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Abstract

This paper studies existence of a stationary solution to a tumor growth model proposed by
King and Ward in 1997 and 1998, with biologically reasonable modifications. Mathematical
formulation of this problem is a two-point free boundary problem of a system of ordinary
differential equations, one of which is singular at the boundary points. By using the Schauder
fixed point theorem we prove existence of a solution for this problem.
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1 Introduction

Recent development of mathematical modelling of tumor growth has introduced many new in-
teresting free boundary problems. A big portion of such free boundary problems contain two
parts of partial differential equations: One or several reaction diffusion equations describing the
diffusion of nutrients and inhibitors within the tumor, and a number of first-order hyperbolic
conservation laws involving source terms mimicking the movement of various tumor cells (prolif-
erating cells, quiescent cells, and necrotic cells) [1–3, 7–12]. This kind of tumor growth models
are initiated by Ward and King [11, 12]. They are currently the main flow in the river of tracking
the mechanism of tumor growth using mathematical tools. Rigorous mathematical analysis of
such free boundary problems has made some progress (see the references cited in [7]), and is
shown to be a hard but very interesting topic of research.

In this paper we study a tumor growth model developed from that of Ward and King [11,
12]. This model assumes that the tumor is ball-shaped and all known and unknown functions are
spherically symmetric in the space variable. It contains five unknown functions: (1) R = R(t),
the radius of the tumor, where t denotes the time variable, (2) c = c(r, t), the concentration of
nutrients (regarded as a single species), where r denotes the radial space variable, (3) l = l(r, t),
the density of live tumor cells, (4) d = d(r, t), the density of dead tumor cells, and (5) �v = �v(r, t),
the velocity of cell movement. Within the tumor the unknown functions c, l, d and �v satisfy the
following system of equations:

∂c

∂t
= D�c − f(c)l, (1.1)
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∂l

∂t
+ ∇ · (�vl) = KB(c)l − KD(c)l, (1.2)

∂d

∂t
+ ∇ · (�vd) = KD(c)l − μd, (1.3)

l + d = N. (1.4)

Here D is the diffusion coefficient which is supposed to be constant, f(c) is the consumption rate
of nutrients by live tumor cells in unit volume when the nutrient supply is at the level c, KB(c)
is the birth rate of tumor cells when nutrient supply is at the level c, KD(c) is the death rate
of tumor cells when nutrient supply is at the level c, μ is a positive constant representing the
dissolution rate of dead tumor cells, and N is another positive constant, denoting the constant
density of the mixture of live and dead tumor cells which forms the tumor tissue. It is assumed
that when a dead cell is dissolved, it is immediately removed from the tumor so that it no longer
occupies any volume of the tumor.

The tumor is sustained with a constant nutrient supply from its surface, so that

c(R(t), t) = a for t ≥ 0, (1.5)

where a is a positive constant. Since all known and unknown functions are spherically symmetric,
the movement of tumor cells must also be spherically symmetric. Thus there is a scaler function
v = v(r, t) such that �v = v �ro, where �ro denotes the unit vector in the radial direction. The
equation governing the movement of tumor surface is given by

dR(t)
dt

= v(R(t), t) for t > 0. (1.6)

Equations (1.1)–(1.6) complemented with suitable initial value conditions form a mathe-
matical model for the growth of a tumor in the early stage containing both live cells and dead
cells. This model is essentially due to Ward and King [11, 12], with two points of modifications:
(1) In the original model of Ward and King, instead of the equation (1.3) the following equation
is used to describe the evolution and movement of dead cells:

∂d

∂t
+ ∇ · (�vd) = KD(c)l. (1.7)

By this equation, dead cells do not undergo dissolution in the process of tumor growth so that
the amount of dead cells will accumulate unboundedly as time goes to infinity. This will lead to
unbounded growth of the tumor [11, 12], which is not realistic because experimental observation
shows that an evolutionary tumor sustained with constant nutrient supply will evolve to a
dormant state as time goes to infinity [1–10]. Thus we replace the equation (1.7) with (1.3).
(2) In the original model of Ward and King there is a convection term ∇ · (�vc) on the left-hand
side of the equation (1.1), but here we omit such a term. This means that we do not consider
convection of nutrient material caused by tumor cell movement, and regard nutrient diffusion
and tumor cell movement as two independent processes.

Pettet et al [10] established a different tumor growth model that contains only live cells
distinguished in two different states: proliferating state and quiescent state. Their model has
some similarity in mathematical spirit with the above model, but the equation for nutrient
diffusion is different: Since all cells are alive, the equation (1.1) is replaced by

∂c

∂t
= D�c − f(c). (1.8)
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A more general tumor growth model distinguishing all three species of tumor cells (proliferating
cells, quiescent cells, and necrotic cells) was given by Friedman [7].

