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Abstract

This paper concerns the global existence and the large time behavior of strong and
classical solutions to the two-dimensional Stokes approximation equations for the com-
pressible flows. We consider the unique global strong solution or classical solution to
the two-dimensional Stokes approximation equations for the compressible flows together
with the space-periodicity boundary condition or the no-stick boundary condition or
Cauchy problem for arbitrarily large initial data. First, we prove that the density is
bounded from above independent of time in all these cases. Secondly, we show that for
the space-periodicity boundary condition or the no-stick boundary condition, if the ini-
tial density contains vacuum at least at one point, then the global strong (or classical)
solution must blow up as time goes to infinity.
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1 Introduction

The compressible isentropic Navier-Stokes equations, which are the basic model de-
scribing the evolution of a viscous compressible gas, read as follows{

ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) = μΔu+ ∇(ξdivu) −∇P (ρ),

(1.1)

where x ∈ Ω ⊂ RN , t ∈ (0, T ) and P (ρ) = aργ , a > 0, γ > 1, the viscosity coefficients
μ, ξ are assumed to satisfy μ > 0 and ξ + μ ≥ 0.

There is huge literature on the studies on the large time existence and behavior
of solutions to (1.1). The one-dimensional problem was addressed by Kazhikhov and
Shelukhin [11] for sufficiently smooth data, and by Serre [22] [23] and Hoff [7] for
discontinuous initial data, where the data are uniformly away from the vacuum. The
multidimensional problem (1.1) was investigated by Matsumura and Nishida [17] [18]
[19], who proved global existence of smooth solutions for data close to a non-vacuum
equilibrium, and later by Hoff for discontinuous initial data [8], and more recently, by
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CUHK4040/02P and CUHK4279/00P and Zheng Ge Ru Foundation.
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Danchin [3], who obtained existence and uniqueness of global solutions in a functional
space invariant by the natural scaling of the associated equations. For the existence of
solutions for arbitrary data(which may include vacuum states), the major breakthrough
is due to P. L. Lions [14] [15] [16] (see also Feireisl et al [4]), where he obtains global
existence of weak solutions - defined as solutions with finite energy - when the exponent
γ is suitably large. The only restriction on initial data is that the initial energy is finite,
so that the density is allowed to vanish.

Despite the important progress, the regularity and behavior of these weak solutions is
completely open. As emphasized in many papers related to compressible fluid dynamics
[2], [7], [9]-[11], [21], [22], [24]-[26], the possible appearance of vacuum and uniform
upper bound estimate on the density is one of the major difficulties when trying to
prove global existence and strong regularity results. In particular, the results of Xin
[26] show that there is no global smooth solution (ρ, u) to Cauchy problem for (1.1)
with a nontrivial compactly supported initial density, which gives results for finite time
blow-up in the presence of vacuum.

The major difficulties in analysis of the compressible Navier-Stokes equations (1.1)
are the nonlinearities in both convection and pressure and their interactions. To study
the well-posedness of solutions and gain understanding of the key issues, one has been
looking into various simplified models of the Navier-Stokes systems. One of the pro-type
simplifications of the Navier-Stokes system (1.1) is the Stokes approximation{

ρt + div(ρu) = 0,
ρut − μΔu− ξ∇(divu) + ∇P = 0,

(1.2)

where ρ = const. > 0 is the mean density, and P = aργ , a > 0, γ > 1. This is a good
approximation for strongly viscous fluids and where the convection is unimportant.

For simplicity, we take ρ = 1, μ = 1, ξ = 0, a = 1, and study the system

ρt + div(ρu) = 0, (1.3)
ut − Δu+ ∇P = 0, (1.4)

with P = ργ , γ > 1. We are concerned with the initial conditions for the density and
the velocity:

ρ(0) = ρ0, u(0) = u0, (1.5)

and three types of boundary conditions:
1) space-periodicity condition, i.e.,

Ω is a product
N∏
i=1

(0, Li), and ρ, u are Ω-periodic; (1.6)

2) Cauchy problem:

Ω = RN and (in some weak sense) ρ, u vanish at infinity; (1.7)

3) no-stick boundary condition: in this case, Ω is a bounded smooth domain in RN ,
and

u · n = 0 and
{
curlu = 0 on ∂Ω if N = 2,
curlu× n = 0 on ∂Ω if N = 3,

(1.8)
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where n is the unit outward normal to ∂Ω. The first condition in (1.8) is the non-
penetration boundary condition, while the second one is also known in the form

(D(u) · n)τ = 0, (1.9)

where D(u) is the stress tensor with components

Dij(u) =
1
2

(
∂xiu

j + ∂xju
i
)
.

Condition (1.9) means the tangential component of D(u) · n vanishes on the boundary
∂Ω.

It should be noted that the initial-boundary-value problem (1.3)-(1.5) with the
boundary data given either by (1.6) or (1.7) or (1.8) has been throughly studied by many
people. In particular, the existence of classical solutions to the 2D initial-boundary-
value problem on any finite interval [0, T ](T > 0) for arbitrarily large smooth initial
data has been proved by Kazhikhov et al [12], Lions [16], Min et al [20], and Chatelon et
al [1]. However, it seems to us that the known upper bounds on the density ρ depend on
the time T, see [1], [12], [16], [20], so it is impossible to study the large time asymptotic
behavior of solutions in the setting in [1], [12], [16], [20]. One of the main purposes of
this paper is to derive an uniform time-independent upper bound for the density. As a
consequence of the uniform estimate on the bound of density, we show the large time
asymptotic behavior of solutions for the strong solutions. Our first result is

Theorem 1.1 Suppose that N = 2 and that

ρ0 ∈W l,q(Ω) ∩ L1(Ω), u0 ∈W l+1,q(Ω) ∩ L2(Ω) (1.10)

for some q > 2, l ≥ 1. Then problem (1.3)-(1.5) with the boundary condition (1.6) or
(1.7) or (1.8) has a unique solution (ρ, u) such that for any T > 0,

∂kρ

∂tk
∈ L∞(0, T ;W l−k,q(Ω)),

∂ku

∂tk
∈ L∞(0, T ;W l−k+1,q(Ω)), (1.11)

for any k, 0 ≤ k ≤ l, and moreover,

sup
0≤t≤T

‖ρ(·, t)‖L∞(Ω) ≤ C, (1.12)

and

lim
t→∞

(
‖R(·, t)‖Lα(Ω) + ‖u(·, t)‖Lβ (Ω)

)
= 0, (1.13)

with C independent of T and R,α, β such that{
R = ρ− ρ0, any α, β ∈ [1,∞), if Ω is bounded,
R = ρ, any α ∈ (1,∞), any β ∈ (2,∞), if Ω = R2.

