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Abstract

In this paper, we study the large time asymptotic behavior of solutions to the
one-dimensional compressible Navier-Stokes system toward a contact discontinuity,
which is one of the basic wave patterns for the compressible Euler equations. It
is proved that such a weak contact discontinuity is a metastable wave pattern, in
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the sense introduced in [23], for the 1-D compressible Navier-Stokes system for
polytropic fluid by showing that a viscous contact wave, which approximates the
contact discontinuity on any finite time interval for small heat conduction and then
runs away from it for large time, is nonlinearly stable with a uniform convergence
rate provided that the initial excessive mass is zero. This result is proved by an
elaborate combination of elementary energy estimates with a weighted characteristic
energy estimate, which makes full use of the underlying structure of the viscous
contact wave.

1 Introduction and Main Results

We consider the 1-dimensional compressible Navier-Stokes equations in Lagrangian coor-
dinates: ⎧⎪⎪⎨

⎪⎪⎩

vt − ux = 0,

ut + px = μ(
ux

v
)x,

(e+
u2

2
)t + (pu)x = (κ

θx

v
+ μ

uux

v
)x,

(1.1)

where x ∈ R1, t > 0, v(x, t) > 0, u(x, t), θ(x, t) > 0, e(x, t) > 0 and p(x, t) are the specific
volume, velocity, internal energy, temperature, and pressure respectively, while μ > 0 and
κ > 0 denote the viscosity and heat conduction coefficients respectively. Here we study
the perfect fluids so that p and e are given by

p =
Rθ

v
, e =

R

γ − 1
θ + const. (1.2)

where γ > 1 is the adiabatic exponent and R > 0 is the gas constant.
In the ideal fluids, i.e., κ = μ = 0, (1.1) becomes the well-known compressible Euler

system: ⎧⎪⎨
⎪⎩

vt − ux = 0,
ut + px = 0,

(e+
u2

2
)t + (pu)x = 0,

(1.3)

which is one of the most important nonlinear strictly hyperbolic system of conservation
laws. The basic waves for the system (1.3) are dilation invariant solutions: shock waves,
rarefaction waves (which are nonlinear waves), and contact discontinuities, [20], [2], and
the linear combinations of these basic waves, called Riemann solutions, govern both local
and large time asymptotic behavior of general solutions to the inviscid Euler system (1.3)
[11]. Since the inviscid system (1.3) is an idealization when the dissipative effects are
neglected, thus it is of great importance to study the large time asymptotic behavior of
solutions to the corresponding viscous systems, such as (1.1), toward the viscous versions
of these basic waves. Indeed, there have been great interests and intensive studies in
this respect in the development of theory of viscous conservation laws since 1985, started
with studies on the nonlinear stability of viscous shock profiles by Goodman [4] and
Matsumura-Nishihara [16]. Deeper understanding has been achieved on the asymptotic
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stability toward nonlinear waves, viscous shock profiles and viscous rarefaction waves,
which have been shown to be nonlinearly stable for quite general perturbation for the
compressible Navier-Stokes system (1.1) and more general system of viscous strictly hy-
perbolic conservation laws, and new phenomena have been discovered and new techniques,
such as weighted characteristic energy methods and uniform approximate Green’s func-
tions, have been developed based on the intrinsic properties of the underlying nonlinear
waves, see [9], [10], [13], [14], [21], [12] [22], [18], [19] and the references therein.

However, the problem of stability of contact discontinuities is more subtle and the
progress has been less satisfactory, except the studies in [6], [7], [8], [15], [23]. One of
the main reasons is the contact discontinuities are associated with linear degenerate fields
and are less stable compared with the nonlinear waves for the inviscid system (1.3), [11].
Thus the stabilizing effects around a contact discontinuity should come mainly from the
viscosity and heat conductivity in (1.1). A general perturbation of a contact wave may
introduces waves in the nonlinear sound wave families, and interactions of these waves
with the linear contact waves are some of the major difficulties to overcome, see [23]
and [15]. Another technique difficulty is that the viscosity matrix for the compressible
Navier-Stokes equations is only semi-positive definite.

The stability toward contact waves for solutions to systems of viscous conservation
laws was first studied by Xin in [23], where the metastability of a weak contact disconti-
nuity for the compressible Euler equations with uniform viscosity, was proved by showing
that although a contact discontinuity is not an asymptotic attractor for the viscous sys-
tem, yet a viscous wave, which approximates the contact discontinuity on any finite time
interval, is asymptotically nonlinear stable for small generic perturbations and the de-
tail asymptotic behavior can be determined a priorily by initial mass distribution. This
was later generalized by Liu-Xin in [15] to show the metastability of contact discontinu-
ities for a class of general systems of nonlinear conservation laws with uniform viscosity,
and obtain pointwise asymptotic behavior toward viscous contact wave by approximate
fundamental solutions, which also leads to the nonlinear stability of the viscous contact
wave in Lp-norms for all p ≥ 1. However, the theory in [15] and [23] does not apply
to the compressible Navier-Stokes system (1.1) since the viscosity matrix in (1.1) is only
semi-positive definite.

It was conjectured by Xin in [23] that the metastability of contact discontinuities
remains true for the Navier-Stokes system (1.1). Yet, it has remained open since then.
For a free boundary value problem for (1.1) with a particle path as free boundary, the
nonlinear stability of a viscous contact wave is proved in the super-norm by the elementary
energy estimate by Huang-Matsumura-Shi in [7], see also [8]. However, the approach can
not be applied here to study the asymptotic behavior toward contact waves for solutions
to Cauchy problems of (1.1) since the analysis in [7] depends crucially on the availability
of Poincaré type inequality, which can not be true for Cauchy problems.

The main purpose of this paper is to study the large time asymptotic behavior toward
contact discontinuities for solutions to initial value problems for the Navier-Stokes system
(1.1), and to show that the contact discontinuities are metastable wave patterns for the
compressible Navier-Stokes system (1.1) as conjectured in [23]. We will show that for a
weak contact discontinuity for the compressible Euler system (1.3), one can construct a
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viscous contact wave for the Navier-Stokes system (1.1), which is smooth, solves (1.1)
asymptotically, and approximates the given contact discontinuity on any finite time inter-
val, and such a viscous contact wave is nonlinearly stable under small initial perturbation
with zero mass condition. Here the stability is in super-norm and a rate of convergence can
also be obtained. The precise statement of our main results can be found with Theorem
1.1 below.

