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1 Introduction

A symmetric version of regularized long wave equation

uxxt − ut = ρx + uux, (1)

ρt + ux = 0. (2)

has been proposed as a model for propagation of weakly nonlinear ion acoustic and space-
charge waves [1]. The symmetric regularized long wave equation (1), (2) results first from
a weakly nonlinear analysis of the cold-electron fluid equations, the cold-electron equations
are as follows:

ρt + (ρu)x = 0, ut + (
1
2
u2)x = φx, φxx + φyy = ρ. (3)

where ρ, u, and φ are the dimensionless electron charge density, fluid velocity, and elec-
trostatic potential, respectively. Obviously, eliminating ρ from (1) and (2), we get a
symmetric regularized long wave equation

utt − uxx + (
1
2
u2)xt − uxxtt = 0, (4)

The SRLW equation (4) is explicitly symmetry in the x and t derivatives. The SRLW
equation (4) arises also in many other areas of mathematical physics [2-5]. The existence
and uniqueness of global solutions for the SRLW equation are obtained by Guo Boling in
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[6]. Recently, Chen Lin [7] studied the orbital stability and instability of solitary wave
solutions of the generalized SRLW equations

utt − uxx + f(u)xt − uxxtt = 0. (5)

In this paper, we will show that the unique continuation property holds for the
symmetric regularized long wave equation(SRLWE)

utt − uxx + (
1

p + 1
up+1)xt − uxxtt = 0, (6)

where p ≥ 1 is an integer. We consider (6) in −∞ < x < +∞, t ≥ 0. We will show
that, for the SRLW equation, if we consider a solution u of (6) in a suitable function
space,for example u ∈ C(Rt;H4

loc(Rx)) with ut ∈ C(Rt;H3
loc(Rx)), utt ∈ C(Rt;H2

loc(Rx))
and u vanishes in an open subset Ω of Rx × Rt then, u ≡ 0 in the horizontal component
of Ω. We recall that the horizontal component of an open subset Ω ⊆ Rx × Rt is defined
as the union of all segments t = constant in Rx ×Rt which contain a point of Ω.

The unique continuation property (UCP) has immediate applications to inverse prob-
lems and to optimal control theory( see Isakov [8] and Lions [9]) and has been intensively
studied for a long time. An important work on the subject was done by J C Saut and B
Scheurer [10]. They showed the validity of the UCP for a class of equations which includes

ut +
∂2k+1u

∂x2k+1
+

2k∑
j=0

aj(x, t)
∂ju

∂xj
= 0. (7)

Such class includes the well known Korteweg-de Vries equation

ut + uux + uxxx = 0. (8)

(take k = 1, a1(x, t) = u and aj ≡ 0 for all j �= 1 in (7)). An alternative proof was given by
Zhang B [11] using inverse scattering results. D Tataru [12] deduced some Carleman’s type
inequalities to study the UCP for Schrodinger’s type equation. Zhang Bingyu [13] proved
the validity of the UCP for nonlinear Schrodinger equation by using inverse scattering
approach. In 1997, Bourgain [14] introduced a different approach and prove that, if a
solution u to a dispersive equation has compact support in a nontrivial time interval
I = [t1, t2] then u vanishes identically. His argument is based on the analyticity of the
nonlinear term and the dispersion relation of the linear part of the equation. It also
applies to higher order dispersive nonlinear models, and to higher spatial dimensions.
More recently, Kenig et al.[15] proposed a new method and proved that, if a sufficiently
smooth solution u to a generalized KdV equation is supported in a half line at two different
instants of time then u vanishes identically. In [16] Kenig et al. studied unique continuation
property of solutions of nonlinear Schrödinger equations. In [17] Davila and Menzala
proved that the solutions of the BBM equation and Boussinesq’s equation enjoy the so-
called unique continuation property.

We base our analysis in finding appropriate Carleman-type estimates for the lin-
earized equations associated with (6). In order to do this we use a well known inequality
due to F.Treves combined with existing result on the Cauchy problem associated with (6).
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The plan of this paper is as follows. Some notations and spaces are given in Section
2, along with the statement of Treves’s inequality and a corollary in the appropriate form
we did use in this paper. In section 3, some results concerning the well posedness as well as
some technical theorems we shall use in the next section are presented. Section 4 contains
our main result and its proof. We first prove a Carleman-type inequality for an operator
closely related to our problem. As a consequence we get a local UCP for the solutions of
(6) and the final result follows by connectiveness.