Remark 1.1 If l = 1, the unique solution is the so-called strong solution; if l ≥ 2,
the unique solution is also a classical one. In this paper, by strong solutions, we mean
weak solutions satisfying the equations (1.3) (1.4) almost everywhere in Ω × (0,∞);
and by classical solutions, we mean a pair of functions (ρ, u), ρ ∈ C1(Ω × (0,∞)), u ∈
C2(Ω × (0,∞)), such that (1.3) and (1.4) are satisfied everywhere in Ω × (0,∞).
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Remark 1.2 Under the same conditions, Lions ([16]), Kazhikhov et al ([12]), and
Chatelon et al ([1]) proved the same results except (1.12) and (1.13) .

Remark 1.3 (1.12) means that the density is bounded from above independent of time;
this is the key for the large time dynamical behavior of solutions.

Theorem 1.1 shows that there exists a unique strong (or classical) solution on [0, T ]
to the initial-boundary-value problem for the 2D equations (1.2) for any T > 0 for
smooth data. Furthermore, the large time asymptotic behavior of ρ, u themselves in
Lp-norms is given by (1.13). A natural question is what is the large time behavior of
the derivatives of this solution. We will give a partial answer to this question. It will
be shown that if the initial density contains vacuum at least at a point and the domain
Ω is bounded then the global strong solution has to blow up as time goes to infinity,
that is

Theorem 1.2 In addition to the conditions of Theorem 1.1, assume further that there
exists some point x0 ∈ Ω such that ρ0(x0) = 0. Then the unique global strong (or
classical) solution (ρ, u) to problem (1.3)-(1.5) with the boundary condition (1.6) or
(1.8) obtained in Theorem 1.1 has to blow up as t→ ∞; that is

lim
t→∞ ‖∇ρ(·, t)‖Lq(Ω) = ∞.

Remark 1.4 It would be interesting to study the existence and large time asymptotic
behavior of solutions for the case q = 2. This is left for the future.

Finally, we give a brief outline of the rest of the paper. In Section 2 we collect some
elementary facts which are useful for our analysis later. The main results, Theorem 1.1
and Theorem 1.2, are proved in Section 3, 4, 5. It should be noted that although we use
some ideas developed in [12] [16], some new elaborate estimates are needed to overcome
the difficulties in obtaining the uniform time-independent upper bound estimate for the
density. This is achieved by some careful estimates on the deviation of the pressure
from its mean value and the difference between the divergence of the velocity field and
the deviation of the pressure from its mean value. The case of bounded domains is
treated in Section 3. While Section 4 is devoted to the Cauchy problem. Finally, we
prove Theorem 1.2 in Section 5.

2 Preliminaries

In this section, we will recall some known facts and elementary inequalities which
will be used and play important roles later.

Consider the following parabolic problem{
ϕt − Δϕ = f,

ϕ(x, 0) = 0,
(2.1)

supplemented with one of the following three boundary conditions:

ϕ(·, t) is Ω-periodic; (2.2)

Ω bounded, smooth, and
∂ϕ

∂n
= 0 on ∂Ω; (2.3)

Ω = RN , and ϕ vanishes at infinity. (2.4)
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Let Ω be a bounded domain and f is integral on Ω. We denote by f the average of
f over Ω for bounded domain Ω, i.e.,

f =
1
|Ω|

∫
Ω
f(x)dx.

Then the following facts are well-known (see [5] [6]):

Lemma 2.1 Assume that p ∈ (1,∞), 0 < T ≤ ∞. Then for

f ∈

⎧⎪⎨
⎪⎩

{
f ∈ Lp(Ω × (0, T )), f periodic, f = 0

}
, if (2.2) holds,{

f ∈ Lp(Ω × (0, T )), f = 0
}
, if (2.3) holds,

Lp(Ω × (0, T )), if (2.4) holds,

the problem (2.1) with the boundary condition (2.2) or (2.3) or (2.4) has a unique
solution ϕ such that

ϕt,D
2ϕ ∈ Lp(0, T ;Lp(Ω)), and ϕ = 0 if Ω is bounded;

moreover, there exists a positive constant A independent of T such that∫ T

0
‖ϕt(t)‖pLpdt+

∫ T

0
‖Δϕ(t)‖pLpdt ≤ A

∫ T

0
‖f‖pLpdt.

Lemma 2.1 yields directly the following derivative estimate.

Lemma 2.2 Let r ∈ (1,∞), f ∈ (
Lr(RN × (0, T ))

)N
. Then solutions of the following

parabolic problem: ⎧⎪⎨
⎪⎩
ϕt − Δϕ = divf, (x, t) ∈ RN × (0, T )
ϕ(x, 0) = 0, x ∈ RN

(2.4) holds,

satisfy the following estimate

‖Dϕ‖Lr(RN×(0,T )) ≤ A‖f‖Lr(RN×(0,T ))

where A is a positive constant independent of T.

Lemma 2.1 and the Hodge decomposition lead to the following simple derivative
estimate.

Lemma 2.3 Let r ∈ (1,∞), f ∈ Lr(Ω× (0, T ))
(
f = 0 for bounded Ω

)
. Then solutions

of the following parabolic problem:{
vt − Δv = ∇f,
v(x, 0) = 0,

supplemented with (1.6) or (1.7) or (1.8), satisfy

‖Dv‖Lr(Ω×(0,T )) ≤ A‖f‖Lr(Ω×(0,T ))

with A independent of T.
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Also, the following estimate will be used later.

Lemma 2.4 ([27]) Let the function y satisfy

y′(t) ≤ g(y) + b′(t) on [0, T ], y(0) = y0,

with g ∈ C(R) and y, b ∈W 1,1(0, T ). If g(∞) = −∞ and b(t2)−b(t1) ≤ N0+N1(t2−t1)
for all 0 ≤ t1 < t2 ≤ T with some N0 ≥ 0 and N1 ≥ 0, then

y(t) ≤ max
{
y0, ζ

}
+N0 <∞ on [0, T ],

where ζ such that g(ζ) ≤ −N1 for ζ ≥ ζ.

