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Abstract

The contact discontinuity is one of the basic wave patterns in gas motions. The
stability of contact discontinuities with general perturbations is a long standing
open problem. One of the reasons is that contact discontinuities are linearly de-
generate waves in the nonlinear settings, like the Navier-Stokes equations and the
Boltzmann equation. The nonlinear diffusion waves generated by the perturbations
in sound-wave families couple and interact with the contact discontinuity and then
cause analytic difficulties. Another reason is that in contrast to the basic nonlinear
waves, shock waves and rarefaction waves, for which the corresponding characteris-
tic speeds are strictly monotone, the characteristic speed is constant across a contact
discontinuity, and the derivative of contact wave decays slower than the one for rar-
efaction wave. In this paper, we succeed in obtaining the time asymptotic stability
of a damped contact wave pattern with an convergence rate for the Navier-Stokes
equations and the Boltzmann equation in a uniform way. One of the key observa-
tions is that even though the energy estimate involving the lower order may grow
at the rate (1 + t)%, it can be compensated by the decay in the energy estimate for
derivatives which is of the order of (1 + t)_%. Thus, these reciprocal order of decay
rates for the time evolution of the perturbation are essential to close the priori es-
timate containing the uniform bounds of the L*° norm on the lower order estimate
and then it gives the decay of the solution to the contact wave pattern.

1 Introduction

The study of fluid motion has a very long history and the pioneering work on nonlinear
wave phenomena dates back to Riemann in 1860s on gas dynamics. Now it is well known
that the hyperbolic conservation laws in the form of

U+ FU), =0, (1.1)

have three basic wave patterns in one dimensional space. And as a typical example of
(1.1), Euler equations consist of conservation of mass, momentum and energy. Among
these basic wave patterns, two are nonlinear waves, shock and rarefaction wave, and the
other one is linearly degenerate wave, contact discontinuity. These dilation invariant
solutions [52], [15], and their linear superposition in the increasing oeder of characteristic
speed, called Riemann solutions, govern both the local and large time asymptotic behavior
of general solutions to the inviscid Euler system [36]. Since the inviscid system (1.1) is
an idealization when the dissipative effects are neglected, thus it is of great importance
to study the large time asymptotic behavior of solutions to the corresponding viscous
systems in the form of

Uy + F(U), = (BU)UL). (1.2)

toward the viscous versions of these basic waves. As a basic system for viscous fluid, the
Navier-Stokes equations which include the effects of viscosity and heat conductivity, have
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the above wave phenomena which are smoothed out by the dissipative effect. Furthermore,
coming from statistics physics for rarefied gas, the Boltzmann equation which describes
the macroscopic and microscopic aspects in the non-equilibrium gas motion, has similar
wave phenomena as we will show later.

In this paper, we are going to study the stability of the linearly degenerate wave,
i.e., damped contact discontinuity, with general perturbations for both the Navier-Stokes
equations and the Boltzmann equation in a uniform way. It is somehow surprising that
the energy method can be applied to capture the coupling of the contact discontinuity
with the diffusion waves created by the perturbations in the sound wave families so that
a priori estimate can be closed with a convergence rate on the solution to the wave profile
time asymptotically.

In the first part of the paper, we will consider the Navier-Stokes equations. Indeed,
there have been great interests and intensive studies in the respect of wave phenomena
in the development of the mathematical theory for viscous systems of conservation laws
since 1985, started with studies on the nonlinear stability of viscous shock profiles by
Goodman [21] and Matsumura-Nishihara [44]. Deeper understanding has been achieved
on the asymptotic stability toward nonlinear waves, viscous shock profiles and viscous
rarefaction waves, which have been shown to be nonlinearly stable with quite general
perturbations for the compressible Navier-Stokes system and more general system of vis-
cous strictly hyperbolic conservation laws (1.2). Moreover, some new phenomena have
been discovered and new techniques, such as weighted characteristic energy methods and
uniform approximate Green’s functions, have been developed based on the intrinsic prop-
erties of the underlying nonlinear waves, see [30], [32], [38], [54], [37] [55], [46], [48] and
the references therein.

However, the problem of stability of contact discontinuities is more subtle and the
progress has been less satisfactory, except the studies in [25], [27], [29], [40], [59]. One
of the main reasons is the contact discontinuities are associated with linear degenerate
fields and are less stable compared with the nonlinear waves for the inviscid system (1.1),
[36]. Thus the stabilizing effects around a damped contact wave pattern for Navier-Stokes
equations should come mainly from the viscosity and heat conductivity. A general pertur-
bation of a contact wave may introduce waves in the nonlinear sound wave families, and
interactions of these waves with the linear contact wave are some of the major difficul-
ties to overcome, see [59], [40] and [27]. Another technical difficulty is that the viscosity
matrix for the compressible Navier-Stokes equations is only semi-positive definite.

The mathematical aspect on the stability toward contact waves for solutions to sys-
tems of viscous conservation laws was first studied by Xin in [59], where the metastability
of a weak contact discontinuity for the compressible Euler equations with uniform viscos-
ity, was proved by showing that although a contact discontinuity is not an asymptotic
attractor for the viscous system, yet a viscous contact wave, which approximates the con-
tact discontinuity on any finite time interval, is asymptotically nonlinear stable for small
generic perturbations and the detailed asymptotic behavior can be determined a priorily
by initial mass distribution. This was later generalized by Liu-Xin in [40] to show the
metastability of contact discontinuities for a class of general systems of nonlinear con-
servation laws with uniform viscosity, and obtain pointwise asymptotic behavior toward
viscous contact wave by approximate fundamental solutions, which also leads to the non-
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linear stability of the viscous contact wave in LP-norms for all p > 1. However, the theory
in [40] and [59] does not apply to the compressible Navier-Stokes system since its viscosity
matrix B(U) in (1.2) is only semi-positive definite.

For a free boundary value problem to the Navier-Stokes equations with a particle
path as free boundary, the nonlinear stability of a viscous contact wave is proved in the
super-norm through the energy method by Huang-Matsumura-Shi in [25]. However, the
approach can not be applied here to study the asymptotic behavior toward contact waves
for solutions to Cauchy problems of the Navier-Stokes equations since the analysis in [25]
depends crucially on the availability of Poincaré type inequality, which does not hold in
the whole space. Recently, a more satisfactory answer was obtained in [27] which shows
that for a weak contact discontinuity for the compressible Euler system, one can construct
a smooth viscous contact wave for the Navier-Stokes system solves Euler equations as-
ymptotically, and approximates the given contact discontinuity on any finite time interval,
and such a viscous contact wave is nonlinearly stable under small initial perturbation with
zero mass condition. There the stability is in sup-norm and a rate of convergence is also
obtained. Notice that the convergence rate to either the viscous shock wave or viscous
rarefaction wave has not been achieved yet for the compressible Navier-Stokes system, see
[30], [38], [48]. However, the rate of decay obtained in the form of (1 4 ¢)~1 may not be
optimal. Motivated by the pointwise behavior toward viscous contact waves for solutions
to the Euler system with uniform viscosity (see [59] and [40]), one would conjecture that
its decay rate could be improved to (1 + t)’%.

In [27], the major assumption in the stability theory is the initial zero excessive mass
condition which excludes the possible presence of diffusion waves in the sound wave fam-
ilies. As it is shown in [59] and [40] for the compressible Euler equations with uniform
viscosity, a generic perturbation of a viscous contact wave introduces not only a shift
with center of the viscous contact wave, but also nonlinear and linear diffusion waves.
Although, it is expected that the same phenomena remain true for the compressible
Navier-Stokes system, yet a rigorous mathematical proof has remained to be given. Note
that the fine accurate asymptotic ansatz as in [59] and [40] may not be necessary for
the stability theory toward contact waves in the super-norm. The main purpose of this
paper is to overcome the difficulty for the excessive mass and obtain the stability and
convergence rate for the viscous contact waves. Therefore, it gives a satisfactory answer
to the problem on the stability of contact discontinuity in the gas motion.

In the second part of the paper, we consider the stability of contact wave profile for the
Boltzmann equation. The Boltzmann equation is a fundamental equation, which gives a

statistical description of the time evolution of particles in rarefied gas. It takes the form
of

i+ &V =Qf. f), (f,a,t,) € RxR* x RT x R, (1.3)

where f is the distribution function of the particles and Q(f, f) is the collision operator
which gives the gain and loss rate of the particle distribution function through collision.
The detailed definition of each terms in (1.3) will be given in the next section.

Since its derivation by Boltzmann in 1872, the mathematical problems on (1.3) have
been extensively studied with fruitful results. Among them, we mention a few as: the
renormalized solution, fluid dynamic limits, global existence around a global Maxwellian,



Contact Discontinuity D

regularity of the solutions, cf. [5], [6], [16], [19], [34] and references therein. Since they are
not directly related to our problem considered here, we will not discuss them in details.
Notice that the energy method making uses of the spectrum properties of the linearized
operator which was from Grad to Ukai gives a good description of the perturbation of
a global Maxwellian, cf. [22], [51], [56], [57]. Recently, the energy method based on the
decomposition has been developed and used for the study of existence, stability and large
time behavior of the solutions. One way is to decompose the solution and the equation
around the local Maxwellian so that the techniques used for fluid dynamics can be applied
and solution around non-trivial time asymptotic solution profile can be studied clearly,
cf. [41] and [43]. Another way is to decompose the solution around a global Maxwellian
as in [23] for the problems on space periodic solutions.

One of the most important properties of the Boltzmann equation is its asymptotic
equivalence to the macroscopic fluid dynamics equations. In fact, the first order of the
Hilbert expansion for the Boltzmann equation is the system of Euler equation and the
second order of the Chapman-Enskog expansion gives the system of the Navier-Stokes
equations. Hence, one can expect the wave phenomena for the macroscopic fluid dynamics
also exist in the solutions to the Boltzmann equation. In fact, there is a series of work
on the wave phenomena for the Boltzmann equation starting from the existence of shock
profile proved by [9]. Recently, the nonlinear stability of shock profiles, rarefaction wave
profiles and contact wave for the Boltzmann equation are also studied through energy
method and a decomposition of the solution and the equation into fluid and non-fluid
components [43], [42], [28]. As a continuation in this direction, we consider the stability
of the contact discontinuity with generic perturbation in this paper.