We now construct the contact wave (v̄, ū, θ̄)(x, t) for the compressible N-S equations.
First, consider the corresponding Euler equations (1.3) with the Riemann initial data

{
(v, u, θ)(x, 0) = (v−, 0, θ−), if x < 0,
(v, u, θ)(x, 0) = (v+, 0, θ+), if x > 0,

(1.4)

where v± and θ± are given positive constants. It is known (see [20]) that the Riemann
problem (1.3), (1.4) admits a contact discontinuity

(V̄ , Ū , Θ̄)(x, t) =

{
(v−, 0, θ−), x < 0,
(v+, 0, θ+), x > 0,

(1.5)

provided that

p− =
Rθ−
v−

= p+ =
Rθ+
v+

. (1.6)

Motivated by (1.5) and (1.6), we expect

p̄ =
Rθ̄

v̄
≈ p+, |ū|2 << 1, (1.7)

sufficiently fast. Then the leading order of the energy equation (1.1)3 is

R

γ − 1
θt + p+ux = κ(

θx

v
)x. (1.8)

Plugging (1.7) into (1.8) and using the mass equation (1.1)1, one has the following non-
linear diffusion equation,

θt = a(
θx

θ
)x, a =

κp+(γ − 1)

γR2
> 0. (1.9)

From [1] and [3], the nonlinear equation (1.9) admits a unique self similarity solution
Θ(ξ), ξ = x√

1+t
with the following boundary condition

Θ(−∞, t) = θ−, Θ(+∞, t) = θ+.

Furthermore, Θ(ξ) is a monotone function, increasing if θ+ > θ− and decreasing if θ+ < θ−.
Let δ = |θ+ − θ−|, then Θ satisfies

|Θx| = O(δ)(1 + t)−
1
2e−

θ±x2

4a(1+t) , as x→ ±∞. (1.10)
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We now define the contact wave (v̄, ū, θ̄) for the Naiver-Stokes equation as follows.
Suggested by (1.7), we set v̄ = R

p+
Θ. Since there is no dissipation in the equation of mass

conservation, (1.1)1, so we require that the mass is conserved for the contact wave. Thus,
we set ū = Ra

p+Θ
Θx. To conserve the total energy, one sets θ̄ = Θ − γ−1

2R
ū2. Thus,

v̄ =
R

p+

Θ, ū =
Ra

p+Θ
Θx, θ̄ = Θ − γ − 1

2R
ū2. (1.11)

It is straightforward to check that (v̄, ū, θ̄) has the following property

‖(v̄ − V̄ , ū− Ū , θ̄ − Θ̄)‖Lp = O(κ
1
2p )(1 + t)

1
2p , p ≥ 1,

which means the contact wave (v̄, ū, θ̄) for the Navier-Stokes system (1.1) approximates
the contact discontinuity (V̄ , Ū , Θ̄) to the Euler equation (1.3) in Lp norm, p ≥ 1 on any
finite time interval as κ tends to zero. More importantly, the contact wave (v̄, ū, θ̄) solves
the Navier-Stokes system (1.1) time asymptotically, i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̄t − ūx = 0,

ūt + p̄x = μ(
ūx

v̄
)x +R1x,

(ē+
ū2

2
)t + (p̄ū)x = κ(

θ̄x

v̄
)x + (

μ

v̄
ūūx)x +R2x,

(1.12)

where

R1 = (
κ(γ − 1)

γR
− μ)

ūx

v̄
+ p̄− p+ = O(δ)(1 + t)−1e

− θ±x2

4a(1+t) , as |x| → ∞, (1.13)

R2 = (
κ(γ − 1)

R
− μ)

ūūx

v̄
+ (p̄− p+)ū = O(δ)(1 + t)−3/2e−

θ±x2

4a(1+t) , as |x| → ∞, (1.14)

which can be verified by a direct computation. It should be noted that in (1.12), the larger
error term in R1 is not integrable in time due to its rate of decay as O( 1

1+t
). This is one

of the main technical difficulties to be overcome. One of key observations in this paper is
that the worst error term R1 presents only in the equation of conservation of momentum,
so its effect can be controlled by the intrinsic dissipation in the nonlinear sound wave
families and the viscosity and the heat conductivity in the compressible Navier-Stokes
system, which will be sufficient for the super-norm stability for the contact wave (v̄, ū, θ̄)
as we show later.

We are now ready to state our main results. Let (v, u, θ) be the solutions to the Cauchy
problem for the compressible Navier-Stokes equations (1.1) with the initial data

(v, u, θ)(x, t = 0) = (v0, u0, θ0)(x). (1.15)

Denote by (φ, ψ, ζ)(x, t) the derivation of the solution (v, u, θ) from the contact wave
(v̄, ū, θ̄), i.e.,

(φ, ψ, ζ)(x, t) = (v − v̄, u− ū, θ − θ̄)(x, t). (1.16)
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In order to make using of the structure of the underlying contact wave, exploit the in-
trinsic dissipation in the compressible Navier-Stokes system, and overcome the strong
nonlinearity, we introduce the anti-derivative variables:

(Φ,Ψ, W̄ )(x, t) =

∫ x

−∞
(φ, ψ, e+

|u|2
2

− ē− |ū|2
2

)(y, t)dy, (1.17)

as is motivated by the theory of viscous shock waves [9]. Due to the conservative structure
of both the Navier-Stokes system (1.1) and the approximate system (1.12), it is expected
that (Φ,Ψ, W̄ )(·, t) ∈ L2(R1) for all t > 0 provided that the initial excessive mass is zero,
i.e.,

(Φ,Ψ, W̄ )(+∞, 0) =

∫ +∞

−∞
(v0(x) − v̄(x, 0), u0(x) − ū(x, 0), E0(x) − Ē(x, 0))dx = (0, 0, 0),

(1.18)

where E = e+ |u|2
2

is the total energy. Then our main results can be stated as follows:

Theorem 1.1. Let (v̄, ū, θ̄)(x, t) be the contact wave defined in (1.11) with strength
δ = |θ+ − θ−| ≤ δ0 for some small positive constant δ0. Then there exists a small positive
constant ε, such that if the initial data (v0, u0, θ0) satisfies

‖(Φ,Ψ, W̄ )‖L2 + ‖(φ, ψ, ζ)‖H1 ≤ ε, (1.19)

then the system (1.1) admits a unique global solution (v, u, θ)(x, t) satisfying

(Φ,Ψ, W̄ ) ∈ C(0,+∞;H2), (1.20)

φ ∈ L2(0,+∞;H1), (1.21)

(ψ, ζ) ∈ L2(0,+∞;H2), (1.22)

where the perturbation (Φ,Ψ, W̄ ) and (φ, ψ, ζ) are defined in (1.17) and (1.16). Further-
more, the perturbation (Φ,Ψ, W̄ ) and (φ, ψ, ζ) have the following decay rate,

‖(Φ,Ψ, W̄‖L∞ ≤ C(ε+ δ
1
4 )(1 + t)−

1
8
+C̄0

√
δ, (1.23)

‖(v − v̄, u− ū, θ − θ̄‖L∞ ≤ C(ε+ δ
1
4 )(1 + t)−

1
4 , (1.24)

where C̄0 is a positive constant independent of time.

