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1 Introduction

In this paper, we consider the two-dimensional quasi-geostrophic equation in R2,⎧⎨
⎩

∂θ

∂t
+ u · ∇θ + (−Δ)αθ = f,

θ(x, 0) = θ0(x),
(1.1)

where α ∈ (0, 1], θ(x, t) is the potential temperature, f is the force and it is

assumed to be zero in what follows just for simplicity, the fluid velocity u =

1



(u1, u2) ∈ R2 is determined from θ by a stream function Ψ,

(u1, u2) =

(
− ∂Ψ

∂x2
,
∂Ψ

∂x1

)
,

while the function Ψ satisfies

(−Δ)1/2Ψ = −θ.

The operator (−Δ)γ (γ > 0) is defined by [9]

̂(−Δ)γf(ξ) = |ξ|2γ f̂ ,

where f̂ denotes the Fourier transform of f . As usual, we write (−Δ)1/2 as Λ.

By reduction to the special case of solutions with constant potential vorticity

in the interior and constant buoyancy frequency, the inviscid 2D quasi-geostrophic

equations can be derived from the general quasi-geostrophic equations. And (1.1)

is obtained if the dissipative mechanisms are incorporated into the inviscid 2D

quasi-geostrophic equations. From the mathematical view point, this model (1.1)

is striking similar to the 3D hydrodynamics equations, say the Navier-Stokes equa-

tions, although (1.1) is considerably simpler than the 3D Navier-Stokes equations.

Moreover (1.1) with α = 1/2 is analogous to the 3D Navier-Stokes equations di-

mensionally. It is proved that the weak solutions to (1.1) globally exist, but the

regularity and uniqueness are still big open problems, just as the situation for

3D Navier-Stokes equations [3]. In [4], the strong solution is unique and exists

locally, and it is unique among the weak solutions for α ∈ (1/2, 1). In other

words, the weak solutions must coincide with the strong solution occupied with

the same initial datum, as long as the strong solution exists.

This paper is concerned with the decay rate of the solutions to (1.1) in the

L2-norm. We consider the linear equation corresponding to (1.1)⎧⎨
⎩

∂θ

∂t
+ Λ2αθ = 0,

θ(x, 0) = θ0(x).
(1.2)

The solution of (1.2) can be represent by the fundamental solution as

Θ(t) = etΛ2α

θ0 = Gα(t) ∗ θ0,
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where Gα is given from the Fourier transform as

Ĝα(ξ, t) = e−|ξ|2αt.

In this paper, we give a decay rate of the L2-norm of the solution in term of the

decay rate of the linear equation (1.2) and the fractional power index α in (1.1).

More precisely, it reads

Theorem 1.1 Let α ∈ (1/2, 1) and θ0 ∈ L2(R2). If the solution etΛ2α
θ0(t) to the

linear equation (1.2) satisfies∥∥∥etΛ2α

θ0

∥∥∥
L2

≤ C(1 + t)−β, t ≥ 0, (1.3)

for some β > 0. Then there exists a weak solution θ(t) to (1.1) such that

‖θ(t)‖L2 ≤ C(1 + t)−γ , with γ = min

{
β,

1

α

}
. (1.4)

Moreover, the solution θ(t) to (1.1) is asymptotic equivalent to the solution etΛ2α
θ0

of (1.2) in the sense that∥∥∥θ(t) − etΛ2α

θ0

∥∥∥
L2

≤ C(1 + t)−
1
α . (1.5)

Remark 1.1 Theorem 1.1 is motivated mainly by an analogue result for the 3D

Navier-Stokes equations was proved by Wiegner in [6, 11]. The usual method to

prove the asymptotic behavior is the so called Fourier splitting method, which

was used first by Schonbek [5] on the decay of solutions for parabolic conservation

laws. Later on she used it to do several results for the Navier-Stokes equations,

c.f. [6, 7]. However, we will show Theorem 1.1 by a new, direct and much simpler

method, which completely avoids using the Fourier splitting technique. It is

testified that this strategy (see section 4) can be used widely. For example,

we [12] proved the result of Wiegner by this method very recently.

