

−μ2
|ūρ|q/(q−1)ds

)1−1/q‖p‖Lq(Qμ)

≤ Cμ3−3/qρ−9/2+3/q+3p(q−1)/2q max
−μ2≤t<0

‖u‖1−p(q−1)/q
L2(Bρ) ‖u‖p(q−1)/q

Lp(Bρ) ‖p‖Lq(Qμ)

= Cμ2(
μ

ρ
)2/q−1E1/2−p(q−1)/2q(ρ)E(q−1)/q

p (ρ)P 1/q
q (μ)

if 1/p + 1/q ≥ 1; and

J1 ≤ Cμ3−3/q
( ∫ 0

−μ2
|ūρ|q/(q−1)ds

)1−1/q‖p‖Lq(Qμ)

≤ Cρ−3/pμ5−5/q−2/p‖u‖Lp(Qρ)‖p‖Lq(Qμ)

≤ Cμ2(
μ

ρ
)1−2/pE1/p

p (ρ)P 1/q
q (μ)

if 1/p + 1/q < 1.
In order to estimate the first term at the right hand side of (4.12), we use another

representation for the pressure

p(x, t) =
∫

Bρ

∇xΓ(x− y) ·
(
u · ∇u−B · ∇B

)
(y)dy + H0(x, t) ≡ p1(x, t) + H0(x, t) (4.13)
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for x ∈ Bρ and t ∈ (−μ2, 0). Here H0 is a harmonic function in x ∈ Bρ for each fixed
t ∈ (−ρ2, 0). Then

∫ ∫
Qμ

|u − ūρ||p|dxdt ≤
∫ ∫

Qμ

|u − ūρ||p1|dxdt +
∫ ∫

Qμ

|u − ūρ||H0|dxdt

≤ C
( ∫ ∫

Qμ

|u − ūρ||p̄ρ|dxdt +
∫ ∫

Qμ

|u − ūρ|||p1|ρ|dxdt

+
∫ ∫

Qμ

|u − ūρ||p1|dxdt
)
.

Here we used the mean value property of harmonic functions. In the following, we estimate
the right terms of the last inequality.

J2 =
∫ ∫

Qμ

|u − ūρ||p̄ρ|dxdt

≤ Cρ−3/q
∫ 0

−μ2
‖p‖Lq(Bρ)

∫
Bμ

|u − ūρ|dxdt

≤ Cρ−3/q
( ∫ ∫

Qρ

|p|qdxdt
)1/q( ∫ 0

−μ2

( ∫
Bμ

|u − ūρ|dx
)q/(q−1)

dt
)1−1/q

≤ Cρ−3/q
( ∫ ∫

Qρ

|p|qdxdt
)1/q( ∫ 0

−μ2

( ∫
Bμ

|u − ūρ|dx
)p

×
( ∫

Bμ

|u − ūρ|dx
)q/(q−1)−p

dt
)1−1/q

≤ Cρ−3/qμ3/2+3(p−2)(q−1)/2q max
−μ2≤t<0

( ∫
Bρ

|u|2dx
)1/2−p(q−1)/2q

×
( ∫ ∫

Qρ

|p|qdxdt
)1/q( ∫ ∫

Qρ

|u|pdxdt
)(q−1)/q

= Cμ2(
ρ

μ
)1/2−3(p−2)(q−1)/2qE1/2−p(q−1)/2q(ρ)E(q−1)/q

p (ρ)P 1/q
q (ρ)

if 1/p + 1/q ≥ 1; and

J2 ≤ Cρ−3/q
( ∫ ∫

Qρ

|p|qdxdt
)1/q( ∫ 0

−μ2

( ∫
Bμ

|u − ūρ|dx
)q/(q−1)

dt
)1−1/q

≤ Cρ−3/qμ5−5/p−2/q‖u‖Lp(Qρ)‖p‖Lq(Qρ)

≤ Cμ2(
μ

ρ
)1+3/q−5/pE1/p

p (ρ)P 1/q
q (ρ)

if 1/p + 1/q < 1.
By the Young inequality and formula (4.13), one has that

J3 =
∫ ∫

Qμ

|u − ūρ|||p1|ρ|dxdt

≤ Cρ−2
∫ 0

−μ2

(
‖u‖L2(Bρ)‖∇u‖L2(Bρ) + ‖B‖L2(Bρ)‖∇B‖L2(Bρ)

) ∫
Bμ

|u − ūρ|dxdt
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≤ Cμ3−3/pρ−2
∫ 0

−μ2

(
‖u‖L2(Bρ)‖∇u‖L2(Bρ) + ‖B‖L2(Bρ)‖∇B‖L2(Bρ)

)
‖u‖Lp(Bρ)dt

≤ Cμ4−5/pρ−2
(

max
−ρ2≤t<0

‖u‖L2(Bρ)

( ∫ 0

−ρ2
‖∇u‖2

L2(Bρ)dt
)1/2

+ max
−ρ2≤t<0

‖B‖L2(Bρ)

( ∫ 0

−ρ2
‖∇B‖L2(Bρ)ds

)1/2)‖u‖Lp(Qρ)

= Cμ2(
ρ

μ
)5/p−2

(
E1/2(ρ)E1/2

∗ (ρ) + F 1/2(ρ)F 1/2
∗ (ρ)

)
E1/p

p (ρ),

J4 =
∫ ∫

Qμ

|u − ūρ||p1|dxdt

≤ C

∫ 0

−μ2
‖u − ūρ‖L4(Bμ)‖p1‖L4/3(Bμ)dt

≤ Cμ1/4
∫ 0

−μ2

(
‖u‖L2(Bρ)‖∇u‖L2(Bρ)

+‖B‖L2(Bρ)‖∇B‖L2(Bρ)