One of the fundamental properties of the Boltzmann equation is the celebrated H-
theorem which implies that the solution is time irreversible so that the mathematical
entropy is decreasing in time for non-equilibrium gas. There are two ways to view this
dissipative effect. One is from the linearized version of the collision operator which dissi-
pates on the sub-space( non-fluid components) orthogonal to the null space( fluid compo-
nents) of this linearized operator. This in some sense implies that the gas approaches to
equilibrium as time tends to infinity. Another consideration comes from the dissipation
through the fluid entropy in the nonlinear setting. In this case, the dissipative effect indeed
corresponds to those from the viscosity and heat conductivity as for the Navier-Stokes
equations.

Now we come back to the stability of a wave pattern. For a non-trivial solution
profile connecting two different global Maxwellians at © = Zo0, it is reasonable and
better to decompose the Boltzmann equation and its solution with respect to the local
Maxwellian. This kind of decomposition was introduced in [41], [43] by rewritting the
Boltzmann equation into a fluid-type dynamics system with the non-fluid component
appearing in the source terms, coupled with an equation for the time evolution of the
non-fluid component. In fact, set, cf. [41], [47],

f<x7t7 g) = M(I‘, t?f) + G(SC7 t7€)7

where the local Maxwellian M and G represent the fluid and non-fluid components in
the solution respectively. Here, the local Maxwellian M is defined by the five conserved
quantities, that is, the mass density p(x,t), momentum m(x,t) = p(z, t)u(x,t), and energy
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density (E(z,t) + 3|u(x,t)[*). As presented in the next section, the governing system for
the fluid components is of fluid-type so that the techniques for Navier-Stokes equations
can be applied with some extra terms coming from the non-fluid component. Moreover,
the dissipative effect of the linearized operator on the non-fluid component helps to close
the energy estimate for the Boltzmann equation.

Similar to the Navier-Stokes equations, the dissipative effect in the Boltzmann equa-
tion also spreads out the contact discontinuity so that it behaves like a nonlinear diffusion
wave. In the ansatz given in the next section, we can see that the contact wave profile for
the Boltzmann equation is exactly the local Maxwellian defined by the contact wave pro-
file for the corresponding Navier-Stokes equations. By using the fluid dynamic structure
of the system for conserved quantities and the dissipation on the non-fluid component,
we succeed in obtaining similar growth and decay rates for different order of energy esti-
mates. As in the case for Navier-Stokes equations, the cancellation between the growth
and decay rates in lower and higher order estimates leads to an uniform L°° estimate
on the solution to the Boltzmann equation thus the convergence to the local Maxwellian
defined by the contact wave pattern time asymptotically.

The rest of the paper will be arranged as follows. In the next section, we will give
the ansatz to each problem and state the main results in this paper. The proofs of the
theorems for the Navier-Stokes equations and the Boltzmann equation will be given in
Sections 3 and 4 respectively.

2 Ansatz and main theorems

2.1 Compressible Navier-Stokes equations

Consider the one dimensional compressible Navier-Stokes equations in Lagrangian

coordinates:
vy — Uy = 0,

U+ po = (=) (2.a1)
e+%), + (u)e = (%2 4+ )
e+ — )y = (k— o

2 ¢ p v H v

where v(x,t) > 0 denotes the specific volume, u(z,t) the velocity, (x,t) > 0 the absolute
temperature, p > 0 the viscosity and x > 0 the coefficient of heat conduction. Here we
study the perfect gas so that the pressure p and the internal energy e are given respectively
by

p= R_Q’ e= ilﬁ + const. (2.a2)

v v —
where v > 1 is the adiabatic exponent and R > 0 is the gas constant. The initial data
(vo, uo, bp) () satisfies

(vo, g, 00)(z) — (v4,0,01) as x — foo (2.a3)

and
B RO_ B RO,

= pL. 2.a4
v vy D+ (2.a4)

p_:
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We are interested in the asymptotic behavior toward to contact discontinuity for so-
lutions to the compressible Navier-Stokes system with general initial perturbation. First,
we recall the contact wave (9, %, 0)(z, t) for the compressible N-S equations defined in [27].
For the corresponding Euler equations

vy — Uy = 0,
bt —H;jg =0, (2.ab)
(6 + ?)t + (pu)x = 07

a contact discontinuity takes the form

om0 ={ (ore ) L0 2t

if the positive constants vy and 6. satisfy (2.a4). In the setting of compressible Navier-
Stokes equations, the contact wave profile (v,,6)(x,t) becomes smooth and behaves
as a diffusion wave due to the dissipation effect. From [27], the pressure of the profile
(v,u,0)(x,t) is almost constant, i.e.

p= 7 ~ P+ (2@7)

which indicates the leading part of the energy equation (2.al)s is

0a
N — 1815 T DUz = K(;)w (2.a8)

By (2.a8) and the mass equation (2.al);, we obtain a nonlinear diffusion equation,

kpi(y — 1)

Qt = a(g)x, a = T > 0. (2@9)
From [2] and [17], (2.a9) has a unique self similarity solution ©(&),{ = 75 with the
boundary conditions

O(—o00,t) =0_, ©O(+o00,t) =0,.
Furthermore, by letting 6 = |#, — 6_|, © satisfies

04 2?2

0. =000)(1+ t)*%ef‘laz—rlﬂ), as x — F00,

04 a2 0.1 2 (2.&10)
+Z 4z
© —0_| < Cde 8atx0 | 1 <0, |©—0,]<Cde satFn, x> 0.
Once O is determined, the contact wave profile (v, 4, ) is then defined as follows:
R R _ -1
=20, a=-Lo, f-—0-1_"3 (2.a11)
P+ p+© 2R

It is straightforward to check that (v, 4, ) satisfies

(6 =V, i—U,0 —8)|p = O(k%)(1+1)%, p> 1,
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which means the nonlinear diffusion wave (v, @, #) approximates the contact discontinuity
(V,U,©) to the Euler equation (2.a3) in L? norm, p > 1 on any finite time interval as
the heat conductivity coefficient x tends to zero.

On the other hand, substituting (2.all) into (2.al), we get

T_}t — ﬂx - 0, _

I Uy

U+ Pe = 7 )e + Bz, (2.a12)
ot _ 0, [T

(e+ E)t + (ptt). = F&(g)x + (Euux>x + Ray,

— ]_ _1‘ _ _ o 6 ac2
Ry = (M - N)% +p—pr =00)(1+1t) e 4“(i1+t), as |x| — oo, (2.a13)

-1 Uy 3 _i
Ro= (02D )™y (5 payi = 00)(1 + ) Ee 55, as o] - 0. (2a14)
v
Denote the conserved quantities by
—1 _ —1
m(z,t) = (v,u, 0+ SR u?), m(w,t) = (v,a,0 + 72—Rﬂ2)t’ (2.al5)

where ()* means the transpose of the vector (). At the far fields x = £o0, the vectors
m and m are the same, that is mi = (vi, 0,604)". Since we consider the general initial
perturbation here, the integral [*_(m(z,0) — m(z,0))dz may not be zero in general.
Hence, the mass distributes in all characterlstlc fields when time evolves, which introduces
diffusion waves in the two nonlinear sound wave families as in [59] and [40]. Thus we need
to construct two diffusion waves #; and 03 to carry the exceed mass in the first and third
characteristic fields respectively. In fact, let

0 —1 0
Av,u,0) = —b 0 & (2.a16)
_Ga=bpu 4=t (=Du
Rv R p v

be the Jacobi matrix of the flux (—u, p, };1 pu)t. Then, it is straightforward to check that
the first eigenvalue of A(v_,0,0_) is A\| = —, /2%~ with right eigenvector

Ty = (_17 >\I7 TP*Y‘ (20“17)

Similarly, the third eigenvalue and right eigenvector of A(v,,0,0,) are respectively \i =

/2 and
vy

v—1
T;_ - (_17 /\E’i_? Tp—l-)t' (2&18)
By strict hyperbolicity, the vectors r{, my — m_ (vy—v_,0,0,—0_)" and r7 are linearly
independent in R3. Thus, the integral [~ (m(x,0) — m(z,0))dz can be distributed as
follows -
/ (m(z,0) — m(x,0))dz = Gyre + Os(ms —m_) + a1, (2.a19)
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with some constants 6;,7 = 1,2,3. Now we can define the ansatz m(z,t) by

m(x,t) = m(x + 0y,t) + 0,017 + 030317, (2.a20)
where
1 7($—A1_(1+t))2 1 7(z—>\é|'(l+t))2
01(z,t) = ———e 1 O3(x,t) = ——e a1+ (2.a21)
Am(1+1) Am(1 +t)
satisfying
elt + )\1_9131 - 91@‘:{:7 0315 + )\{—5’—93@‘ = 03:1::87 (2&22)

and ffooo O;(z,t)dr =1 for i = 1,3, and all ¢ > 0 respectively. More precisely, the ansatz
m has the following expression

A
m(z,t) = (0,40 + —a)(x, 1), (2.a23)
2R

with
6(I,t) = ’U(l‘ —+ H:Q,t) — 9_16’17— 6_393, B
’lNL(I, t) = ﬁ(l’ —I— 92, t) —I— )\1_0191 —I— )\;0393, (2 a24>
N o 1 - —1 - —1_ '
O(x,t) = Oz + Oy, 1) + 723 @2 (x + Oy, 1) + 7R (8,01 + B305) — 72—3“2-

Furthermore, we have

/_oo (m(z, 0) — 1, 0))dx

= /_00 (m(x,0) — m(z,0))dx + /_00 (m(x,0) —m(z,0))dz (2.a25)
=0y(my —m_) + /_ (m(x,0) — m(z + 0,,0))dz = 0.

Without loss of generality, we can assume that f, = 0 from now on. By straightforward
computation, the ansatz m satisfies

Uy — Uy = Ry,

~ ~ U/z ad
Ut + Pz = M(?)m + R2x~, (2.@26)
ol . 0, . ~
(e + ?)t + (pu), = /{(5)3& + (Muux)x + Rs,,
where .
Rl = —510196 — 8_3931, (2@27)

Ry =R+ p(% — L) + (A 0101, + Nf0s03,) + (5 — P — Ay "0161 — A °0305),  (2.028)

and

~ éz éqj ﬂaa} aﬁ'ilf n )
Ry = Ry + “(E - 5) + i 5 & ) + D+ (01610 + 005) (2.a29)

+(ptt — pu — pr Ay 0161 — py A3 0303).
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Notice that from (2.a10), (2.a21) and (2.a24),

i} o o
p—p = —Q@—@y+Ew—ﬂy+oun@—@f+«e—mﬂ
= 0 (2.a30)
v_ Uy
02 | 72 _ea? _clemAy (140)? _elexfa4n)?
+O(6 + 67 + 03) (e"TH +e e Te = ),

14+t

for some positive constant ¢ > 0. Also we have the similar estimate for pa — pu. Thus we
have the following properties for R;,i = 1,2, 3:

2 c(@—AT (14))2 e(@—AF (a+)?