Finally, we state the well-known Sobolev’s inequality.

Lemma 2.5 ([13]) Assume that N = 2 and Ω = R2 or Ω is a bounded domain in R2

with piecewise smooth boundary, and that

u ∈ H1
0 (Ω) or u ∈ {

u ∈ H1(Ω), u = 0
}

or u ∈
{(
H1(Ω)

)2
, u · n|∂Ω = 0

}
.

Then there exists a constant C independent of u such that

‖u‖L4 ≤ C‖u‖1/2
L2 ‖Du‖1/2

L2 .

3 Proof of Theorem 1.1 on bounded domains

In this section, we will prove Theorem 1.1 in the case of bounded domains, i.e., either
boundary condition (1.6) or (1.8) holds. Due to the existence and uniqueness results
established in [16] [12], we need only to show that (1.12) and (1.13) hold.

Let T ∈ (0,∞) be fixed. In this section and the following one, C denotes a generic
positive constant independent of T.

First, we consider the periodic case and deduce (1.12) and (1.13). The boundary
condition (1.8) will be treated later.

Case 1. (Periodic case.) Without loss of generality, we assume that∫
Ω
u0dx = 0. (3.1)

Otherwise, one may change u to u− u0, and consider the following system⎧⎪⎨
⎪⎩
ρt + div(ρu) + u0 · ∇ρ = 0,
ut − Δu+ ∇P = 0,
u(x, 0) = u0 − u0.

It is easy to check step by step that the following procedure still holds.
Standard energy estimates for (1.3) − (1.6) yield that

1
2

sup
0≤s≤t

‖u(·, s)‖2
L2 +

1
γ − 1

sup
0≤s≤t

‖P (·, s)‖L1 +
∫ t

0
‖Du‖2

L2ds

≤ 1
2
‖u0‖2

L2 +
1

γ − 1
‖P0‖L1 � I2

0 . (3.2)
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(3.1), (1.4) and the periodic boundary condition (1.6) lead to∫
Ω
udx = 0.

Thus, we use Lemma 2.5, (3.2) and Poincaré’s inequality to derive
∫ t

0

(‖u‖4
L4 + ‖u‖2

L2

)
ds ≤ C. (3.3)

Denote by ϕ and w the unique periodic functions such that

u = ∇ϕ+ w, divw = 0,
∫

Ω
ϕdx = 0,

and
‖∇ϕ‖Lp + ‖w‖Lp ≤ C‖u‖Lp ,

for 1 < p <∞; and similarly

u0 = ∇ϕ0 +w0, divw0 = 0,
∫

Ω
ϕ0dx = 0,

and
‖∇ϕ0‖Lp + ‖w0‖Lp ≤ C‖u0‖Lp .

Hence, (1.4) and (1.5) show that w and ϕ satisfy{
wt − Δw = 0,
w(x, 0) = w0(x),

(3.4)

and {
ϕt − Δϕ+Q = 0,
ϕ(x, 0) = ϕ0(x),

(3.5)

respectively, where Q � P − P .

Denote by S = ϕt = Δϕ−Q = divu−Q. Then, P,Q and S satisfy

Pt + div(Pu) + (γ − 1)Pdivu = 0, (3.6)

{
Qt + div(uQ) + (γ − 1)Qdivu + γPdivu− (γ − 1)Qdivu = 0,
Q(x, 0) = Q0 � P0 − P0,

(3.7)

and {
St − ΔS = −Qt,
S(x, 0) = Δϕ0 −Q0,

(3.8)

respectively, which follow by direct calculations based on (1.3) (1.4).
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Multiplying (3.7) by Q2 and integrating the result in space, one can obtain after
integrating by parts and Hölder’s inequality and (3.2) that

‖P (t)‖3
L3 +

∫ t

0
‖Q(s)‖4

L4ds

≤ C + C‖P0‖3
L3 + C

∫ t

0
‖S‖4

L4ds+ C

∫ t

0
‖Q‖2

L2‖Du‖2
L2ds, (3.9)

where one has used the simple fact that Q3 ≥ P 3/2 − CI6
0 , due to (3.2).

We first derive some estimates on Q. Rewrite (3.5) as

Q = Δϕ− ϕt. (3.10)

Multiplying (3.10) by Q, then integrating the result over Ω × (0, t), one gets by inte-
gration by parts and (3.7) that∫ t

0
‖Q‖2

L2ds

=
∫ t

0

∫
Ω
Qdivudxds − (γ − 1)

∫ t

0

∫
Ω
ϕQdivudxds

−
∫

Ω
Qϕ(x, t)dx+

∫
Ω
Q0ϕ0dx

−
∫ t

0

∫
Ω
div(Qu)ϕdxds − γP

∫ t

0

∫
Ω
divuϕdxds. (3.11)

The terms in (3.11) can be estimated as follows:
It follows from (3.2) that∣∣∣∣

∫ t

0

∫
Ω
Qdivudxds

∣∣∣∣ ≤ 1
4

∫ t

0
‖Q‖2

L2ds+ C. (3.12)

Noticing that ∫
Ω
ϕdx = 0,

we use (3.3) and Poincaré’s inequality to get∫ t

0
‖ϕ‖4

L4ds ≤ C

∫ t

0
‖u‖4

L4ds ≤ C. (3.13)

(3.13) and (3.2) yield that for any ε > 0,∣∣∣∣
∫ t

0

∫
Ω
ϕQdivudxds

∣∣∣∣
≤

(∫ t

0
‖Q‖4

L4ds

)1/4 (∫ t

0
‖ϕ‖4

L4ds

)1/4 (∫ t

0
‖divu‖2

L2ds

)1/2

≤ ε

(∫ t

0
‖Q‖4

L4ds

)1/2

+Cε. (3.14)

Poincaré’s inequality and (3.2) lead to∣∣∣∣
∫

Ω
Qϕ(x, t)dx

∣∣∣∣ ≤ ‖Q(·, t)‖L2‖ϕ(·, t)‖L2

≤ C‖Q(·, t)‖L2‖u(·, t)‖L2

≤ Cλ + λ‖Q(·, t)‖2
L2 , (3.15)
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for any λ > 0. Next, it follows from (3.2) and (3.3) that∣∣∣∣
∫ t