A few remarks are in order:
Remark 1.2. Theorem 1.1 shows not only that the viscous contact wave (v̄, ū, θ̄) is
nonlinear stable in super-norm with initial perturbations satisfying (1.18), but also a
uniform rate of convergence (1.24), is obtained. This is somewhat surprising given that
the convergence rate to either the viscous shock wave or viscous rarefaction wave has not
been achieved yet for the compressible Navier-Stokes system, see [9], [14], [19]. Moreover,
the rate of decay in (1.24) may not be optimal. Motivated by the pointwise behavior
toward viscous contact waves for solutions to the Euler system with uniform viscosity
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(see [23] and [15]), one would conjecture that its decay rate in (1.24) should be improved

to (1 + t)−
1
2 . However, this will be left for future.

Remark 1.3. The major assumption in our stability theory is the initial zero excessive
mass condition, (1.18) (or (1.19)), which excludes the possible presence of diffusion waves
in the sound wave families. As it is shown in [23] and [15] for the compressible Euler
equations with uniform viscosity, a generic perturbation of a viscous contact wave intro-
duces not only a shift with center of the viscous contact wave, but also nonlinear and
linear diffusion waves. Although, it is expected that the same phenomena holds true for
the compressible Navier-Stokes system (1.1), yet the fine accurate asymptotic ansatz as
in [23] and [15] may not be necessary for the stability theory toward contact waves in the
super-norm. Indeed, one of key ideas in this paper is that though it is necessary for point-
wise behavior and Lp stability (for 1 ≤ p <∞) to have more accurate asymptotic ansatz
as in [23] and [15], yet the asymptotic behavior toward contact waves in the super-norm
can be obtained without the detailed construction of accurate ansatz. This approach
seems to work even for generic initial perturbations (i.e., without the zero excessive mass
condition (1.18)). However, this will be reported in a forthcoming paper.

Finally, we comment on some of the main difficulties and techniques involved in study-
ing the problem of asymptotic behavior toward the contact waves of solutions to the
Cauchy problem for the compressible Navier-Stokes equations, which has been open for
quite a while. In contrast to the stability theory of shock profiles [9] and viscous rarefac-
tion waves [14], where the strict monotonicity of the corresponding characteristic speed
along the underlying wave play the leading role for the stability analysis, the characteristic
speed along the contact wave is constant, and the spatial derivative of the velocity changes
sign for the contact waves. These are some of the main difficulties to overcome here. To
this end, we will employ the following strategy. First, as it is first observed by Xin in [23]
(see also [15]), the characteristic speeds of the sound wave families are strictly monotone
across the contact wave which can yield an intrinsic dissipation besides the physical vis-
cosity and heat conductivity in (1.1) by a careful weighted characteristic-energy method.
As shown in section 3, see also [23], this intrinsic dissipation yields control on

∫ ∫
|Θx|(b21 + b23)dxdt. (1.25)

Second, to make use of the intrinsic dissipation and control the nonlinear term, we
introduce the anti-derivative of the perturbation (φ, ψ, ζ) as dependent variables and work
with the integrated error system. Then the standard classical energy method involves the
estimates of R1Ψ and terms with ūx. Note that the estimate of R1Ψ is nontrivial since it
is equivalent to 1

1+t
Ψ due to the structure of the contact wave. Fortunately, the term R1Ψ

will be estimated by making use of the control on (1.25) from the intrinsic dissipation
in section 3. To overcome the difficulty that ūx may change sign, we simply bound it
by Cδ(1 + t)−1 in the estimate, where δ is the strength of the contact wave and C is a
uniform constant. With these ideas in mind, we can obtain the energy estimates of the
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form

ft +

∫
|Θx|(b21 + b23)dx+ g ≤ C

√
δ(1 + t)−1(f +

√
δ), (1.26)

ht ≤ Cδ(1 + t)−1g + Cδ(1 + t)−
3
2 . (1.27)

where f > 0 contains the square of the L2 norm of (Φ,Ψ, W̄ ) and g and h are positive
and contain the square of the L2 norm of (Φx,Ψx, W̄x). One of key observations in this
paper is that the square of the L2 norm of (Φ,Ψ, W̄ ) may grow in time in the order of

(1 + t)C
√

δ, which is slow if the strength of the contact wave, δ, is small, the estimate
(1.27) will enable us to obtain the higher order decay in time for the L2-norms of higher
order derivatives. This, in turns, will lead to the desired L∞-stability estimates in (1.23)
and (1.24). It should be noted that the smallness assumption on the wave strength is
essential here.

The rest of the paper will be arranged as follows. In Section 2, the compressible
Navier-Stokes equations is reformulated to an integrated system. And the Section 3 is
devoted to the lower order estimate, while the Section 4 is for the derivative estimate.
The stability and convergence rate of the contact discontinuity will be given in Section 5.

2 Reformulated system

To prove the main theorem, we derive the system for the perturbation (φ, ψ, ζ) around
the contact wave (v̄, ū, θ̄). Set

φ = v − v̄, ψ = u− ū, ζ = θ − θ̄, (2.1)

and

Φ =

∫ x

−∞
φ(y, t)dy,Ψ =

∫ x

−∞
ψ(y, t)dy,

W̄ =

∫ x

−∞
(e+

|u|2
2

− ē− |ū|2
2

)(y, t)dy.
(2.2)

As mentioned in the introduction, we impose Φ(∞, 0) = Ψ(∞, 0) = W̄ (∞, 0) = 0 so that
the quantities Φ,Ψ and W̄ can be defined in some Sobolev space. Naturally, we have
(φ, ψ) = (Φ,Ψ)x and R

γ−1
ζ + 1

2
|Ψx|2 + ūΨx = W̄x.