)
‖u‖p/2(6−p)

Lp(Bρ) ‖∇u‖3(4−p)/2(6−p)
2 ds

≤ Cμ1/4
{

max
−ρ2≤t<0

‖u‖
(14−3p)
2(6−p)

L2(Bρ)

( ∫ ∫
Qρ

|u|2dxdt
) (p−2)

4(6−p)
( ∫ ∫

Qρ

|∇u|2dxdt
) (24−5p)

4(6−p)

+ max
−ρ2≤t<0

‖B‖
(14−3p)
2(6−p)

L2(Bρ)

( ∫ ∫
Qρ

|b|2dxdt
) (p−2)

4(6−p)
( ∫ ∫

Qρ

|∇u|2dxdt
) 3(4−p)

2(6−p)

×
( ∫ ∫

Qρ

|∇B|2dxdt
)1/2}( ∫ ∫

Qρ

|u|pdxdt
)1/2(6−p)

≤ (
ρ

μ
)7/4E1/2(6−p)

p (ρ)
(
E(14−3p)/4(6−p)(ρ)E(24−5p)/4(6−p)

∗ (ρ)E(p−2)/4(6−p)
2 (ρ)

+F (14−3p)/4(6−p)(ρ)F 1/2
∗ (ρ)E3(4−p)/4(6−p)

∗ (ρ)F (p−2)/4(6−p)
2 (ρ)

)}

Substituting above estimates into (4.12), one derives (4.10) and (4.11).

5 The Boundedness of Some Scaled Quantities

In this section, we derive the boundedness of some scaled quantities related to the magnetic
field and pressure function, which are essential for the deducement of the smallness of
some scaled quantities of magnetic field. For this purpose, we will make fully use of the
generalized energy inequality (3.6). Let φ(x, t) be a smooth function with the property
that 0 ≤ φ ≤ 1, φ ≡ 1 on Qr, φ ≡ 0 away from Qr∗ with r∗ = 2r, such that

|∇φ| ≤ C

r∗
and |∂φ

∂t
| + |∇2

xφ| ≤ C

r2∗
. (5.1)
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Using φ2 instead of φ in (3.6), it follows that∫
Br∗

(
|u(x, t)|2 + |B(x, t)|2

)
φ2(x, t)dx

+2
∫ t

−r2∗

∫
Br∗

(
|∇u(x, s)|2 + |∇B(x, s)|2

)
φ2(x, s)dxds

≤
∫ t

−r2∗

∫
Br∗

(
|u(x, t)|2 + |B(x, t)|2

)
((φ2)t(x, t) + Δφ2(x, t))dxdt

+
∫ t

−r2∗

∫
Br∗

(
u(x, t) · ∇φ2(x, t)

)(
|u(x, t)|2 + |B(x, t)|2 + 2p(x, t)

)
dxdt

−2
∫ t

−r2∗

∫
Br∗

(
B(x, t) · ∇φ2(x, t)

)(
u(x, t) · B(x, t)

)
dxdt

≤ C

r2

∫ t

−r2∗

∫
Br∗

(
|u|2 + |B|2

)
dxds +

C

r

∫ t

−r2∗

∫
Br∗

|u|3dxds

+
C

r

∫ t

−r2∗

∫
Br∗

|B|2|u|dxds +
C

r

∫ t

−r2∗

∫
Br∗

|p||u|dxds. (5.2)

Employing the generalized energy inequality (5.2), one can show that

Proposition 5.1 There exist two absolute constants ε and M such that, for some
r0 > 0,

i) E2(r) ≤ ε for all 0 < r ≤ r0,
ii) E(r) ≤ M for all 0 < r ≤ r0,
iii) F (r) ≤ M for all 0 < r ≤ r0,
then, there is some r1 ≤ r0, such that, for any 0 < r ≤ r1 and 3 ≤ p < 10/3,

Ap(r)
Δ= E(r) + F (r) + E∗(r) + F∗(r) + Pp/2(r) ≤ M1 (5.3)

with absolute constant M1 depending only on Ci and M .

Proof. By (3.4) and (3.5), there are two absolute constants r2 and M0 such that

Ap(r2) ≤ M0. (5.4)

Without lost of generality, we assume that r0 ≤ r2. Let 0 < 2r = r∗ < ρ ≤ r0. Then, from
(5.2), it follows that

Ap(r) ≤ C
{
E2(r∗) + F2(r∗) + E3(r∗)

+r−2∗
∫ ∫

Qr∗
|B|2|u|dxdt + r−2

∗
∫ ∫

Qr∗
|p||u|dxdt

}
+ Pp/2(r). (5.5)

In the following, we estimate each term at the right hand side of (5.5). First, let μ = r

and q = p/2 in (4.6). Then, by the Hölder inequality, one has that

Pp/2(r) ≤ C(
ρ

r
)5−p

(
Ep(ρ) + Fp(ρ)

)
+ C(

r

ρ
)p−2Pp/2(ρ)
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≤ C(
r

ρ
)p−2Pp/2(ρ) + C(

ρ

r
)5−p

(
E3(ρ) + Fp(ρ)

)

≤ C(
r

ρ
)p−2Pp/2(ρ) + C(

ρ

r
)5−pFp(ρ)

+C(
ρ

r
)5−pE(p−2)/2(ρ)

(
E

(10−3p)/4
2 (ρ)E3(p−2)/4

∗ (ρ) + E2(ρ)
)
.

Here estimate (4.1) has been used. By Lemma 4.1,

C(
ρ

r
)5−pFp(ρ) ≤ C(

ρ

r
)5−pF (p−2)/2(ρ)

(
F

(10−3p)/4
2 (ρ)F 3(p−2)/4

∗ (ρ) + F2(ρ)
)

≤ C(
ρ

r
)5−pM (p+2)/4A3(p−2)/4

p (ρ)

≤ 1
8
Ap(ρ) + C(

ρ

r
)4(5−p)/(10−3p)M (p+2)/(10−3p).