2 Notation and Treves’ inequality

We begin with a brief synopsis of our notational conventions and function-space desig-
nations. The time derivative will be denoted by a subscript t, thus, ut = ∂u

∂t , utt = ∂2u
∂t2
,

etc. Spatial derivative will be denoted by a subscript x, thus, ux = ∂u
∂x , uxx = ∂2u

∂x2 , etc.
The space of C∞ functions defined on Ω ⊂ R with real values and compact support will
be denoted by C∞

0 (Ω). By Lp(Ω) we shall denote the space (classes of ) functions in Ω
with pth power is integrable, with the norm ‖f‖p

Lp(Ω) =
∫
Ω |f(x)|pdx, 1 ≤ p < +∞. By

L∞(Ω) we denote the space of measurable essentially bounded functions in Ω with the
norm ‖f‖L∞(Ω) = ess · supx∈Ω|f(x)|. If f : R → R belongs locally to Lp(R) we write
f ∈ Lp

loc(R). For each s ∈ R, the Sobolev space of order s is the completion of the
Schwartz space S(R) with respect to the norm

‖f‖2
Hs =

∫ +∞

−∞
(1 + |y|2)s|f̂(y)|2dy

where f̂ denotes the Fourier transform of f . IfX is a Banach space we denote by C(0, T ;X)
the space of continuous functions f : [0, T ] → X. Sometimes we will also consider the
space C(R;X) or C(−T, T ;X). By L2(−T, T ;X) we denote the space of functions u :
(−T, T )| → X such that

∫ T
−T ‖u(s)‖2

Xds < +∞. In order to point out the variation of the
time or spatial variables sometimes we write Rt or Rx instead of R.

Now we state Treves’ inequality and a corollary in the appropriate form we did use
it in this paper.

By Dj we denote partial derivative Dj = ∂
∂xj

with respect to the variable xj(1 ≤ j ≤
n),D = (D1,D2, · · ·,Dn. If X = (X1,X2, · · ·,Xn, let C[X] be the algebra of polynomials
in n variables. If P ∈ C[X] and p has constant coefficients and degree m then we consider
the differential operator P (D) =

∑
|α|≤m

aαD
α of order m where Dα = Dα1

1 , · · ·,Dαn
n and

|α| =
n∑

j=1
αj . By definition P (β)(X) = ∂|β|P (X)

∂x
β1
1 ···∂xβn

n

where β is given by β = (β1, ···, βn) ∈ Rn.

Theorem 1 ([19]). Let P = P (D) a differential operator of order m with constant
coefficients. Then, for any multi-index α, ξ ∈ Rn and φ ∈ C∞

0 (Rn) we have the inequality

2|α|

α!
ξ2α

∫
Rn

|P (α)(D)φ|2exp(ψ(y, ξ))dy

≤ C(m,α)
∫

Rn
|P (D)φ|2exp(ψ(y, ξ))dy, (9)
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where

ψ = ψ(y, ξ) =
n∑

j=1

y2
j ξ

2
j , ξ2α = ξ2α1

1 · · · ξ2αn
n .

if ξ = (ξ1, · · ·, ξn), α! = α1! · · ·αn! if α = (α1, · · ·, αn) ∈ Nn. The constant C(m,α) is given
by

C(m,α) =

{
sup|r+α|≤m((r+α)

α ), if |α| ≤ m,

0, if |α| > m

Corollary 1. Let P = P (D) = P ( ∂
∂x ,

∂
∂t) be a differential operator with constant coeffi-

cients and order m. Let δ > 0 and ϕ(x, t) = (x− δ)2 + δ2t2, then the inequality

1
α!

22|α|τ |α|δ2α2

∫
R2

|P (α)(D)φ|2exp(2τϕ)dxdt

≤ C(m,α)
∫

R2
|P (D)φ|2exp(2τϕ)dxdt (10)

holds ∀φ ∈ C∞
0 (R2),∀τ > 0 and α = (α1, α2) ∈ N2.