0

∫
Ω
div(Qu)ϕdxds

∣∣∣∣ =
∣∣∣∣
∫ t

0

∫
Ω
Qui∂iϕdxds

∣∣∣∣
≤ 1

4

∫ t

0
‖Q‖2

L2ds+ C

∫ t

0
‖u‖4

L4ds

≤ 1
4

∫ t

0
‖Q‖2

L2ds+ C, (3.16)

Finally, (3.2), (3.3) and Poincaré’s inequality give

∣∣∣∣γP
∫ t

0

∫
Ω
divuϕdxds

∣∣∣∣ ≤ CI2
0

(∫ t

0
‖Du‖2

L2ds

)1/2 (∫ t

0
‖u‖2

L2ds

)1/2

≤ C. (3.17)

Thus, collecting all the estimates (3.12)-(3.17), we deduce from (3.11) that

∫ t

0
‖Q‖2

L2ds ≤ ε

(∫ t

0
‖Q‖4

L4ds

)1/2

+ λ‖Q(·, t)‖2
L2 + Cλ + Cε. (3.18)

To estimate the second term on the right hand side of (3.18), we multiply the equation
(3.7) by Q, then integrate the result over Ω to obtain

d

dt
‖Q(·, t)‖2

L2 = −(2γ − 1)
∫

Ω
Q2divudx − 2γP

∫
Ω
Qdivudx

≤ C
(‖Q‖2

L4 + ‖Q‖L2

) ‖Du‖L2 . (3.19)

Thus, we integrate this inequality over (0, t) to derive from (3.18) that

‖Q(·, t)‖2
L2 ≤ ‖Q0‖2

L2 + C

(∫ t

0
‖Q‖4

L4ds

)1/2

+
∫ t

0
‖Q‖2

L2ds+ C

≤ ‖Q0‖2
L2 + C

(∫ t

0
‖Q‖4

L4ds

)1/2

+ λ‖Q(·, t)‖2
L2 + Cλ.

Choosing λ = 1/2 in this estimate leads to

sup
0≤s≤t

‖Q(·, s)‖2
L2 ≤ C‖Q0‖2

L2 +C

(∫ t

0
‖Q‖4

L4ds

)1/2

+ C. (3.20)

The combination of (3.18) with (3.20) gives that

ε sup
0≤s≤t

‖Q(·, s)‖2
L2 +

∫ t

0
‖Q‖2

L2ds

≤ Cε‖Q0‖2
L2 + Cε

(∫ t

0
‖Q‖4

L4ds

)1/2

+ Cε. (3.21)

Next, we turn to the estimate on S. Multiplying the equation (3.4) by −Δw, then
integrating the resulting identity over both space and time, one gets

‖Dw(·, t)‖2
L2 +

∫ t

0
‖Δw‖2

L2ds ≤ ‖Dw0‖2
L2 .
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Hence, ∫ t

0
‖wt‖2

L2ds =
∫ t

0
‖Δw‖2

L2ds ≤ C. (3.22)

Since
∇S = ∇ϕt, ‖S‖L2 ≤ C‖DS‖L2 ,

where the second inequality is due to Poincaré’s inequality, we can multiply (3.8) by S,
and then integrate the resulting identity over both space and time to obtain

1
2
d

dt
‖S‖2

L2 + ‖DS‖2
L2

= −
∫

Ω
Qu · ∇Sdx+ (γ − 1)

∫
Ω
QdivuSdx+ γP

∫
Ω
divuSdx

= −
∫

Ω
Qu · ∇ϕtdx+ (γ − 1)

∫
Ω
(divu)2Sdx− (γ − 1)

∫
Ω
(divu)S2dx

+γP
∫

Ω
divuSdx

≤ −1
2

∫
Ω
Q
∂|u|2
∂t

dx+ C

∫
Ω

(|Qu||wt| + |Du|2|S| + |Du|S2
)
dx

+
1
2

∫
Ω
|DS|2dx+ C

∫
Ω
|Du|2dx, (3.23)

where (3.2) and (3.7) have been used.
The first term on the right hand side in (3.23) can be estimated again by (3.7) that

−1
2

∫
Ω
Q
∂|u|2
∂t

dx

= −1
2
d

dt

∫
Ω
Q|u|2dx+

1
2

∫
Ω
|u|2Qtdx

≤ −1
2
d

dt

∫
Ω
Q|u|2dx+ C

∫
Ω

(|u|2|Du||Q| + |Du||u|2) dx
+C

∫
Ω
|Q||Du|dx

∫
Ω
|u|2dx

≤ −1
2
d

dt

∫
Ω
Q|u|2dx+ C

∫
Ω

(|u|2|Du|2 + |u|2|Du||S|) dx
+C‖Du‖2

L2 + C‖u‖4
L4 + C‖Q‖2

L2‖Du‖2
L2 + C‖u‖4

L2 . (3.24)

We multiply the equation (1.4) by |u|2u, and integrate the result in space to get

d

dt
‖u‖4

L4 ≤ C

∫
Ω

(|u|2|Du||Q| + |Du|2|u|2) dx
≤ C

∫
Ω

(|u|2|Du||S| + |u|2|Du|2) dx, (3.25)

It follows from (3.23)-(3.25) that∫
Ω

(
P |u|2 − P |u|2 + ‖S‖2

L2 + ‖u‖4
L4

)
dx+

∫ t

0
‖DS‖2

L2ds

≤ C + C

∫ t

0
‖Qu‖L2‖wt‖L2ds+ C

∫ t

0
‖Q‖2

L2‖Du‖2
L2ds

+C
∫ t

0

∫
Ω

(|Du|S2 + |Du|2|S| + |u|2|Du||S| + |u|2|Du|2) dxds. (3.26)
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We can estimate each of the terms on the right hand side of (3.26) as follows:
First, (3.22) and (3.3) yield that

∫ t

0
‖Qu‖L2‖wt‖L2ds ≤ C

(∫ t

0
‖Qu‖2

L2ds

)1/2

≤ ε

(∫ t

0
‖Q‖4

L4ds

)1/2

+ Cε. (3.27)

Next, Lemma 2.5 and
∫
Ω Sdx = 0 give that

‖S‖L4(Ω) ≤ C‖S‖1/2
L2(Ω)