Remark 1.2 In [4], Constantin and Wu (page 940, Theorem 3.1) proved that

there exists a weak solution θ(x, t) such that

‖θ(t)‖L2 ≤ C(1 + t)−
1
2α , (1.6)

and in general, the decay rate − 1
2α

is optimal in the sense that there exists some

initial datum such that the corresponding solution to (1.1) satisfies

‖θ(t)‖L2 ≥ C(1 + t)−
1
2α .
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However, it is easy to find that there are solutions to (1.2) have exponentially

decay. For example θ̂0(ξ) = 0, for |ξ| ≤ r with r > 0, then the solution satifies∥∥∥etΛ2α

θ0

∥∥∥2

L2
=

∫
R2

e−2|ξ|2αt|θ̂0|2(ξ)dξ ≤ e−2r2αt‖θ0‖2
L2 .

So in this sense, (1.4) is a significant achievement for the decay rate of solutions

to (1.1) comparing with that of the linear equation (1.2).

Also in [4] (page 944, Theorem 4.3), it was proved that the difference θ(t) −
Θ(t) between a weak solution θ(t) of the quasi-geostrophic equation (1.1) and

solution Θ(t) of the linear quasi-geostrophic equation (1.2) with the same data

θ0 ∈ L1(R2) ∩ L2(R2) satisfies

‖θ(t) − Θ(t)‖L2 ≤ C(1 + t)
1
2
− 1

α .

Comparing with their result, first Theorem 1.1 holds for any θ0 ∈ L2(R2). Sec-

ondly the decay rate − 1
α

is much better than that of theirs, 1
2
− 1

α
.

Remark 1.3 In section 3, under the restriction of α ∈ (2/3, 1), a rough estimate

for ‖∇θ(t)‖L2 is shown by a direct and simple method (energy method) instead of

using the so called Fourier splitting method. Another advantage of this method is

making this paper be self-contained and without using any other previous decay

results. On the other hand, in the appendix, we show that the solution satisfies

‖∇θ(t)‖L2 ≤ C(1 + t)−
1
2α , (1.7)

by using the known decay result (1.6) and inequality (5.1).

2 Preliminaries

We denote the Riesz transform in R2 by Rj, j = 1, 2 as

R̂jf = −i ξj|ξ| f̂(ξ).

The operator R⊥ is defined by

R⊥f =
(−∂x2Λ

−1f,−∂x1Λ
−1f

)
= (−R2f,R1f) ,

so the relation between u and θ is given by u = R⊥θ. Moreover, we have
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Lemma 2.1 There exists a constant C(p) depending only on p such that∥∥Λδu
∥∥

Lp ≤ C(p)
∥∥Λδθ

∥∥
Lp , (2.1)

for all δ ≥ 0, 1 < p <∞. If p = 2, the inequality (2.1) actually is an identity.

The proof can be finished by following from the boundedness of the Riesz trans-

forms in Lp, c.f. [9].

The next lemma is concerned with an embedding for the fractional Sobolev

spaces.

Lemma 2.2 Let 2 < p < ∞ and δ = 1 − 2
p
, then there exists a constant C(p)

such that

‖f‖Lp ≤ C(p)
∥∥Λδf

∥∥
L2 , (2.2)

for all f ∈ S ′.

Since f̂ = |ξ|−δ|ξ|δf̂ , from the inverse Fourier transform,

f = Iδ
(
Λδf

)
,

where Iδ is the Riesz potential of order δ. Hence (2.2) follows from the bounded-

ness of Iδ form L2(R2) to Lp(R2), with 2
p

= 1 − δ, c.f. [9].

By Parseval’s equality, it follows from Lemma 2.2 that

‖f‖Lp ≤ C
∥∥Λδf

∥∥
L2 = C

(∫
R2

|ξ|2δf̂ 2(ξ)dξ

)1/2

= C

(∫
R2

f̂ 2a(ξ)|ξ|2δf̂ 2(1−a)(ξ)dξ

)1/2

≤ C‖f‖a
L2

∥∥∥Λ
δ

1−a f
∥∥∥1−a

L2
,

where we used Hölder’s inequality. So we have the following fractional type

Gagliardo-Nirenberg inequality

‖f‖Lp ≤ C‖f‖a
L2 ‖Λσf‖1−a

L2 , (2.3)

with

1

p
= a

1

2
+ (1 − a)

(
1

2
− σ

2

)
, 0 ≤ a ≤ 1.
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3 A rough decay estimate for ‖∇θ(t)‖L2

Direct computation yields

‖Λθ‖2
L2 =

∫
R2

|ξ|2θ̂2(ξ)dξ =

∫
R2

∣∣∣ξθ̂(ξ)∣∣∣2 dξ = ‖∇θ‖2
L2 ,

which implies that ‖∇θ(t)‖L2 is equivalent to ‖Λθ‖L2. The goal of this section is

to give a rough decay estimate for ‖∇θ(t)‖L2 based on delicate Lp−Hs estimates.