Explicit expressions of the functions f(c), KB(c) and KD(c) can be found from Ward
and King [11, 12]. Here we do not reminisce those expressions, but instead summarize main
properties of these functions as follows:

(A1) f ∈ C1[0,∞), f ′(c) > 0 for c ≥ 0, and f(0) = 0.
(A2) KB ∈ C1[0,∞), K ′

B(c) > 0 for c ≥ 0, and KB(0) = 0.
(A3) KD ∈ C1[0,∞), K ′

D(c) < 0, KD(c) ≥ 0 for c ≥ 0, and KD(0) > 0.
Later on we shall assume that f(c), KB(c) and KD(c) are any functions satisfying these prop-
erties. We shall also make the following additional assumptions:

(A4) KB(a) > KD(a).
(A5) μ > KD(0).
Global well-posedness of the initial value problem of the system (1.1)–(1.6) has been estab-

lished by Cui and Friedman [6] in more general settings. In this paper we consider stationary
solution of the system (1.1)–(1.6). We shall prove that the system (1.1)–(1.6) has at least one
stationary solution.

We re-scale the space variable such that D = 1, normalize unknown functions c, l, d and v
such that a = 1 and N = 1, and re-define known functions in accordance with such re-scaling
and normalization. We denote by (c(r), l(r), d(r), v(r), R) the stationary solution of the re-scaled
and normalized system of equations. Since by (1.4) and normality of l, d we have

d(r) = 1 − l(r) (0 ≤ r ≤ R), (1.9)

we only need to consider (c(r), l(r), v(r), R). It is easy to verify that these unknowns satisfy the
following system of equations:

c′′(r) +
2
r
c′(r) = f(c(r))l(r) (0 < r < R), (1.10)

c′(0) = 0, c(R) = 1, (1.11)

v(r)l′(r) = [KM (c(r)) − KD(c(r))]l(r) − KM (c(r))l2(r) (0 < r < R), (1.12)

v′(r) +
2
r
v(r) = KM (c(r))l(r) − μ (0 < r < R), (1.13)

v(0) = 0, (1.14)

v(R) = 0, (1.15)

where
KM (c) = KB(c) + μ. (1.16)

Note that c(r) and l(r) should also satisfy the following conditions:

c(r) ≥ 0, 0 ≤ l(r) ≤ 1 (0 ≤ r ≤ R). (1.17)

Hence, we need to consider existence of solutions for the system of equations (1.10)–(1.15)
subject to conditions (1.17). Note that (1.10)–(1.15) is a two-point free boundary problem of a
3-system of differential equations.

Due to the boundary condition (1.14) and the free-boundary condition (1.15), the equation
(1.12) is singular (or degenerate) at the two boundary points r = 0 and r = R, which causes
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the main difficulty of this problem. It has some similar features as the problem studied by Cui
and Friedman in [5], where unique existence of a stationary solution for the tumor model of
Pettet et al [10] is established by using the shooting method with two shooting parameters. The
problem studied in [5] has also four unknowns c(r), p(r), v(r) and R, where c(r), v(r) and R have
the same meaning as the corresponding unknowns in the present problem, while p(r) denotes
the normalized stationary density of proliferating cells (and q(r) = 1 − p(r) is the normalized
stationary density of quiescent cells). Equations for p(r), v(r) and R are similar (with some
minor difference) to the corresponding equations for l(r), v(r) and R in the present problem,
but the equation for c(r) is different from (1.9), having the following form:

c′′(r) +
2
r
c′(r) = f(c(r)) (0 < r < R). (1.18)

Since this equation does not contain other unknown functions, c(r) can be solved as a function of
R by using the boundary conditions (1.11). It follows that the number of differential equations
in the problem studied in [5] can be reduced from 3 to 2. For the present problem, however, no
similar reduction is available. This difference is crucial, because it determines that the shooting
method used in [5] does not apply to the present problem. To see more clearly about this,
we make a brief introduction to the shooting method used in [5]: Solving the equation (1.18)
under the initial conditions c(0) = λ and c′(0) = 0, we get a function c(r) = cλ(r) defined for
r ≥ 0, depending on a parameter λ. For every λ ∈ (0, 1) there exists a unique Rλ > 0 such
that 0 < cλ(r) < 1 for 0 ≤ r < Rλ and cλ(Rλ) = 1. Thus the mapping λ → Rλ transforms
the problem of finding R > 0 such that the free boundary condition v(R) = 0 is satisfied into
an equivalent problem of finding λ ∈ (0, 1) such that v(Rλ) = 0. Replacing c(r) with cλ(r)
and temporarily removing the free boundary condition, we get an initial value problem for a
2-system of differential equations involving a parameter λ. Due to the initial condition v(0) = 0,
one of the two equations is singular at the starting point r = 0. It turns out, as shown in [5,
§5], that there exists a critical value 0 < λ∞ < 1 for λ, such that this initial value problem
has a unique solution for each λ∞ < λ < 1, whereas it has an 1-parameter family of solutions
(pλν , vλν) (ν ∈ R) for every 0 < λ < λ∞. Analysis of a priori properties of the solution of
the free boundary problem shows that the value of λ corresponding to the solution of the free
boundary problem belongs to the interval (0, λ∞). Thus the shooting method is performed in
two steps: First find a special ν = ν∗ for every λ ∈ (0, λ∞) such that (pλ, vλ) = (pλν∗ , vλν∗) has
the “best” approximation properties with the solution of the free boundary problem, and next
find the value λ∗ of λ such that (pλ∗ , vλ∗) is the solution of the free boundary problem. The
arguments of finding ν∗ and λ∗ are based a weak comparison result between different solutions
of the initial value problem (see [5, Lemma 9.1]). For the problem (1.10)–(1.15), however, we
cannot get similar comparison between different solutions due to complex relations among the
three unknown functions c(r), l(r) and v(r). This leads to failure of the two-parameter shooting
method of [5] when it is applied to the problem (1.10)–(1.15). In this paper, we shall use a
different approach to solve this problem. This new approach is based on the Schauder fixed
point theorem. We explain the idea of this approach in the following paragraph.

