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Abstract. In this paper we obtain a new regularity criterion for weak solu-

tions to the 3-D Navier-Stokes equations. We show that if any one component of

the velocity field belongs to Lα([0, T ); Lγ(R3)) with 2
α

+ 3
γ
≤ 1

2
, 6 < γ ≤ ∞, then

the weak solution actually is regular and unique.

Titre. Un nouveau critère de régularité pour les solutions faibles des équations

de Navier-Stokes

Resumé. Dans cet article, on obtient un nouveau critère de régularité pour les

solutions faibles des équations de Navier-Stokes en dimension 3. On démontre que

si une conposante quelconque du champ de vitesse appartient à Lα([0, T ]; Lγ(R3))

avec 2
α

+ 3
γ
≤ 1

2
, 6 < γ ≤ ∞, alors la solution faible est régulière et unique.
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1 Introduction

We consider the following Cauchy problem for the incompressible Navier-Stokes

equations in R
3 × (0, T )

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+ u · ∇u + ∇p = Δu,

divu = 0,

u(x, 0) = u0(x),

(1.1)

where u = (u1(x, t), u2(x, t), u3(x, t)) is the velocity field, p(x, t) is a scalar pres-

sure, and u0(x) with divu0 = 0 in the sense of distribution is the initial velocity

field.

The study of the incompressible Navier-Stokes equations in three space dimen-

sions has a long history (see [8, 22]). In the pioneering work [14] and [11], Leray

and Hopf proved the existence of its weak solutions u(x, t) ∈ L∞(0, T ; L2(R3)) ∩
L2(0, T ; H1(R3)) for given u0(x) ∈ L2(R3). But the uniqueness and regularity of

the Leray-Hopf weak solutions are still big open problems. In [17], Scheffer began

to study the partial regularity theory of the Navier-Stokes equations. Deeper

results were obtained by Caffarelli, Kohn and Nirenberg in [5]. Further results

can be found in [23] and references there in.

On the other hand, the regularity of a given weak solution u can be shown

under additional conditions. In 1962, Serrin [18] proved that if u is a Leray-Hopf

weak solution belonging to Lα,γ ≡ Lα(0, T ; Lγ(R3)) with 2/α + 3/γ ≤ 1, 2 < α <

∞, 3 < γ < ∞, then the solution u(x, t) ∈ C∞(R3 × (0, T )) (recently, Beirão da

Veiga [3] add Serrin’s condition only on two components of the velocity field).

From then on, there are many criterion results added on u. In [24] and [9],

von Wahl and Giga showed that if u is a weak solution in C([0, T ); L3(R3)),

then u(x, t) ∈ C∞(R3 × (0, T )); Struwe [21] proved the same regularity of u in

L∞(0, T ; L3(R3) provided sup0<t<T ‖u(x, t)‖L3 is sufficiently small and Kozono

and Sohr [12] obtained the regularity for the weak solution u(x, t) ∈ C∞(R3 ×
(0, T )) provided u(x, t) is left continuous with respect to L3-norm for every t ∈
(0, T ). Recently Kozono and Taniuchi [13] showed that if a Leray-Hopf weak

solution u(x, t) ∈ L2(0, T ; BMO), then u(x, t) actually is a strong solution of
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(1.1) on (0, T ). Lα,γ is defined by

‖u‖Lα,γ =

⎧⎪⎨
⎪⎩

(∫ t

0

‖u(., τ)‖α
Lγdτ

)1/α

if 1 ≤ α < ∞,

ess sup
0<τ<t

‖u(., τ)‖Lγ if α = ∞,

where

‖u(., τ)‖Lγ =

⎧⎪⎨
⎪⎩

(∫
R3

|u(x, τ)|γdx
)1/γ

if 1 ≤ γ < ∞,

ess sup
x∈R3

|u(x, τ)| if γ = ∞.

The point is that ‖uλ‖Lα,γ = ‖u‖Lα,γ holds for all λ > 0 if and only if 2/α+3/γ =

1, where uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t) and if (u, p) solves the

Navier-Stokes equations, then so does (uλ, pλ) for all λ > 0. Usually we say that

the norm ‖u‖Lα,γ has the scaling dimension zero for 2/α + 3/γ = 1 [5].

Sohr [19] extended Serrin’s regularity criterion by introducing Lorentz space in

both time and spatial direction, u ∈ Ls,r(0, T ; Lq,∞) with 2/s+3/q = 1, here Lp,q

is Lorentz space, for weak solutions which satisfy the strong energy inequality.

Later on, Sohr [20] extended Serrin’s regularity class for weak solutions of the

Navier-Stokes equations replacing the Lq-space by Sobolev spaces of negative

order, u ∈ Ls(0, T ; H−α,q) with 2/s + 3/q = 1 − α, for 0 ≤ α < 1.