Assume that the solution is smooth in what follows in this section, i.e., we do

the formal computation first. Multiplying Λ2θ on both sides , we have

1

2

d

dt

∫
R2

|Λθ|2dx+

∫
R2

∣∣Λα+1θ
∣∣2 dx ≤

∣∣∣∣
∫

R2

(u · ∇θ)Λ2θdx

∣∣∣∣ . (3.1)

Due to the divergence free of the velocity field u, we have∣∣∣∣
∫

R2

(u · ∇θ)Λ2θdx

∣∣∣∣ =

∣∣∣∣
∫

R2

div(uθ)Λ2θdx

∣∣∣∣
≤

∫
R2

|ξ|2
∣∣∣ξ1θ̂u1(ξ) + ξ2θ̂u2(ξ)

∣∣∣ ∣∣∣θ̂(ξ)∣∣∣ dξ
≤ 1

2

∥∥Λα+1θ
∥∥2

L2 +
1

2

∥∥Λ2−α(θu)
∥∥2

L2 (3.2)

Using the product estimate [10], we have

∥∥Λ2−α(θu)
∥∥

L2 ≤ C
(‖u‖Lp

∥∥Λ2−αθ
∥∥

Lq + ‖θ‖Lp

∥∥Λ2−αu
∥∥

Lq

)
,

with 1
2

= 1
p

+ 1
q
. Submitting this inequality to (3.2) and using Lemma 2.1, (3.1)

is reduced to

d

dt
‖Λθ‖2

L2 +
∥∥Λα+1θ

∥∥2

L2 ≤ C‖θ‖2
Lp

∥∥Λ2−αθ
∥∥2

Lq . (3.3)

Taking p = 2
2α−1

and q = 1
1−α

, then by the embedding lemma (Lemma 2.2) and

the fractional type Gagliardo-Nirenberg inequality (2.3), we get

‖θ‖2

L
2

2α−1

∥∥Λ2−αθ
∥∥2

L
1

1−α
≤ C‖θ‖

6α−4
α

L2 ‖Λαθ‖
4−4α

α

L2

∥∥Λα+1θ
∥∥2

L2 , (3.4)

provided that 2
3
< α < 1. Putting (3.4) into (3.3), we obtain

d

dt
‖Λθ‖2

L2 ≤
(
C‖θ‖

6α−4
α

L2 ‖Λαθ‖
4−4α

α

L2 − 1
)∥∥Λα+1θ

∥∥2

L2 . (3.5)
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Similarly, we can get a differential inequality for ‖Λαθ‖L2 ,

1

2

d

dt
‖Λαθ‖2

L2 +
∥∥Λ2αθ

∥∥2

L2 ≤
1

2

∥∥Λ2αθ
∥∥2

L2 + C‖θ‖2

L
2

2α−1
‖Λθ‖2

L
1

1−α
. (3.6)

Hence, using the Gagliardo-Nirenberg inequality (2.3) and rewriting (3.6), we

have

d

dt
‖Λαθ‖2

L2 ≤
(
C‖θ‖

6α−4
α

L2 ‖Λαθ‖
4−4α

α

L2 − 1
)∥∥Λ2αθ

∥∥2

L2 . (3.7)

On the other hand, multiplying the equation (1.1) by θ, and integrating for both

space and time, then

‖θ(., t)‖2
L2 + 2

∫ t

0

‖Λαθ(., s)‖2
L2 ds = ‖θ0‖2

L2 , for all t ≥ 0.

Therefore, there exists a time t0 such that

‖θ(t0)‖
6α−4

α

L2 ‖Λαθ(t0)‖
4−4α

α

L2 ≤ ‖θ0‖
6α−4

α

L2 ‖Λαθ(t0)‖
4−4α

α

L2 ≤ 1

C
,

where C is the bigger constant of these in (3.5) and (3.7).