Hence

Pp/2(r) ≤ C(
r

ρ
)p−2Pp/2(ρ) + C(

ρ

r
)5−p

(
M (5p−14)/4ε(10−3p)/4 + ε1/2

)
Ap(ρ)

+
1
8
Ap(ρ) + C(

ρ

r
)4(5−p)/(10−3p)M (p+2)/(10−3p). (5.6)

Clearly,
E2(r∗) + F2(r∗) ≤ M + F (r∗) ≤ 2M. (5.7)

Next, it follows from (4.1) and the assumptions that

E3(r∗) ≤ CE1/2(r∗)
(
E

1/2
2 (r∗)E

3/4
∗ (r∗) + E2(r∗)

)

≤ C(
ρ

r
)
(
M1/4ε1/4 + ε1/2

)
Ap(ρ). (5.8)

Let μ = r∗, p = 2 and q = p/2, one has, from (4.10), that

r−2∗
∫ ∫

Qr∗
|u||p|dxdt

≤ C
{(

(
r

ρ
)4/p−1 + (

ρ

r
)1/2

)
E2/p−1/2(ρ)E(p−2)/p

2 (ρ)P 2/p
p/2 (ρ)

+(
ρ

r
)1/2

(
E1/2(ρ)E1/2

∗ (ρ) + F 1/2(ρ)F 1/2
∗ (ρ)

)

+(
ρ

r
)7/4

(
E1/2(ρ)E7/8

∗ (ρ) + F 1/2(ρ)F 1/2
∗ (ρ)E3/8

∗ (ρ)
)
E

1/8
2 (ρ)

}

≤ C
{(

(
r

ρ
)4/p−1 + (

ρ

r
)1/2

)
M4/p−3/2ε(p−2)/p

+(
ρ

r
)1/2ε1/2 + (

ρ

r
)7/4M3/8ε1/8

}
Ap(ρ). (5.9)

Finally, we need to estimate the term r−2∗
∫∫

Qr∗
|B|2|u|dxdt. By the interpolation and

Sobolev inequalities, one has

‖B‖2
L4(Br∗) ≤ C‖B‖1/2

L2(Br∗ )‖∇B‖3/2
L2(Br∗ ) + Cr−3/2‖B‖2

L2(Br∗ ).
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Then,
∫ ∫

Qr∗
|B|2|u|dxdt ≤

∫ 0

−r2∗
‖u‖L2(Br∗ )‖B‖2

L4(Br∗ )dt

≤ C max
−r2∗≤t<0

‖B‖1/2
L2(Br∗ ) max

−r2∗≤t<0
‖u‖1/2

L2(Br∗ )

×
( ∫ 0

−r2∗
‖u‖2

L2(Br∗ )dt
)1/4( ∫ ∫

Qr∗
|∇B|2dxdt

)3/4

+Cr−3/2 max
−r2∗≤t<0

‖B‖L2(Br∗)

( ∫ ∫
Qr∗

|u|2dxdt
)1/2( ∫ ∫

Qr∗
|B|2dxdt

)1/2

≤ Cr2
∗
(
F 1/4(r∗)F

3/4
∗ (r∗)E1/4(r∗)E

1/4
2 (r∗) + F 1/2(r∗)F

1/2
2 (r∗)E

1/2
2 (r∗)

)
.

Therefore,
r−2
∗

∫ ∫
Qr∗

|B|2|u|dxdt ≤ C(
ρ

r
)
(
M1/4ε1/4 + ε1/2

)
Ap(ρ). (5.10)

Let r = λρ with λ < 1/2. Substituting estimates (5.6) - (5.10) into (5.5), one gets that

Ap(λρ) ≤ 1
8
Ap(ρ) + C4λ

p−2Ap(ρ) + g(λ, ε)Ap(ρ) + C(M, λ). (5.11)

First fix a λ ∈ (0, 1/2), such that C4λ
p−2 ≤ 1/8. Then, let ε small enough such that

g(λ, ε) ≤ 1/4. Thus, one has, at last, that

Ap(λρ) ≤ 1
2
Ap(ρ) + C5. (5.12)

Iterating the inequality (5.12) k times yields

Ap(λkρ) ≤ (
1
2
)kAp(ρ) + C5

(
1 +

1
2

+ · · · + (
1
2
)k−1

)
.

Next, we choose an integer K0 such that

(
1
2
)k0Ap(r0) ≤ (

1
2
)k0 max{r−1

0 , r−5+2p
0 }(C + 1 + C2 + C3) ≤ 2C6.

Define r1 = λk0r0. For any 0 < r ≤ r1, there exists a k ≥ k0, such that λk+1r0 ≤ r ≤ λkr0.
Thus,

Ap(r) ≤ (
1
2
)kAp(r0) ≤ (

1
2
)k0Ap(r0) ≤ C(C5 + C6)

Δ= M1,

which gives the desired.

Proposition 5.2 There exist absolute constants ε and M , such that, for all 0 < r ≤ r0

with some r0 > 0,
i) E2(r) ≤ ε;
ii) E∗(r) ≤ M ;
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iii) F2(r) ≤ M .
Then, there is a 0 < r1 ≤ r0, such that

A8/3(r)
Δ= E(r) + F (r) + E∗(r) + F∗(r) + P4/3(r) ≤ M1 (5.13)

for every 0 < r ≤ r1 with an absolute constant M1.