Proof. We use the above Theorem with the differential operator

Q(D) = P (D + a) = P (
∂

∂x
+ 2τδ,

∂

∂t
),

that is a = (2τδ, 0), τ > 0, y = (x, t), ξ = (ξ1, ξ2) = (
√

2τ ,
√

2τ). Thus, ψ(y, ξ) = 2τ(x2 +
δ2t2) and 2|α|ξ2α = 22|α|τ |α|δ2α2 . Inequality (9) reads

1
α!

22|α|τ |α|δ2α2

∫
R2

|P (α)(D + a)φ|2exp(2τ(x2 + δ2t2))dxdt

≤ C(m,α)
∫

R2
|P (D + a)φ|2exp(2τ(x2 + δ2t2))dxdt (11)

∀φ ∈ C∞
0 (R2) and any τ > 0. Multiply both sides of (11) by exp(2τδ2) to obtain

1
α!

22|α|τ |α|δ2α2

∫
R2

|exp(2τδx)P (α)(D + a)φ|2exp(2τ(x2 + δ2t2))dxdt

≤ C(m,α)
∫

R2
|exp(2τδx)P (D + a)φ|2exp(2τ(x2 + δ2t2))dxdt (12)

∀φ ∈ C∞
0 (R2),∀τ > 0 and α = (α1, α2) ∈ N2. In particular, we can choose φ =

φ̃exp(−2τδx) where φ̃ ∈ C∞
0 (R2). Observing that

exp(2τδx)P (D + a)[φ̃exp(−2τδx)] = P (D)φ̃

and
exp(2τδx)P (α)(D + a)[φ̃exp(−2τδx)] = P (α)(D)φ̃

because a = (2τδ, 0) then the proof of (10) is complete.
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3 Some Preliminary results

By standard method, we can easily deduce the global well posedness theorem as follows.
Theorem 2. Consider the initial value problem

utt − uxx + (
1

p + 1
up+1)xt − uxxtt = 0,

u(x, 0) = g(x), ut(x, 0) = h(x), (13)

in −∞ < x < ∞, t > 0 where p is an integer ≥ 1 . Assume that g(x) ∈ Hs(R), h(x) ∈
Hs(R), s ≥ 1. Then, there exists a unique solution u ∈ C(R+; ,Hs(Rx)), with ut ∈
C(R+;Hs(Rx)), utt ∈ C(R+; ,Hs(Rx)).

Proof. The result can be established analogous to those for the initial value problem

ut + ux + upux − uxxt = 0, x ∈ R, t > 0,
u(x, 0) = u0(x), x ∈ R. (14)

by Bisognin et al in [20].
Theorem 3. Let us consider the differential operator

L =
∂2

∂t2
− ∂4

∂x2∂t2
+k1

∂4

∂x4
+ k2

∂4

∂x3∂t
+

+ f1(x, t)
∂2

∂x2
+ f2(x, t)

∂2

∂x∂t
+ f3(x, t)

∂

∂x
(15)

where k1, k2 are two real constants and f1, f2, f3 ∈ L∞
loc(R

2). Let δ > 0 and Bδ = {(x, t) ∈
R2 such that x2 + t2 < δ2}. Then , the following inequality

τ2δ2
∫

Bδ

|3k2φxx − 4φxt|2exp(2τϕ)dxdt

+ 128τ3δ4
∫

Bδ

|φx|2exp(2τϕ)dxdt

+ 256τ4δ4
∫

Bδ

|φ|2exp(2τϕ)dxdt

+ 4τ2δ4
∫

Bδ

|φ− φxx|2exp(2τϕ)dxdt

≤ 16
∫

Bδ

|Lφ|2exp(2τϕ)dxdt (16)

holds for any φ ∈ C∞
0 (Bδ) and τ > 0 such that

τ ≥Max{ 4
δ2

‖f1‖L∞(Bδ),

√
2
δ

‖f2‖L∞(Bδ),

√
3|k2|‖f2‖L∞(Bδ)