From this equation (3.7) and the choice of t0, we have

d

dt
‖Λαθ‖L2 ≤ 0, for all t ≥ t0. (3.8)

Combining (3.5) and (3.8), one has

d

dt
‖Λθ‖L2 ≤ 0, for all t ≥ t0. (3.9)

Then we want to obtain the integrability for ‖Λθ‖L2. Multiplying (1.1) by Λ2−2αθ,

similar computation yields

1

2

d

dt

∥∥Λ1−αθ
∥∥2

L2 + ‖Λθ‖2
L2 ≤ 1

2
‖Λθ‖2

L2 + C‖θ‖
6α−4

α

L2 ‖Λαθ‖
4−4α

α

L2 ‖Λθ‖2
L2 . (3.10)

Now we assume that

‖θ(t1)‖
6α−4

α

L2 ‖Λαθ(t1)‖
4−4α

α

L2 ≤ ‖θ0‖
6α−4

α

L2 ‖Λαθ(t1)‖
4−4α

α

L2 ≤ 1

2C
, for some t1 > t0.

Then integrating (3.10) with respect to time on [t1, t], t > t1,

∥∥Λ1−αθ(t)
∥∥2

L2 +

∫ t

t1

‖Λθ(s)‖2
L2 ds

≤ ∥∥Λ1−αθ(t1)
∥∥2

L2 + C

∫ t

0

‖θ(s)‖
6α−4

α

L2 ‖Λαθ(s)‖
4−4α

α

L2 ‖Λθ(s)‖2
L2 ds. (3.11)
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From (3.9) and (3.11), by the choice of t1, we obtain

(t− t1)‖Λθ(t)‖2
L2 ≤

∫ t

t1

‖Λθ(s)‖2
L2ds ≤ 2

∥∥Λ1−αθ(t1)
∥∥2

L2 .

So we get a rough decay estimate as

‖Λθ(t)‖L2 = ‖∇θ(t)‖L2 ≤ C(1 + t)−1/2, for all t ≥ 0. (3.12)

Remark 3.1 In [8], a faster decay rate

‖∇θ(t)‖L2 ≤ C(1 + t)−1/α

was proved by using Fourier splitting method and the known result (1.6). But

here (3.12) is enough for our purpose.

4 Proof of the main theorem

The first part of the proof is formal, that is, we assume the solution is smooth.

Actually, it is somehow enough, since we can give a rigorous proof by applying the

first part to a sequence of ‘retarded mollification’, just as what done in [1, 4, 8].

We present the solution by the fundamental solution of (1.2) as

θ(t) = etΛ2α

θ0 −
∫ t

0

e(t−s)Λ2α

(u · ∇θ)(s)ds. (4.1)

Note that

u · ∇θ = div(θu) − θdivu = div(uθ),

so the solution has another form

θ(t) = etΛ2α

θ0 −
∫ t

0

e(t−s)Λ2α

div(uθ)(s)ds. (4.2)

So directly, form (4.1) and (4.2), we have

‖θ(t)‖L2 ≤
∥∥∥etΛ2α

θ0

∥∥∥
L2

+

∫ t

0

∥∥∥e(t−s)Λ2α

(u · ∇θ)
∥∥∥

L2
(s)ds. (4.3)

and

‖θ(t)‖L2 ≤
∥∥∥etΛ2α

θ0

∥∥∥
L2

+

∫ t

0

∥∥∥e(t−s)Λ2α

div(uθ)
∥∥∥

L2
(s)ds. (4.4)
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By Parseval’s equality, it follows that∥∥∥etΛ2α

(u · ∇θ)
∥∥∥2

L2
=

∫
R2

e−2|ξ|2αt
∣∣∣û · ∇θ∣∣∣2 (ξ)dξ

≤
∥∥∥û · ∇θ∥∥∥2

L∞

∫
R2

e−2|ξ|2αtdξ ≤ C ‖u · ∇θ‖2
L1

∫ ∞

0

e−2r2αtrdr

≤ C‖u‖2
L2‖∇θ‖2

L2t−1/α

∫ ∞

0

e−2r2α

rdr

≤ Ct−1/α‖θ‖2
L2‖∇θ‖2

L2. (4.5)

Similarly,∥∥∥etΛ2α

div(uθ)
∥∥∥2

L2
≤

∫
R2

e−2|ξ|2αt|ξ|2
∣∣∣ûθ∣∣∣2 (ξ)dξ

≤
∥∥∥ûθ∥∥∥2

L∞

∫
R2

e−2|ξ|2αt|ξ|2dξ ≤ C ‖uθ‖2
L1

∫ ∞

0

e−2r2αtr3dr

≤ C‖u‖2
L2‖θ‖2

L2t−2/α

∫ ∞

0

e−2r2α

r3dr

≤ Ct−2/α‖θ‖4
L2 . (4.6)