Proof. This proof is similar to that of Proposition 5.1. Here we only point out the
differences. As above, we need to estimate the each term at the right hand side of (5.5).
But, except the last two terms at the right hand side of (5.5), the estimates of others are
same. In order to estimate the last term at the right hand side of (5.5), we use the Lemma
4.4 with p = 3 and q = 4/3, and bound the term E3(ρ) by Lemma 4.2. Then, after some
manipulations, one can obtain the desired estimate. Next, we need to estimate the term

r−2
∗

∫ ∫
Qr∗

|B|2|u|dxdt.

By the Hölder interpolation and Sobolev inequalities, one has that

r−2
∗

∫ ∫
Qr∗

|B|2|u|dxdt

≤ r−2
∗

∫ 0

−r2∗
‖B‖2

L8/3(Br∗ )‖u‖L4(Br∗ )dt

≤ Cr−2
∗

∫ 0

−r2∗

(
‖B‖5/4

L2(Br∗ )‖∇B‖3/4
L2(Br∗ ) + r

−3/4
∗ ‖B‖2

L2(Br∗)

)

×
(
‖u‖1/4

L2(Br∗)‖∇u‖3/4
L2(Br∗ ) + r

−3/4
∗ ‖u‖L2(Br∗)

)
dt

≤ CF 1/2(r∗)
(
F

1//8
2 (r∗)F

3/8
∗ (r∗) + F

1/2
2 (r∗)

)(
E

1/8
2 (r∗)E

3/8
∗ (r∗) + E

1/2
2 (r∗)

)
. (5.14)

By assumptions,

r−2
∗

∫ ∫
Qr∗

|B|2|u|dxdt ≤ C
(
(
ρ

r
)5/4 + (

ρ

r
)2

)(
M3/8ε1/8 + ε1/2

)
A8/3(ρ).

Due to above estimates, one can deduce an inequality similar to (5.12). Thus, we get
desired result by same iterating procedure as that in the proof of Proposition 5.1.

Proposition 5.3 There exist absolute constants ε and M , such that, for every 0 <

r ≤ r1 with some r1 ≤ r0,
i) E∗(r) ≤ ε;
ii) F2(r) ≤ M .
Then, there is an absolute constant M1, such that

A8/3(r) ≤ M1 (5.15)
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for every 0 < r ≤ r1 with some r1 ≤ r0.

Proof. By the Proposition 2.2 in [15], the condition i) implies that, for any ε1 > 0,
there is some r′0 < r0, such that

sup
0<r≤r′0

E2(r) ≤ ε1. (5.16)

Thus, Proposition 5.3 follows from (5.16) and Proposition 5.2.

Proposition 5.4 There exist two absolute constants ε and M , such that, for some
r0 > 0 and 3 ≤ p ≤ 10/3,

i) sup
0<r≤r0

Ep(r) ≤ ε;

ii) sup
0<r≤r0

F2p/(p−1)(r) ≤ M .

Then there is some r1 ≤ r0 and an absolute constant M1, such that

A2p/(p−1)(r) ≤ M1 (5.17)

for every 0 < r ≤ r1.

Proof. By the Hölder inequality, it is obvious that

r−2
∗

∫ ∫
Qr∗

|u||p|dxdt ≤ r−2
∗ ‖u‖Lp(Qr∗‖p‖Lp/(p−1)(Qr∗ )

≤ E1/p
p (r∗)P

(p−1)/p
p/(p−1) (r∗) ≤ C(

ρ

r
)(3p−5)/pE1/p

p (r∗)P
(p−1)/p
p/(p−1) (ρ).

and
r−2
∗

∫ ∫
Qr∗

|B|2|u|dxdt ≤ E1/p
p (r∗)F

2(p−1)/p
2p/(p−1) (r∗).

We use Lemma 4.3 to treat the term Pp/(p−1)(r) as before. It remains to estimate
E2p/(p−1)(ρ). If 3 ≤ p ≤ 10/3, then 2p/(p − 1) ≤ p. By the Hölder inequality, one has

E2p/(p−1)(ρ) ≤ CEp(ρ).

By the iterating proceduce similar to the proof of Proposition 5.1, we can obtain the
desired result. Here we omit the details.

Proposition 5.5 There exist absolute constants ε and M , such that, for some r0 > 0
and 5/2 ≤ p < 3,

i) sup
0<r≤r0

Ep(r) ≤ ε;

ii) sup
0<r≤r0

F3(r) ≤ M .
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Then there is some r1 ≤ r0 and an absolute constant M1, such that

A3(r) ≤ M1 (5.18)

for every 0 < r ≤ r1.

Proof. By the Hölder inequality, one has

r−2
∗

∫ ∫
Qr∗

|u||p|dxdt ≤ C(
ρ

r
)2E1/3

3 (ρ)P 2/3
3/2 (ρ)

and
r−2
∗

∫ ∫
Qr∗

|B|2|u|dxdt ≤ C(
ρ

r
)2/3E

1/3
3 (ρ)F 2/3

3 (r∗).

Term E3(ρ) can be estimated by Lemma 4.2 as follows:

E3(ρ) ≤ CE(2p−3)/6p(ρ)
(
E1/3p

p (ρ)E1/2p
∗ (ρ) + E(6−p)/3p2

p (ρ)E(2p−3)/6p
∗ (ρ)

+E(p−1)/p2

p (ρ)E(3−p)/3p
∗ (ρ) + E(p+3)/3p2

p (ρ)
)
.

Then, our result follows as before.
Similarly, one can show that:

Proposition 5.6 There exist absolute constants ε and M , such that, for some r0 > 0
and 5/2 < p ≤ 10/3,

i) sup
0<r≤r0

Ep(r) ≤ ε;

ii) sup
0<r≤r0

F (r) ≤ M .

Then there exist some r1 ≤ r0 and an absolute constant M1, such that

A2p/(p−1)(r) ≤ M1 (5.19)

for every 0 < r ≤ r1.