2 4
√

2δ
,
‖f3‖

2
3

L∞(Bδ)

2δ
4
3

,
1
8
}

In (16) ϕ = (x− δ)2 + δ2t2.
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Proof. We use Treves’ inequality with the operator

P =
∂2

∂t2
− ∂4

∂x2∂t2
+ k1

∂4

∂x4
+ k2

∂4

∂x3∂t
. (17)

with the notation given in Section 2 we have that

P (ξ1, ξ2) = ξ22 − ξ21ξ
2
2 + k1ξ

4
1 + k2ξ

3
1ξ2. (18)

In this case we just need four terms of inequality (10): a) α = (1, 1), b) α = (1, 2) c)
α = (2, 2), and d)α = (0, 2). Straightforward calculations show that if α = (1, 1) then
C(m,α) = C(4, (1, 1)) = 4, and P (1,1)( ∂

∂x ,
∂
∂t)φ = 3k2φxx − 4φxt for any φ ∈ C∞

0 (Bδ).
Therefore, in case α = (1, 1), it follows from (10) that

4τ2δ2
∫

Bδ

|3k2φxx − 4φxt|2exp(2τϕ)dxdt

≤
∫

Bδ

|φtt − φxxtt + k1φxxxx + k2φxxxt|2exp(2τϕ)dxdt (19)

for any φ ∈ C∞
0 (Bδ) and τ > 0. If α = (1, 2) then C(m,α) = C(4, (1, 2)) = 3 and

P (1,2)( ∂
∂x ,

∂
∂t)φ = −4φx for any φ ∈ C∞

0 (Bδ). Thus, in case α = (1, 2), inequality (10)
reads

512τ3δ4
∫

Bδ

|φx|2exp(2τϕ)dxdt

≤ 3
∫

Bδ

|φtt − φxxtt + k1φxxxx + k2φxxxt|2exp(2τϕ)dxdt (20)

for any φ ∈ C∞
0 (Bδ) and τ > 0. If α = (2, 2) then C(m,α) = C(4, (2, 2)) = 1 and

P (2,2)( ∂
∂x ,

∂
∂t)φ = −4φ for any φ ∈ C∞

0 (Bδ). Therefore, (10) implies that

1024τ4δ4
∫

Bδ

|φ|2exp(2τϕ)dxdt

≤
∫

Bδ

|φtt − φxxtt + k1φxxxx + k2φxxxt|2exp(2τϕ)dxdt (21)

for any φ ∈ C∞
0 (Bδ) and τ > 0. Finally, if α = (0, 2) then C(m,α) = C(4, (0, 2)) = 6 and

P (0,2)( ∂
∂x ,

∂
∂x)φ = 2φ− 2φxx for any φ ∈ C∞

0 (Bδ). In this case, (10) becomes

16τ2δ4
∫

Bδ

|φ− φxx|2exp(2τϕ)dxdt

≤ 3
∫

Bδ

|φtt − φxxtt + k1φxxxx + k2φxxxt|2exp(2τϕ)dxdt (22)
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Adding (19), (20), (21) and (22) yields

τ2δ2
∫

Bδ

|3k2φxx − 4φxt|2exp(2τϕ)dxdt

+ 128τ3δ4
∫

Bδ

|φx|2exp(2τϕ)dxdt

+ 256τ4δ4
∫

Bδ

|φ|2exp(2τϕ)dxdt

+ 4τ2δ4
∫

Bδ

|φ− φxx|2exp(2τϕ)dxdt

≤ 2
∫

Bδ

|φtt − φxxtt + k1φxxxx + k2φxxxt|2exp(2τϕ)dxdt (23)

Now, if

τ ≥Max{ 4
δ2

‖f1‖L∞(Bδ),

√
2
δ

‖f2‖L∞(Bδ),

√
3|k2|‖f2‖L∞(Bδ)

2 4
√

2δ
,
‖f3‖

2
3

L∞(Bδ)

2δ
4
3

,
1
8
}

then ∫
Bδ

|f1(x, t)φxx|2exp(2τϕ)dxdt

+
∫

Bδ

|f2(x, t)φxt|2exp(2τϕ)dxdt +
∫

Bδ

|f3(x, t)φx|2exp(2τϕ)dxdt

≤ ‖f1‖2
L∞(Bδ)