By making the change of variables

r̄ =
r

R
, c̄(r̄) = c(r), l̄(r̄) = l(r), v̄(r̄) =

v(r)
R

, (1.19)

the two-point free boundary problem (1.10)–(1.15) is transformed into the following ordinary
two-point boundary value problem (we omit all bars to simplify the notation):

c′′(r) +
2
r
c′(r) = R2f(c(r))l(r) (0 < r < 1), (1.20)
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c′(0) = 0, c(1) = 1, (1.21)

v(r)l′(r) = [KM (c(r)) − KD(c(r))]l(r) − KM (c(r))l2(r) (0 < r < 1), (1.22)

v′(r) +
2
r
v(r) = KM (c(r))l(r) − μ (0 < r < 1), (1.23)

v(0) = 0, (1.24)

v(1) = 0. (1.25)

To solve this problem, we introduce a mapping S: (c, l) → (c̃, l̃) as follows: Given (c, l) ∈
C[0, 1] × C[0, 1] satisfying

0 ≤ c(r) ≤ 1, 0 ≤ l(r) ≤ 1 (0 ≤ r ≤ 1), c(1) = 1, l(1) = 1, and

c, l monotone nondecreasing,
(1.26)

we denote by c̃(r,R) the unique solution of the problem
⎧⎪⎨
⎪⎩

c̃′′ + 2
r c̃′ = R2l(r)f(c̃) (0 < r < 1),

c̃′|r=0 = 0, c̃|r=1 = 1
(1.27)

(for any given R > 0), and by v(r) the unique solution of the problem
⎧⎪⎨
⎪⎩

v′ + 2
rv = KM (c(r))l(r) − 3

∫ 1
0 KM (c(ρ))l(ρ)ρ2dρ (0 < r < 1),

v(0) = 0,
(1.28)

i.e.,

v(r) =
1
r2

∫ r

0
KM (c(ρ))l(ρ)ρ2dρ − r

∫ 1

0
KM (c(ρ))l(ρ)ρ2dρ (0 < r ≤ 1), v(0) = 0. (1.29)

It is clear that v(1) = 0. Moreover, the monotonicity of c(r) and l(r) ensures that v(r) < 0 for
all 0 < r < 1. It follows that the differential equation

v(r)l̃′ = [KM (c̃(r,R)) − KD(c̃(r,R))]l̃ − KM (c̃(r,R))l̃2 (0 < r < 1) (1.30)

has a unique solution satisfying similar conditions as l(r), and we denote by l̃(r,R) this solution.
It can be proved that c̃(r,R) and l̃(r,R) are continuous and monotone decreasing in R, and

lim
R→0

c̃(r,R) = 1, lim
R→∞

c̃(r,R) = 0, lim
R→0

l̃(r,R) = 1 − KD(1)
KM (1)

, lim
R→∞

l̃(r,R) = 1 − KD(0)
KM (0)

.

It follows that the function

F (R) =
∫ 1

0
KM (c̃(r,R))l̃(r,R)r2dr

is continuous and monotone decreasing for R > 0, and

lim
R→0

F (R) =
1
3
(KM (1) − KD(1)) >

1
3
μ, lim

R→∞
F (R) =

1
3
(KM (0) − KD(0)) <

1
3
μ.
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Thus there exists a unique number R∗ > 0 such that F (R∗) = 1
3μ. We define c̃(r) = c̃(r,R∗),

l̃(r) = l̃(r,R∗), and set S(c, l) = (c̃, l̃). The mapping S is then defined. We shall prove that this
mapping satisfies all conditions of the Schauder fixed point theorem when restricted to certain
bounded closed convex subset of C[0, 1]×C[0, 1] satisfying the conditions (1.25), so that it has a
fixed point. The fixed point of S clearly corresponds to a solution of the problem (1.19)–(1.24),
so that the problem is solved.

The main result of this paper is the following:
Theorem 1.1 Under the assumptions (A1)–(A5), the problem (1.9)–(1.14) has a solution

(c(r), l(r), v(r), R) (R > 0), satisfying the following properties:

0 < c(r) < 1 (0 ≤ r < R), c′(r) > 0 (0 < r ≤ R),

0 < l(r) < 1 (0 ≤ r < R), l′(r) > 0 (0 < r < R),

v(r) < 0 (0 < r < R).