Ri=0(+6+ 62) (e*%t Le T 1F  te i), (2.a31)

141

We can now state our main result for the compressible Navier-Stokes (2.al)-(2.a2).
First, we denote the perturbation around the ansatz (9,4, 6) by

oz, t)=v—0, Yx,t)=u—a, ((x,t)=60—-0. (2.a32)
Then set . .
O, t) = [ oy, t)dy,  V(z,t)= [ ¢(y t)dy,
—o;) 2 ~12 > (20,33)
W)= [ e+ B e Egoa

Notice that the quantities (®, ¥, W) can be well defined in some Sobolev space since the
compressible Navier-Stokes equations (2.al) and the system (2.a26) are in the conservative
forms and (@, ¥, W)(+o00,0) = 0 due to (2.a25).

The precise statement of our first result is as follows.

Theorem 1. Let (7,1, 0)(x,t) be defined in (2.a24) and 6 = |0, — 6_|. Then there exist
positive constants g and €, such that if § <y and the initial data (vg, ug, 8y) satisfies

(@, ¥, W)Lz + [lm — mllm <, (2.a34)

then the system (2.al) admits a unique global solution (v, u, #)(x,t) satisfying
(@, ¥, W) € C(0,+oo; H?), (2.a35)
¢ € L*(0,+o0; HY), (¥,¢) € L*(0, +oo; H?). (2.a36)

Furthermore, the solution satisfies

(0 — 8,0 — 3,0 — ]| < Cle+62)(1+ )%, (2.437)

Remark 2. It should be noted that the constraint (2.a34) on initial data can be satisfied
easily due to (2.a25) if (¢, %, ()(z,0) decay fast enough at z = +o0.
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2.2 Boltzmann equation

Since the profile studied is in one space dimension, we consider the Boltzmann equation
with “slab symmetry”

fir&afe=Q(f. f), (fia,t,§) ERXR xR x R, (2.01)

where f(x,t, &) represents the distributional density of particles at space-time (x,t) with
velocity &. For monatomic gas, the rotational invariance of the molecules leads to the
collision operator Q(f, f) as a bilinear collision operator in the form of, cf. [7]:

“‘K;AQ +F(€)9(€)~ F(©)9(6) — F(€)9(6) ) BE—E.],0) de.d,

with 6 being the angle between the relative velocity and the unit vector Q. Here S3 =
{QeS%: (£-&)-Q > 0}. The conservation of momentum and energy gives the following
relation between velocities before and after collision:

{gzé—Kf—&%QH%
L=6&+[(6—¢&)-QQ
Here we consider the Boltzmann equation for the two basic models, i.e., the hard

sphere model and the hard potential with angular cut-off. In these two cases, the collision
kernel B(|¢ — &, 0) takes the forms

B(l§ = &1,0) = [(€ = &, ),

and

B(l§ — &.1,0) = & = &[*=0(0),  b(0) € L*([0,7)), n > 5,
respectively. Here, n is the index in the inverse power potentials proportional to 1™ with
r being the distance between two particles. The following analysis can be generalized to
other kernels with similar property. But we will not discuss them here.

For a non-trivial solution profile connecting two different global Maxwellians at = =
400, we decompose the Boltzmann equation and its solution with respect to the local
Maxwellian. This kind of decomposition was introduced in [41], [43] by rewriting the
Boltzmann equation into a fluid-type dynamics system with the non-fluid component
appearing in the source terms, coupled with an equation for the time evolution of the
non-fluid component. In fact, set, cf. [41], [47],

f(x7 t? 5) = M(:C, t? 5) —"_ G(x7 t? 5)7

where the local Maxwellian M and G represent the fluid and non-fluid components in
the solution respectively. Here, the local Maxwellian M is defined by the five conserved
quantities, that is, the mass density p(x, t), momentum m(z,t) = p(z, t)u(zx,t), and energy
density (E(z,t) + Lu(z,t)]?):
(

ple,t) = [ [flx,t,8)dE,

R3
mi(z,t) = | ¥i(&) f(x,t,8)dE for i =1,2,3, (2.02)
R3

o (B +31uP)] @) = [ da©f .t

\
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as

_ _ p(l‘,t) |§_u($’t>’2
M= My 1.6) = Lo (——2 ) ) S en)

Here 0(z,t) is the temperature which is related to the internal energy E by E = %RG
with R being the gas constant, and u(x,t) is the fluid velocity. It is well known that the
collision invariants ¢, (§) are given by, cf. [7]:

¢0(f) = 17
(&) =& for i=1,2,3,
¢4<£) = %|€|27

satisfying
| O g =0, for j=0.1,2,3,1
R3
In the sequel, the inner product of h and g in Lg (R3) with respect to a given Maxwellian
M is defined by:
1
(g)i= [ =h(©)al)de
r3 M
when the integral is well defined. If M is the local Maxwellian M, with respect to

the corresponding inner product, the macroscopic space is spanned by the following five
pairwise orthogonal functions

[ o(6) =

X E_Ma

0 ép
i Uy .
xi(&) = M for 1=1,2,3,
| e~ up
—u

X4(f)5—6p( 70 3)M,

L <X7,aX] >= 5ij7 iaj:071a27374'

Using these five basic functions, we define the macroscopic projection Fy and microscopic
projection P; as follows:

4
Poh =Y <hx;> X
j=0

PlhEh—Poh

The projections Py and P, are orthogonal and satisfy
P()POIP(),PlPl:Pl,P()Pl:Plpozo.

A function h(&) is called microscopic or non-fluid if
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Under this decomposition, the solution f(x,t,&) of the Boltzmann equation satisfies
Rf=M, Pf=aG,
and the Boltzmann equation becomes
(M+G)+&M+G), =2QM,G)+ Q(G,G),

which is equivalent to the following fluid-type system for the fluid components (see [41],
[42], [43] for details):

( e+ (pur), =0,
(pur)e + (p® + p). / G, de,

(o) + (purtis) = — / 616G, i =2.3 (2:64)
2 2
| (ol B+ e+ B0 4 pun). = — [ el
or more precisely,
( pi+ (pur). = 0,
2 4 2
(pus)e + (pu? + p)a = gm we)— [ €0ud,
i)t i) — z@ d 5 7
(pus) +|<|zu1u> (u(6)u - / 616,0,d6, i -
(ple + 5, + (pure + %) +pur)e = (AO)6,).
4 3 1
e+ O [ el ouds

together with the equation for the non-fluid component G:
G+ P& M) + Pi(§6G.) = LuG + Q(G, G). (2.06)
It follows from (2.b6) that
G =Ly (P(&M,)) +©
with
0 = L/ (G + Pi(&G.) — Q(G, G)). (2.07)

Here L,; is the linearized operator of the collision operator with respect to the local
Maxwellian M:

and the null space N of L), is spanned by the macroscopic variables:
Xj7 j = 07 1727374'

Furthermore, there exists a positive constant og(p,u,6) > 0 such that for any function
h(€) € Nt see [22],
< h, Lyh >< —o¢ < v(|€])h, h >,
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where v(]€]) is the collision frequency. For the hard sphere and the hard potential with
angular cut-off, the collision frequency v(|¢|) has the following property

0 < vy < v(€]) < e(1+ €))7,

for some positive constants 1y, c and 0 < § < 1. In the above presentation, we have
normalized the gas constant R to be % for simplicity so that e = 6 and p = %p@. Notice
also that the viscosity coefficient 1 () > 0 and the heat conductivity coefficient A\(6) > 0
are smooth functions of the temperature 6.

Since our problem is in one dimensional space x € R, in the macroscopic level, it is
more convenient to rewrite the system and the equation by using the Lagrangian coordi-
nates as in the study of conservation laws. That is, consider the coordinate transformation:

r = / p(y, t)dy, t=t.
0

We will still denote the Lagrangian coordinates by (z,t) for simplicity of notation. The
system (2.b1) and (2.b4) in the Lagrangian coordinates become, respectively,

fom s S = QU (2.68)

and
( —
vy — Upe = 0,

u1t+p$:_/§%Gl‘d€’
s — /&@G d¢, i = 2,3
\ e+ 5, + oun), / L ePGde.

Moreover, (2.b5) and (2.b6) take the form

(2.b9)

.
Vy — Uy = 07

0

LGOI .
) el 2 o /gliljudg’ 4 2739 (2.610)
e+ 1)+ ), = A0, + 30

3
0
+Z(%)uiuix>x_/%£1|£’2@1xd£>

\ =2

Ut + Pr =

ululm)m

and
G~ 26, + P1<51 )+ 1P1(§1 @) = LuG + Q(G. G). (2.511)
with .
G = LJT;(;H(&MJ:)) + Oy,
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and
1
0, = L7} (G, — %Gm +—Pi(6G.) - Q(G.G)). (2.612)

Notice that system (2.b10) can be regarded as the compressible Navier-Stokes equa-
tions (2.al) with some source terms coming from non-fluid components. Analogous to
(2.al), we construct the ansatz for the wave profile of the Boltzmann equation as follows.
First, let @(ﬁ) be the unique self-similarity solution of the following nonlinear diffusion
equation

O = (a(©)0,),, O(—00,t)=0_, ©O(+00,t) =0, (2.613)
where the function a(s) = %{T)‘G(S) > 0. Notice that (2.b13) is exactly the same as the

diffusion equation (2.a9) for the compressible Naiver-Stokes equations when v = g, R = %
and k = A(f). We then define

ve 2o 42O

, 0, w=0i=23 6=0—
3p+ 3p+

. (2.b14)

I~

N | —

Let 6 = |6, — 6_|. It can be verified by a straightforward computation that (v,, )
satisfies

( Vg — Uy = Oa _
4 (6
U + ]5:5 :_ g(#ulx)x + Rlx>
Uz = (@ﬂw)xvz = 2a 37
I A0); | Al i
— u L . — * o
(0 + 37)15 ‘i: (Pt1). = ( p 02 ) 3( z Ul )o
+(Z %Unuzx)x + RQza
\ =2
where
R, = ia(@)@t +p—ps — 4u—@alx = O<5)(1 + t)ile_%i’ (2bl6>
34 30
1 Vi) _ _ 4#(97)7 - _3/p e
Ry = =(M©)0, — XN(0)0,)+(p — py)ly — ——0qT1, = O(0)(1 +1) 3 2e 14 (2.017)

with some positive constant ¢ > 0. B

Let m = (v,u1,0 4 3|u?) and m = (v, 4,0 + |al?). Since [*_(m(x,0) — m(z,0))dx
is usually not zero, we have to introduce two diffusion waves in the sound wave families
as shown in the previous subsection. Let

0 -1 0 0 -1 0
A = —= 0 = |, A= — 0 ﬁ , (2.618)
0 p_ O 0O py O

be the Jacobi matrices of the flux (—u,p,pu)’ at (v_,0,6_) and (v,,0,0,) respectively.