Combining (3.12), (4.3) and (4.5), it follows that

‖θ(t)‖L2 ≤ C(1 + t)−β + C

∫ t

0

(t− s)−
1
2α (1 + s)−1/2‖θ(s)‖L2ds. (4.7)

Then, from (4.7), we have

(1 + t)β‖θ(t)‖L2 ≤ C + C(1 + t)βQ(t)

∫ t

0

(t− s)−
1
2α (1 + s)−1/2−βds

= C + C(1 + t)βQ(t)

∫ t/2

0

(t− s)−
1
2α (1 + s)−1/2−βds

+C(1 + t)βQ(t)

∫ t

t/2

(t− s)−
1

2α (1 + s)−1/2−βds (4.8)

with

Q(t) = max
0≤s≤t

{
(1 + s)β‖θ(s)‖L2

}
.

By direct computation,

∫ t/2

0

(t− s)−
1
2α (1 + s)−1/2−βds ≤ Ct−

1
2α

⎧⎪⎪⎨
⎪⎪⎩

1 if 1/2 + β > 1,

ln(e+ t) if 1/2 + β = 1,

(1 + t)1−1/2−β if 1/2 + β < 1,
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and ∫ t

t/2

(t− s)−
1
2α (1 + s)−1/2−βds ≤ C(1 + t)−β−1/2t

2α−1
2α .

Hence, if β < 1
2α

, then

C(1 + t)β

∫ t

0

(t− s)−
1
2α (1 + s)−1/2−βds→ 0, as t→ ∞.

So there exists a t0 sufficiently large such that

C(1 + t)β

∫ t

0

(t− s)−
1
2α (1 + s)−1/2−βds ≤ 1

2
, for any t ≥ t0.

Then from (4.8), we have

(1 + t)β‖θ(t)‖L2 ≤ C +
1

2
Q(t), for t ≥ t0. (4.9)

Let

Q̂(t) = max
t0≤s≤t

{
(1 + s)β‖θ(s)‖L2

}
,

then (4.9) can be reduced to

(1 + t)β‖θ(t)‖L2 ≤ C +
1

2
Q(t0) +

1

2
Q̂(t), for t ≥ t0. (4.10)

Now taking maximum for t ∈ [t0, T ] on both sides of (4.10), we obtain

Q̂(T ) ≤ C +
1

2
Q(t0) +

1

2
Q̂(T ), for T ≥ t0.

Therefore,

(1 + t)β‖θ(t)‖L2 ≤ 2C + max
0≤s≤t0

{(1 + s)β‖θ(s)‖L2} <∞,

due to the energy inequality.

Now, we assume β ≥ 1
2α

. Since

(1 + t)−β < (1 + t)−
α+1
4α , and

α + 1

4α
<

1

2α
,

it follows from the above step that

‖θ(t)‖L2 ≤ C(1 + t)−
α+1
4α . (4.11)
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Thanks to (4.5) and (4.6), we obtain that

‖θ(t)‖L2 ≤ C(1 + t)−β + C

∫ t/2

0

(t− s)−
1
α‖θ(s)‖2

L2ds

+C

∫ t

t/2

(t− s)−
1
2α (1 + s)−1/2‖θ(s)‖L2ds (4.12)

Then by the rough estimate (4.11), it follows that∫ t/2

0

(t− s)−
1
α‖u(s)‖2

L2ds ≤ C

∫ t/2

0

(t− s)−
1
α (1 + s)−

α+1
2α ds ≤ Ct−

1
α .

So (4.12) reduces to

‖θ(t)‖L2 ≤ C(1 + t)−γ + C

∫ t

t/2

(t− s)−
1
2α (1 + s)−1/2‖θ(s)‖L2ds, (4.13)

where γ = min
{
β, 1

α

}
.

Multiplying (1 + t)γ on the both sides of (4.13), we have

(1 + t)γ‖θ(t)‖L2 ≤ C + C(1 + t)γQ(t)

∫ t

t/2

(t− s)−
1

2α (1 + s)−1/2−γds

≤ C + CQ(t)(1 + t)−1/2−γt
2α−1
2α ,

with Q(t) = max0≤s≤t{(1 + s)γ‖θ(s)‖L2}.
Therefore

(1 + t)γ‖θ(t)‖L2 ≤ max

{
2C, max

0≤s≤t0
{(1 + s)γ‖θ(s)‖L2}

}
<∞,

where t0 satisfies C(1 + t0)
−1/2−γt

1/4
0 ≤ 1/2.