Finally,

Proposition 5.7 If there exists an absolute constant M1 such that

B(r) Δ= E(r) + F (r) + E∗(r) + F∗(r) ≤ M1 (5.20)

for every 0 < r ≤ r1 with some r1 > 0, then, for 2 ≤ p ≤ 10/3,

Ep(r) + Fp(r) ≤ M2 (5.21)

for every 0 < r ≤ r1, with an absolute constant M2. Furthermore, there is r2 ≤ r1, such
that, for 2 < q ≤ 10/3,

Pq/2(r) ≤ M3 (5.22)
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for any 0 < r ≤ r2 with an absolute constant M3.

Proof. Note that (5.21) follows from Lemma 4.1 and (5.20). In order to deduce (5.22),
we apply Lemma 4.3 with ρ ≤ r1. By the Hölder inequality,

Pq/2(μ) ≤ C(
ρ

μ
)5−q

(
Eq(ρ) + Fq(ρ)

)
+ C(

μ

ρ
)q−2Pq/2(ρ)

≤ C(
μ

ρ
)q−2Pq/2(ρ) + C(

ρ

μ
)5−qM2.

Let μ = λρ, then fix λ such that Cλq−2 ≤ 1/2. One obtains that

Pq/2(λρ) ≤ 1
2
Pq/2(ρ) + CM2. (5.23)

Now (5.22) follows from (5.23) by iteration in the same way as in the proof of proposition
5.1.

Summing up the above results, we conclude that if the conditions in any one of Propo-
sition 5.1 - 5.6 are satisfied, then

Aq(r) ≤ M4 (5.24)

for 0 < r ≤ r2 and 2 < q ≤ 10/3 with an absolute constant M4.

6 The Smallness of Some Scaled Qualities of Magnetic Field

In this section, we deduce the smallness of some scaled quantities related to the magnetic
field by making use of the smallness of certain quantities of the velocity field and the
boundedness of some quantities related to the velocity field and the magnetic field, which
are obtained in last section. First, one has that

Proposition 6.1 For any ε1 > 0, there exist absolute constants δ1, r1 and M1 such
that sup

0<r≤r2

(E(r) + E∗(r)) ≤ M1, and one of the following two conditions holds, for some

r2 > 0,
i) sup

0<r≤r2

E2(r) ≤ ε ≤ δ1;

ii) sup
0<r≤r2

E∗(r) ≤ ε ≤ δ1.

Then
E3(r) ≤ ε1 for any 0 < r ≤ r2. (6.1)

Proposition 6.1 follows directly from Lemma 4.1.
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Proposition 6.2 For any ε2 > 0, there exists an absolute constant δ2 such that, for
some r2 > 0,

i) sup
0<r≤r2

E3(r) ≤ ε1 ≤ δ2;

ii) sup
0<r≤r2

(F2(r) + F∗(r)) ≤ M1 with an absolute constant M1.

Then, there exists a positive constant r3 ≤ r2, such that

F2(r) ≤ ε2 for all 0 < r ≤ r3. (6.2)

Proof. Let ψ(x, t) be a smooth cut-off function with properties that 0 ≤ ψ(x, t) ≤ 1,
ψ(x, t) ≡ 1 in Q4ρ/5, ψ(x, t) ≡ 0 away from Qc

ρ, such that

|∇ψ(x, t)| ≤ C

ρ
and |∂ψ(x, t)

∂t
| + |∇2

xψ(x, t)| ≤ C

ρ2
. (6.3)

Set χ(x, t) = ψ(x, t) in (2.3) to get that

∂Bψ

∂t
− Δ(Bψ) = B(

∂ψ

∂t
− Δψ) − 2∇ψ · ∇B − ψ(u · ∇)B + ψ(B · ∇)u. (6.4)

Then, for any (x, t) ∈ Q4ρ/3, the solution Bψ can be represented as

Bψ(x, t) =
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)
(
B(

∂ψ

∂t
− Δψ) − 2∇ψ · ∇B

)
dyds

−
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)ψu · ∇Bdyds

+
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)ψB · ∇udyds. (6.5)

Here G(x, t) is the normalized fundamentmental solution of the heat equation. By inte-
gration by part, one has that

|
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)∇ψ · ∇Bdyds| ≤
∫ t

−ρ2

∫
Bρ

|∇G(x − y, t − s)||∇ψ||B|dyds

+
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)|∇2
yψ||B|dyds

and

|
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)ψB · ∇udyds| ≤
∫ t

−ρ2

∫
Bρ

|∇G(x − y, t − s)||ψ||B||u|dyds

+
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)|∇ψ||B||u|dyds

+
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)|ψ||∇B||u|dyds.
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Thus, (6.5) implies that, for (x, t) ∈ Q4ρ/5,

|B(x, t)| ≤
∫ t

−ρ2

∫
Bρ

{
G(x − y, t − s)

(
|B|(|∂ψ

∂t
| + 3|∇2

yψ|)
)

+2|∇G(x − y, t − s)||∇ψ||B|
}
dyds

+ 2
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)|ψ||u||∇B|dyds

+
∫ t

−ρ2

∫
Bρ

|∇G(x − y, t − s)||ψ||B||u|dyds

+
∫ t

−ρ2

∫
Bρ

G(x − y, t − s)|∇ψ||B||u|dyds

Δ= I5 + I6 + I7 + I8. (6.6)

Note the fact that
|∂ψ

∂t
| + |∇ψ| ≡ 0 in Q4ρ/5 ∪ Qc

ρ. (6.7)

Then, for any (x, t) ∈ Qμ with μ ≤ 2ρ/5, one has

I5 ≤ Cρ−5
∫ ∫

Qρ

|B(y, s)|dyds

≤ Cρ−5/2
( ∫ ∫

Qρ

|B(y, s)|2dyds
)1/2

= Cρ−1F
1/2
2 (ρ).