The plan of the rest part is as follows: In §2 we study a singular differential equation
arising from the equation (1.22). We shall investigate all solutions of it, choose one special
solution which meets our later requirement, and establish some comparison and limit properties
for this special solution. In §3 we make rigorous definition of the mapping S and establish
some estimates to ensure that it is a continuous and compact mapping when restricted to some
bounded closed convex subset of C[0, 1] × C[0, 1], which yields Theorem 1.1 by the Schauder
fixed point theorem.

2 A Singular Differential Equation

In this section we study the following singular ordinary differential equation:

v(r)y′(r) = [KM (c(r)) − KD(c(r))]y(r) − KM (c(r))y2(r) (0 < r < 1), (2.1)

where KM (c), KD(c) are as before, v(r), c(r) are given functions satisfying the following condi-
tions:

(B1) v ∈ C1[0, 1], v(r) < 0 for 0 < r < 1, v(0) = v(1) = 0, v′(0) < 0, and v′(1) > 0.
(B2) c ∈ C1[0, 1], 0 < c(r) ≤ 1 for 0 ≤ r ≤ 1, c′(r) > 0 for 0 < r < 1, and c(1) = 1.

We recall that KM (c) = KB(c) + μ, where μ is a positive constant, and KB(c), KD(c) satisfy
the conditions (A2)–(A5). Note that now a = 1 in the condition (A4) by normalization.

For any 0 < r0 < 1 and any −∞ < y0 < ∞, by the standard ODE theory we know that
the equation (2.1) imposed with the initial condition y(r0) = y0 has a unique local solution
y(r) defined in some small interval (r0 − δ, r0 + δ), where δ is a positive number. We extend
this solution into a maximal open interval (rmin, rmax) ⊂ (0, 1). Since the equation (2.1) is
non-singular at every point 0 < r < 1, there are four possibilities:

(i) rmin = 0, rmax = 1;
(ii) rmin = 0, 0 < rmax < 1;
(iii) 0 < rmin < 1, rmax = 1;
(iv) 0 < rmin < rmax < 1.
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Later on we shall see that the fourth situation cannot occur, but temporally we still put it in our
consideration. From the standard ODE theory we can further infer that the following assertions
hold:

(a) limr→r−max
|y(r)| = ∞ if (ii) occurs.

(b) limr→r+
min

|y(r)| = ∞ if (iii) occurs.

(c) limr→r+
min

|y(r)| = ∞ and limr→r−max
|y(r)| = ∞ if (iv) occurs.

A solution of (2.1) defined in a maximal open interval will be called an entire solution. Note
that y(r) ≡ 0 (0 < r < 1) is an entire solution, which will be called a trivial solution. Any other
entire solution will be called a nontrivial entire solution. In the sequel we study profiles of all
nontrivial entire solutions of the equation (2.1).

We introduce a function m on [0, 1] by defining

m(c) = 1 − KD(c)
KM (c)

(0 ≤ c ≤ 1). (2.2)

The conditions (A2)–(A5) ensure the following properties of this function:

0 < m(c) < 1, m′(c) > 0 for 0 ≤ c < 1. (2.3)

Lemma 2.1 Let assumptions be as above and let y(r) (rmin < r < rmax) be a nontrivial
entire solution of (2.1). Then for any r0 ∈ (rmin, rmax) the following assertion holds: y′(r0) > 0
if either y(r0) > m(c(r0)) or y(r0) < 0, while y′(r0) < 0 if 0 < y(r0) < m(c(r0)).

Proof: Clearly,

[KM (c(r0))−KD(c(r0))]y(r0)−KM (c(r0))y2(r0)

⎧⎪⎨
⎪⎩

< 0 if either y(r0) > m(c(r0)) or y(r0) < 0,

> 0 if 0 < y(r0) < m(c(r0)).

Since v(r0) < 0, by the equation (2.1) we see easily that the desired assertion holds. �

Using Lemma 2.1, the fact that y(r) ≡ 0 is a solution of (2.1) and the fact that different
integral curves of (2.1) do not intersect each other (following from uniqueness of solutions), we
can easily deduce that if y(r) (rmin < r < rmax) is a nontrivial entire solution then it possesses
one of the following four properties:

(i’) y(r) > m(c(r)) and y′(r) > 0 for all r ∈ (rmin, rmax).
(ii’) There exists a unique r∗ ∈ (rmin, rmax) such that y(r) > m(c(r)) and y′(r) > 0 for

r ∈ (rmin, r∗), 0 < y(r) < m(c(r)) and y′(r) < 0 for r ∈ (r∗, rmax), y(r∗) = m(c(r∗)), and
y′(r∗) = 0.

(iii’) 0 < y(r) < m(c(r)) and y′(r) < 0 for all r ∈ (rmin, rmax).
(iv’) y(r) < 0 and y′(r) > 0 for all r ∈ (rmin, rmax).