For the regularity criteria in terms of the gradient of velocity or the pressure,

we refer to [1, 2, 4, 6, 7, 26, 27, 28].

Very recently, He [10] added the regularity criterion only on one component

of the velocity field. He proved that if any one component of the velocity field of

a weak solution belongs to L∞(R3 × (0, T )), then the weak solution actually is

strong.

In the present paper we improve He’s [10] result significantly as

Theorem 1.1 Suppose u0 ∈ H1(R3), and divu0 = 0 in the sense of distribution.

Assume that u(x, t) is a Leray-Hopf weak solution of (1.1) in (0, T ). If any

component of u, say u3 satisfies

u3 ∈ Lα,γ with
2

α
+

3

γ
≤ 1

2
, 4 < α < ∞, 6 < γ < ∞,

or u3 ∈ L4,∞, then u(x, t) is a regular solution in [0, T ).
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Remark 1.1 After this work was finished, the author was informed that J.

Neustupa, A. Novotný and P. Penel [16] proved a result analogous to Theorem

1.1 for the suitable weak solution (see [5] for its definition). Moreover, in [16] they

asked whether their result is true for a weak solution. Here, our main theorem is

an affirmative answer to their question.

Remark 1.2 The main progress with respect to Serrin’s result is of course that

only one component of the velocity field is supposed to be “regular”, not all of

them. This definitely be useful for people who try to construct an example of a

nonsmooth solution (they should keep in mind that all three components of u have

to be “singular”). The price to pay is that the assumption u3 ∈ Lα([0, T ], Lγ(R3))

with 2
α

+ 3
γ
≤ 1

2
is stronger than Serrin’s condition and is not invariant under the

natural rescaling u(x, t) 	→ λu(λx, λ2t). In the author’s opinion, it is a real

challenging problem to show regularity by adding Serrin’s condition only on one

component of the velocity field. We hope we can investigate this problem in the

near future.

Remark 1.3 Comparing with the previous regularity criterion [26] ∇u3 ∈ Lα,γ

with 2
α

+ 3
γ
≤ 3

2
, establishing a priori estimates here are much more difficult than

those. Actually, it is not difficult to understand roughly, since ∇u3 involves more

information than u3.

Before going to proof, we recall the definition of Leray-Hopf weak solutions

(see [8, 22]).

Definition. A measurable vector u is called a Leray-Hopf weak solution to the

Navier-Stokes equations (1.1), if u satisfies the following properties

(i) u is weakly continuous from [0, T ) to L2(R3).

(ii) u verifies (1.1) in the sense of distribution, i.e.,

∫ T

0

∫
R3

(∂φ

∂t
+ (u · ∇)φ

)
udxdt +

∫
R3

u0φ(x, 0)dx =

∫ T

0

∫
R3

∇u : ∇φdxdt

for all φ ∈ C∞
0 (R3 × [0, T )) with divφ = 0, where A : B =

∑3
i,j aijbij , A = (aij)

and B = (bij) are 3 × 3 matrices, and

∫ T

0

∫
R3

u · ∇φdxdt = 0

for every φ ∈ C∞
0 (R3 × [0, T )).
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(iii) The energy inequality, i.e.,

‖u(., t)‖2
L2 + 2

∫ t

0

‖∇u(., s)‖2
L2ds ≤ ‖u0‖2

L2, 0 ≤ t ≤ T.

By a strong solution we mean a weak solution u such that

u ∈ L∞(0, T ; H1) ∩ L2(0, T ; H2)

It is well-known that strong solutions are regular (say, classical) and unique in

the class of weak solutions.

2 A priori estimates on the smooth solution

First, we give a very simple interpolation lemma

Lemma 2.1 Assume that a measurable function u(x, t) ∈ L∞,2 and ∇u ∈ L2,2

on [0, T ), then u ∈ Lp,q with 2/p + 3/q ≥ 3/2, p ≥ 2, 2 ≤ q ≤ 6. Moreover,

‖u‖Lp,q ≤ C1‖u‖
3
q
− 1

2

L∞,2‖∇u‖
3
2
− 3

q

L2,2 (2.1)

where C1 = C1(p, q, T ). If 2
p

+ 3
q

= 3
2
, then

‖u‖Lp,q ≤ C1(q)‖u‖1− 2
p

L∞,2‖∇u‖
3
2
− 3

q

L2,2 (2.2)

Proof:

‖u‖Lp,q =
(∫ t

0

‖u(., τ)‖p
Lqdτ

)1/p

≤ C2(q)
(∫ t

0

‖u(., τ)‖(1−θ)p

L2 ‖∇u(., τ)‖θp
L2dτ

)1/p

≤ C2(q)‖u‖1−θ
L∞,2‖∇u‖θ

L2,2t
( 2

p
+ 3

q
− 3

2
)/2

≤ C2(q)‖u‖1−θ
L∞,2‖∇u‖θ

L2,2T
( 2

p
+ 3

q
− 3

2
)/2 ≡ C1(p, q, T )‖u‖1−θ

L∞,2‖∇u‖θ
L2,2

where we use Gagliardo-Nirenberg inequality

1

q
=

1 − θ

2
+ θ(

1

2
− 1

3
), 2 ≤ q ≤ 6, (2.3)

and Hölder’s inequality provided θp ≤ 2.