It is easy to check that \| = —, /g%: is the first eigenvalue of A_ with 7 = (=1, A\, p_)"
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being the corresponding eigenvector. And A\j = 4/ g% and 73 = (—1,\F,py)! are those

of the third family of A,. Since r{, (vy —v_,0,0, —6_)" and r; are linearly independent
in R? by strict hyperbolicity, we have

/ (m(z,0) — m(x,0))dz = Bure +Os(vs —v_,0,05 — 0. + Ggri (2.519)

(e 9]

with unique constants #;,7 = 1,2,3. The ansatz m(xz,t) for m is defined as

ﬁL(l’, t) = m(.ﬁlﬁ' + ég, t) -+ glﬁlrf -+ §393r§r, (2b20>
where
1 _(@=2] (1+)? 1 @ an)?
Ou(2,t) = ——— AT, Gy ) = e~ A, (2.021)
47T(1 +t) 471‘(1 +t)

satisfying 014 + A 012 = 12z, 03¢ + Aj 03, = O3, and ffooo O;(z,t)dx = 1 for i = 1,3 and
all £ > 0. Similar to (2.a25), we now have [~ (m(z,0) — m(z,0))dz = 0. Notice that
ffooo u;(z,0)dx may not be zero either for i = 2, 3. For this, we define
A S
g(w,t) = Oypg——e e WD =23, 2,522
(0. = Rl (2.622)
where 040 = [*°_w;(z,0)dz. It is obvious that [ (u;(x,0) — @;(z,0))dz = 0,i = 2,3.
Finally, our ansatz is defined as

ﬁ(I,t) = l‘—{—ég,ﬁt) —6101 t§393, B
7:L1(.CE, t) = 111(;1: + 92, t) + )\1_91(91 + )\;9393,

= P2 Tanin ;=93 (2.623)
7 /—47r(1+t) ) »

- _ _ 1 _ _ _ 1
O(x,t) = 0(x + 03,1) + §|ﬂ|2(95 +0a,t) + py (0101 + 0303) — §|ﬂ|2

Here (0,1, 0) satisfies
~ 1
m(x,t) = (0,1, 0 + §]ﬂ\z)t(:c, t). (2.524)
Without loss of generality, we also assume that 6, = 0. It is straightforward to show that

o .
Uy — Uy = Ry,

. 4 Uty
Uty + Pp = g(,u(9> ;} )z + R2x7

~ U(é)ﬂw 7

it — ~ x + RZ T — 2, 3,
o |(~|2 5 et i) Zé - (2.625)

- (% -~ M Vzx 2 ~ o~
(€ + T)t + (Pl) = (/\w)g)z + g( 5 U1 U1g) e

() -
+( /1“17 alﬂlx)x + RSx;
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where .
Ry = —0,01, — 0305, (2.026)
: e p @i, i
— — A7 0101, + \F0505,
Ry R1+3( 0 X )+ (AL 01012 + A3 0505,) (2.627)
+(p—p— A, 6161 — ] 70505),
0
R/L'Jrl - ’ij @ﬁm,l = 2, 3, (2b28>
0]
and

Lo (2.629)
+p4 (01615 + O305,) + (g — Pty — p4 AT 01601 — p NS 0305).

By the same argument for (2.al), it can be shown that, for ¢ = 1,2,3, 4, 5:

5
= 0@+ 10+
i=1

holds with some positive constant ¢ > 0.

With above preparation, we are ready to state the result on the stability of the contact
wave pattern for the Boltzmann equation (2.bl). Denote the perturbation around the
ansatz (6,&,@) by

c(z=A] (1+1))2 _c(x—,\gr(urt))?

(e et et (2.630)

oz, t)=v—0, Yx,t)=u—a, ((x,t)=60-0. (2.631)

O (z,t) /¢y, )dy, U(z,1) /wy, )dy,
2 2
W) = [ e+ B —e- B,

so that the quantities ®, ¥ ad W can be well defined in some Sobolev space. The second
main theorem is as follows.

Then set

(2.632)

Theorem 3. Let (0,4, 0)(z,t) be the ansatz defined in (2.b23) with § = |§, — 6_|. Then
there exist small positive constants dyp, € and global Maxwellian M, = M|, ,, 9,], such
that if 6 <y and the initial data satisfies

{1(@, 2 W)z + 1y, Ol + D 10° Fll 22z

ol =2 v
. o (2.633)
+ Z 10 G”L%(L?(ﬁ))}’tzo <e,

0<[al<1

then the Cauchy problem (2.b8) admits a unique global solution f(x,t,§) satisfying

[f(2,t,§) — My agll(t) oo (L2(A)) )y < Cle+05 )(1+t)7i- (2.034)
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Here f(§) € L?(\ﬂl\T) means that \’# € L{(R?).
Remark 4. The estimate for the higher derivatives on the solution can be obtained
similarly, provided that the initial data has the same order regularity.

3 Compressible Navier-Stokes equations

This section is devoted to the stability analysis for the compressible Navier-Stokes system
(2.al). Our proof will be given in the following four subsections. In subsection 3.1, we
reformulate the stability problem for the compressible Navier-Stokes equations in terms
of the integrated variables in (2.a33). And the subsection 3.2 is devoted to the basic lower
order estimates, while the subsection 3.3 is for the derivative estimate. The stability and
convergence rate of the contact wave for the compressible Navier-Stokes system (2.al)
will be given in subsection 3.4.

3.1 Reformulated system

To prove Theorem 1, we first reformulate the system (2.al) in terms of the perturbation
(¢,1,() around the ansatz (0, , 5) defined in (2.a24). By (2.a32) and (2.a33), it is easy
to check that (¢,¢) = (®,¥), and ng + 5|0, + v, = W,.

Subtracting (2.a25) from the equation (2.al) and integrating the resulting system yield

o, — U, = —Ry,
.M 1 ~
U —p="u + — Ro,
ttp—p=" vu 2 (3.1)

W, + pu — pii = E«% — fﬁz + Huuz — %aw — Rs.
v 0 0

Since the variable W is the anti-derivative of the total energy, not the temperature, it is
more convenient to introduce the variable

W= %(W —al). (3.2)

It follows that 11
\112 — u, W .
7 (2 Uy ) (3 3)

Using the new variable W and linearizing the left hand side of the system (3.1), we have

C=W,—Y, withy = 1=

d, — VU, = —R),

<=
=

R ~

i, (3.4)

\I[ —R3—ut\I/+J2

0 —0)] =0(1)(®2+W2+Y?+ |a]h), (3.5)
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Jy = (pr =)V, = O(1) (P2 + U2 + W2 +Y? + |a]*), (3.6)
R -
Ql - (H - ,lTL)Ux + Jl + TY — RQ, (37)
v v v
Qs = (5 =50, + P20~ Ry — @V aRe + Jo — Y, (3.8)
v v v v

Since the local existence of (3.4) is well known, we omit it here for brevity. To prove
Theorem 1, we now only need to close the following a priori estimate:

N(T) = sup (@0, W[} + (6,00} < <5 3.9

where € is a positive small constant depending on the initial data and the strength of the
contact wave. By (2.a19), it is obvious that |6,] + |#3| < Ceq for some constant C' > 0.

3.2 Lower order estimate

WE now derive the basic energy estimates on (&, ¥, W). Multiplying (3.4); by p,®,
(3.4)2 by 0V, (3.4)3 by I%W respectively and adding all the resulting equations, we have

R? 0 R
(%@2 + WWQ + 2\1’2)1& + ,U\I/i + _I{NVVI2
(v — )ph R P40 (3.10)

1 .
= S0V + IV — (=)W, + S WQ2 = Rips@ + (-
+

P+

here and in the sequel the notation (- --), represents the term in the conservative form so
that it vanishes after integration. Since it has no effect on the energy estimates, we do
not write them out in details for clear presentation. Let 6 = § + |61] + |63] and

P+ 29 R? 9 Uy o, Rr_ o
E, = — — W —Ude, Ki = N\ —W2)dx. 11
1 /( 9 + 2(7_ 1)p+ + 2 ) T, /(:u :c+p+1~) m) . (3 )

Then (2.a24), (2.a31) and the Cauchy inequality give
~ 12 Rk 5 -1 5 2
|/Ut\p x| +]/(H)IWdex| <51+ 0B+ CRWLIE (3.12)
Jr

and

|/R1<I>dx| <CS(1+ )" +C5(1+1) 2. (3.13)

On the other hand,

[1@ulivias < [1 -

Since

SHRS

R .

/ L[| ¥|dz < Ceo(||@a|? + K1) + CO(1 + 1) By + C8(1 + 1) 2, (3.15)
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and
By wid + / Y[[W]de < Ceoky + C(5 + 20) @,

v

- (3.16)
+Ce||te|* + C6(1 +1) 1By,

we obtain
L < O0 +e0)(|®a> + K1) + CS(L+ ) By + Ceo||tha | + CO(L+ )72, (3.17)

Note that
L= / By Uldz < C5(1+ 1) By + C3(1+ 1)+ (3.18)

Thus, combining (3.17) and (3.18) yields

/\Qlumdx < C51+6) "B +C3(1+1)

: (3.19)
+C(5 + £0) (| P)l* + K1) + Ceollz |-

Similarly, we have

/IQszlde C(6 + o) (| Pall* + K1 + [1(6, 9, O)all®)

) ) i (3.20)
+C5(1+t) "By + Co(1 + 1) 2.