Thus ( ∫ ∫
Qμ

|I5|2dxdt
)1/2 ≤ Cμ5/2|I5| ≤ Cμ5/2ρ−1F

1/2
2 (ρ). (6.8)

Next,

‖I6 + I7‖L2(Bμ) ≤ C

∫ t

−ρ2
(t − s)−1/2

(
‖B‖L6(Bρ) + ‖∇B‖L2(Bρ)

)
‖u‖L3(Bρ)ds.

Using the Sobolev inequality

‖B‖L6(Bρ) ≤ C
(
‖∇B‖L2(Bρ) + ρ−1‖B‖L2(Bρ)

)
,

one has

‖I6 + I7‖L2(Bμ) ≤ C

∫ t

−ρ2
(t − s)−1/2

(
ρ−1‖B‖L2(Bρ) + ‖∇B‖L2(Bρ)

)
‖u‖L3(Bρ)ds.

By the Calderóln -Zygmund theorem on singular integrals and the Hölder inequality, we
deduce that

‖I6 + I7‖L2(Qμ) ≤ Cμ1/3
( ∫ 0

−μ2
‖I6 + I7‖L2(Bμ)ds

)1/3

≤ Cμ1/3‖u‖L3(Qρ)

(
‖∇B‖L2(Qρ) + ρ−1‖B‖L2(Qρ)

)

≤ Cμ1/3ρ7/6E
1/3
3 (ρ)

(
F

1/2
∗ (ρ) + F

1/2
2 (ρ)

)
. (6.9)
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Next, taking into account of the fact (6.7), one has that

‖I8‖L2(Qμ) ≤ Cμ5/2ρ−4‖B‖L2(Qρ)‖u‖L2(Qρ) ≤ Cμ5/2ρ−1E
1/2
2 (ρ)F 1/2

2 (ρ). (6.10)

Therefore it follows from (6.6) and (6.8) - (6.10) that

F
1/2
2 (μ) ≤ C(

μ

ρ
)F 1/2

2 (ρ)
(
1 + E

1/2
2 (ρ)

)
+ C(

ρ

μ
)7/6E

1/3
3 (ρ)

(
F

1/2
2 (ρ) + F

1/2
∗ (ρ)

)
,

i.e.,

F2(μ) ≤ C9(
μ

ρ
)2F2(ρ)

(
1 + E2(ρ)

)
+ C(

ρ

μ
)7/3E

2/3
3 (ρ)

(
F2(ρ) + F∗(ρ)

)
. (6.11)

Let μ = λρ and fix λ such that C9λ
2 ≤ 1/4. Then one has

F2(λρ) ≤ 1
4
F2(ρ)(1 + ε1) + Cλ−7/3ε

3/2
1 M1

≤ 1
2
F2(ρ) + Cλ−7/3ε

2/3
1 M1. (6.12)

Here we assume that ε1 ≤ 1. So our result follows from (6.12) by iteration in the same
way as in the proof of Proposition 5.1. Also see the proof of Proposition 2.2 in [15].

Remark: Similar to the derivation of (6.11), one can show that

F5/2(μ) ≤ C(
μ

ρ
)5/2

(
F

5/4
2 (ρ) + F

3/4
10/3(ρ)E5/4

2 (ρ)
)

+ C(
ρ

μ
)5/2F

3/43
10/3 (ρ)

(
E

5/4
2 (ρ) + E

5/4
∗ (ρ)

)
,

(6.13)
or

F5/2(μ) ≤ C(
μ

ρ
)5/2F

5/4
2 (ρ)

(
1 + E

3/4
10/3(ρ)

)
+ C(

ρ

μ
)5/2E

4/3
10/3(ρ)

(
F

5/4
2 (ρ) + F

5/4
∗ (ρ)

)
. (6.14)

Thus, if E10/3(r) ≤ ε and F2(r)+F∗(r) ≤ M for 0 < r ≤ r2, or E∗(r) ≤ ε and F10/3(r) ≤ M

for 0 < r ≤ r2, we can obtain the smallness of F5/2(r) for any 0 < r ≤ r3 with r3 ≤ r2, by
same discussion as above.

Proposition 6.3 For any ε3 > 0, there exists an absolute constant δ3 such that if
i) sup

0<r≤r2

F2(r) ≤ ε2 ≤ δ3;

ii) sup
0<r≤r2

E3(r) ≤ ε1 ≤ δ3; and

iii) sup
0<r≤r2

A3(r) ≤ M4,

then, there is a positive constant r4 ≤ r2 such that

A3(r) ≤ ε3 for every 0 < r ≤ r4. (6.15)

Moreover
F3(r) ≤ ε3 for every 0 < r ≤ r4. (6.16)

27



Proof. First, we apply inequality (5.5) with 2r = r∗ < ρ ≤ r2. By the Hölder
inequality,

A3(r) ≤ P3/2(r) + C
(
E2(r∗) + F2(r∗) + E3(r∗) + F

2/3
3 (r∗)E

1/3
3 (r∗) + E

1/3
3 (r∗)P

2/3
3/2 (r∗)

)
.

(6.17)
It follows from Lemma 4.3 that

P3/2(r) ≤ C(
r

ρ
)P3/2(ρ) + C(

ρ

r
)3

(
E3(ρ) + F3(ρ)

)
. (6.18)

Noting that F3(ρ) can be estimated by Lemma 4.1 with p = 3, one may conclude that

A3(r) ≤ C(
r

ρ
)A3(ρ) + ε

1/3
1 M

2/3
4 + C(1 + (

ρ

r
))ε1 + C(1 + M

1/4
4 )ε1/4

2 . (6.19)

By iteration in the same way as in the proof of Proposition 5.1, (6.15) results from (6.19).
And (6.16) follows directly from Lemma 4.1 and (6.15).