From (2.3), θ = 3
2
− 3

q
, we obtain the relation between p and q, 2

p
+ 3

q
≥ 3

2
. If
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2
p

+ 3
q

= 3
2
, then obviously C1(p, q, T ) = C2(q) ≡ C1(q) and 3

q
− 1

2
= 1 − 2

p
. This

finishes the proof. �

In order to prove Theorem 1.1, we give a priori estimate on ω3 first, where

ω = curlu = (ω1, ω2, ω3).

Lemma 2.2 Suppose u0 ∈ H1(R3) with divu0 = 0. Assume that (u, p) is a

smooth solution in R
3 × (0, T ), which satisfies the energy inequality, with ∇u ∈

L∞,2 and Δu ∈ L2,2. If u3 ∈ Lα,γ(R3 × (0, T )) with 2
α

+ 3
γ
≤ 1

2
, 6 < γ < ∞, or

u3 ∈ L4,∞, then for 0 ≤ t < T

‖ω3(., t)‖2
L2 +

∫ t

0

‖∇ω3(., τ)‖2
L2dτ

≤
{

‖ω0
3‖2

L2 + C3‖u3‖2
Lα,γ‖∇u‖4/α

L∞,2‖Δu‖6/γ

L2,2 if 6 < γ < ∞,

‖ω0
3‖2

L2 + C(‖u0‖L2)‖u3‖2
L4,∞‖∇u‖L∞,2 if (α, γ) = (4,∞),

(2.4)

where C3 = C3(α, γ, T, ‖u0‖L2) and ω0(x) is the initial datum for ω.

Proof: Vorticity ω = curlu satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + Δω,

divu = 0,

curlu = ω,

ω(x, 0) = ω0(x).

(2.5)

Multiplying the first equation of (2.5) by ω3, and integrating on R
3 × (0, t), after

suitable integration by parts, we obtain

1

2
‖ω3(., t)‖2

L2 +

∫ t

0

‖∇ω3(., τ)‖2
L2dτ

≤
∫ t

0

∫
R3

|(ω · ∇ω3)u3|dxdτ +
1

2
‖ω0

3‖2
L2

≤ 1

2

∫ t

0

‖∇ω3(., τ)‖2
L2dτ +

1

2

∫ t

0

∫
R3

ω2u2
3dxdτ +

1

2
‖ω0

3‖2
L2

≤ 1

2

∫ t

0

‖∇ω3(., τ)‖2
L2dτ +

∫ t

0

∫
R3

|u3|2|∇u|2dxdτ +
1

2
‖ω0

3‖2
L2

6



where we use the inequality |ω|2 ≤ 2|∇u|2. Now we give an estimate of the second

term on the right hand side of the above inequality∫ t

0

∫
R3

|u3|2|∇u|2dxdτ ≤
∫ t

0

‖u3‖2
Lγ‖∇u‖2θ

Lq‖∇u‖2(1−θ)
L2 dτ

≤ ‖u3‖2
Lα,γ‖∇u‖2θ

Lp,q‖∇u‖2(1−θ)
L2,2

where p, q and θ satisfy {
2
α

+ 2θ
p

+ 2(1−θ)
2

= 1,
2
γ

+ 2θ
q

+ 2(1−θ)
2

= 1.
(2.6)

Additional condition added on p and q, due to Lemma 2.1, is

2

p
+

3

q
=

3

2
. (2.7)

(2.6) and (2.7) can be solved easily with⎧⎪⎪⎨
⎪⎪⎩

θ = 2
α

+ 3
γ
, if 6 < γ < ∞; θ = 1

2
, if γ = ∞;

p = 2(2γ+3α)
3α

, if 6 < γ < ∞; p = ∞, if γ = ∞;

q = 2(2γ+3α)
2γ+α

, if 6 < γ < ∞; q = 2, if γ = ∞.

(2.8)

Then (2.4) follows from Lemma 2.1 and energy inequality for the Leray-Hopf

weak solution. �

The main result of this section is the following a priori estimate on the veloc-

ity field.