Thus, limr→r+
min

y(r) = −∞ if rmin > 0, and limr→r−max
y(r) = ∞ if rmax < 1. This further

implies that the situation (iv) cannot occur.
Lemma 2.2 Let assumptions be as before and let y(r) (rmin < r < rmax) be a nontrivial

entire solution of (2.1). Then the following assertions hold:
(1) If rmin = 0 then limr→0+ y(r) = m(c(0)).
(2) If rmax = 1 then either limr→1− y(r) = m(1) or limr→1− y(r) = 0.
(3) The solution satisfying rmax = 1 and limr→1− y(r) = m(1) exists and is unique.
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Proof: Clearly, if rmin = 0 then we have either limr→0+ y(r) = −∞ or limr→0+ y(r) exists.
We first prove that the case limr→0+ y(r) = −∞ cannot occur. Indeed, if this case occurs then
we can find a δ > 0 sufficiently small, such that the right-hand side of (2.1) is not larger than
−1

2KM (c(r))y2(r) for r ∈ (0, δ], implying that

|v(r)|y′(r) ≥ 1
2
KM (c(r))y2(r) for r ∈ (0, δ].

This further implies, by the condition (B1), that

y′(r)
y2(r)

≥ Cr−1 for r ∈ (0, δ],

for some constant C > 0. Integrating this inequality yields

1
y(r)

− 1
y(δ)

≥ C log
δ

r
for r ∈ (0, δ].

Letting r → 0+, we get a contradiction. Hence, limr→0+ y(r) exists. In the sequel we prove that

lim
r→0+

y(r) = m(c(0)). (2.4)

We denote A = limr→0+ y(r). Since y(r) is monotone decreasing if 0 < y(r) < m(c(r)) and
monotone increasing if y(r) < 0, we see that A �= 0. If (2.4) is not true then

lim
r→0+

{[KM (c(r)) − KD(c(r))] − KM (c(r))y(r)} = [KM (c(0)) − KD(c(0))] − KM (c(0))A ≡ b �= 0.

From the condition (B1) we know that v(r) = −ar(1 + o(1)) as r → 0+, where a = |v′(0)| > 0.
It follows from (2.1) that

y′(r)
y(r)

= − b

a

(1 + o(1))
r

as r → 0+.

Integrating this equality over the interval [r, δ] gives us the relation

log |y(δ)| − log |y(r)| = − b

a

∫ δ

r

1 + o(1)
ρ

dρ for r ∈ (0, δ].

Letting r → 0+ we get a contradiction. This proves the assertion (1). The proof of the assertion
(2) is similar.

Next we prove the assertion (3). We need to prove that if δ > 0 is sufficiently small then
the initial value problem

⎧⎪⎨
⎪⎩

v(r)y′(r) = [KM (c(r)) − KD(c(r))]y(r) − KM (c(r))y2(r) (1 − δ ≤ r < 1),

y(1) = m(1)
(2.5)

has a unique solution y ∈ C[1 − δ] ∩ C1[1 − δ, 1). We make the transformation of unknown
functions y → z by letting

y(r) = m(1) + z(r).
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Then the problem (2.5) is transformed into the following equivalent problem:
⎧⎪⎨
⎪⎩

z′(r) − α
1−rz(r) = f0(r) · z(r)

1−r + f1(r) · z2(r)
1−r + f2(r)z(r) + f3(r) (1 − δ ≤ r < 1),

z(1) = 0,
(2.6)

where
α =

KM (1) − KD(1)
v′(1)

> 0, (2.7)

f0(r) = −αv′(1)(1 − r)
v(r)

− α, f1(r) =
KM (c(r))(1 − r)

v(r)
.

f2(r) =
[KM (c(r)) − KD(c(r))] − 2KM (c(r))m(1) + αv′(1)

v(r)
,

and

f3(r) =
[KM (c(r)) − KD(c(r))]m(1) − KM (c(r))m2(1)

v(r)
,

It is immediate to see that fj ∈ C[1 − δ, 1] (for small δ > 0, j = 0, 1, 2, 3) and

f0(1) = lim
r→1−

f0(r) = 0. (2.8)

Since α > 0 (by (2.7)), one can easily verify that the problem (2.6) is equivalent to the following
integral equation:

z(r) = − 1
(1 − r)α

∫ 1

r
f0(ρ)z(ρ)(1 − ρ)α−1dρ − 1

(1 − r)α

∫ 1

r
f1(ρ)z2(ρ)(1 − ρ)α−1dρ

− 1
(1 − r)α

∫ 1

r
f2(ρ)z(ρ)(1 − ρ)αdρ − 1

(1 − r)α

∫ 1

r
f3(ρ)(1 − ρ)αdρ. (2.9)

Using the facts fj ∈ C[1− δ, 1] (j = 0, 1, 2, 3) and in particular the relation (2.8), we can use the
Banach fixed point theorem to prove that the equation (2.9) has a unique solution in C[1− δ, 1]
when δ is sufficiently small. Hence the desired assertion follows. �

From Lemmas 2.1 and 2.2 we get the following result:
Theorem 2.3 Let assumptions be as before. Then any nontrivial entire solution of the

equation (2.1) belongs to one of the following five classes:
(1) The maximal existence open interval is of the form (0, rmax), where 0 < rmax < 1,

y′(r) > 0, y(r) > m(c(r)) for 0 < r < rmax, and

lim
r→0+

y(r) = m(c(0)), lim
r→r−max

y(r) = ∞.