Let θ(t) be the solution to (1.1) and w = θ(t) − eΛ
2αtθ0, then w(t) satisfies⎧⎨

⎩
∂w

∂t
+ u · ∇θ + Λ2αw = 0,

w(x, 0) = 0.
(4.14)

So the solution w(t) to (4.16) can be write as

w(t) =

∫ t

0

e(t−s)Λ2α

(u · ∇θ)(s)ds. (4.15)

Comparing with (4.1), there is no linear term eΛ
2αtθ0 in the presentation of w(t).

By the above argument, it is easy to see that (1.5) follows from (4.15) directly.
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The formal proof is complete.

To make the proof rigorous, we apply the formal proof on the approximate

sequence, which are smooth solutions to

∂θn

∂t
+ un · ∇θn + (−Δ)αθn = 0. (4.16)

In (4.16), un = Ψδn(θn) is obtained from θn by

Ψδn(θn) =

∫ ∞

0

ψ(τ)R⊥θn(t− δnτ)dτ,

where the function ψ is smooth and has support in the interval [1, 2], and
∫ ∞

0
ψ(s)

ds = 1, (see the similar construction for the 3D Navier-Stokes equations in [1]).

For each n, it is easy to find that the values of un depend only on the values of

θn in [t − 2δn, t − δ], so the equation is (4.16) is linear. As stated in [4], the θn

converges to a weak solution θ strongly in L2 for almost every t. Hence

‖θ(t)‖L2 ≤ ‖θn(t) − θ(t)‖L2 + ‖θn(t)‖L2 ≤ C(1 + t)−γ,

with γ = min{β, 1
α
}.

5 Appendix

Let us recall an maximum principle inequality for (1.1)

‖θ(t)‖Lq ≤ ‖θ0‖Lq , for any q ≥ 2. (5.1)

For the proof we refer the reader to [2].

Multiplying the equation (1.1) by Λ2θ and integrating in R2, we obtain

1

2

d

dt
‖Λθ‖2

L2 +
∥∥Λ1+αθ

∥∥2

L2 ≤ 1

4

∥∥Λ1+αθ
∥∥2

L2 +
1

2
‖θ‖

L
4

2α−1

∥∥Λ2−αθ
∥∥

L
4

3−2α

≤ 1

4

∥∥Λ1+αθ
∥∥2

L2 + C
∥∥Λ3/2θ

∥∥2

L2 , (5.2)

where we used (2.2) and (5.1).

Now we use Fourier splitting method. Let BR = {ξ : |ξ| ≤ R}. Then

∥∥Λ3/2θ
∥∥2

L2 =

∫
BR

|ξ|3|θ̂|2(ξ)dξ +

∫
R2\BR

|ξ|3|θ̂|2(ξ)dξ

≤ R3‖θ‖2
L2 + CR1−2α

∥∥Λ1+αθ
∥∥2

L2 (5.3)
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and ∥∥Λ1+αθ
∥∥2

L2 ≥
∫

R2\BR

|ξ|2+2α|θ̂|2(ξ)dξ ≥ R2α

∫
R2\BR

|ξ|2|θ̂|2(ξ)dξ

= R2α

(∫
R2

|ξ|2|θ̂|2(ξ)dξ +

∫
BR

|ξ|2|θ̂|2(ξ)dξ
)

≥ R2α‖Λθ‖2
L2 − R2+2α‖θ‖2

L2 (5.4)

Putting (5.3) and (5.4) into (5.2) and letting R large enough such that CR1−2α ≤
1
4
, we have

d

dt
‖Λθ‖2

L2 +R2α‖Λθ‖2
L2 ≤ CR2+2α(1 + t)−

1
α , (5.5)

due to the decay rate (1.6).

Then (5.5) implies (1.7). Indeed, multiplying eR2αt on (5.5) and integrating

with respect to t, we obtained

‖Λθ‖2
L2 ≤ e−R2αt‖Λθ0‖2

L2 + CR2+2α

∫ t

0

e−R2α(t−s)(1 + s)−
1
αds

≤ e−R2αt‖Λθ0‖2
L2 + CR2+2α(1 + t)−

1
α .
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