Subtracting (1.12) from the equation (1.1) and integrating the resulting system yield
the following integrated error equations for (φ, ψ, W̄ ):⎧⎪⎪⎨

⎪⎪⎩

Φt − Ψx = 0,

Ψt + p− p̄ =
μ

v
ux − μ

v̄
ūx −R1,

W̄t + pu− p̄ū =
κ

v
θx − κ

v̄
θ̄x +

μ

v
uux − μ

v̄
ūūx −R2.

(2.3)

Instead of the variable W̄ , which is the anti-derivative of the total energy, it is more
convenient to introduce another variable related to the temperature,

W =
γ − 1

R
(W̄ − ūΨ). (2.4)
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It follows that

ζ = Wx − Y, with Y =
γ − 1

R
(
1

2
Ψ2

x − ūxΨ). (2.5)

In terms of the new variable W , we can rewrite the system (2.3) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Φt − Ψx = 0,

Ψt − p+

v̄
Φx +

R

v̄
Wx =

μ

v̄
Ψxx + (

μ

v
− μ

v̄
)ux + J1 +

R

v̄
Y − R1

.
=
μ

v̄
Ψxx +Q1,

R

γ − 1
Wt + p+Ψx =

κ

v̄
Wxx + (

κ

v
− κ

v̄
)θx +

μux

v
Ψx − R2 − ūtΨ + J2

+ūR1 − κ

v̄
Yx

.
=
κ

v̄
Wxx +Q2,

(2.6)

where

J1 =
p̄− p+

v̄
Φx − [p− p̄+

p̄

v̄
Φx − R

v̄
(θ − θ̄)] = O(1)(Φ2

x +W 2
x + Y 2 + |ū|4), (2.7)

J2 = (p+ − p)Ψx = O(1)(Φ2
x + Ψ2

x +W 2
x + Y 2 + |ū|4), (2.8)

Q1 = (
μ

v
− μ

v̄
)ux + J1 +

R

v̄
Y − R1, (2.9)

Q2 = (
κ

v
− κ

v̄
)θx +

μux

v
Ψx − R2 − ūtΨ + ūR1 + J2 − κ

v̄
Yx. (2.10)

In the next section, we will focus on the Cauchy problem for the reformulated system
(2.6). Since the local existence is well known, we omit it here for brevity. To prove the
global existence, we only need to close the following a priori estimate:

N(T ) = sup
0≤t≤T

{‖(Φ,Ψ,W )‖2
L∞ + ‖(φ, ψ, ζ)‖2

L2 + ‖(φx, ψx, ζx)‖2
L2} ≤ ε2

0, (2.11)

where ε0 is positive small constant depending on the initial data and the strength of the
contact wave.

3 Lower order estimate

This section is devoted to the lower order estimates. We start with the elementary energy
estimates. Multiplying (2.6)1 by p+Φ, (2.6)2 by v̄Ψ, (2.6)3 by R

p+
W respectively and

adding all the resulting equations, we have

(
p+

2
Φ2 +

R2

2(γ − 1)p+

W 2 +
v̄

2
Ψ2)t + μΨ2

x +
Rκ

p+v̄
W 2

x

=
1

2
v̄tΨ

2 + v̄Q1Ψ − (
Rκ

p+v̄
)xWWx +

R

p+
WQ2 + (· · ·)x,

(3.1)

here and in the sequel the notation (· · ·)x represents the term in the conservative form so
that it vanishes after integration. Since it has no effect on the energy estimates, we do
not write them out in details for simplicity.
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Note that the term v̄Q1Ψ contains (1 + t)−1Ψ which can not be controlled by the
dissipation from the viscosity and heat conductivity. As is explained in Section 1, we
will control v̄Q1Ψ by exploiting an intrinsic dissipation associated with the contact wave:
the strict monotonicity of the characteristic speeds in the sound wave families. This is
achieved by a weighted characteristic energy method as in [23]. To this end, We define

m = (Φ,Ψ,W )t, (3.2)

where (·, ·, ·)t means the transpose of the vector (·, ·, ·), then from (2.6), we have

mt + A1mx = A2mxx + A3, (3.3)

where

A1 =

⎛
⎝ 0 −1 0

−p+

v̄
0 R

v̄

0 γ−1
R
p+ 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 0

0 μ
v̄

0

0 0 κ(γ−1)
Rv̄

⎞
⎠ , (3.4)

A3 = (0, Q1,
γ − 1

R
Q2)

t. (3.5)

A direct computation shows that the eigenvalues of the matrix A1 are λ1, 0, λ3. Here
λ3 = −λ1 =

√
γp+

v̄
. The corresponding normalized left and right eigenvectors can be

chosen as

l1 =

√
1

2γ
(−1,− γ

λ3
,
R

p+
), l2 =

√
γ − 1

γ
(1, 0,

R

(γ − 1)p+
), l3 =

√
1

2γ
(−1,

γ

λ3
,
R

p+
), (3.6)

r1 =

√
1

2γ
(−1,−λ3,

γ − 1

R
p+)t, r2 =

√
γ − 1

γ
(1, 0,

p+

R
)t, r3 =

√
1

2γ
(−1, λ3,

γ − 1

R
p+)t,

(3.7)
so that,

lirj = δij , i, j = 1, 2, 3, LA1R = Λ =

⎛
⎝ λ1 0 0

0 0 0
0 0 λ3

⎞
⎠ , (3.8)

where
L = (l1, l2, l3)

t, R = (r1, r2, r3).

Let
B = Lm = (b1, b2, b3), (3.9)

then multiplying the equations (3.3) by the matrix L yields that

Bt + ΛBx = LA2RBxx + 2LA2RxBx + [(Lt + ΛLx)R+ LA2Rxx]B + LA3. (3.10)

We compute

LA2R = A4 =

⎛
⎝ b11 b12 b13

b12 b22 b12
b13 b12 b11

⎞
⎠ , (3.11)



Contact Wave for Compressible N-S Equations 11

with

v̄b11 =
μ

2
+

(γ − 1)2κ

2γR
, v̄b12 =

√
γ − 1

2

(γ − 1)κ

γR
, (3.12)

v̄b13 = −μ
2

+
(γ − 1)2κ

2γR
, v̄b22 =

(γ − 1)κ

γR
. (3.13)

A direct but tedious computation shows that the determinant of the matrix A4 − λI is

−λ3 + (2b11 + b22)λ
2 + (2b212 − 2b11b22 − b211 + b213)λ+ (b211 − b213)b22 + 2b212(b13 − b11),

or more precisely

−λ(λ− μ

v̄
)(λ− κ(γ − 1)

Rv̄
).