Theorem 2.3 Under the same assumption of Lemma 2.2, we have

sup
0≤t<T

‖∇u(., t)‖2
L2 +

∫ T

0

‖Δu(., τ)‖2
L2dτ ≤ C4 (2.9)

where C4 depends on T , α, γ, ‖∇u0‖L2, ‖u0‖L2 and ‖u3‖Lα,γ .

Remark 2.1 Not only we use Theorem 2.3 to prove the main theorem, but

Theorem 2.3 itself is also very interesting and useful.

Proof: We can rewrite the first equation of the Navier-Stokes equations (1.1) as

∂u

∂t
+ ω × u +

1

2
∇|u|2 + ∇p = Δu. (2.10)
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Multiply the equation (2.10) by Δu and integrate on R
3 × (0, t), after suitable

integration by parts, one obtains

1

2
‖∇u(., t)‖2

L2 +

∫ t

0

‖Δu(., τ)‖2
L2dτ =

∫ t

0

∫
R3

(ω × u) · Δudxdτ +
1

2
‖∇u0‖2

L2

(2.11)

let

I =

∫ t

0

∫
R3

(ω × u) · Δudxdτ

≤
∫ t

0

∫
R3

|ω2u3Δu1|dxdτ +

∫ t

0

∫
R3

|ω3u2Δu1|dxdτ +

∫ t

0

∫
R3

|ω3u1Δu2|dxdτ

+

∫ t

0

∫
R3

|ω1u3Δu2|dxdτ +
∣∣∣ ∫ t

0

∫
R3

ω1u2Δu3dxdτ −
∫ t

0

∫
R3

ω2u1Δu3dxdτ
∣∣∣

≡ I1 + I2 + I3 + I4 + |I5 + I6|.

We will estimate the terms one by one.

Case 1. u3 ∈ Lα,γ, with 2
α

+ 3
γ
≤ 1

2
, for 6 < γ < ∞.

I1 =

∫ t

0

∫
R3

|ω2u3Δu1|dxdτ

≤
∫ t

0

‖u3‖Lγ‖ω2‖
L

2γ
γ−2

‖Δu1‖L2dτ
(
Hölder’s inequality

)

≤ C ′′
5

∫ t

0

‖u3‖Lγ‖ω2‖
γ−3

γ

L2 ‖Δu‖
γ+3

γ

L2 dτ(
Gagliardo-Nirenberg inequality and Calderón-Zygmund inequality

)
≤ 1

24
‖Δu‖2

L2,2 + C ′
5

∫ t

0

‖∇u‖2
L2‖u3‖

2γ
γ−3

Lγ dτ
(
Young inequality

)
≤ 1

24
‖Δu‖2

L2,2 + C ′
5 sup

0≤τ<t
‖∇u(., τ)‖2

L2‖u3‖
2γ

γ−3

Lα,γt
1−(2/α+3/γ)

1−3/γ

(
Hölder’s inequality for 2γ

γ−3
≤ α

)
Hence

I1 ≤ 1

24
‖Δu‖2

L2,2 + C5‖∇u‖2
L∞,2‖u3‖

2γ
γ−3

Lα,γ , (2.12)
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where C5 = C5(α, γ, T ).

I2 ≤ 1

24
‖Δu‖2

L2,2 + 6

∫ t

0

‖u2‖2
La‖ω3‖2

Lbdτ(
Hölder’s and Young inequality 1

a
+ 1

b
= 1

2

)
≤ 1

24
‖Δu‖2

L2,2 + 6‖u2‖2
Lp,a‖ω3‖2

Lq,b

(
Hölder’s inequality 1

p
+ 1

q
= 1

2

)
Now we want to apply Lemma 2.1 on ‖w3‖Lq,b , so a, b, p and q satisfies

1

a
+

1

b
=

1

2
,

1

p
+

1

q
=

1

2
,

2

q
+

3

b
=

3

2
. (2.13)

(2.13) can be solved as {
p = ∞, a = 3;

q = 2, b = 6.
(2.14)

Then Lemma 2.2 tells us

‖ω3‖2
L2,6 ≤ C6‖u3‖2

Lα,γ‖∇u‖
4
α

L∞,2‖Δu‖
6
γ

L2,2 + C7, (2.15)

where C6 depends on α,γ, T and ‖u0‖L2 , while C7 depends on ‖ω0
3‖L2 only.

On the other hand,

‖u2‖2
L∞,3 ≤ ‖u‖2

L∞,3 ≤ ‖u‖L∞,2‖u‖L∞,6

≤ C8‖∇u‖L∞,2

(
Energy inequality and Sobolev inequality

)
Therefore I2 can be estimated as

I2 ≤ 1

24
‖Δu‖2

L2,2 + C9‖∇u‖1+4/α
L∞,2 ‖Δu‖6/γ

L2,2‖u3‖2
Lα,γ + C10‖∇u‖L∞,2, (2.16)

where C9 depends on α, γ, T and ‖u0‖L2, while C10 depends on ‖u0‖L2 and

‖ω0
3‖L2 .