(2) The maximal existence open interval is of the form (0, 1), y′(r) > 0, y(r) > m(c(r)) for
0 < r < 1, and

lim
r→0+

y(r) = m(c(0)), lim
r→1−

y(r) = m(1).

(3) The maximal existence open interval is of the form (0, 1), and there exists a r0 ∈ (0, 1)
such that y′(r) > 0, y(r) > m(c(r)) for 0 < r < r0, y′(r) < 0, 0 < y(r) < m(c(r)) for r0 < r < 1,
y′(r0) = 0 and y(r0) = m(c(r0)). Besides,

lim
r→0+

y(r) = m(c(0)), lim
r→1−

y(r) = 0. (2.10)

9



(4) The maximal existence open interval is of the form (0, 1), y′(r) < 0, 0 < y(r) < m(c(r))
for 0 < r < 1, and the relations (2.10) hold.

(5) The maximal existence open interval is of the form (rmin, 1), where 0 < rmin < 1,
y′(r) > 0, y(r) < 0 for rmin < r < 1, and

lim
r→r+

min

y(r) = −∞ and lim
r→1−

y(r) = 0.

Moreover, all the five classes of entire solutions exist, and the entire solution of the class (2) is
unique, whereas all the other four classes of entire solutions are infinite, with each class forming
an ordered 1-parameter family.

Existence and uniqueness of an entire solution of the class (2) follows immediately from
Lemma 2.2. Existence of the other classes of entire solutions and the assertion that each of
these classes forms an ordered 1-parameter family can be proved by making rigorous analysis of
initial value problems of (2.1) at initial points r = 0 and r = 1, following a similar argument as
that in [5, §5]. Since we shall only use solutions of the class (2), we omit the proof here.

Later on we shall call the unique entire solution of the class (2) as the admissible entire
solution, or simply the admissible solution.

The following comparison result will play an important role in our later analysis:
Theorem 2.4 Let (v1(r), c1(r)), (v2(r), c2(r)) (0 ≤ r ≤ 1) be two pairs of functions

satisfying the conditions (B1) and (B2), and let y1(r), y2(r) be respectively the unique admissible
solutions of the equations

v1(r)y′1(r) = [KM (c1(r)) − KD(c1(r))]y1(r) − KM (c1(r))y2
1(r) (0 < r < 1), (2.11)

v2(r)y′2(r) = [KM (c2(r)) − KD(c2(r))]y2(r) − KM (c2(r))y2
2(r) (0 < r < 1). (2.12)

Assume that
v1(r) ≥ v2(r), c1(r) ≤ c2(r) for 0 ≤ r ≤ 1.

Then y1(r) ≤ y2(r) for 0 < r < 1.
Proof: Since y1(0+) = m(c1(0)) and y2(0+) = m(c2(0)), we see that y1(0+) ≤ y2(0+).

Similarly we also have y1(1−) ≤ y2(1−). Thus if the inequality y1(r) ≤ y2(r) does not hold
for all 0 < r < 1, then we can find an open interval (r1, r2) ⊆ (0, 1) such that y1(r) > y2(r)
for r1 < r < r2, and y1(r1) = y2(r1), y1(r2) = y2(r2). Let r0 ∈ (r1, r2) be a point such that
y1(r0) − y2(r0) = supr1<r<r2

(y1(r) − y2(r)). Then

y′1(r0) = y′2(r0) and y1(r0) > y2(r0).

The latter inequality implies that the right-hand side of (2.11) is less than the right-hand side
of (2.12) at the point r = r0, so that v1(r0)y′1(r0) < v2(r0)y′2(r0). On the other hand, since
v1(r0) ≥ v2(r0) and y′1(r0) = y′2(r0) > 0, we have v1(r0)y′1(r0) ≥ v2(r0)y′2(r0), which is a
contradiction. Hence the desired assertion follows. �

We shall also need the following result:
Theorem 2.5 Let (vj(r), cj(r)) (j = 1, 2, · · · , 0 ≤ r ≤ 1) be a sequence of function

pairs satisfying the conditions (B1) and (B2), and for every j let yj(r) be the unique admissible
solution of the equation

vj(r)y′j(r) = [KM (cj(r)) − KD(cj(r))]yj(r) − KM (cj(r))y2
j (r) (0 < r < 1). (2.13)
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Assume that

lim
j→∞

vj(r) = v(r), lim
j→∞

cj(r) = c(r) uniformly for 0 ≤ r ≤ 1. (2.14)

Assume further that there exist two pairs of functions (v̄(r), c̄(r)), (v̂(r), ĉ(r)) satisfying the
conditions (B1) and (B2), such that for every j there hold

v̄(r) ≤ vj(r) ≤ v̂(r), c̄(r) ≤ cj(r) ≤ ĉ(r) (0 ≤ r ≤ 1). (2.15)

Then
lim

j→∞
yj(r) = y(r) uniformly for 0 < r < 1, (2.16)

where y(r) is the unique admissible solution of the equation

v(r)y′(r) = [KM (c(r)) − KD(c(r))]y(r) − KM (c(r))y2(r) (0 < r < 1). (2.17)

Proof: By a similar argument as in the proof of [5, Theorem 8.1] we can prove that
limj→∞ yj(r) = y(r) pointwisely for 0 < r < 1. What we need to prove is that this limit
relation actually holds uniformly. The argument is given below.