∫
Bδ

|φxx|2exp(2τϕ)dxdt + ‖f2‖2
L∞(Bδ)

∫
Bδ

|φxt|2exp(2τϕ)dxdt

+ ‖f3‖2
L∞(Bδ)

∫
Bδ

|φx|2exp(2τϕ)dxdt

≤ τ2δ4

16

∫
Bδ

|φ− φxx|2exp(2τϕ)dxdt + 16τ4δ4
∫

Bδ

|φ|2exp(2τϕ)dxdt

+ 8τ3δ4
∫

Bδ

|φx|2exp(2τϕ)dxdt +
τ2δ2

16

∫
Bδ

|3k2φxx − 4φxt|2exp(2τϕ)dxdt

≤ 1
8

∫
Bδ

|φtt − φxxtt + k1φxxxx + k2φxxxt|2exp(2τϕ)dxdt (24)

Since

|φtt − φxxtt + k1φxxxx + k2φxxxt|2
= |Lφ− f1φxx − f2φxx − f3φx|2
≤ 4|Lφ|2 + 4|f1φxx|2 + 4|f2φxt|2 + 4|f3φx|2,

Thus the right hand side of (24) is bounded by

≤ 1
2

∫
Bδ

|Lφ|2exp(2τϕ)dxdt +
1
2

∫
Bδ

|f1φxx|2exp(2τϕ)dxdt

+
1
2

∫
Bδ

|f2φxt|2exp(2τϕ)dxdt +
1
2

∫
Bδ

|f3φx|2exp(2τϕ)dxdt (25)
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Now, from (24) and (25) we deduce that∫
Bδ

|f1φxx|2exp(2τϕ)dxdt +
∫

Bδ

|f2φxt|2exp(2τϕ)dxdt

+
∫

Bδ

|f3φx|2exp(2τϕ)dxdt

≤
∫

Bδ

|Lφ|2exp(2τϕ)dxdt. (26)

Returning to inequality (24) we conclude that∫
Bδ

|φtt − φxxtt + k1φxxxx + k2φxxxt|2exp(2τϕ)dxdt ≤ 8
∫

Bδ

|Lφ|2exp(2τϕ)dxdt.

which together with inequality (23) proves Theorem 3.
Corollary 2. Let T > 0. Under the assumptions of Theorem 3 then inequality (16)

holds if we replace φ(x, t) by a function v(x, t) such that v ∈ L2(−T, T ;H4
loc(Rx)) with

vt ∈ L2(−T, T ;H3
loc(Rx)) and vtt ∈ L2(−T, T ;H2

loc(Rx)) and the support of v is compact
set contained in Bδ = {(x, t) : x2 + t2 < δ2}.

Proof. Let {ρε} be a regularizing sequence (in two variables) and consider vε = ρε ∗v
where ∗ denotes the usual convolution. It follows that vε ∈ C∞

0 (Bδ) therefore inequality
(16) holds for vε, that is

τ2δ2
∫

Bδ

|3k2
∂2vε

∂x2
− 4

∂2vε

∂x∂t
|2exp(2τϕ)dxdt

+ 128τ3δ4
∫

Bδ

|∂vε

∂x
|2exp(2τϕ)dxdt

+ 256τ4δ4
∫

Bδ

|vε|2exp(2τϕ)dxdt

+ 4τ2δ4
∫

Bδ

|vε − ∂2vε

∂x2
|2exp(2τϕ)dxdt

≤ 16
∫

Bδ

|Lvε|2exp(2τϕ)dxdt (27)

where L is given by (15) and τ ≥Max{ 4
δ2 ‖f1‖L∞(Bδ),

√
2

δ ‖f2‖L∞(Bδ),

√
3|k2|‖f2‖L∞(Bδ)

2 4√2δ
,
‖f3‖

2
3
L∞(Bδ)

2δ
4
3

, 1
8}.