7 The Proofs of the Theorem 2.1 - 2.3

In this section, we will give the spatial gradient estimates on suitable weak solutions of
the incompressible magnetohydrodynamic equations provided that some scaled quantities
is suitably small for the velocity field and magnetic field. Then we can indicate the proofs
of Theorem 2.1 - 2.3. First, one has

Proposition 7.1 There exists an absolute constant ε4 > 0, such that, for any suitable
weak solution (u, B, p)(x, t) to the magnetohydrodynamic equations satisfying (3.4) and
(3.5), if there is a r4 > 0, such that one of the following three conditions holds

i) Either sup
0<r≤r4

(E(r) + F (r)) < +∞ or sup
0<r≤r4

(E∗(r) + F∗(r)) < +∞ and

E2(r) + F2(r) ≤ ε4 for all 0 < r ≤ r4,

ii) sup
0<r≤r4

(E∗(r) + F∗(r)) ≤ ε4,

iii) sup
0<r≤r4

(Ep(r) + Fp(r)) ≤ ε4 for some 5/2 ≤ p ≤ 10/3,

then, there is some r5 ≤ r4, such that

sup
Qr/2

(
|∇u| + |∇B|

)
≤ Cr−2 for 0 < r ≤ r5

with an absolute constant C.
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This Proposition is only direct extension to the magnetohydrodynamic equations of
the corresponding results of incompressible Navier-Stokes equations in [15]. So the proof
is exactly same as that of Theorem 3.1 in [15]. Thus we omit the details.

It should be noted that the results in Theorem 2.1 - 2.3 follow directly from Proposition
5.1 - 5.7, Proposition 6.1 - 6.3 and Proposition 7.1. Thus we complete the proof of Theorem
2.1 - 2.3.

8 The Proofs of Theorem 2.4 and 2.5

In this section, we will establish the further regularity for solutions to the magneto-
hydrodynamic equations, by making use of the results obtained in conjunction with extra
hypotheses on the given initial data, as for the incompressible Navier-Stokes equations.
In this section, we study the case Ω = R3. The ideas and techniques in this section are
borrowed from [1]. Firstly, we show that (u, B) is regular for t > C with an absolute
constant C. More precisely, we have

Proposition 8.1. Let (u, B, p) be a suitable weak solution to the magneto-hydrodynamic
equations. There exists an absolute constant ε5 > 0, such that, if

∫ t

0

∫
|x−y|≤t

|u|3(y, s)dyds ≤ ε5t, (8.1)

and ∫ t

0

∫
|x−y|≤t

|B|3(y, s)dyds ≤ C10t (8.2)

for some constant C10, then |∇u| + |∇B| is uniformly bounded in some neighborhood of
(x, t). In particular, |∇u|+|∇B| is locally uniformlly bounded as t > N0(‖u0‖2

2+‖B0‖2
2)

3/2

with an absolute constant N0.

Proof. Let r =
√

t. Then, (8.1) and (8.2) imply that

r−2
∫ ∫

Qr(x,t)
|u|3dyds ≤ ε5,

r−2
∫ ∫

Qr(x,t)
|B|3dyds ≤ C10.

Thus, the first results follows from Theorem 2.2.
In the following, we prove the second result. By the interpolation and Sobolev inequal-

ities and (3.4), one has that
∫ t

0

∫
R3

(|u|3 + |B|3)dxdt ≤ Ct1/4(‖u0‖2
2 + ‖B0‖2

2)
3/2.
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Therefore ∫ t

0

∫
R3

(|u|3 + |B|3)dxdt ≤ ε5t

provided that t > N0(‖u0‖2
2 + ‖B0‖2

2)
3/2 with some absolute constant N0. So the desired

result follows from Theorem 2.2 again.
Next, we turn to the proof of Theorem 2.4. First, we need,

Lemma 8.2. Let u0, B0 ∈ o
J 2(R3) and |x|1/2u0, |x|1/2B0 ∈ L2(R3). Then the weak

solution satisfies that

1
2

∫
R3

(
|u(x, t)|2 + |B(x, t)|2

)
|x|dxdt +

∫ t

0

∫
R3

(
|∇u|2 + |∇B|2

)
|x|dxdt ≤ F (t) (8.3)

for almost every t > 0 with F (t) = ‖|x|1/2u0‖2
2 + ‖|x|1/2B0‖2

2 + C(‖u0‖2
2 + ‖B0‖2

2)t
1/2 +

C(‖u0‖2
2 + ‖B0‖2

2)
3/2t1/4.

Proof. Let χ(r) be the smooth cut-off function on r ≥ 0, such that 0 ≤ χ ≤ 1, χ ≡ 1
for r ≤ 1 and χ ≡ 0 for r ≥ 2. For constants 0 < ε � λ < 1, we set

φ(x) =
1
2
(λ2 + |x|2)1/2χ((ε/λ)|x|)

in (2.2). Then (8.3) follows by the discussion similar to the proof of Lemma 8.2 in [1].

Proof of Theorem 2.4. We follow the discussion in [1]. By the first order interpolation
inequality with weight and (8.3), one has that

‖|x|1/2u‖10/3
10/3 ≤ C‖|x|1/2u‖4/3

2 ‖|x|1/2∇u‖2
2

‖|x|1/2u‖10/3
10/3 ≤ C‖|x|1/2u‖4/3

2 ‖|x|1/2∇u‖2
2.