‖DS‖1/2
L2(Ω)

;

thus, one has ∫ t

0

∥∥DuS2(·, s)∥∥
L1 ds

≤
∫ t

0
‖Du‖L2‖S‖2

L4ds

≤ C

∫ t

0
‖Du‖L2‖S‖L2‖DS‖L2ds

≤ ε

∫ t

0
‖DS‖2

L2ds+ Cε

∫ t

0
‖Du‖2

L2‖S‖2
L2ds. (3.28)

We infer from (3.2) that
∫ t

0

∫
Ω

(|Du|2|S| + |u|2|Du||S|) dxds
≤

∫ t

0

(‖Du‖L2‖Du‖L4‖S‖L4 + ‖u‖2
L4‖Du‖L4‖S‖L4

)
ds

≤ C

∫ t

0
(‖Du‖L2‖Du‖L4‖S‖L4 + ‖u‖L2‖Du‖L2‖Du‖L4‖S‖L4) ds

≤ C

∫ t

0
‖Du‖L2‖Du‖L4‖S‖L4ds

≤ C

(∫ t

0
‖Du‖4

L4ds

)1/4 (∫ t

0
‖Du‖4/3

L2 ‖S‖2/3
L2 ‖DS‖2/3

L2

)3/4

≤ C

(∫ t

0
‖Du‖4

L4ds

)1/4 (∫ t

0
‖DS‖2

L2ds

)1/4 (∫ t

0
‖Du‖2

L2‖S‖L2ds

)1/2

≤ ε

(∫ t

0
‖Du‖4

L4ds

)1/2

+ ε

∫ t

0
‖DS‖2

L2ds+ Cε

∫ t

0
‖Du‖2

L2‖S‖2
L2ds. (3.29)

Lemma 2.5 gives that

∥∥|u|2∥∥
L4 ≤

∥∥∥|u|2 − |u|2
∥∥∥
L4

+C‖u‖2
L2

≤ C
∥∥∥|u|2 − |u|2

∥∥∥1/2

L2

∥∥D|u|2∥∥1/2

L2 + C‖u‖2
L2

≤ C (‖u‖L4 + ‖u‖L2) ‖uDu‖1/2
L2 + C‖u‖2

L2 .
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Hence, we use (3.3) to deduce∫ t

0

∫
Ω
|u|2|Du|2dxds

≤
∫ t

0

∥∥|u|2∥∥
L4 ‖Du‖L4‖Du‖L2ds

≤ 1
2

∫ t

0
‖uDu‖2

L2ds+ C

∫ t

0

(
‖u‖4/3

L4 + ‖u‖4/3
L2

)
‖Du‖4/3

L4 ‖Du‖4/3
L2 ds+ C.

Thus, making use of (3.2), we have∫ t

0

∫
Ω
|u|2|Du|2dxds

≤ C

∫ t

0

(
‖u‖4/3

L4 + ‖u‖4/3
L2

)
‖Du‖4/3

L4 ‖Du‖4/3
L2 ds+ C

≤ C

(∫ t

0
‖Du‖4

L4ds

)1/3 (∫ t

0

(‖u‖2
L4 + ‖u‖2

L2

) ‖Du‖2
L2ds

)2/3

+ C

≤ ε

(∫ t

0
‖Du‖4

L4ds

)1/2

+ Cε

(∫ t

0
‖u‖2

L4‖Du‖2
L2ds

)2

+ Cε

≤ ε

(∫ t

0
‖Du‖4

L4ds

)1/2

+ Cε

∫ t

0
‖u‖4

L4‖Du‖2
L2ds+ Cε. (3.30)

Lemma 2.3 yields(∫ t

0
‖Du‖4

L4ds

)1/2

≤ C + C

(∫ t

0
‖Q‖4

L4ds

)1/2

. (3.31)

We use (3.2)(3.9)(3.21)(3.26) − (3.31) to deduce that

A(t) + ε sup
0≤s≤t

‖Q‖2
L2 +B(t)

≤ Cε

(∫ t

0
‖S‖4

L4ds

)1/2

+ CεB(t) + Cε

+Cε
∫ t

0
‖Du‖2

L2

(‖S‖2
L2 + ‖Q‖2

L2 + ‖u‖4
L4

)
ds

≤ Cε

(∫ t

0
A(t)‖DS(s)‖2

L2ds

)1/2

+ CεB(t) + Cε

+Cε
∫ t

0
‖Du‖2

L2

(‖S‖2
L2 + ‖Q‖2

L2 + ‖u‖4
L4

)
ds

≤ Cε (A(t) +B(t)) + Cε

+Cε
∫ t

0
‖Du‖2

L2

(‖S‖2
L2 + ‖Q‖2

L2 + ‖u‖4
L4

)
ds,

where
A(t) � sup

0≤s≤t

∫
Ω

(|S|2 + |u|4 + P |u|2) (x, s)dx,

and

B(t) �
∫ t

0

(‖DS‖2
L2 + ‖Q‖2

L2

)
ds.
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Choosing ε small enough, we have

sup
0≤s≤t

(‖S‖2
L2 + ‖Q‖2

L2 + ‖u‖4
L4

)
(s) +

∫ t

0

(‖DS‖2
L2 + ‖Q‖2

L2

)
ds

≤ C + C

∫ t

0
‖Du‖2

L2

(‖S‖2
L2 + ‖Q‖2

L2 + ‖u‖4
L4

)
ds.

Since ∫ t

0
‖Du‖2

L2ds ≤ C,

Gronwall’s inequality thus gives that

sup
0≤s≤t

(‖S‖2
L2 + ‖Q‖2

L2 + ‖u‖4
L4

)
(s) +

∫ t

0

(‖DS‖2
L2 + ‖Q‖2

L2

)
ds ≤ C. (3.32)

The combination of this estimate with (3.9) yields that

sup
0≤s≤T

‖P (·, s)‖3
L3 +

∫ T

0

(‖Q‖4
L4 + ‖Q‖2

L2

)
ds ≤ C. (3.33)

One deduces from (3.31) and (3.33) that∫ t

0
‖Du‖4

L4ds ≤ C. (3.34)

By the identity ∫
Ω
∂iϕdx = 0,

(3.32) and the Gagliardo-Nirenberg inequality, one gets

‖∂iϕ(t)‖L∞ ≤ C‖Dϕ(t)‖1/2
L4 ‖D2ϕ(t)‖1/2

L4

≤ C‖u(t)‖1/2
L4 ‖Du(t)‖1/2

L4

≤ C‖Du(t)‖1/2
L4 .