SinceDαvε = ρε∗Dαv whereDα denotes either one of the operators: I = identity, ∂
∂x ,

∂
∂t ,

∂2

∂x2 ,
∂2

∂x∂t ,
∂4

∂x2∂t2 ,
∂4

∂x4 ,
∂4

∂x3∂t then, we have that Dαvα → Dαv in L2(Bδ) as ε→ 0+. Consequently we
have that

‖(Dαvα)exp(τϕ) − (Dαv)exp(τϕ)‖L2(Bδ) ≤ C‖(Dαvα) − (Dαv)‖L2(Bδ) → 0

as ε→ 0. Here C is a positive constant depending only on τ and δ. Similarly we can show
that

(f1(x, t)
∂2vε

∂x2
)exp(τϕ) → (f1(x, t)

∂2v

∂x2
)exp(τϕ);
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(f2(x, t)
∂2vε

∂x∂t
)exp(τϕ) → (f2(x, t)

∂2v

∂x∂t
)exp(τϕ)

(f3(x, t)
∂vε

∂x
)exp(τϕ) → (f3(x, t)

∂v

∂x
)exp(τϕ)

in L2(Bδ) as ε → 0+. We have shown that L(vε)exp(τϕ) → (Lv)exp(τϕ) in L2(Bδ) as
ε→ 0+ which allows us to pass to the limit in (25) to conclude the proof of Corollary 2.

4 Main Result and Its Proof

Theorem 4. Let T > 0 and f1, f2, f3 ∈ L∞
loc(Rx × (−T, T )), k ∈ R. Consider the

differential operator

L =
∂2

∂t2
− ∂4

∂x2∂t2
+ k1

∂4

∂x4
+ k2

∂4

∂x3∂t
+ f1

∂2

∂x2
+ f2

∂2

∂x∂t
+ f3

∂

∂x
.

Let u = u(x, t) be a solution of Lu = 0 inRx×(−T, T ) such that u ∈ L2(−T, T ;H4
loc(Rx)), ut ∈

L2(−T, T ;H3
loc(Rx)) and utt ∈ L2(−T, T ;H2

loc(Rx)). Let

ũ =

{
u, if t ≥ 0,
0, if t < 0.

Let α > 0 and suppose that ũ ≡ 0 in the region {(x, t) : x < αt} intercepted with a
neighborhood of (0, 0). Then there exists a neighborhood O2 ( in the plane xt ) such that
ũ ≡ 0 in O2.

Proof. Let 0 < δ < min{1, α} and Bδ = {(x, t) : x2 + δ2 < δ2}. Choose h ∈ C∞
0 (Bδ)

such that h ≡ 1 in a neighborhood O1 and define v = v(x, t) as v = hũ. It follows that
v ∈ L2(−T, T ;H4

loc(Rx)), vt ∈ L2(−T, T ;H3
loc(Rx)) and vtt ∈ L2(−T, T ;H2

loc(Rx)) and it
has compact support in Bδ. Using Corollary 2 we obtain that

16τ4δ4
∫

Bδ

|v|2exp(2τϕ)dxdt ≤
∫

Bδ

|Lv|2exp(2τϕ)dxdt, (28)

where τ ≥ Max{ 4
δ2 ‖f1‖L∞(Bδ),

√
2

δ ‖f2‖L∞(Bδ),

√
3|k2|‖f2‖L∞(Bδ)

2 4√2δ
,
‖f3‖

2
3
L∞(Bδ)

2δ
4
3

, 1
8}. and ϕ =

(x − δ)2 + δ2t2. Since Lv = 0 in O1 then integration on the right hand side of (28)
is only over Bδ − O1. If (x, t) belongs to the support of v then 0 ≤ αt ≤ x < δ < 1. In
that region and for (x, t) �= (0, 0) we have the inequalities

ϕ = (x− δ)2 + δ2t2 ≤ (αt− δ)2 + δ2t2

=δ2 + (α2 + δ2)t2 − 2αδt < δ2.