From (3.12), (3.13), (3.19) and (3.20), we obtain our first estimate on lower order terms

By + 558 < 051+ 1) By 4+ C8(1 4+ 1)74 + O +20) (10 + (6,6, [). (3:21)

Notice that K does not contain the term ||®,||*>. To complete the lower order estimate,
we need to estimate ®,. From (3.4),, we have

R ~
Poy—w,+ 250, = 2w, — Q, - LRy, (3.22)
v v v v
Multiplying (3.22) by ®, yields
B oo [N Proo R 1o
Z92), — (==),82 — DU, + D2 = (=W, — Q1 — ZR1,)®,. 3.23
(55%2)e = (57)e s ot 0= (7 @ 1) (3.23)
Since -
d, 0, = (O, V), — (&, V), + V2 — RV, (3.24)
we obtain
( %@i—@x\lfdx)t—l—/%@idx < c/(w§+wﬁ)daz+c/Q%dx+05(1+t)—3. (3.25)

On the other hand, it follows from (3.7) and the Cauchy inequality that

/Q%dx < Ceo(Ky + ||®,])%) + Co(1 + t)—% + Ceol|1e | (3.26)
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Plugging (3.26) into (3.25) yields

( —@2 @@mt+/)<V@<cuq+cﬁu+w3ﬂ+q@wﬁ2 (3.27)
We now choose large constant C, > 1 so that
C\E +/ﬁ<1>2—<1>\11da:>16~’E+ —<I>2dx — - >g (3.28)
e 20 ¢ C T =gt 40 2 Y74 '

Hence, by multiplying (3.21) by C; together with (3.27), we have obtained the basic
energy estimate:

B+ Ky < C5(1+ 1) By + C5(1+ )72 + C(8 + o) || (6, 0, )|, (3.29)
where
Ey=CiE) + ?ﬁ o, Vdr, K, = —m+/ (3.30)

3.3 Derivative estimate

In this subsection, we shall estimate the derivatives of (®, ¥, W). From (2.al) and (2.a25),

we have B
¢t - ¢x = _Rlxa
bot (0= Do = (Bup = L), — By
T v T E x)x B T (331)
1§t +puar _ﬁﬂa: - (_990 - 703&)9& + Q?n
v 0
where s 1
Ully ~ N o
Q3 = %ui — (MT)QC — R3, + §(u2)t + Pyl (3.32)
Multiplying (3.31), by % yields
1 B B ~
Since p — p = Ré(% -3+ RTC, we get
1 ~ 1 1 -
(599 = RO = =)o0 = =G+ 202+ (5 = Dy,
i 48 v v (3.34)
Set )
O(s) =s—1—Ins. (3.35)
It is easy to check that ®'(1) = 0 and ®(s) is strictly convex around s = 1. Moreover,
~A U ~ A U 1 1
{Re(b(%)}t - RQt‘P(U) + RQ(—; + U)¢
~ 1 ~ 1 1
-Hwe%+»nﬁJwe—+jm (3.36)
- 1 U
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where

U(s) =51 —1+1ns. (3.37)
Substituting (3.36) into (3.34) yields

(30 + RBO(L)+ (D)o — e + 242

) A (3.38)
Hﬁ M)ﬂ@zf&W+RW;—?RM+W@€%HH%-
On the other hand, we calculate
- 0 0 N
[9@(5)} (1- E)Ct - ‘If(g)eta (3.39)
and
R 0 0 . K0, /iéx
ﬁ(l - 5)@: =(1- 5){—29% + Pl + (T - ) + Qs}
R 0, 0,
EC@Z);B + %(ﬁ - p>ﬂw - (g)x(ﬁv HU ) gQS + ( ) <34O>
R ¢, n@x cene kO, ¢
— et (0 )x——C i +W(T U) g @3+ (e
Substituting (3.39) and (3.40) into (3.38) gives
(30 + RIB(E) + 800N+ Mt 12
= —p‘lf( )Ur + vp@(v) (% - %) lgths — Rogt) + RH(% — %)Ru + %(ﬁ —p)ii,  (3.41)
K’Cx T Ce fi@ Iie C R . 6 -
Foen et O ) Qe T YR (e
Denote
1 v R .0 (. K
Es = / U+ ROD(-) + pos 192 (5)dz, Ks = / U+ G, (3.42)

Notice that CiD(s) is strictly convex around s = 1. Thus there exist positive constants c;

and ¢y such that,
0

€d? < B(=) S i’ el < 7)< ol (3.43)

Notice that ¥(s) is also convex around s = 1. This leads to

m

/|xp Ut\dx+/|xp Vildr < C5(1L+6) 'Ky + C(L+ )3, (3.44)

where we have used (¢,v) = (®,,V,), and ( = W, — Y. On the other hand, the Cauchy
inequality yields,

/[Rlxwdx < OS(1+1)"2 +C5(1 + 1) 'K, (3.45)
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5

/é(ﬁ—p)ﬂx “Cx xe ldz < C6(14t) Ky 4+ CO|C||? + Co(1 + 1) 2, (3.46)

/ S = Blde < OO+ )Gl + CO0 +0 Ko + CBL+ 08, (347

/|§Q3|dx < Ceollt|* + C8(1 + )7 K + CF(1 + )%, (3.48)
Integrating (3.41) with respect to x, we have

1 - = 3
By + 5K < CO(1+1)7 Ky + Co(1+1) 72, (3.49)

As before, we need to estimate ||¢,||* separately. We follow the same argument in the

previous subsection for ||®,[|? by rewriting the equation (3.31), as

[ _ Il Sl

5¢xt — = (p—D)a = ( ez — [(; - ;)Ux] + Ry, — 5le- (3.50)
Multiplying (3.50) by ¢., we get

(5021 = (3062 = Unde = (p = P)ats

(M (1 Py 5o b7 (3:51)
Note that - R R
. p
—(p— - = L < PY Gl 52
0 =26. et C =Dy~ (E Ty, (352)
and -
Gethr = (Gt — ()0 + V2 — Rigths. (3.53)
Integrating (3.51) with respect to x, we have
Mo P2
< CoKs+ Cod(1+ 1) Ky + Cod(1+1) 72 + Caeg / V2 de.
Here we have used
/ (G ]%)vmwx <CE+e0)ldel’ + CO1+ 6" Ky + CO1+1)73,  (3.55)
)etz|dr < C(6 + o) || dell* + COH(1+ 1) 1Ky
(3.56)

+cso||wmu2 OBl + C / &l

and

/ BillYeldr < Clldal Pl Yarll® < Cloell*Igall 2 Noall® + [0eell®) 5 579
< Ceolll9s]* + 1 l).
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Finally, to estimate the higher order derivatives of (¢, (), we multiply (3.31)s by —,,
and (3.31)3 by —(,. to get

1 R B R v, HP,
(5% + mgi)t + ;%261 + _Ca%m - (p - p)(;c)¢xz + _Qq/Jxlpm + (Wuw)xwm

(3.58)
The Cauchy inequality gives

/|(p—ﬁ)ww|d:c < O<K3+||¢z||2)+/;—vwixdxw&l+t>‘1K2+05(1+t)‘3, (3.59)

/ O el < OBl + e l) + / Gallsllnalde,  (3.60)

01

/ |(ptiy — Pl )G |dx < / —Cdr+COKs+Co(1+t) 'Ky +C6(1+1)"2, (3.61)

and
7

/|Q3Cm\d:c < c/w Conldz + CBl|Goal® + C5(1 + )5 (3.62)
On the other hand,

/|¢x|\¢z|!¢m|d$ < a7 dallluall? < Ceollltbuall” + [, (3.63)

The term [ 9?|(sp]dz can be estimated similarly. Thus, integrating (3.58) and using
(3.59)-(3.63), we have

2 2 2
(fGuz+ sy + [ Lvd+ / 52 d 6
< Oy K3+||¢x|| )+Og 5(141) 1K2+035(1+t

We now choose constants Cy > 1, C5 > 1 large enough so that

and

162 — 0302 — 03 > 162 03 £¢2dl’ — CgHQb ||2 > 03 £¢2dl' (366)

2 47 20 ¢ ¢ 40 °°
Let 1 R

= A oo 2
E, = FE — — — .
4= CoB3 + (3 /(2v¢x ¢0)dx + /(wa + 3= 1) 2)de, (3.67)

and

:_02K3+03/4~¢2d +/ 2 dx+/ — (2 du. (3.68)
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Then combining (3.49), (3.54) and (3.64) gives
Enp+ Ky <CO5(1+t)"Ky+C8(1+1) 2. (3.69)

It should be noted that under the a priori assumption (3.9), the estimate (3.69) on
the derivatives of (®, ¥, W) does not involve the lower order estimate (3.29) except the
term C6(1 + t)"*K, which has a time-decay factor. This is essential in the proof for the
decay rate in the next subsection.

3.4 Decay rate
It follows from (3.29) and (3.69) that

Es + K5 < Cod(1+t) " Es + Cod(1 4+ 1) 2, (3.70)

where
E5 - E2 —|— .E'47 K5 == K2 + K4. (371)

Multiplying (3.70) by (1 + t)‘cOg and using the Granwall’s inequality yield

N

By < C(Es(0) + 8)(1 +1)3, /t Ksdt < C(B5(0) + 8)(1 + 1), (3.72)

if Cod < 1. Since E5 > ¢3|(®, ¥, W)||? for some positive constant cz, we have

[NIES

(@, ¥, W)|]> < C(E5(0) +0)(1+t)=. (3.73)

Notice that the upper bound for the L2 norm of (®, ¥, W) grows with the rate (1 +t)z.
However, as we will show later that the L? norm of (P, U, W,) decays with the rate
(1+¢)~2. Hence the Sobolev inequality implies that the L norm of (®, ¥, W) is uniformly
bounded if § and the initial data are small. In fact, multiply (3.69) by (1 +t), we have

(14 t)Ey] < COKy+ Ey+ Co(1 4+ 1) < K5+ C6(1+ 1) 2. (3.74)

Integrating (3.74) with respect to ¢ and using (3.72) imply

N|=

E < C(E5(0)+6)(1+1)"2, (3.75)

where we have used the fact that

Ey < Cll(0, %, O3 < CUN@, T, W)L+ 1[(6, 9, O)a 1) + CO(1+ )72
< CKs+ Co(1+1)2.

Furthermore, since

Ey > call(¢,9, Ollin = ea(l(@, 8, W)all* + [[(6, %, Q)all) — cad (1 +1) 72,

for some positive constant ¢y, due to (3.73) and (3.75), we have,

[N

(@, U, W)||e < CI(@, T, W) [[(Rs, Uy, W, )||2 < C(E5(0) +3)2. (3.76)
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Since W = L;(W —aWV), we also have
(@, 0, W) ||z < C(Es(0) + 6)%. (3.77)
The decay rate for ||(¢, 1, ()| L~ follows directly from (3.75) as follows:

(1+1)73. (3.78)

NI

(6,0, )|z~ < CEF < O(e +5)

Therefore the a priori assumption (3.9) is verified and Theorem 1 is proved.