This implies that the symmetric matrixA4 is nonnegative and its eigenvalues are 0, μ
v̄
, κ(γ−1)

Rv̄
.

An L2-estimate on B will be derived from (3.10) by a weighted energy method based on
the intrinsic dissipation. For definiteness, we assume that Θx > 0. The case when Θx < 0
can be discussed similarly. Let v1 = Θ/θ+, then |v1 − 1| ≤ Cδ. Multiplying (3.10) by
B̄ = (vn

1 b1, b2, v
−n
1 b3) with a large positive integer n which will be chosen later, we have

(
vn

1

2
b21 +

1

2
b22 +

v−n
1

2
b23)t − (

vn
1

2
)tb

2
1 − (

v−n
1

2
)tb

2
3 + B̄xA4Bx + B̄A4xBx

−v
n−1
1

2
(nλ1v1x + v1λ1x)b

2
1 +

v−n−1
1

2
(nλ3v1x − v1λ3x)b

2
3 + (· · ·)x

= 2B̄LA2RxBx + B̄[LtR + LA2Rxx]B + B̄ΛLxRB + B̄LA3.

(3.14)

Let

E1 =

∫
(
p+

2
Φ2 +

R2

2(γ − 1)p+
W 2 +

v̄

2
Ψ2)dx+

∫
(
vn

1

2
b21 +

1

2
b22 +

v−n
1

2
b23)dx. (3.15)

K1 =

∫
(μΨ2

x +
Rκ

p+v̄
W 2

x +BxA4Bx)dx. (3.16)

Note that

|
∫

(B̄ − B)xA4Bxdx| ≤ Cδ

∫
|Bx|2dx+ Cδ

∫
|B|2|Θx|2dx

≤ Cδ(1 + t)−1E1 + CδK1 + Cδ

∫
|Φx|2dx.

(3.17)

Similarly, the terms v̄tΨ
2, ( 1

v̄
)xWWx, B̄A4xBx, B̄LA2RxBx and B̄[LtR+LA2Rxx]B satisfy

the same estimate. The integrals involving B̄ΛLxRB and B̄LA3 are more difficult and
will be studied in more details. By the choice of the characteristic matrix L and R, we
have

ΛLxR =
1

2
λ3x

⎛
⎝ 1 0 −1

0 0 0
1 0 −1

⎞
⎠ , (3.18)
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LA3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
1

2γ

γ − 1

p+
Q2 −

√
γ

2

Q1

λ3√
γ − 1

γ

Q2

p+√
1

2γ

γ − 1

p+
Q2 +

√
γ

2

Q1

λ3

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.19)

Thus,

B̄ΛLxRB =
1

2
λ3x(v

n
1 b

2
1 + v−n

1 b1b3 − vn
1 b1b3 − v−n

1 b23), (3.20)

B̄LA3 = q1v
n
1 b1 + q2b2 + q3v

−n
1 b3, (3.21)

where

q1 =

√
1

2γ

γ − 1

p+

Q2 −
√
γ

2

Q1

λ3

, q2 =

√
γ − 1

γ

Q2

p+

, q3 =

√
1

2γ

γ − 1

p+

Q2 +

√
γ

2

Q1

λ3

. (3.22)

Combining (3.1), (3.14), (3.17), (3.20-3.21) and using the Cauchy inequality, we have by
choosing n sufficiently large,

E1t +
1

2
K1 + 2

∫
Θx(b

2
1 + b23)dx ≤ Cδ(1 + t)−1E1 + CδK1

+Cδ

∫
Φ2

xdx+ I,
(3.23)

where

I =

∫
v̄Q1Ψdx+

∫
R

p+
WQ2dx+

∫
(q1v

n
1 b1 + q2b2 + q3v

−n
1 b3)dx. (3.24)

Here we have used the fact that, for n large enough,

−1

2
vn−1

1 (nλ1v1x + v1λ1x) +
1

2
v−n−1

1 (nλ3v1x − v1λ3x) − B̄ΛLxRB > 2Θx(b
2
1 + b23), (3.25)

and vn
1 and v−n

1 are closed to 1.
From (3.22), the estimate for I is equivalent to the one for

∫
|Qi||bj|dx, i = 1, 2, j = 1, 3, (3.26)

and ∫
|Q2||b2|dx, (3.27)

because

Ψ =

√
1

2γ
λ3(b3 − b1). (3.28)

AlthoughQ1 contains the term R1 with the decay rate 1
1+t

, the terms in (3.26) involving Q1

can be estimated by the intrinsic dissipation on b1 and b3 as shown later. Note that there
is no intrinsic dissipation on b2. Fortunately, there is no Q1 in (3.27) and Q2 contains
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the term R2 which has a better decay rate (1 + t)−3/2. For brevity, we only estimate∫ |Q1||b1|dx and
∫ |Q2||b2|dx as follows for illustration.

Estimation on
∫ |Q1||b1|dx:

It follows from (2.9) that∫
|Q1||b1|dx ≤

∫
|(μ
v
− μ

v̄
)ux + J1 +

R

v̄
Y ||b1|dx+

∫
|R1||b1|dx =: I1 + I2. (3.29)

Since ∫
|J1||b1|dx ≤ Cε0(‖Φx‖2 +K1) + Cδ(1 + t)−1E1 + Cδ(1 + t)−

5
2 , (3.30)

and ∫
|(μ
v
− μ

v̄
)ux||b1|dx+

∫
|Y ||b1|dx ≤ Cε0K1 + C(δ + ε0)‖Φx‖2

+Cε0‖ψx‖2 + Cδ(1 + t)−1E1,
(3.31)

we obtain

I1 ≤ C(δ + ε0)(‖Φx‖2 +K1) + Cδ(1 + t)−1E1 + Cε0‖ψx‖2 + Cδ(1 + t)−
5
2 . (3.32)

On the other hand, (1.13) and the Cauchy inequality give

I2 =

∫
|R1|b1|dx ≤ Cδ

∫
Θxb

2
1dx+ Cδ(1 + t)−1, (3.33)

which, together with (3.32), yields∫
|Q1||b1|dx ≤ Cδ

∫
Θxb

2
1dx+ Cδ(1 + t)−1(E1 + 1)

+C(δ + ε0)(‖Φx‖2 +K1) + Cε0‖ψx‖2.
(3.34)

Estimation on
∫ |Q2||b2|dx:

Note that∫
|Q2||b2|dx ≤

∫
|(κ
v
− κ

v̄
)θx +

μux

v
Ψx − ūtΨ + J2 − κ

v̄
Yx||b2|dx

+

∫
|ūR1 − R2||b2|dx,

(3.35)

due to (2.10). The Cauchy inequality yields∫
|Yx||b2|+|ūR1−R2||b2|dx ≤ C(δ+ε0)(K1+‖ψx‖2)+Cδ(1+t)−1E1+Cδ(1+t)−

3
2 , (3.36)

and ∫
|(κ
v
− κ

v̄
)θx +

μux

v
Ψx||b2|dx ≤ Cδ(1 + t)−1E1 + C(δ + ε0)(‖Φx‖2 +K1)

+Cε0‖(φ, ψ, ζ)x‖2.
(3.37)
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Notice that the estimate for
∫ |J2||b2|dx is the same with the one for

∫ |J1||b1|dx. Thus,
combining (3.30), (3.36) and (3.37) and using the Cauchy inequality, we have∫

|Q2||b2|dx ≤ C(δ + ε0)(‖Φx‖2 +K1 + ‖(φ, ψ, ζ)x‖2)

+Cδ(1 + t)−1E1 + Cδ(1 + t)−
3
2 .

(3.38)

Collecting the estimates (3.23), (3.34) and (3.38), we arrive at our first inequality as
follows:

E1t+
K1

4
+

∫
Θx(b

2
1+b

2
3)dx ≤ Cδ(1+t)−1(E1+1)+C(δ+ε0)(‖Φx‖2+‖(φ, ψ, ζ)x‖2). (3.39)

Note that the norm ‖Φx‖ is not included in K1. To complete the lower order inequality,
we need to estimate Φx. From (2.6)2, we have

μ

v̄
Φxt − Ψt +

p+

v̄
Φx =

R

v̄
Wx −Q1. (3.40)

Multiplying (3.40) by Φx yields

(
μ

2v̄
Φ2

x)t − (
μ

2v̄
)tΦ

2
x − ΦxΨt +

p+

v̄
Φ2

x = (
R

v̄
Wx −Q1)Φx. (3.41)

Since
ΦxΨt = (ΦxΨ)t − (ΦtΨ)x + Ψ2

x, (3.42)

we obtain

(

∫
μ

2v̄
Φ2

x − ΦxΨdx)t +

∫
p+

2v̄
Φ2

xdx ≤ C

∫
(Ψ2

x +W 2
x )dx+ C

∫
Q2

1dx. (3.43)

On the other hand, (2.9) and the Cauchy inequality yield that∫
Q2

1dx ≤ Cε0(K1 + ‖Φx‖2) + Cδ(1 + t)−
3
2 + Cε0‖ψx‖2. (3.44)

Plugging (3.44) into (3.33) yields

(

∫
μ

2v̄
Φ2

x − ΦxΨdx)t +

∫
p+

4v̄
Φ2

xdx ≤ C1K1 + C1δ(1 + t)−3/2 + C1ε0‖ψx‖2. (3.45)

We now choose large constant C̄1 > 1 so that

C̄1E1 +

∫
μ

2v̄
Φ2

x − ΦxΨdx ≥ 1

2
C̄1E1 +

∫
μ

4v̄
Φ2

xdx,
C̄1

4
− C1 >

C̄1

8
. (3.46)

Hence, by multiplying (3.39) by C̄1, we have

E2t +K2 +

∫
Θx(b

2
1 + b23)dx ≤ Cδ(1 + t)−1(E2 + 1) + C(δ + ε0)‖(φ, ψ, ζ)x‖2, (3.47)

where

E2 = C̄1E1 +

∫
μ

2v̄
Φ2

x − ΦxΨdx, K2 =
C̄1

8
K1 +

∫
p+

8v̄
Φ2

xdx. (3.48)
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4 Derivative estimate

To obtain the estimate for the first order derivative of (Φx,Ψx,Wx). We shall use an
energy estimate based on the convex entropy for the Navier-Stokes equations. From (1.1)
and (1.12), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φt − ψx = 0,

ψt + (p− p̄)x = (
μ

v
ux − μ

v̄
ūx)x − R1x,

R

γ − 1
ζt + pux − p̄ūx = (

κ

v
θx − κ

v̄
θ̄x)x +Q3,

(4.1)

where

Q3 =
μ

v
u2

x − (
μūūx

v
)x −R2x +

1

2
(|ū|2)t + p̄xū1. (4.2)

Multiplying (4.1)2 by ψ, we have

(
1

2
ψ2)t − (p− p̄)ψx + (

μ

v
ux − μ

v̄
ūx)ψx = −R1xψ + (· · ·)x. (4.3)

Since p− p̄ = Rθ̄( 1
v
− 1

v̄
) + Rζ

v
, we get

(
1

2
ψ2)t − Rθ̄(

1

v
− 1

v̄
)φt − R

v
ζψx +

μ

v
ψ2

x + (
μ

v
− μ

v̄
)ūxψx = −R1xψ + (· · ·)x. (4.4)

Let
Φ̂(s) = s− 1 − ln s. (4.5)

It is easy to check that Φ̂′(1) = 0 and Φ̂(s) is strictly convex around s = 1. Moreover,

{Rθ̄Φ̂(
v

v̄
)}t = Rθ̄tΦ̂(

v

v̄
) +Rθ̄(−1

v
+

1

v̄
)φt

+Rθ̄(− v

v̄2
+

1

v̄
)v̄t +Rθ̄(−1

v
+

1

v̄
)v̄t

= Rθ̄(−1

v
+

1

v̄
)φt − p̄Ψ̂(

v

v̄
)v̄t + v̄p̄tΦ̂(

v

v̄
),

(4.6)

where
Ψ̂(s) = s−1 − 1 + ln s. (4.7)

Substituting (4.6) into (4.4) yields

(
1

2
ψ2 +Rθ̄Φ̂(

v

v̄
))t + p̄Ψ̂(

v

v̄
)v̄t − R

v
ζψx +

μ

v
ψ2

x

+(
μ

v
− μ

v̄
)ūxψx = −R1xψ + v̄p̄tΦ̂(

v

v̄
) + (· · ·)x.