First, from (2.15) we see that for every δ > 0 sufficiently small, there holds |vj(r)| ≥ cδ > 0
for all r ∈ [δ, 1 − δ] and every j. It follows from (2.14) and a standard argument as in the
classical ODE theory that

lim
j→∞

yj(r) = y(r) uniformly for δ ≤ r ≤ 1 − δ. (2.18)

Next, from (2.14) it follows that for every ε > 0 we can find a corresponding integer N > 0 such
that

c(r) − ε ≤ cj(r) ≤ c(r) + ε for 0 ≤ r ≤ 1 and j ≥ N.

We denote c̄ε(r) = max{c(r) − ε, c̄(r)}, ĉε(r) = min{c(r) + ε, ĉ(r)}. Then we have

c̄ε(r) ≤ cj(r) ≤ ĉε(r) for 0 ≤ r ≤ 1 and j ≥ N. (2.19)

Using Theorem 2.4 we get

ȳε(r) ≤ yj(r) ≤ ŷε(r) for 0 ≤ r ≤ 1 and j ≥ N, (2.20)

where ȳε(r) and ŷε are respectively the unique admissible solutions of the following two equations

v̂(r)ȳ′ε(r) = [KM (c̄ε(r)) − KD(c̄ε(r))]ȳε(r) − KM (c̄ε(r))ȳ2
ε(r) (0 < r < 1),

v̄(r)ŷ′ε(r) = [KM (ĉε(r)) − KD(ĉε(r))]ŷε(r) − KM (ĉε(r))ŷ2
ε(r) (0 < r < 1).

Since
lim

r→0+
ȳε(r) = m(c̄ε(0)), lim

r→1−
ȳε(r) = m(c̄ε(1)) = m(1),

lim
r→0+

ŷε(r) = m(ĉε(0)), lim
r→1−

ŷε(r) = m(ĉε(1)) = m(1),

and limε→0 c̄ε(0) = limε→0 ĉε(0) = c(0), the desired assertion follows easily from (2.18) and
(2.20): For any given σ > 0 we first find an ε > 0 and a δ > 0 such that

ŷε(r) − ȳε(r) ≤ σ for r ∈ (0, 2δ] ∪ [1 − 2δ, 1).
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By (2.20), this implies that there exists a positive integer N such that for any j ≥ N there holds

|yj(r) − y(r)| ≤ σ for r ∈ (0, 2δ] ∪ [1 − 2δ, 1).

By (2.18), we can replace N with another larger integer so that the above inequality holds for
any r ∈ (0, 1). This completes the proof. �

Later on we shall regard the admissible solution of (2.1) as defined on the closed interval
[0, 1], with y(0) = m(c(0)) and y(1) = m(1.

3 The Proof of Theorem 1.1

In this section we prove Theorem 1.1 by using the idea introduced in §1.

3.1 Definition of the mapping S

Let f(c), KM (c) be as before. Given a pair of functions (c, l) ∈ C[0, 1] × C[0, 1] satisfying the
condition (1.26), we denote by c̃(r,R) the unique solution of the boundary value problem (1.27)
(for any given R ≥ 0), and by v(r) the unique solution of the non-local initial value problem
(1.28).

Lemma 3.1 Under the assumptions in (1.26), for any given R ≥ 0 the problem (1.27) has
a unique solution c̃ = c̃(r,R), satisfying the following conditions:

(1) c̃(·, R) ∈ C2[0, 1] for fixed R ≥ 0, and

0 < c̃(r,R) ≤ 1 for 0 ≤ r ≤ 1,
∂c̃(r,R)

∂r
> 0 for 0 < r ≤ 1. (3.1)

(2) c̃(r, ·) ∈ C1[0,∞) for fixed 0 ≤ r ≤ 1, or more precisely, c̃ ∈ C1([0,∞), C2[0, 1]), and

∂c̃(r,R)
∂R

< 0 for 0 ≤ r < 1 and R ≥ 0, (3.2)

c̃(r, 0) = 1 for 0 ≤ r ≤ 1, lim
R→∞

c̃(r,R) = 0 for 0 ≤ r < 1. (3.3)

Proof: See [4, Lemma 2.1]. �

Lemma 3.2 Assume that (1.26) holds and c(r), l(r) are not simultaneously constant. Then
the unique solution v ∈ C1[0, 1] of the problem (1.28), given by (1.29), satisfying the following
properties:

v(r) < 0 for 0 < r < 1, v(0) = v(1) = 1, v′(0) < 0, and v′(1) > 0. (3.4)