Since ϕ(0, 0) = δ2 then, it follows that if (x, t) belongs to the support of Lv then there
exists ε > 0, (ε < δ2) such that ϕ(x, t) ≤ δ2 − ε. Now, we choose a neighborhood O2 of
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(0, 0) such that ϕ(x, t) > δ2 − ε in O2. From (28) and the above construction we obtain
the inequalities

16τ4δ4exp(2τ(δ2 − ε))
∫
O2

|v|2dxdt

≤ 16τ4δ4exp(2τ(δ2 − ε))
∫

Bδ

|v|2dxdt

≤ 16τ4δ4
∫

Bδ

|v|2exp(2τ(δ2 − ε))dxdt ≤
∫

Bδ

|Lv|2exp(2τϕ)dxdt

≤
∫

Bδ−O1

|Lv|2exp(2τϕ)dxdt

≤ exp(2τ(δ2 − ε))
∫

Bδ−O1

|Lv|2dxdt

which gives us ∫
O2

|v|2dxdt ≤ 1
16τ4δ4

∫
Bδ−O1

|Lv|2dxdt (29)

Letting τ → +∞ in (29), it follows that v ≡ 0 in O2. Since ũ ≡ v in O1 ⊃ O2 then
the proof of Theorem 4 is complete.

Similarly, we can also show
Theorem 5. Let T > 0 and f1, f2, f3 ∈ L∞

loc(Rx × (−T, T )), k ∈ R. Consider the
differential operator

L =
∂2

∂t2
− ∂4

∂x2∂t2
+ k1

∂4

∂x4
+ k2

∂4

∂x3∂t
+ f1

∂2

∂x2
+ f2

∂2

∂x∂t
+ f3

∂

∂x
.

Let u = u(x, t) be a solution of Lu = 0 inRx×(−T, T ) such that u ∈ L2(−T, T ;H4
loc(Rx)), ut ∈

L2(−T, T ;H3
loc(Rx)) and utt ∈ L2(−T, T ;H2

loc(Rx)). Let

ũ =

{
0, if t > 0,
u, if t ≤ 0.

Let α < 0 and suppose that ũ ≡ 0 in the region {(x, t) : x < αt} intercepted with a
neighborhood of (0, 0). Then there exists a neighborhood O3 ( in the plane xt ) such that
ũ ≡ 0 in O3.

Theorem 6. Let T > 0 and u(x, t) be a solution of

utt − uxx − uxxtt + a(x, t)uxt + b(x, t)ux = 0 (30)

in −∞ < x, t < +∞ such that u ∈ L2(−T, T ;H4
loc(Rx)), ut ∈ L2(−T, T ;H3

loc(Rx)) and
utt ∈ L2(−T, T ;H2

loc(Rx)). In (29) it is assume that the coefficient a(x, t), b(x, t) ∈
L∞

loc(Rx × (−T, T )). Let γ be a circumference passing through the origin (0, 0). Sup-
pose that u ≡ 0 in the interior of the circle (with boundary γ ) in a neighborhood of (0, 0).
Then, there exists a neighborhood of (0, 0) where u ≡ 0.

Proof. In order to simplify the calculations, let us assume that the circumference ( a
piece of it ) γ is given by x = g(t) with g′′(t) < 0 in a neighborhood of (0, 0). Thus, u ≡ 0
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in the region {(x, t), x < g(t)}. It follows that there exists w �= 0, (w �= 1) such that u ≡ 0
in a neighborhood of (0, 0) in the region {(x, t), x < h(t)} where

h(t) =

{
wt, if t ≥ 0,
− 1

w t, if t < 0.

Now, we consider the following change of variables

(x, t) �→ (x− h(t) + |t|, t) = (y, s).

In the new variables the function u = u(y, s) satisfies{
L1u = 0, if s ≥ 0,
L2u = 0, if s < 0.

where

L1 =
∂2

∂s2
− ∂4

∂y2∂s2
− (1 − w)2

∂4

∂y4
− 2(1 −w)

∂4

∂y3∂s

+ [a(y, s)(1 − w) + w2 − 2w]
∂2

∂y2
+ [a(y, s) + 2(1 − w)]

∂2

∂y∂s
+ c(y, s)

∂

∂y

and

L2 =
∂2

∂s2
− ∂4

∂y2∂s2
− (

1
w

− 1)2
∂4

∂y4
− 2(

1
w

− 1)
∂4

∂y3∂s

+ [a(y, s)(
1
w

− 1) +
1
w2

− 2
1
w

]
∂2

∂y2
+ [a(y, s) + 2(

1
w

− 1)]
∂2

∂y∂s
+ c(y, s)

∂

∂y

Observe that u ≡ 0 in the region {(y, s), y < |s|} in a neighborhood of (0, 0). We use
Theorem 4 and Theorem 5 to conclude that there exists a neighborhood of (0, 0) in the
plane ys where u ≡ 0. Returning to the original variables xt we conclude the proof of
Theorem 6.