I3 is similar to I2,

I3 ≤ 1

24
‖Δu‖2

L2,2 + C9‖∇u‖1+4/α

L∞,2 ‖Δu‖6/γ

L2,2‖u3‖2
Lα,γ + C10‖∇u‖L∞,2 (2.17)

and I4 is similar to I1,

I4 ≤ 1

24
‖Δu‖2

L2,2 + C5 sup
0≤τ<t

‖∇u(., τ)‖2
L2‖u3‖

2γ
γ−3

Lα,γ . (2.18)
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I5 =

∫ t

0

∫
R3

(ω1u2)Δu3dxdτ

=

∫ t

0

∫
R3

(∂2u3)u2Δu3dxdτ −
∫ t

0

∫
R3

(∂3u2)u2Δu3dxdτ ≡ I1
5 + I2

5

|I1
5 | ≤ 3

∫ t

0

∫
R3

u2
2(∂2u3)

2dxdτ +
1

12

∫ t

0

∫
R3

(Δu3)
2dxdτ (2.19)

∫ t

0

∫
R3

u2
2(∂2u3)

2dxdτ = −
( ∫ t

0

∫
R3

(∂2
2u3)u3u

2
2 + u3(∂2u3)∂2(u

2
2)dxdτ

)

≤
∫ t

0

∫
R3

|(∂2
2u3)u3u

2
2|dxdτ +

∫ t

0

∫
R3

|u3(∂2u3)∂2(u
2
2)|dxdτ

≡ I1,1
5 + I1,2

5

I1,1
5 =

∫ t

0

∫
R3

|(∂2
2u3)u3u

2
2|dxdτ ≤ ‖Δu‖L2,2‖u3‖Lα,γ‖u2‖2

La′,b′ , (2.20)

where

1

2
+

1

α
+

2

a′ = 1 and
1

2
+

1

γ
+

2

b′
= 1.

Actually a′ and b′ are constants determined by α and γ respectively with

a′ =
4α

α − 2
, b′ =

4γ

γ − 2
.

And ‖u2‖La′,b′ can be controlled as

‖u2‖2
La′,b′ ≤ ‖u‖2

L
4α

α−2 ,
4γ

γ−2
≤ ‖u‖

L
2α

α−2 ,
3γ

γ−3
‖u‖L∞,6

≤ C11‖∇u‖L∞,2, (2.21)

where we have used Lemma 2.1 on ‖
L

2α
α−2 ,

3γ
γ−3

, since

2
2α

α−2

+
3
3γ

γ−3

= 2 −
(

2

α
+

3

γ

)
≥ 3

2
,

and C11 is a constants which depends on α, γ, T and ‖u0‖L2 only.

Return to (2.20) and use Young inequality, then we obtain

I1,1
5 ≤ 1

144
‖Δu‖2

L2,2 + C12‖u3‖2
Lα,γ‖∇u‖2

L∞,2. (2.22)
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I1,2
5 =

∫ t

0

∫
R3

|u3(∂2u3)∂2(u
2
2)|dxdτ ≤ 2‖u3‖Lα,γ‖∇u‖2

Lp1,q1‖u2‖La1,b1(2.23)

where {
1
α

+ 2
p1

+ 1
a1

= 1,
1
γ

+ 2
q1

+ 1
b1

= 1.
(2.24)

a1 and b1 are required satisfies

2

a1
+

3

b1
≥ 3

2
(2.25)

(2.24) and (2.25) can be solved as

p1 = 4, q1 = 3, a1 =
2α

α − 2
, b1 =

3γ

γ − 3
. (2.26)

It follows from (2.23) and (2.26) that

I1,2
5 ≤ C13‖u3‖Lα,γ‖∇u‖L∞,2‖Δu‖L2,2

≤ 1

144
‖Δu‖2

L2,2 + C14‖u3‖2
Lα,γ‖∇u‖2

L∞,2 (2.27)

where C14 depends on α, γ, T and ‖u0‖L2 only.

Combining (2.22) and (2.27) together and substituting into (2.19), then

|I1
5 | ≤

1

8
‖Δu‖2

L2,2 + C15‖u3‖2
Lα,γ‖∇u‖2

L∞,2, (2.28)

where C15 depends on α, γ, T and ‖u0‖L2 only.