We deduce from this estimate, (3.34) and Hölder’s inequality that∫ T

0
‖∂jϕ‖8

L∞ds ≤ C.

Since u = 0, It follows from (3.32), (3.33) and the Poincaré-Sobolev inequality that∫ T

0
‖u‖8

L∞ds ≤ C.

The above two inequalities give that∫ T

0
‖uj∂jϕ‖4

L∞ds ≤ C. (3.35)

Set Dtw = wt + u · ∇w. Using (3.2), we conclude from (1.3) and (3.5) that

Dt (log P + γϕ) ≤ −γP + CI2
0 + γuj∂jϕ. (3.36)
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Now, we pass in (3.36) to the Lagrangian coordinates and take y = log P, g(y) =
−γey, and b(t) = b1(t) − b0(t) where

b1(t) = γ

∫ t

0
uj∂jϕds + CI2

0 t and b0(t) = γϕ.

Thus, (3.35) yields that for 0 ≤ t1 < t2 ≤ T,

|b1(t2) − b1(t1)| ≤ γ

∫ t2

t1

∥∥uj∂jϕ(·, s)∥∥
L∞ ds+ CI2

0 (t2 − t1)

≤ C

∫ T

0

∥∥uj∂jϕ(·, s)∥∥4

L∞ ds+ C(t2 − t1)

≤ C + C(t2 − t1).

(3.32) and Poincaré’s inequality give that

sup
0≤t≤T

|b0(t)| ≤ C sup
0≤t≤T

‖ϕ‖1/2
L4 sup

0≤t≤T
‖Dϕ‖1/2

L4

≤ C sup
0≤t≤T

‖u‖L4

≤ C.

Hence, we have

|b(t2) − b(t1)| ≤ C + C(t2 − t1). (3.37)

Since estimate (3.37) holds, the uniform upper bounds for logP and consequently for
ρ follow from Lemma 2.4.

Next, we will prove (1.13).
We claim that we have

lim
t→∞ (‖Q(·, t)‖L2 + ‖u(·, t)‖L4) = 0. (3.38)

In fact, set
h(t) = ‖Q(·, t)‖2

L2 + ‖u(·, t)‖4
L4 .

It follows easily from (3.3) and (3.33) that∫ ∞

0
h(t)dt ≤ C.

Using (3.3), (3.33) and (3.34), we derive from (3.19) and (3.25) that∫ ∞

0

∣∣h′(t)∣∣ dt
≤ C

∫ ∞

0

(‖Du‖L2

(‖Q‖2
L4 + ‖Q‖L2

)
+

(‖Du‖L4‖Q‖L4 + ‖Du‖2
L4

) ‖u‖2
L4

)
dt

≤ C

∫ ∞

0

(‖Q‖2
L2 + ‖Q‖4

L4 + ‖u‖4
L4 + ‖Du‖2

L2 + ‖Du‖4
L4

)
dt

≤ C.

Consequently,

lim
t→∞h(t) = 0. (3.39)
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This shows that (3.38) holds true.
It follows from (3.6) that∫ ∞

0

∣∣∣∣ ddtP (t)
∣∣∣∣ dt ≤ (γ − 1)

∫ ∞

0

∣∣Qdivu∣∣ dt
≤ C

∫ ∞

0

(‖Q‖2
L2 + ‖Du‖2

L2

)
dt

≤ C.

This yields that there exists some positive constant ρs such that

lim
t→∞P (t) = ργs , (3.40)

since 0 < ρ0
γ ≤ P ≤ CI2

0 . (3.38), (3.40) and (1.12) lead to

lim
t→∞ ‖ρ(·, t) − ρs‖Lα = 0,

for any α ∈ [1,∞). Hence, we have

ρs = ρ0,

due to the fact that ρ(t) ≡ ρ0. Consequently,

lim
t→∞ ‖ρ(·, t) − ρ0‖Lα = 0, (3.41)

for any α ∈ [1,∞).
(1.12) and (3.33) yield that Q satisfies∫ ∞

0
‖Q(·, t)‖pLpdt ≤ C for any 2 ≤ p <∞.

Hence,

sup
0≤t<∞

‖u‖Lp ≤ C, (3.42)

for all 2 ≤ p <∞.

It thus follows easily from (3.2), (3.41), (3.42) and (3.38) that (1.13) holds true.
Case 2. (the boundary condition (1.8) holds.) Notice that u · n|∂Ω = 0 yields that

Poincaré’s inequality still holds, i.e.

‖u‖L2 ≤ C‖Du‖L2 ,

and that for 1 < p <∞,

‖Du‖Lp ≤ C (‖divu‖Lp + ‖curlu‖Lp) . (3.43)

Denoting by ∇⊥ = (∂x2 ,−∂x1)
T , we have

Δu = ∇divu−∇⊥curlu.

Hence, (1.3) − (1.5), (1.8) and Lemma 2.5 yield that (3.2) and (3.3) still hold.
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Denote by ϕ and w the unique functions such that u = ∇ϕ+ w, divw = 0, and⎧⎨
⎩

Δϕ = divu,

∂ϕ
∂n

∣∣∣
∂Ω

= 0,
∫

Ω
ϕdx = 0;

similarly u0 = ∇ϕ0 + w0, divw0 = 0, and⎧⎨
⎩

Δϕ0 = divu0,

∂ϕ0

∂n

∣∣∣
∂Ω

= 0,
∫

Ω
ϕ0dx = 0.

Using (1.8), we infer from (1.4) that curlw satisfies⎧⎪⎨
⎪⎩

(curlw)t − Δcurlw = 0,
curlw|∂Ω = 0,
curlw(x, 0) = curlu0.

Hence, we have

‖curlw(t)‖2
L2 + 2

∫ t

0
‖Dcurlw‖2

L2ds ≤ ‖curlu0‖2
L2 .

Since curlw|∂Ω = 0, this estimate and Lemma 2.5 lead to∫ t

0
‖curlu‖4

L4ds =
∫ t

0
‖curlw‖4

L4ds ≤ C. (3.44)

Choosing the smooth basis ∇{ψi} of ∇H1(Ω), where {ψi} is the solutions of⎧⎨
⎩
−Δψi = λiψi,
∂ψi

∂n

∣∣∣
∂Ω

= 0.