Theorem 7. (Unique continuation). Let T > 0 and u = u(x, t) be a solution of the
generalized symmetric regularized long wave equation

utt − uxx − uxxtt + upuxt + pup−1utux = 0

in −∞ < x, t < +∞ where p ≥ 1. Assume that u ∈ L∞(−T, T ;H4
loc(Rx)), ut ∈ L∞(−T, T ;

H3
loc(Rx)) and utt ∈ L∞(−T, T ;H2

loc(Rx)). If u ≡ 0 in an open subset Ω of Rx × (−T, T ),
then u ≡ 0 in the horizonal component of Ω.

Proof. Since a(x, t) = up ∈ L∞
loc(Rx×(−T, T )), b(x, t) = pup−1ut ∈ L∞

loc(Rx×(−T, T ))
then it is sufficient to prove the above result for the equation

utt − uxx − uxxtt + a(x, t)uxt + b(x, t)ux = 0

Let

Λ = {(x, t) ∈ Rx × (−T, T ) such that u ≡ 0 in a neighbourhood of (x, t)}.
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We want to show that Λ coincides with the horizontal component of Ω which we denote
by Ω1. Suppose that they are not equal. Let P ∈ Λ and Q ∈ Ω1. Let Γ be a continuous
curve (contained in Ω1 joining p to Q. Let us parameterize Γ by a function f(s), 0 ≤ s ≤ 1
with f(0) = P, f(1) = Q. Let r0 > 0, r0 < dist(Γ, ∂Ω1), (where ∂Ω1 denotes the boundary
of Ω1) and such that the ball Br0(P ) centered at P with radius r0 is contained in Λ. Let
r1 <

r0
4 and consider the set

Λ1 = {(x, t) ∈ Λ such that u ≡ 0 in Br1(x, t) ∩ Ω1}

where Br1(x, t) denotes the ball of radius r1 centered in (x, t). Let s0 = sup{0 ≤ s ≤
1 such that f(τ) ∈ Λ1 whenever 0 ≤ τ ≤ s}. We claim that s0 = 1. Clearly,
this claim proves Theorem 7 because Q = f(1) ∈ Λ1 therefore u ≡ 0 in Br1(Q) ∩ Ω1.
Consequently u ≡ 0 in Ω1 because Ω was arbitrary chosen. Remains to prove the claim.
First, let us show that B r1

2
(f(s0)) ⊆ Λ. In fact, given ε > 0, ε < r1

2 there exists δ > 0, δ <
s0 such that

|f(s0) − f(s0 − δ)| < ε <
r1
2

therefore if w ∈ B r1
2

(f(s0)) then

|w − f(s0 − δ)| ≤ |w − f(s0)| + |f(s0) − f(s0 − δ)| < r1.

since f(s0 − δ) ∈ Λ1 then f(s0 − δ) ∈ Λ and u ≡ 0 in

Br1(f(s0 − δ)) (because Br1(f(s0 − δ)) ⊆ Ω1).

Thus, w ∈ Λ1 ⊆ Λ. Finally, let us suppose that s0 < 1. We use Theorem 6 to deduce that
for each element of

F = {y ∈ Ω1 such that |y − f(s0)| =
r1
2
}

there exists a neighborhood where u ≡ 0. using the compactness of F we conclude that
there exists ε1 > 0 such that u ≡ 0 in B r1

2
+ε1

(f(s0)), this implies that we could find δ1 > 0
and ξ0 such that for 0 ≤ ξ0 ≤ s0 + δ1 we have f(ξ0) ∈ Λ1 which contradicts the definition
of s0. This proves Theorem 7.
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