One can see that I2
5 is a difficult term, so we want to deal with it later. Now

we pay our attention to I6,

I6 = −
∫ t

0

∫
R3

ω2u1Δu3dxdτ

=

∫ t

0

∫
R3

(∂1u3)u1Δu3dxdτ −
∫ t

0

∫
R3

(∂3u1)u1Δu3dxdτ ≡ I1
6 + I2

6

I1
6 can be treated similarly as I1

5 ,

|I1
6 | ≤

1

8
‖Δu‖2

L2,2 + C15‖u3‖2
Lα,γ‖∇u‖2

L∞,2. (2.29)

The remaining term which has to be treated is

I2
5 + I2

6 = −
∫ t

0

∫
R3

(
(∂3u2)u2 + (∂3u1)u1

)
Δu3dxdτ. (2.30)
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Since we have no additional conditions on the components u1 and u2, I2
5 + I2

6

is more difficult to handle. Fortunately, we can circumvent the difficult by the

following identity.

1

2

∫ t

0

∫
R3

∂1(u
2
1 + u2

2)Δu1dxdτ +
1

2

∫ t

0

∫
R3

∂2(u
2
1 + u2

2)Δu2dxdτ

+
1

2

∫ t

0

∫
R3

∂3(u
2
1 + u2

2)Δu3dxdτ =
1

2

∫ t

0

∫
R3

∇(u2
1 + u2

2) · Δudxdτ = 0

Therefore from (2.30),

|I2
5 + I2

6 | =
∣∣∣1
2

∫ t

0

∫
R3

∂1(u
2
1 + u2

2)Δu1dxdτ +
1

2

∫ t

0

∫
R3

∂2(u
2
1 + u2

2)Δu2dxdτ
∣∣∣

≤ 1

12

∫ t

0

∫
R3

(Δu)2dxdτ +
3

4

∫ t

0

∫
R3

(
∂1(u

2
1 + u2

2)
)2

+
(
∂2(u

2
1 + u2

2)
)2

dxdτ

≡ 1

12

∫ t

0

∫
R3

(Δu)2dxdτ +
1

4
R (2.31)

By integration by parts,

R ≤ 6

∫ t

0

∫
R3

u2
1

(
(∂2u1)

2 + (∂1u1)
2
)
dxdτ + 6

∫ t

0

∫
R3

u2
2

(
(∂1u2)

2 + (∂2u2)
2
)
dxdτ

= 2

∫ t

0

∫
R3

u3
1(−∂2

1u1 − ∂2
2u1)dxdτ + 2

∫ t

0

∫
R3

u3
2(−∂2

1u2 − ∂2
2u2)dxdτ

Note that ω3 = ∂1u2 − ∂2u1 and divu = 0, the following identity is obtained by

direct computation.

∂2ω3 = ∂1∂2u2 − ∂2
2u1 = −∂2

1u1 − ∂2
2u1 − ∂1∂3u3 (2.32)

∂1ω3 = ∂2
1u2 − ∂2∂1u1 = ∂2

1u2 + ∂2
2u2 + ∂2∂3u3 (2.33)

Using (2.32) and (2.33), we obtain

R ≤ 2

∫ t

0

∫
R3

u3
1(∂2ω3 + ∂1∂3u3)dxdτ + 2

∫ t

0

∫
R3

u3
2(−∂1ω3 + ∂2∂3u3)dxdτ

≡ R1 + R2 (2.34)

12



Using integration by parts and Young inequality, one has

R1 = 2

∫ t

0

∫
R3

u3
1(∂2ω3 + ∂1∂3u3)dxdτ

= 6

∫ t

0

∫
R3

u2
1

(
(∂2u1)

2 + (∂1u1)
2
)
dxdτ = −6

∫ t

0

∫
R3

u2
1ω3∂2u1dxdτ

+12

∫ t

0

∫
R3

u1u3∂3u1∂1u1dxdτ + 6

∫ t

0

∫
R3

u2
1u3∂1∂3u1dxdτ

≤ 12

∫ t

0

∫
R3

|u1u3∂3u1∂1u1|dxdτ + 6

∫ t

0

∫
R3

|u2
1u3∂1∂3u1|dxdτ

+3

∫ t

0

∫
R3

u2
1(∂2u1)

2dxdτ + 3

∫ t

0

∫
R3

u2
1ω

2
3dxdτ

≤ 12

∫ t

0

∫
R3

|u1u3∂3u1∂1u1|dxdτ + 6

∫ t

0

∫
R3

|u2
1u3∂1∂3u1|dxdτ

+3

∫ t

0

∫
R3

u2
1ω

2
3dxdτ +

1

2
R1

Then

R1 ≤
∫ t

0

∫
R3

6u2
1ω

2
3 + 24|u1u3∂3u1∂1u1| + 12|u2

1u3∂1∂3u1|dxdτ (2.35)

The terms in (2.35) are similar to the terms which have been treated in I2, I1,2
5

and I1,1
5 respectively. We would like to write down the estimates directly instead

of the detailed computation.