4 Boltzmann equation

In this section, we investigate the stability of the contact wave pattern constructed in
(2.b14) for the Boltzmann equation (2.b8). The arrangement of this section is as follows:
in subsection 4.1, the fluid type system (2.b10) is reformulated in terms of the integrated
variable (®, ¥, W); the subsection 4.2 is devoted to the lower order estimate, while the
subsection 4.3 is for the derivative estimate; the stability and decay rate of the contact
wave for the Boltzmann equation (2.b8) is given in subsection 4.4.

4.1 Reformulated system

This subsection is devoted to the Boltzmann equation (2.b8). First, we denote the per-

turbation by 3
¢:v—ﬁ,w:u—ﬂ,C:9—¢9, (41>

/ oy, t)dy, ¥ =/ Y(y, t)dy,
wf? _|7372 (4.2)
W= /_ (e+ =5 — &= 5 )dy,

and define

which satisfy (¢,v) = (®,¥), and ¢ + %|\Ifm|2 + Z?:l @,;V;y = W,. Then subtracting
(2.b25) from the equation (2.b10) and integrating the resulting system, we have

(O — Ty, =Ry,
4 u(d 41
‘I’1t+P—p:§MU1x—— ~ /51@ dg§ — Rz;
v 3 v
1(6) M(Q /
‘Iji - i T I d i+1, —2
t " u 7 flg@ § R+1 7 3 (43)
- A0 A0 ~ 4 (0 4 (6
Wi+ puy — puy = ( ) — ﬁgx + —M( )U1U1x - —M( )i U Uy
5 v 3 v 3
(0 p0) 1 2 >
_ YR d¢ — R-.
k + ZZQ Z 7 U i Wiz / 2§1|§| @1 f R5

Let B
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It follows that
1
Using the new variable W and linearizing the system (4.3), we have

(@ — Uy, = Rl, ) )
4 1(6 4 u(0 0
Uy, — %q)x W, = M\Dlxx _ /5%@ d + %# . 1 ))Uu

3 3

v
+J1 + 32~Y RZ = ;lu \Ijlazx /6%@ d€+Q17
= MOy, [ asonde+ (12 - O R
v v v
= :u~ mx /51&@ dg_’_Q“ i = 2 3 (46)
U ~
Wi +p ¥y, = /\ VVm / §1|§| e d§+u1/§1@ dé + (—= (9) )\570))933
+4u1x Vi + Z Ui — @ﬁz~zx] Rs — 1,0, + J,
iy Ry ——) = Wza: / §1|§|@d§+ul/§1@ d§ + Q4,
where
h=", -+ B - (0 - 0] = 0@+ (0 - 0P+l (47)
Ty = (py = p)W1, = O(1)(®F + U3, + (0 — 0)° + |a|), (4.8)
4 (o 0 2
Q1= §(# - #) Uiz +J1 + 3~Y Ry, (4.9)
Qi = (@ - %@))um — Ri+1, 1=2,3, (4.10)
Q= (Af) Af) )9x+47“;”“’ s ff) Uy — Ry — iy Uy + @ Ry
3 3 ; (4.11)
+Z[@uzum — % U;u im]‘i_JQ—@YZE-
=2

Since in the right hand side of (4.6), there is some non-fluid component denoted by ©1, the
system (4.6) is closed together with the equation (2.b6) for the microscopic component.
We rewrite (2.b6) as follows.

Gy — LyG = P& (

|5—U’2 ) (u— 1
(o (0—0)s+¢ (_ )e)M] (4.12)
+—G, —;P1(51 G.) +Q(G,G) — Gy,
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where

G = P [(‘5_ ’9+5 JM]}, G=G-G. (4.13)

Notice that in (4.12) and (4.13), we have subtracted G from G because ||9~x||%2 is not
integrable with respect to time ¢. ’

We shall work on the reformulated system (4.6). Since the local existence is now
standard as in the discussions in [23], [56], to prove the global existence, we only need to
close the following a priori estimate:

N(T) = suwp {II(CP W)z + (0,9, Ol

//R ;4 +Z (0 f) dgd N<e (4.14)

*
\Il |af=2

where gy is positive small constant depending on the initial data and M, is a global
Maxwellian chosen later for any 7' > 0. Here, it is worthy to pointing out that (4.14) also

gives the a priori assumptions on [[(¢¢, ¥y, ¢)|], |0%(¢, 9, Q)| and [ [ 5; |aaG| B2l dédr (Ja] = 2).
In fact, from (2.b9) and (4.14), we have

G2 —= 1 _
(e, %00, G)II” < C(Il(cbx,wx,éx)\l2+//M’”dﬁdw+52(1+t)_2) < Cleo+0)*, (4.15)

where we have used

G2
([ oty <c [ Srae (4.16)

*

and
(e, e, QI < Cll(ve, u, )| + Co*(1+¢) 2,

5 : 1 4.17
||(Uz,ux,91)||2 < C||(¢m7¢xa<m)||2+C52(1+t)_§. ( )

To derive the a priori assumption on ||0%(¢, %, C)||, (|| = 2), we use the definition of p,
m = pu and p(0 + $|u|?). Let |o] = 2. By (2.b2), we obtain

o £12
oo pt0 + gl < [ OTL gedr < 023 (4.18)
This yields that
10°(6, 40, C)||> < Ceo + CE2(1+1)"2 < Cleg +0)2, o] = 2. (4.19)

Finally, we have, for |a| = 2,

//%dgdx < 2(//%d§dx+//%dfdx) < Cleo+0)%  (4.20)
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4.2 Lower order estimates

Before proving the a priori estimate (4.14), we list some basic lemmas based on the
celebrated H-theorem for later use. The first lemma is from [20].

Lemma 4.1. There exists a positive constant C' such that

V(€)1Q(f, 9 e Py [ ey
/RS i< of [ S e R3M+ [ e | AR

where M can be any Maxwellian so that the above integrals are well defined.

Based on Lemma 4.1, the following three lemmas are proved in [42]. The proofs are
straightforward by using the Cauchy inequality.

Lemma 4.2. If /2 < 0, < 0, then there exist two positive constants 6 = 5 (p, u, 0; px, U, 0)
and 19 = no(p, u, 0; ps, u, 0,) such that if |p — p.| + |u — u.| + |0 — 6.] < 19, we have for

h(§) € N, ,
hLah h
- Af ¢ > & /R (‘]\Z’) de, (4.21)

where M, = M, .. ¢.) and the definition of Mj,, ¢ can be found in (2.b3).

Lemma 4.3. Under the assumptions in Lemma 4.2, we have

1h2
/RS VglleLMthdf < 52/ (|§|) VIS e

v(lED),, - . (ISI) 'h?
/RB i Ly h|?de < & Z/RJ S T

(4.22)

for each h(£) € N*.

Lemma 4.4. Under the conditions in Lemma 4.2, there exists a constant C' > 0 such
that for positive constants k£ and A, it holds tha

g1P(|€[*gs) / 91|§|k92 Mg + X go?
—d —— = dE|l < C
P v <l . M,

de.

We now derive the lower order estimates. Multiplying (4.6); by p.®, (4.6)2 by 0¥y,
(4.6)3 by W;, (4.6)4 by 2 o =W respectively and adding all the resulting equations, we have

~ 3 s 3 s
Pigo W2 0., 1 2 (9 2 (9) 2
— ¢+ — + U7+ = v — Vv + —=W

=
3 ~

~ 1. . 4
_ _p+qu>+§vtqf§+vQ1\Ifl (T( LU0, — Z
=2

20
) WW, + Z Qilit3 = Qu+ NF+(-)a,

/\

(4.23)

2A(0
3p+’U

~—

—(
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where

3
NF = —ow [ Gende = 3w [egonds+ (R [ Gouds - [ SeilsPeus)
=2

(4.24)
Notice that (4.23) is almost the same as (3.10) for the Navier-Stokes equation except

Z:«i (£ @)xllfilllm, Z?:z Q;V; and NF;. Therefore we can follow the same argument in

=2\ 9
section 3 for compressible Navier-Stokes equations to estimate all terms in (4.23) except

NF;. That is, analogous to (3.21), we have

1 . . )
Ev + 5K < Co(L+t) "By +Co(1+1)>

> ) ) (4.25)
+C(0 + o) (1D + 1, ¥, Oall”) + | NFida,
where
B, = / + qﬂ += Z\Iﬂd:p K, = / Z (0 2X(0) W2dz. (4.26)
3p+v
By (4.24), to estimate [ NFidx, we only need to estimate Iy =: — [0V, [ £70,dédx

since other terms in [ NFjdz can be estimated similarly. Let M, be a global Maxwellian
with the state (p., u.,0,) satisfying 20 < 0, < 6 and |p — p.| + |u — .| + |0 — 0. < 7 s0
that Lemma 4.2 holds. By the definition of ©4, (see (2.b12)), we have

I =— / 50, / 211G, deds + / / gQul G, dedx
/wl—/gl PG )]dfd:ch/v\I/l/fl (G, @) dedz = 24:1;. 427

(4.27) can be estimated term by term. For the integral I}, we have
Il = —/wl/gqu(ét)dgdx— /{;\Ill/ffL;j(Gt)dfdx = '+ 1% (4.28)

Note that the linearized operator L;j satisfies, for any h € N+,

(Lyfh)e = Ly (he) = 2L {Q(Ly b, My)},

(Lith)e = Lyt (he) — 2L Q(Ly h, M)} (4.29)

Then we have
h=- / o0, / (L} G)dédr — 2 / o, / ELHQ(Ly G, M) Ydéda
= —( / o, / &L, Gdédr), + / (00,), / E L Gdeda (4.30)
—2 / o0, / L, HQ(Ly G, M) Ydeda.



Contact Discontinuity 31

The Holder inequality and Lemma 4.3 yield

y/ﬁLJG%PSC/Eﬁﬂa>%L%~/”$?