(4.8)

On the other hand, we calculate

[θ̄Φ̂(
θ

θ̄
)]t = (1 − θ̄

θ
)ζt − Ψ̂(

θ

θ̄
)θ̄t, (4.9)
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and

R

γ − 1
(1 − θ̄

θ
)ζt

= (1 − θ̄

θ
){−pux + p̄ūx + (

κθx

v
− κθ̄x

v̄
)x +Q3}

= −R
v
ζψx +

ζ

θ
(p̄− p)ūx − (

ζ

θ
)x(

κθx

v
− κθ̄x

v̄
) +

ζ

θ
Q3 + (· · ·)x

= −R
v
ζψx +

ζ

θ
(p̄− p)ūx − κ

vθ
ζ2
x +

κζxΦx

vv̄θ
θ̄x +

ζθx

θ2
(
κθx

v
− κθ̄x

v̄
) +

ζ

θ
Q3 + (· · ·)x.

(4.10)
Substituting (4.9) and (4.10) into (4.8) gives

(
1

2
ψ2 +Rθ̄Φ̂(

v

v̄
) +

R

γ − 1
θ̄Φ̂(

θ

θ̄
))t +

μ

v
ψ2

x+
κ

vθ
ζ2
x

= −p̄Ψ̂(
v

v̄
)v̄t + v̄p̄tΦ̂(

v

v̄
) − (

μ

v
− μ

v̄
)ūxψx −R1xψ +

ζ

θ
(p̄− p)ūx

+
κζxΦx

vv̄θ
θ̄x +

ζθx

θ2
(
κθx

v
− κθ̄x

v̄
) +

ζ

θ
Q3 − R

γ − 1
Ψ̂(
θ

θ̄
)θ̄t + (· · ·)x.

(4.11)

Let

E3 =

∫
1

2
ψ2 +Rθ̄Φ̂(

v

v̄
) +

R

γ − 1
θ̄Φ̂(

θ

θ̄
)dx (4.12)

and

K3 =

∫
μ

v
ψ2

x +
κ

vθ
ζ2
xdx. (4.13)

Note that Φ̂(s) is strictly convex around s = 1 so that there exist positive constants c1
and c2,

c1φ
2 ≤ Φ̂(

v

v̄
) ≤ c2φ

2, c1ζ
2 ≤ Φ̂(

θ

θ̄
) ≤ c2ζ

2. (4.14)

Ψ̂(s) is also convex around s = 1 and this leads to∫
|Ψ̂(

v

v̄
)v̄t|dx+

∫
|Ψ̂(

θ

θ̄
)θ̄t|dx ≤ Cδ(1 + t)−1K2 + Cδ(1 + t)−

5
2 , (4.15)

where we have used (φ, ψ) = (Φx,Ψx), and ζ = Wx − Y .
On the other hand, the Cauchy inequality yields,∫

|R1xψ|dx ≤ Cδ(1 + t)−
3
2 + Cδ(1 + t)−1K2, (4.16)

∫
|ζ
θ
(p̄− p)ūx +

κζxΦx

vv̄θ
θ̄x|dx ≤ Cδ(1 + t)−1K2 + Cδ‖ζx‖2 + Cδ(1 + t)−

5
2 , (4.17)

∫
|ζθx

θ2
(
κθx

v
− κθ̄x

v̄
)|dx ≤ C(δ + ε0)‖ζx‖2 + Cδ(1 + t)−1K2 + Cδ(1 + t)−

5
2 , (4.18)

and ∫
|ζ
θ
Q3|dx ≤ Cε0‖ψx‖2 + Cδ(1 + t)−1K2 + Cδ(1 + t)−

5
2 . (4.19)
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Integrating (4.11) with respect to x and using the Cauchy inequality, we get

E3t +
1

2
K3 ≤ Cδ(1 + t)−1K2 + Cδ(1 + t)−

3
2 . (4.20)

Since the norm ‖φx‖ in not included in K3, to complete the first derivative estimate,
we follow the same way to estimate Φx in the previous section. We rewrite the equation
(4.1)2 as

μ

v̄
φxt − ψt − (p− p̄)x = −(

μ

v̄
)xψx − [(

μ

v
− μ

v̄
)ux]x +R1x, (4.21)

by using the equation of conservation of the mass (4.1). Multiplying (4.21) by φx, we get

(
μ

2v̄
φ2

x)t − (
μ

2v̄
)tφ

2
x − ψtφx − (p− p̄)xφx

= {−(
μ

v̄
)xψx + (

μΦx

vv̄
ux)x +R1x}φx.

(4.22)

We compute

−(p− p̄)x =
p̄

v̄
φx − R

v̄
ζx + (

p

v
− p̄

v̄
)vx − (

R

v
− R

v̄
)θx, (4.23)

and
φxψt = (φxψ)t − (φtψ)x + ψ2

x. (4.24)

Integrating (4.22) with respect to x and using the Cauchy inequality, we get

(

∫
μ

2v̄
φ2

x − φxψdx)t +

∫
p̄

2v̄
φ2

xdx

≤ C2K3 + C2δ(1 + t)−1K2 + C2δ(1 + t)−
5
2 + C2ε0

∫
ψ2

xxdx.
(4.25)

Here we have used∫
|(p
v
− p̄

v̄
)vxφx|dx ≤ C(δ + ε0)‖φx‖2 + Cδ(1 + t)−1K2 + Cδ(1 + t)−

5
2 , (4.26)

∫
|(μΦx

vv̄
ux)xφx|dx ≤ C(δ + ε0)‖φx‖2 + Cδ(1 + t)−1K2

+Cε0‖ψxx‖2 + Cδ‖ψx‖2 + C

∫
φ2

x|ψx|dx,
(4.27)

and ∫
φ2

x||ψx|dx ≤ C‖φx‖2‖ψx‖ 1
2‖ψxx‖ 1

2 ≤ C‖φx‖ 1
2‖ψx‖ 1

2 (‖φx‖2 + ‖ψxx‖2)

≤ Cε0(‖φx‖2 + ‖ψxx‖2).
(4.28)

We now derive the higher order estimates. Multiplying (4.1)2 by −ψxx and (4.1)3 by
−ζxx, we have

(
1

2
ψ2

x +
R

2(γ − 1)
ζ2
x)t +

μ

v
ψ2

xx +
κ

v
ζ2
xx = (p− p̄)xψxx +

μvx

v2
ψxψxx + (

μΦx

vv̄
ūx)xψxx

+R1xψxx + (pux − p̄ūx)ζxx +
κvx

v2
ζxζxx + (

κΦx

vv̄
θ̄x)xζxx −Q3ζxx.