R1 ≤ C9‖∇u‖1+4/α

L∞,2 ‖Δu‖6/γ

L2,2‖u3‖2
Lα,γ

+
1

6
‖Δu‖2

L2,2 + 12C15‖u3‖2
Lα,γ‖∇u‖2

L∞,2 + C10‖∇u‖L∞,2 (2.36)

R2 can be treated similarly, so we get the estimate of |I2
5 + I2

6 | with

|I2
5 + I2

6 | ≤ 1

6
‖Δu‖2

L2,2 + 4C15‖u3‖2
Lα,γ‖∇u‖2

L∞,2

+
1

2
C9‖∇u‖1+4/α

L∞,2 ‖Δu‖6/γ
L2,2‖u3‖2

Lα,γ +
1

2
C10‖∇u‖L∞,2 (2.37)
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Combine (2.12), (2.16), (2.17), (2.18), (2.28), (2.29) and (2.37) together and

substitute into (2.11), then we obtain

1

2
‖∇u(., t)‖2

L2 + ‖Δu‖2
L2,2

≤ 7

12
‖Δu‖2

L2,2 + 2C5‖∇u‖2
L∞,2‖u3‖

2γ
γ−3

Lα,γ

+
5

2
C9‖∇u‖1+4/α

L∞,2 ‖Δu‖6/γ

L2,2‖u3‖2
Lα,γ

+8C15‖u3‖2
Lα,γ‖∇u‖2

L∞,2 +
5

2
C10‖∇u‖L∞,2 +

1

2
‖∇u0‖2

L2 (2.38)

We will consider the case that 2/α + 3/γ = 1/2 first. Using Young inequality on

the right hand side of (2.38), we obtain

1

2
‖∇u(., t)‖2

L2 +
1

4
‖Δu‖2

L2,2 ≤
(

C16‖u3‖α
Lα,γ + 8C15‖u3‖2

Lα,γ +
1

8

)
‖∇u‖2

L∞,2

+
25

2
C2

10 +
1

2
‖∇u0‖2

L2 , (2.39)

where C16 depends on α, γ, T and ‖u0‖L2 only.

Now we choose 0 < t0 ≤ T , such that

‖u3‖Lα,γ =

(∫ t0

0

‖u3(., τ)‖α
Lγdτ

)1/α

satisfies

C16‖u3‖α
Lα,γ + 8C15‖u3‖2

Lα,γ ≤ 1

8
on (0, t0). (2.40)

Putting (2.40) into (2.39), we obtain that

sup
0≤t≤t0

‖∇u(., t)‖2
L2 +

∫ t0

0

‖Δu(., τ)‖2
L2dτ ≤ 50C2

10 + 2‖∇u0‖2
L2 (2.41)

Then we can repeat the above process from t0 with u(t0) as its initial data for

the problem (1.1) and get for t0 < t < T

1

2
‖∇u(., t)‖2

L2 +
1

4

∫ t

t0

‖Δu(., τ)‖2
L2dτ

≤
(

C16‖u3‖α
Lα,γ + 8C15‖u3‖2

Lα,γ +
1

8

)
‖∇u‖2

L∞,2

+C2
17 +

1

2
‖∇u(., t0)‖2

L2 ,
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where C17 depends on ‖ω3(., t0)‖L2 which is bounded by ‖∇u(., t0)‖L2 , while the

norm ‖u3‖Lα,γ is given by

‖u3‖Lα,γ =

(∫ t

t0

‖u3(., τ)‖α
Lγdτ

)1/α

.

Then for t1 − t0 sufficiently small, t0 < t1 < T , the following inequality holds

C16‖u3‖α
Lα,γ + 8C15‖u3‖2

Lα,γ ≤ 1

8
, on (t0, t1)

and consequently

sup
t0≤τ≤t1

‖∇u(., τ)‖L2 +

∫ t1

t0

‖Δu(., τ)‖2
L2dτ < 4C2

17 + 2‖∇u(., t0)‖2
L2

≤ C(α, γ, T, ‖u0‖L2 , ‖∇u0‖L2).

Note that u3 ∈ Lα,γ on [0, T ), and the coefficients involving ‖u3‖Lα,γ in (2.39),

C15, C16, depend only on T , α, γ, ‖u0‖L2, therefore the above process only can

be done for finite times. More precisely, we can get

sup
0≤t<T

‖∇u(., t)‖2
L2 +

∫ T

0

‖Δu(., τ)‖2
L2dτ ≤ C4 (2.42)

where C4 depends on T , α, γ, ‖∇u0‖L2 , ‖u0‖L2 and ‖u3‖Lα,γ .