Moreover, from Lemmas 4.1-4.3, we have

AKW%SC/(MWH%,@3>

| [enittuic g < o [ Ao
<o [ ouiie Mg < 0 / D iapac- [ “UEarpae @2
< C(v? +u? +9§)/ (|€|>|G| d¢.
Combining (4.30-4.32) gives
nt< —(/ o, /gfL;}éd&dx)t FCO5(1+1)2 + Cey / |Wy, | da

~ (4.33)
+O€1//%ﬁ')wﬁdwﬁCeoll(cbt,wt,ét)IIQ,

where £; is small positive constant to be chosen later. On the other hand, by (4.13), we
have

1= | [ow [ @LidGodeds
< C | 93| (Gtat, O] + | (G, B[ (v1, 1, 01) )l (4.34)

< OO(1+1) " By + CO(1+ )3 + C9|| (6, v, )1
which, together with (4.33), implies

Il < —(/ ﬁ\Ifl/gfLMlédfd:z:)t +Co(1+t) B+ Cey / Wy |*da
(4.35)

w0 [ [ A ipagas + 0501+ 072 + 06 + 0l 6 v I

The estimation on I%, i = 2,4 is relatively easy by using the Cauchy inequality and
Lemmas 4.1-4.3 given as follows. In fact, direct computation yields

13| SC//%\GJUFdde‘—FC/‘I/%ufdx

(4.36)
<O6(1+t) B+ CeoK, + C//#]Gﬁdgdx.
On the other hand, since
| [rita o < o [ A oppag:
(4.37)

1

@.arat <o [ Aapar s,

&
< o[ 8
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we have

1

II}] < C(6 + &) //#K?l?dfdz +C5(1+t) "By + CS(1 +t) 2. (4.38)

N

The estimation on 7 is similar to the one for I]. First, notice that

Pi(6G,) = {P(&G) ) + Y < &G, x; > Pixg), (4.39)

j=0

which will be useful for the following analysis. Then, it follows from (4.29), (4.39) and
Lemmas 4.1-4.4 that

it = [Con, [
4

_/gqllfgfL;;[Z < &G, x5 > Pi(xge)|dédz

5 o _1FO - (4.40)
2 / Uy, / QL P& Q)] M,) ydede

<c€1// D | a2 dednt Co(1 + )1 By + Clzo + 1) (K + [|B4]?)
OB+ 1)F 4 Ceol| (e, t0m G2,

where we have used the fact that
2 (Ié I) 2
| < &G x; > "< C | ———dE+C(0; + )
By (4.27), (4.35-4.36), (4.38) and (4.40), we have

I < —(/ oW, /gfLMl@dgda:)t +Co(1+t) B+ Cey / Wy |*da

+Oe e+ el [ [ A Gpagan (wa1)

+O// AL |G.|*dédx + C(0 + <o) Zuaawouucmﬂ) .

laf=1
The estimates on the other terms of [ NFjdz are similar. Therefore, collecting (4.25)
and (4.41) gives
i ~ 1
B+ ( A(E, @, U, W)L,; Gdédx), + 1
<Cl ]_—I—t 1E1+Cl 5+€0+61 || q)t,\llt,Wt)||2+||<I> ||)

+Cgl// (3 |G|2dedx +Cl// ’5‘ + |Gy|?)dédx

+C1(5 + £0) Z 19°(¢, v, O + Cr(1

laf=1

(4.42)
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where we have used the smallness of & and g,. Here A is a linear function of (&, ¥, W)

and a polynomial of &.

Note that K; does not contain the term ||®,||*. To complete the lower order inequality,

we have to estimate ®,. From (4.6),, we have

410 2 41(0
WO, g, + Lo, = Zyy, - 2
30 v 30 30

Multiplying (4.43) by &, yields

21(0 2110
( lz;g? )q)i)t _(E) g(@ ))tqﬂ P,y + —<I>2
2 41(0) ~ 9
(7. - A @1+/§1@1§
Since .
O,y = (0, 04) — (P 04), + \I’%x — RV,
we obtain

(/2‘;{9@ CID\I/dxtJr/ P g2y
v

< C/(\IfforWﬁ)d:chC(S(lth 3/2+/Q§dx+/|/§%@1dg|2dx.

By (4.9) and the Cauchy inequality, one has

/ Q3 < Ceo(Kr + | @]%) + C8(1 + )% + Ceo 3 110°(6, 0, I

|laf=1

On the other hand, Lemmas 4.1-4.3 imply

/]/ff@ldﬂde < c//@ (|G |2+|th2)d5dx+0/\é *dx
+C (8 + &0 )// (lfj\'}G'ngd < O(5+ &g // d(3) |G|2d§d

so [ [AE

Plugging (4.48) and (4.47) into (4.46) yields

3

(|Go? + |Gy|?)dédr + CO(1 + 1) 2.

QM(é) 2 /p+ 2
o — b U d —o2d

<02K1+025(1+t)_3/2+c Vj(\‘f’)

40,5+ [ [ DL 'GP Co(T+20) 3 1100, 4, O

laf=1

(IGal* + |G [*)ddx

Ruv— Q1 + / £20,dt.

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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The microscopic component G can be estimated through the equation (4.12). Multi-

plying (4.12) by MQ*, we get
- N 2 ~
()~ GruC = {—aPla* 00 e -] .
~ 4.50
~ G
o) +QG,G) =G} g

+Ba —P1(§1G
v v

Integrating (4.50) with respect to £ and x and using the Cauchy inequality and Lemmas

4.1-4.4, we have
(4.51)

[ s+ 5 [ A5 e
< G+ 072+ Gl + ) + ¢ [ [ EDE s

On the other hand, since (®, ¥, W), can be represented by (®, ¥, W), and (®, ¥, W)
from the equation (4.6), we can get an estimate for (®;, ¥y, W;) as follows.

/| (®, T, W),| dm<C4K1+C’4/|¢> | dx+(]4z 10%(¢, 4, )|1?
jal=1
2 2

+C45(1+t)—3+c4//”‘ -

We can now complete the lower order estimate. Since A is a linear function of the

(4.52)

vector (@, ¥, W) and a polynomial of £, we get
GQ
(4.53)

A ~ 1
AL} <_F
|// W Cdgda] < 1+c//M*

We choose large constants Cy >1,Cy>1,Cy > 1 and small constant e; so that

3
¢ (4.54)
2 3
//m4 &+@/3~¢ //
1. - . _
(Zl - CQCQ 01018104)K1 + /(CQ% — 016181(1 -+ C’;;))@idx ( )
~ 4.55
4 = P+ 29
> 8K1+C2/81~)¢x ,
(4.56)

and
ég — 61018104 — Calél > %ég

Do | Qe
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Hence, by multiplying (4.42) by Cy, (4.49) by C,, (4.51) by Cs, (4.52) by C1(6+eo+¢1)C)
and adding all these inequalities together, we have

Ba+ o= G0 +07 B+ G [ [ A6+ G Ptean

_ , 4.57
£C5 3107 (6,5, QI + Cs3(1 + )%, (4.57)
lal=1
where
_/ - i1 - [2u(0) .,
E, = C1E +C, ALy Gdgdr+Cy | =220 -0, 0 1dz+Cy 2M , (4.58)
K:—K1+C’2/ L 2dr + ||(O, 0, W), ||2 + — Cg//M (4.59)

4.3 Derivative estimate

To obtain the estimate for the first order derivative of (®,, U,, W, ). We shall follow the
approach of section 3 for the Navier-Stokes system. From (2.b10) and (2.b25), we have

( ¢t - ¢lx = _RICE)

_ M(Q) w(0) ) 5 -
Yy = (Tuzx 5 ie)r — (Rig1)z — /flfi@lxdf, 1= 2,3, (4.60)
Gt + Pty — Py, = (ﬂ — )\w) 0z)e + Qs

+Z“Z/§1§l@1xdf— —/§1|5| O1,.dE,

\

where

Ap) 5 mpl0) 5 5L

Following the same argument for the Navier-Stokes system, see (3.41), one has

(6) (9)

(5 3202+ RBD(Z) +60(2)), + ——wm+2“

CQ

v = v (4.62)

0
i

= U+ opeb( ) — (1 @mwu - Z(“w) O
1
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where

3 3
NE == [agouden+ 53w [asouds— 5 [alePond. (1o
=1 1=1

Let
<. 0

E 2+ R9<I> + 00 (=)dx 4.64
=[5 Zw (5)da (4.64)

and
K3 = / ——% + Z o (?ggdx. (4.65)

Similar to (3.49), one has

Es + %Kg < O8I+ t) 'Ky + CO(1+1)77 + /NFde. (4.66)

Here, we consider the term [ [ £701,d¢yrdz since other terms in [ NFydx can be
estimated similarly. By (4.48), one has

| / / 20y, da| — | / / E01c0de] < LK+ OB(1+ 1)

+CZ// D 0°G|*dédx + O + &g // v(£1) G2d§d (4.67)

laj=1

Collecting (4.66) and (4.67) yields

MLO

1
Fy + K3<06 (14+8) 'Ky + Ced(1 +1)2

+062// v(1€]) |8°‘G] dédz + Cg(6 + ) // dfdac. (4.68)

lal=1

Note that the term [|¢.||* in not included in K3. To complete the first derivative
estimate, we follow the same way in estimating ®, in the previous subsection. We rewrite
the equation (4.60) as

éﬂ(ﬁ) Gat — Y1s — (p P)
* ) 1p@) 4 p0)  pd) i (4.69)
g( a1z — 5731133 — §[(T T Juiz)e + Row + /fl@mdf,

by using the equation of conservation of the mass (4.60). Multiplying (4.69) by ¢,, we
4 pu(0)

get
O)) 62 _ gt — (0= P)ase = (-9

WO 2D Oy Rt [ 0000

30 3w v

2
3=~ )e1a (@70)
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Since ~ B ~ R B
- p p P
—(p— = ¢, — — — =2 vy —(—— =)0 4.71
- [ - (@.71)
and 3
Guthre = (Gath1)e — (Deth1)a + U5, — Riatia, (4.72)
integrating (4.70) with respect to  and using the Cauchy inequality yield
2#(9) 2 P o
([ 2802~ oty + [ Lo
< C7K3 + 075(1 + t)ilKQ + C75<1 + t)ig + 0760 / w%mﬁdﬂ? (473)
V(ED | a2 //V(I&I) o2
+Creg O%:q / / i 0°G|*dedx + C+ g:; i 0°G|*d¢d.