We have, for any i,

0 =
∫

Ω
(ut − Δu+ ∇P ) · ∇ψidx

=
∫

Ω
(−ut −∇divu+ ∇⊥curlu+ ∇P ) · ∇ψidx

=
∫

Ω
(−ϕt + Δϕ− P )Δψidx

= λi

∫
Ω
(ϕt − Δϕ+ P )ψidx.

This yields that ϕ satisfies ⎧⎪⎪⎨
⎪⎪⎩
ϕt − Δϕ+Q = 0,
∂ϕ
∂n

∣∣∣
∂Ω

= 0,
∫
Ω ϕdx = 0,

ϕ(x, 0) = ϕ0(x),

(3.45)

where Q � P − P .
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Obviously, Q satisfies (3.7).
Denote by S = ϕt. It follows from (3.45) that S satisfies⎧⎪⎨

⎪⎩
St − ΔS = −Qt,
∂S
∂n

∣∣
∂Ω

= 0,
∫
Ω Sdx = 0,

S(x, 0) = Δϕ0(x) − P0(x).

We use Lemma 2.1 to get∫ t

0
‖Δϕ‖4

L4ds ≤ C

(
‖Δϕ0‖2

L2 +
∫ t

0
‖Q‖4

L4ds

)
.

Hence, this estimate, together with (3.43) and (3.44), yields that
∫ t

0
‖Du‖4

L4ds ≤ C

(
1 +

∫ t

0
‖Q‖4

L4ds

)
;

that is to say, (3.31) still holds.
We then follow the proof in Case 1 to obtain (1.12) and (1.13) in this case.

4 Proof of Theorem 1.1 for the Cauchy problem

In this section, we treat the Cauchy problem (1.3)-(1.5) and (1.7). Since the main
idea is similar to that given in Section 3, we make some slightly modification due to
the non-compactness of Ω = R2 and we just sketch the proof of Theorem 1.1 for this
case.

First, standard energy estimates applying to the problem (1.3)-(1.5) and (1.7) show
that (3.2) still holds in this case. Using (3.2), we deduce from Lemma 2.5 that

∫ t

0
‖u‖4

L4ds ≤ C. (4.1)

Obviously, P satisfies (3.6). Denote by

S = divu − P. (4.2)

It is easy to see that S satisfies{
St − ΔS = −Pt = div(Pu) + (γ − 1)Pdivu,
S(x, 0) = S0(x) = divu0 − P0.

(4.3)

Lemma 2.5 leads to

‖S‖L4 ≤ C‖S‖1/2
L2 ‖DS‖1/2

L2 . (4.4)

We multiply (3.6) by P 2 and integrate the resulting identity in both space and time
to derive that

‖P (t)‖3
L3 +

∫ t

0
‖P‖4

L4ds ≤ C‖P0‖3
L3 + C

∫ t

0
‖S‖4

L4ds. (4.5)
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Denote by v and w the unique functions such that u = v+w, divw = curlv = 0, and
similarly, u0 = v0 +w0, divw0 = curlv0 = 0. One deduces from direct calculations based
on (1.3) (1.4) that ⎧⎪⎨

⎪⎩
vt = ∇S,
vt − Δv + ∇P = 0,
v(x, 0) = v0(x),

(4.6)

and {
wt − Δw = 0,
w(x, 0) = w0(x).

(4.7)

Hence, similar to (3.22), we have
∫ t

0
‖wt‖2

L2ds =
∫ t

0
‖Δw‖2

L2ds ≤ C. (4.8)

It follows from (4.6) and (4.3) that

1
2
d

dt
‖S‖2

L2 + ‖DS‖2
L2

= −
∫
R2

Pu · ∇Sdx+ (γ − 1)
∫
R2

PdivuSdx

≤ −1
2

∫
R2

P
∂|u|2
∂t

dx+ C

∫
R2

(|Pu||wt| + |Du|2|S| + |Du|S2
)
dx. (4.9)

Note that

−1
2

∫
R2

P
∂|u|2
∂t

dx

= −1
2
d

dt

∫
R2

P |u|2dx+
1
2

∫
R2

|u|2Ptdx

≤ −1
2
d

dt

∫
R2

P |u|2dx+ C

∫
R2

|u|2|Du|Pdx

≤ −1
2
d

dt

∫
R2

P |u|2dx+ C

∫
R2

(|u|2|Du|2 + |u|2|Du||S|) dx,
and

d

dt
‖u‖4

L4 ≤ C

∫
R2

(|u|2|Du||S| + |u|2|Du|2) dx.
Using these estimates, we infer from (4.9) that

∫
R2

(
P |u|2 + S2 + |u|4) (x, t)dx+

∫ t

0
‖DS‖2

L2ds

≤ C

∫ t

0

∫
R2

(|Du|S2 + |Du|2|S| + |u|2|Du||S| + |u|2|Du|2) dxds
+C

∫ t

0
‖Pu‖L2‖wt‖L2ds+ C. (4.10)
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We estimate the terms in the right hand side of (4.10) as follows:
First, (4.4) gives that∫ t

0

∥∥DuS2(·, s)∥∥
L1 ds

≤
∫ t

0
‖Du‖L2‖S‖2

L4ds

≤ ε

∫ t

0
‖DS‖2

L2ds+ Cε

∫ t

0
‖Du‖2

L2‖S‖2
L2ds. (4.11)

Secondly, similar to (3.29), we deduce from (3.2) and (4.4) that∫ t

0

∫
R2

(|Du|2|S| + |u|2|Du||S|) dxds
≤ ε

(∫ t

0
‖Du‖4

L4ds

)1/2

+ ε

∫ t

0
‖DS‖2

L2ds+ Cε

∫ t

0
‖Du‖2

L2‖S‖2
L2ds. (4.12)

Thirdly, similar to (3.30), we derive from (3.2) and Hölder’s inequality that∫ t

0

∫
R2

|u|2|Du|2dxds

≤ C

∫ t

0
‖u‖4/3

L4 ‖Du‖4/3
L4 ‖Du‖4/3

L2 ds

≤ ε

(∫ t

0
‖Du‖4

L4ds

)1/2

+ Cε

∫ t

0
‖u‖4

L4‖Du‖2
L2ds. (4.13)