Actually, the above process is a standard bootstrap argument. If one sets

f(t) =
1

2
‖∇u(t)‖2

L2 +
1

4

∫ t

0

‖Δu(s)‖2
L2ds,

what (2.39) really shows is that there exist h > 0, κ < 1 and C > 0 such that

f(t + τ) ≤ f(t) + κ sup
0≤s≤τ

f(t + s) + C,

whenever 0 ≤ t ≤ t + τ ≤ T and τ ≤ h. It follows that

sup
0≤τ≤h

f(t + τ) ≤ 1

1 − κ
(f(t) + C) ,

hence by induction

f(t) +
C

κ
≤

(
1

1 − κ

)1+ t
h
(

f(0) +
C

κ

)
, 0 ≤ t ≤ T.
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The expression in the right-hand side depends explicitly on h, which is taken so

that

sup
0≤t≤T−h

∫ t+h

t

‖u3(s)‖α
Lγds

is sufficiently small, which can be achieved by the integrability of u3 in the space

Lα([0, T ], Lγ(R3)).

The case with 2/α + 3/γ < 1/2 can be treated similarly, since the sum of the

power index on the norm ‖∇u‖L∞,2 and ‖Δu‖L2,2 is less than or equiv to 2, the

bounds of the left hand side of (2.9) can be obtained.

Case 2. u3 ∈ L4,∞.

Actually, this case can be treated as a limit case for α = 4 and γ = ∞. Letting

α = 4 and taking limit as γ → ∞ in (2.38), one has the following estimate

1

2
‖∇u(., t)‖2

L2 +
1

8
‖Δu‖2

L2,2

≤ C18‖u3‖2
L4,∞‖∇u‖2

L∞,2 + C19‖∇u‖L∞,2 +
1

2
‖∇u0‖2

L2

≤
(

C18‖u3‖2
L4,∞ +

1

4

)
‖∇u‖2

L∞,2 + C2
19 +

1

2
‖∇u0‖2

L2 (2.43)

where C18 is an absolute constant, while C19 depends on ‖u0‖L2 and ‖∇u0‖L2

only.

Then just as the argument of case 1, by the integrability of ‖u3‖L∞ with

respect to time variable, (2.9) can be obtained, and where C4 depends only on

‖u0‖L2, ‖∇u0‖L2 and ‖u3‖L4,∞.

The proof is complete. �

3 Proof of Theorem 1.1

After we establish the key estimate in section 2, the proof of Theorem 1.1 is

straightforward.

It is well known [25] that there is a unique strong solution ũ ∈ L∞(0, T0; H
1(R3))∩

u ∈ L2(0, T0; H
2(R3)) to (1.1),for some 0 < T0, for any given u0 ∈ H1(R3) with

divu0 = 0. Since u is a Leray-Hopf weak solution which satisfies the energy in-

equality, we have according to the uniqueness result, u ≡ ũ on [0, T0). By the
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a priori estimate (2.9) in Theorem 2.3 and standard continuation argument, the

local strong solution u can be extended to time T . So we have proved u actually

is a strong solution on [0, T ). This completes the proof for Theorem 1.1.

The following corollary follows from Theorem 1.1 directly.

Corollary 3.1 Suppose u0 ∈ H1(R3), and div u0 = 0 in the sense of distribution.

Assume that u(x, t) is a Leray-Hopf weak solution of (1.1) in (0, T ). If ∇u3 ∈ Lp,q

with 2/p + 3/q ≤ 3/2, for 2 < q < 3, then u(x, t) is a strong solution on [0, T ).

Proof: By Gagliardo-Nirenberg inequality

‖u3‖Lα,γ ≤ C27‖u3‖1−θ
La,b‖∇u3‖θ

Lp,q (3.1)

where

1

γ
=

1 − θ

b
+ θ

(1

q
− 1

3

)
and

1

α
=

1 − θ

a
+

θ

p
. (3.2)

From (3.2), one obtains

2

α
+

3

γ
= (1 − θ)

(2

a
+

3

b

)
+ θ

(2

p
+

3

q
− 1

)
. (3.3)

Since 2/α + 3/γ ≤ 1/2 and 2/a + 3/b ≥ 3/2, it follows from (3.3) that

5
2
θ − 1

θ
≥ 2

p
+

3

q
. (3.4)

When θ = 1, the function
5
2
θ−1

θ
obtains its maximal value 3

2
. But when θ = 1, we

have a restriction on q with q < 3. In this case, (3.1) reduced to

‖u3‖
L

p,
3q

3−q
≤ C28‖∇u3‖Lp,q , with

2

p
+

3

q
≤ 3

2
, for 2 < q < 3. (3.5)

Thanks to (3.5), Corollary 2.4 follows from Theorem 1.1 directly. The proof is

complete. �

Remark 3.1 In [26], the author proves the regularity criterion for ∇u3 ∈ Lp,q

with 2/p + 3/q = 3
2
, for all q ≥ 3.
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