Here we have used
= _5 = D) no 2
| [ §01dePdr < C5(1+1)"2 +C(0+e0) Y. ﬂmam dédz
N () '// " (1.74)
I/ (63
+C ) //W'a G|*dedz,

|af=2

due to Lemmas 4.1-4.4. To estimate (¢,v,():, we use the original equation (2.b9). For
example, multiplying (2.69)y by 1;, we have

3 + Guthy + (p — Pathu + Patfre = — / §1GLdEy,. (4.75)

Integrating (4.75) with respect to x and using (4.71) give

Yide < Cr(Ks+ ||¢.])?) + C7o(1 + ) Ky + Cr6(1 + t)_g

+C7 ) //%ﬁ‘)\@aGPdfdaz.

la|=1

(4.76)

Similar estimates hold for ¢, ¥, 13, and (;. Thus we choose large constants C~’4 and ég,
so that

. . 20(0 9 N 7]
CuBs + Cs / 2O o i > L1 6 / HO) g, (4.77)
30 2 30
and
1~ - 1~ - 5 Cs [P
1Ci= G2 (O G [ Ditdo—scilan? > D [Pidn. )
Let _ -
= = [ 2u(0) 5 / G|
Ey = C4E5 + Cs / a5 0% — Gsthnda + o e, (4.79)
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G [ ;
K, = éC4K3+f/%¢idm+/(¢f+|¢t|2+@2>dw+%//yj<\|j|)

Then we have estimate on the (¢, 1, (), from (4.51), (4.68), (4.73) and (4.76-4.78),

(4.80)

Ey+ Ky < 085(1 + t)_% + 085(1 + t)_lKQ + 0850/@/)%md$

+Cs Y // () 10°G|?ded. (4.81)

1<]al<2

Next we derive the higher order derivative estimate. Applying 9, to (4.60) yields

’ -
¢xt - wlx:r - _Rlxasa

wlxt - §¢zz + %gxw - %(@wlxz>z + Q6 - /f%@hmdgy

wixt = (%e)wmx)% + Qi+5 - /flfz@lmgdé-, 1= 2, 3, (482>
3
where . 20, -
0 1opl0) pl) (4:5)
+§((T)x¢m)z + §[<T T Uiz)ee — Roga,
0 0 .

Quss = (O (D D) (e gen

Then multiplying (4.82); by po., (4.82)s by viby,., (4.82)3 by 1y, (4.82), by %Cm, we have

3

(9 p(8 L BAO) 4#(9)
+T,¢1zz + Z m:m 7(&% = - lex¢ax -

_Q mc( ) C:L‘ + UQ6¢1SC + Z Qz+5¢zr + QQCJE + NF3 + ( )

¢1xmvx¢lx (486>

where ;
NFy==vin, [ §0uude =3 v [ G600t
I = . (4.87)
BeiS uw [ ae0.,de), — 20, ]
#y Gl [ 680ua0. - 5 [ el
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Let ,
_ [P 2 U 6o 2 E 2
£ = / L2+ megwm 5, (4.85)
_ M R)\(‘g) 2

The estimates for fUQ6¢1de7 fQi+5¢mdx, f ;Qggxdx are straightforward. For instance,
by a direct computation, we have

1 - 5 _ _
| / VQotheda] < LK+ OO+ )78+ 0+ o)y OO+ ) Ko (490)

Hence we only need to estimate [ NFsdz. As before, it is sufficient to consider the term

| / - / €20,,.déde| < | / o, / 20, de b1 dr| + | / / €20, d¢byde]
|£| o 2
<C(5+50K4+16K5+C<51+t +CZ// 0°G P ded

4.91
& (4.91)
Cd+z0) Y // ve)) 0°G|2ded.
|a|=1
Integrating (4.86) with respect to x and using (4.90) and (4.91), we have
1
Es + 4K5 < Cg(5+60)K4 + 09(5(1 +t) 2 + C Z // |€| |8°‘G|2d§d
J(1€) [ol=2 (4.92)
O +e) S // PG 2ded + Cod(1 + 1) 2K,
Ja|=1

To get the estimation for ¢,,, we use the first momentum equation of (2.b9). Applying
0, on (2.09)5, we have

Note that
5 R 1 N - 20, 5 2D,
) v ) ) v v
Multiplying (4.93) by —¢,., and using (4.71) imply
—(V100ma) /£¢2 dz < CioKs + Cio6(1 + t>_% + Cho(d + €9) K.
(4.94)

+C100(1 + ) 2K, 4 Cig Z// ve)) 0°G|2deda.

|af=2
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To estimate (¢,, () and (p,1, )y, we use the original fluid-type equation (2.b9)
again. Here we only consider the case [47,,dz since the other terms can be estimated
similarly. From (2.09), and (4.93), we have

Similarly,

?ﬂ%mdl' < 0115(1 + t)_% + CllKg, + 011€0K4 + 0115(1 + t)_2K2

4.96
+Chy Y // () 10°G|2d¢d. (4.96)
|a|=2
Choosing Cs to be a large constant, we have
a _5
|or|=2
+O12(5+€0)K4+012 5+50 Z// |£| ‘8aG|2d€d (497)

laf=1

+Cha Z// V(<)) 10°G|2dedn + Cia6(1 4 t) 2Ky,

|af=2

To close the above estimate, we also need to estimate the derivatives on the non-fluid
component G, i.e., 0°G,1 < |a| < 2. Applying 9, on (2.b11), we have

Gur = (26, + L PGM)} + [ AEG) ) .
= Ly Gy 4+ 2Q(M,, G) +2Q(G., G).
Since
Pt = Al 0, 1 ¢ u)
we have

{= Pl(& el < C2+u + 02 + |0,| + uaa|)| B(E)|M,

where B (£) is a polynomial of . This yields that

w

G, 5 . . s
//I{%Pl(&Mz)}xMMfdxé %//%Gid&dazwm+C(5+50)K4+05(1+t) 2.

Also, we have

!//Q(Mx,G)%dﬁd | < g// (‘€|>G2d5d

ﬂ/ﬁﬂM%'//O?@%
//V YD 2 e 1 05 + co) B + C3(1 + )2,

C~
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Thus, multiplying (4.98) by = and using the Cauchy inequality and Lemmas 4.1-4.4, we
get

2

(// G, L dédz) // () 2BV @2 gde < CS(141)72 + C(6 + £0) Ky
+C// ‘5’ mdfderCKg,.

Similarly,
(// G} x)t+§//MG2d§dx<C§(l+t)3+C(5+80K
2M, 2 M, -
+

K
. (
O3 +20) / / D g 1 / / D 2 e + / ¥2 + Cuda.

Finally, we give the highest order estimate needed to control [ ¢1,¢..dz and [ [ Wdf dx,
|| = 2 in (4.97). To estimate [ ¥1,¢..dx, it is sufficient to study the a priori estimate
for [ [ 510°f?dédz, (|| = 2) due to (4.18) and (4.19). To this end, apply 9* (Ja| = 2)

n (2.b8), we have

(4.99)

4.100)

(@ )0 - oM

Multiply (4.101) by % =M 4 u we obtain

(|aaf|2 - 51
2M, v

fz) = 0°Q(f, f) = 9°[LnG + Q(G, G)]. (4.101)

3 af B o . 804G
)0 fay = Lm0 G- 57
&, 0f  wm =&, [0S e
S VA TR 2 +8LafaG. M, oo f
a—0 oy fo' fe%
+(D_ 20(0" M, 0°G) + 2Q(0° M, G)) = + 0°Q(G. G) 7~

* *
18]=1

)+ C(a,ﬁ)é’“‘ﬁ(ul

|6l=1
_ aa(ul &1 (4.102)

+ (e

where we have used

0°LyG = Ly0°G+ Y 2Q(0°°M,0°G) +2Q(0° M., G), |a| = 2.
|B3|=1

Since M,, M; € N, P;(0“M) does not contain 0%*(v,u, #). Thus, we have

|//LM3 G- Mdgd |:|//LM8 G- Py(0 M)dgdx‘
< CE+e0)Ka+CF1+1)F + // YD g0 2ag .

(4.103)

and

|//LM8°‘G~8Q (— — —)d&dz|

CAJ

%// A, g 2dedn + Cngllon (@, 0, I + C6 + ) K+ C3(1+ 172,
(4.104)
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where the small constant 7y is defined in Lemma 4.2. Thus integrating (4.102) and using
f =M + G and Lemma 4.2, we have

a £12
(Z/ |Zz\§| d5d$)t+%52//#]8aG|2d§dx

|a|=2 |a|=2

= 3 = (1€1) | na 2 <
SOSA+8) T+ C0+e0) Y D geG2deda + C(3 + o) Ko (4.105)
) a|1// M-
+C(mo+6+20) Y 10°(6, 4, Q)|*

|af=2

By (4.18) and (4.19), we choose suitable constants C;>1,i=1,2,3,4, so that

A A A 1
EG = ClE4 + 0206<E5 — /zﬁuqﬁmdl‘) -+ Cg E //ﬁ’aaGPdgdx
lo|=1 *

. 1 1 -
+C — [0 f[2dédx > ||(p, 0, ) |3 + |G2déda _

/15 o[ 5

+) —[0°GPdedz + Y —|0“f2dedr — CF* (1 + ) 2.

>/ >/
Let
Kg = —”<|§D\éy2dgda:+ aldl |0°G|*dédr+ |0%(¢, 4, Q). (4.107)
o= [ [ 3 [ 5 Py

Then using (4.81), (4.97), (4.99-4.100) and (4.105), we obtain the final energy estimate

Eeor+ K¢ < CO(1+1)7% + CO(1 + )" K. (4.108)

4.4 Decay rate
By combining (4.57) and (4.108) and choosing a large constant C, we have
Eri4 K7 < Cod(1+1) " By + Co6(1 4+ 1) 2, (4.109)
where
E7 == E2 + C5E6, K7 == KQ + C5K6. (4110)

Notice that (4.108) and (4.109) have the same forms as (3.69) and (3.70) for the com-
pressible Navier-Stokes equations. Following the same argument in subsection 3.4, we
have

Er < C(E7(0) +0)(1+1)7, /t Kqdt < C(E7(0) + 8)(1 +1)2, (4.111)

and

N

Es < C(E7(0) 4+ 6)(1+t)=. (4.112)
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Since (¢,v) = (®,V), and ( =W, =Y, E; > c|[(®, ¥, W)|?* and Es > c||(¢, %, ()| for

some positive constant ¢, we have
(2,0, W) < CI(@, T, W)[|[(Ps, Ty, W) [|< C(E7(0) +9). (4.113)

Now it remains to justify the decay rate of (2.b34). By (4.112), we have

//\fxtf sy, dgd“//! Mz a6l dede +//
<c||¢wo||2+c// :

0 )+5)(1+t) 2

(4.114)
and

| ful,t,8) — ( M5 5.6l

/
//|M Vias) dfd:”// Fdédr (4.115)

< CR(1+1t)” 1H(¢> 0, O + Cll(da) e Ca) H2+0//
< C(E7(0) + 0) (1 + 1) 2.

(2.b34) follows directly from (4.114) and (4.115) and the Sobolev inequality. And this
completes the proof of Theorem 3.
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