(4.29)
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The Cauchy inequality gives
∫

|(p− p̄)xψxx|dx ≤ C(K3 +‖φx‖2)+

∫
μ

8v
ψ2

xxdx+Cδ(1+ t)−1K2 +Cδ(1+ t)−
5
2 , (4.30)

∫
|μvx

v2
ψxψxx|dx ≤ Cδ(‖ψx‖2 + ‖ψxx‖2) + C

∫
|φx||ψx||ψxx|dx, (4.31)

∫
|(pux − p̄ūx)ζxx|dx ≤

∫
μ

8v
ζ2
xxdx+ CK3 + Cδ(1 + t)−1K2 + Cδ(1 + t)−

5
2 , (4.32)

and ∫
|Q3ζxx|dx ≤ C

∫
ψ2

x|ζxx|dx+ Cδ‖ζxx‖2 + Cδ(1 + t)−
7
2 . (4.33)

On the other hand,
∫

|φx||ψx||ψxx|dx ≤ C‖ψx‖ 1
2‖φx‖‖ψxx‖ 3

2 ≤ Cε0(‖ψxx‖2 + ‖ψx‖2). (4.34)

The term
∫
ψ2

x|ζxx|dx can be estimated similarly. Thus, integrating (4.29) and using
(4.30)-(4.34), we have

{
∫

(
1

2
ψ2

x +
R

2(γ − 1)
ζ2
x)dx}t +

∫
μ

4v
ψ2

xxdx+

∫
κ

4v
ζ2
xxdx

≤ C3(K3 + ‖φx‖2) + C3δ(1 + t)−1K2 + C3δ(1 + t)−
5
2 .

(4.35)

We choose large constants C̄2 > 1, C̄3 > 1 so that

C̄2E3 + C̄3

∫
(
μ

2v
φ2

x − φxψ)dx >
1

2
C̄2E3 +

C̄3

4

∫
μ

v
φ2

xdx, (4.36)

and

1

2
C̄2 − C̄3C2 − C3 >

1

4
C̄2, C̄3

∫
p̄

2v̄
φ2

xdx− C3‖φx‖2 > C̄3

∫
p̄

4v̄
φ2

xdx. (4.37)

Let

E3 = C̄2E3 + C̄3

∫
(
μ

2v
φ2

x − φxψ)dx+

∫
(
1

2
ψ2

x +
R

2(γ − 1)
ζ2
x)dx, (4.38)

and

K4 =
1

4
C̄2K3 + C̄3

∫
p̄

4v̄
φ2

xdx+

∫
μ

4v
ψ2

xxdx+

∫
κ

4v
ζ2
xxdx. (4.39)

Then combining (4.20), (4.25) and (4.35) gives

E4t +K4 ≤ Cδ(1 + t)−1K2 + Cδ(1 + t)−
3
2 . (4.40)

We observe that the derivative estimate (4.40) is independent of the lower order one
(3.48) except the term Cδ(1 + t)−1K2. This kind of derivative estimate is crucial for the
stability and convergence rate of the contact wave in this paper.
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5 Stability and convergence rate

This section is devoted to the stability and convergence rate in the super-norm for the
contact wave. Combining (3.48) and (4.40), we have, if δ and ε0 are small,

(E2 + E4)t +K2 +K4 ≤ C0

√
δ(1 + t)−1(E2 + E4 +

√
δ). (5.1)

Let
E5 = E2 + E4, K5 = K2 +K4, (5.2)

then the Granwall’s inequality yields

E5 ≤ C(E5(0) +
√
δ)(1 + t)C0

√
δ,

∫ t

0

K5dt ≤ C(E5(0) +
√
δ)(1 + t)C0

√
δ. (5.3)

Since E5 ≥ c3‖(Φ,Ψ,W )‖2 for some positive constant c3, we have

‖(Φ,Ψ,W )‖2 ≤ C(E5(0) +
√
δ)(1 + t)C0

√
δ. (5.4)

Note that the estimate for the lower order term in (5.4) is not desirable since it may
grow in time. However, the growth rate of the L2 norm of (Φ,Ψ,W ) is of order C0

√
δ

relying on the strength of the contact wave. Hence, if the L2 norm of the derivative for
the variable (Φ,Ψ,W ) decreases with a decay rate independent of the small parameter δ.
Then the Sobolev inequality gives the L∞ norm decay of the perturbation (Φ,Ψ,W ). In
fact, multiply (4.40) by (1 + t), we have

[(1 + t)E4]t ≤ CδK2 + E4 + Cδ(1 + t)−
1
2 ≤ K5 + Cδ(1 + t)−

1
2 . (5.5)

Integrating (5.5) with respect to t and using (5.3) imply

E4 ≤ C(E5(0) +
√
δ)(1 + t)−

1
2 , (5.6)

where we have used the fact that

E4 ≤ C‖(φ, ψ, ζ)‖2
H1 ≤ C(‖(Φ,Ψ,W )x‖2 + ‖(φ, ψ, ζ)x‖2) + Cδ(1 + t)−

3
2

≤ CK5 + Cδ(1 + t)−
3
2 .

Furthermore, since

E4 ≥ c4‖(φ, ψ, ζ)‖2
H1 ≥ c4(‖(Φ,Ψ,W )x‖2 + ‖(φ, ψ, ζ)x‖2) − c4δ(1 + t)−

3
2 ,

for some positive constant c4, from (5.4) and (5.6), we have the decay rate for (Φ,Ψ,W ),

‖(Φ,Ψ,W )‖L∞ ≤ C‖(Φ,Ψ,W )‖ 1
2‖(Φx,Ψx,Wx)‖ 1

2

≤ C(E5(0) +
√
δ)

1
2 (1 + t)−

1
8
+ 1

4
C0

√
δ.

(5.7)

If the strength of the contact wave δ is small, then the L∞ norm ‖(Φ,Ψ,W‖L∞ is uniformly
bounded. Since W = γ−1

R
(W̄ − ūΨ), we also have

‖(Φ,Ψ, W̄ )‖L∞ ≤ C(E5(0) +
√
δ)

1
2 (1 + t)−

1
8
+ 1

4
C0

√
δ ≤ C(ε+ δ

1
4 )(1 + t)−

1
8
+C̄0

√
δ, (5.8)

where C̄0 = 1
4
C0. The decay rate for ‖(φ, ψ, ζ)‖L∞ is straightforward by (5.6) as follows:

‖(φ, ψ, ζ)‖L∞ ≤ E
1
2
4 ≤ C(ε+ δ

1
4 )(1 + t)−

1
4 . (5.9)

Therefore the a priori assumption (2.11) is verified and the proof of Theorem 1.1 is
completed.
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