Therefore, one obtains that
∫ t

0
‖|x|1/2u‖10/3

10/3ds ≤ CF (t)5/3

∫ t

0
‖|x|1/2u‖10/3

10/3ds ≤ CF (t)5/3. (8.4)

Let r =
√

t. Then the Proposition 8.1 implies that, if (x, t) is a singular point, then
∫ ∫

Qr(x,t)
|u|3dxdt ≥ ε5t or

∫ ∫
Qr(x,t)

|B|3dxdt ≥ C10t (8.5)

and
t ≤ N0(‖u0‖2

2 + ‖B0‖2
2)

3/2. (8.6)

Now let R = |x|. If R ≥ 2r, by the Hölder inequality, (8.4) and (8.5),

ε5t ≤ Cr1/2‖u‖3
10/3 ≤ Cr1/2R−3/2F (t)5/3 ≤ Ct1/4R−3/2,
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or
C10t ≤ Cr1/2‖B‖3

10/3 ≤ Cr1/2R−3/2F (t)5/3 ≤ Ct1/4R−3/2,

in which the fact (8.6) has been used. Thus,

|x|2t = R2t ≤ C11.

If R ≤ 2r, then
|x|2t ≤ 4t2.

Therefore,
|x|2t ≤ N1 = max{C11, 4N2

0 (‖u0‖2
2 + ‖B0‖2

2)
3},

which shows that Theorem 2.4 is valid.
To prove Theorem 2.5, we need an a priori estimate,

Lemma 8.3. Let u0, B0 ∈ o
J 2(R3) and |x|−1/2u0, |x|−1/2B0 ∈ L2(R3). Then there is

an absolute constant L0 > 0, such that, if ‖|x|−1/2u0‖2
2 +‖|x|−1/2B0‖2

2 = L < L0, then the
inequality

∫
R3

{ |u|2 + |B|2
|x − tξ| + (L0 − L − |ξ|2t) exp{ 1

L0

∫ t

0

∫
R3

|∇u|2 + |∇B|2
|x − tξ| dxdt}

}
dx ≤ L0 (8.7)

holds for every ξ ∈ R3 and t > 0 with |ξ|2t < L0 − L.

The proof is similar to that of Lemma 8.3 in [1]. Here we omit the details.

The Proof of Theorem 2.5. We follow the discussion in [1]. We want to show that
|∇u| + |∇B| is is bounded at (x0, t0) whenever

|x0|2 < t0(L0 − L). (8.8)

To this end, setting ξ = t−1
0 x0 in (8.7), one gets that

∫ t

0

∫
R3

|∇u|2
|x − tξ|dxdt ≤ +∞ (8.9)

only if

t ≤ t20
L0 − L

|x0|2 .

And (8.8) shows that (8.9) is valid for some t > t0. For any (x, t) ∈ Qr(x0, t0), then

|x − tξ| ≤ |x − t0ξ| + |t − t0||ξ| ≤ r + r2|ξ|.

If r|ξ| ≤ 1, then

max
t0−r2≤t≤t0

r−1
∫

Br(x0,t0)
|B|2dx ≤ 2 max

t0−r2≤t≤t0

∫
R3

|B|2
|x − tξ|dx ≤ 2L0, (8.10)
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and

r−1
∫ ∫

Qr(x0,t0)
|∇u|2dxdt ≤ 2

∫ ∫
Qr(x0,t0)

|∇u|2
|x − tξ|dxdt.

From the property of the absolute continuity of the integral and (8.9), one can conclude
that

lim
r→0+

1
r

∫ ∫
Qr(x0,t0)

|∇u|2dxdt = 0. (8.11)

Therefore, from (8.10) and (8.11), Theorem 2.3 implies the result.

Corollary. Let u0, B0 ∈ o
J 2(R3). If, for some R > 0,

∫
|x|>R

(
|∇u0|2 + |∇B0|2

)
dx < +∞,

then, |∇u| + |∇B| is bounded in the region {|x| > R′} for some R′ ≥ R.
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Archive Rational Mech. Anal., 46(1972), 241-279.

[5] Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak
solutions of the Navier-Stokes system, J. Diff. Equas., 61(1986), 186-212.

[6] Y. Giga & H. Sohe, Abstract Lp estimates for the Cauchy problem with applications
to the Navier-Stokes equations in exterior domains, J. Func. Anal., 102(1991), 72-94.

32



[7] A. Hasegawa, Self-organization processes in continuous media, Adv. Phys., 34(1985),
1-42.

[8] Fanghua, Lin, A new proof of the Caffarelli-Kohn-Nirenberg Theorem, Comm. Pure
Appl. Math., Vol. LI (1998), 241-257.

[9] P. Maremonti, Partial regularity of a generalized solution to the Navier-Stokes equa-
tions in exterior domains, Comm. Math. Phys., 110(1087), 75-87.

[10] H. Politano, A. Pouquet & P.L. Sulem, Current and vorticity dynamics in three-
dimensional magnetohydrodynamics turbulence, Phys. Plasmas, 2(1995) 2931-2939

[11] V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J.
Math., 66(1976), 535-552.

[12] M. Sermange & R. Teman, Some mathematical questions related to the MHD equa-
tions, Comm. Pure Appl. Math., 36(1983), 635-664.

[13] M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm.
Pure Appl. Math., 41(1988), 437-458.

[14] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,
Archive Rational Mech. Anal., 9(1962), 187-195.

[15] Gang Tian & Zhouping Xin, Gradient estimation on Navier-Stokes equations,
Comm. Anal. Geom., 7(1999), No.2, 221-257.

[16] Wolf von Wahl, Regularity of weak solutions of the Navier-Stokes equations, Sym-
posia in Pure Mathematics, Vol.45, (F.E. Browder, ed.) Providence, R.I., Amer.
Math. Soc., 1986, 497-503.

33