Finally, (4.8) and (4.1) yield that

∫ t

0
‖Pu‖L2‖wt‖L2ds ≤ ε

(∫ t

0
‖P‖4

L4ds

)1/2

+ Cε. (4.14)

Lemma 2.3 gives

(∫ t

0
‖Du‖4

L4ds

)1/2

≤ C + C

(∫ t

0
‖P‖4

L4ds

)1/2

. (4.15)

Using (3.2)(4.5)(4.11) − (4.14), we infer from (4.10) and (4.15) that

A(t) +B(t)

≤ Cε + Cε

(∫ t

0
‖S‖4

L4ds

)1/2

+ CεB(t)

+Cε
∫ t

0
‖Du‖2

L2

(‖S‖2
L2 + ‖u‖4

L4

)
ds

≤ Cε + Cε (A(t) +B(t))

+Cε
∫ t

0
‖Du‖2

L2

(‖S‖2
L2 + ‖u‖4

L4

)
ds.

where
A(t) � sup

0≤s≤t

∫
R2

(|S|2 + |u|4 + P |u|2) (x, s)dx,
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and

B(t) �
∫ t

0
‖DS‖2

L2ds.

Choosing ε small enough yields that

sup
0≤s≤t

(‖S‖2
L2 + ‖u‖4

L4

)
(s) +

∫ t

0
‖DS‖2

L2ds

≤ C + C

∫ t

0
‖Du‖2

L2

(‖S‖2
L2 + ‖u‖4

L4

)
ds.

Gronwall’s inequality thus gives that

sup
0≤s≤t

(‖S‖2
L2 + ‖u‖4

L4

)
(s) +

∫ t

0
‖DS‖2

L2ds ≤ C, (4.16)

due to (3.2). We use (4.4), (4.5), (4.16) and (4.15) to conclude

sup
0≤s≤T

‖P (·, s)‖3
L3 +

∫ T

0

(‖P‖4
L4 + ‖Du‖4

L4

)
ds ≤ C. (4.17)

The Gagliardo-Nirenberg inequality, together with (3.2) and (4.17), gives that∫ T

0
‖u‖3

L∞ds ≤ C

∫ T

0
‖u‖1/2

L2 ‖Du‖5/2

L5/2ds

≤ C

∫ T

0
‖Du‖5/2

L5/2ds

≤ C.

We derive from this estimate and (4.17) that∫ T

0
‖Pu‖3

L3ds ≤ sup
0≤t≤T

‖P‖3
L3

∫ T

0
‖u‖3

L∞ds

≤ C. (4.18)

Noticing that ∫ T

0
‖Pdivu‖pLpds ≤ C,

for any 3/2 ≤ p ≤ 2, using (4.18), we deduce from Lemma 2.2 and (4.3) that∫ T

0
‖DS‖3

L3ds ≤ C.

Hence, this estimate, together with the Gagliardo-Nirenberg inequality and (4.16), leads
to ∫ T

0
‖S‖4

L∞ds ≤ C

∫ T

0
‖S‖L2‖DS‖3

L3ds

≤ C. (4.19)

Set Dtw = wt + u · ∇w. We conclude from (1.3) and (4.2) that

Dt log P = −γP − γS. (4.20)
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Now, we pass in (4.20) to the Lagrangian coordinates and take y = log P, g(y) = −γey,
and

b(t) =
∫ t

0
S(x(s), s)ds.

Thus, it follows from (4.19) and Hölder’s inequality that

|b(t2) − b(t1)| ≤
∫ T

0
‖S(·, s)‖4

L∞ds+ C(t2 − t1)

≤ C + C(t2 − t1),

for 0 ≤ t1 < t2 ≤ T. This estimate and Lemma 2.4 yield that (1.12) holds.
Similarly to Section 3, we can prove that (1.13) holds true for this case. Thus, the

proof of Theorem 1.1 is completed.

5 Proof of Theorem 1.2

With the basic estimates (1.12) and (1.13) in Theorem 1.1, we can establish the
Theorem 1.2 easily in this section.

Proof of Theorem 1.2. Otherwise, there exist some C0 > 0 and a subsequence{
tnj

}∞
j=1

, tnj → ∞ such that ‖∇ρ(·, tnj )‖Lq(Ω) ≤ C0. Hence, for

a =
q

2(q − 1)
∈ (0, 1),

the Poincaré-Sobolev inequality yields that∥∥ρ(x, tnj ) − ρ0

∥∥
C(Ω)

≤ C
∥∥∇ρ(x, tnj )

∥∥a
Lq(Ω)

∥∥ρ(x, tnj ) − ρ0

∥∥1−a
L2(Ω)

≤ CCa0
∥∥ρ(x, tnj ) − ρ0

∥∥1−a
L2(Ω)

, (5.1)

with C independent of tnj . We deduce from (1.13) that the right hand side of (5.1) goes
to 0 as tnj → ∞. Hence,∥∥ρ(x, tnj ) − ρ0

∥∥
C(Ω) → 0 as tnj → ∞. (5.2)

On the other hand, for T > 0, we introduce the Lagrangian coordinates which are
defined as initial data to the Cauchy problem:{

∂
∂sX(s; t, x) = u(X(s; t, x), s) 0 ≤ s ≤ T,

X(t; t, x) = x 0 ≤ t ≤ T, x ∈ Ω.
(5.3)

(1.11) yields that the transformation (5.3) is well-defined. Consequently, on the one
hand, we have

ρ(x, t) = ρ0(X(0; t, x)) exp
{
−

∫ t

0
divu(X(s; t, x), s)ds

}
; (5.4)
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on the other hand, since, by assumption, there exists some point x0 ∈ Ω such that
ρ0(x0) = 0, we get that there exists a x0(t) ∈ Ω such that X(0; t, x0(t)) = x0. Using
(5.4), we deduce from (1.11) that

ρ(x0(t), t) ≡ 0 for all t ≥ 0.

So, we conclude from this equality and Hölder’s inequality that∥∥ρ(x, tnj ) − ρ0

∥∥
C(Ω) ≥ ∣∣ρ(x0(tnj ), tnj ) − ρ0

∣∣
= ρ0 > 0,

which contradicts (5.2).
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