Proof: It is clear that v ∈ C1[0, 1], v(0) = 0, and v(1) = 0. A simple computation shows
that

v′(0) =
1
3
KM (c(0))l(0) −

∫ 1

0
KM (c(ρ))l(ρ)ρ2dρ < 0

and

v′(1) = KM (c(1))l(1) − 3
∫ 1

0
KM (c(ρ))l(ρ)ρ2dρ > 0,
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because the function KM (c(r))l(r) is monotone nondecreasing and nonconstant. The assertion
that v(r) < 0 for 0 < r < 1 follows from the following preliminary result:

Lemma 3.3 Assume that u ∈ C[0, 1] and it is monotone nondecreasing and nonconstant.
Then the function

g(r) =
1
r3

∫ r

0
u(ρ)ρ2dρ −

∫ 1

0
u(ρ)ρ2dρ (0 < r ≤ 1)

is negative for all 0 < r < 1.
Proof: Since u(r) is monotone nondecreasing and nonconstant, a simple computation shows

that g′(r) ≥ 0 for 0 < r < 1 and g′(1) > 0. Since g(1) = 0, the desired assertion follows. �

Having obtained the solutions c̃(r,R), v(r) of the problems (1.27) and (1.28), we now
consider the equation (3.5). We first assume that c(r) and l(r) are not simultaneously constant.
Then Lemmas 3.1 and 3.2 ensure that the conditions (B1) and (B2) are respectively satisfied by
v(r) and c̃(r,R) (for fixed R ≥ 0). Thus the equation (1.30) has a unique admissible solution
which we denote as l̃(r,R), satisfying the following properties:

m(c̃(r,R)) < l̃(r,R) < 1 and
∂l̃(r,R)

∂r
> 0 for 0 < r < 1, (3.5)

lim
r→0+

l̃(r,R) = m(c̃(0, R)), lim
r→1−

l̃(r,R) = m(1). (3.6)

In the special case that both c(r) and l(r) are constant, we still let c̃(r,R) be the unique solution
of (1.27), but define l̃(r,R) = m(c̃(r,R)). Then (1.30) is still satisfied because v(r) ≡ 0.

Lemma 3.4 For any fixed 0 < r < 1, l̃(r,R) is continuous and monotone non-increasing
for R ∈ [0,∞), l̃(r, 0) = m(1), and

lim
R→∞

l̃(r,R) = m(0). (3.7)

Proof: The equation (1.30) is a regular ordinary differential equation with a parameter R
when restricted to the interval [δ, 1 − δ] for any given 0 < δ < 1

2 . Thus it follows immediately
from the standard ODE theory that l̃(r,R) is continuous in R for any fixed 0 < r < 1. The
monotonicity of l̃(r,R) in R follows from Theorem 2.4 and Lemma 3.1. The relation l̃(r, 0) =
m(1) for all 0 < r < 1 follows from the fact that c̃(r, 0) ≡ 1 and from similar arguments as in
the proofs of Lemmas 2.1, 2.2 and Theorem 2.3. In the sequel we give the proof of the relation
(3.7).

Multiplying the equation (1.30) with r2, integrating over [0, r] for an arbitrary 0 < r < 1,
and using the equation (1.28), we get the integral equation

v(r)l̃(r,R) = 1
r2

∫ r
0 [KM (c̃(ρ,R)) − KD(c̃(ρ,R))]l̃(ρ,R)ρ2dρ − 1

r2

∫ r
0 KM (c̃(ρ,R))l̃2(ρ,R)ρ2dρ

+ 1
r2

∫ r
0 KM (c(ρ))l(ρ)l̃(ρ,R)ρ2dρ − 3

r2

∫ r
0 l̃(ρ,R)ρ2dρ · ∫ 1

0 KM (c(ρ))l(ρ)ρ2dρ.

(3.8)
Conversely, it is immediate to verify that if (for fixed R) a function l̃(·, R) ∈ C[0, 1] satisfies
the integral equation (3.8), then it also satisfies the differential equation (1.30). More generally,
we can use a similar argument as in the proof of [5, Theorem 8.1] to show that if a function
l̃(·, R) ∈ L∞[0, 1] satisfies the equation (3.8), then l̃(·, R) ∈ C[0, 1], so that it also satisfies
the equation (1.30). Hence equations (1.30) and (3.8) are equivalent. Now, since l̃(r,R) is
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monotone in R and uniformly bounded, we infer that, for any fixed 0 < r < 1, the limit
l̃(r,∞) ≡ limR→∞ l̃(r,R) exists. By letting R → ∞ in (3.8), using (3.3) and the equivalence
assertion we have just stated, we see that l̃(r,∞) is a solution of the equation

v(r)
dl̃(r,∞)

dr
= [KM (0) − KD(0)]l̃(r,∞) − KM (0)l̃2(r,∞).

Moreover, since l̃(r,R) ≥ m(c̃(r,R)) ≥ m(0) for any 0 ≤ r ≤ 1 and R ≥ 0, we have l̃(r,∞) ≥
m(0) for any 0 ≤ r ≤ 1. By using similar arguments as in the proofs of Lemmas 2.1, 2.2
and Theorem 2.3, it is not hard to verify that the unique monotone non-decreasing solution of
the above equation defined for all 0 < r < 1 and not less than m(0) is the constant solution
l̃(r,∞) = m(0). Hence (3.7) holds. This completes the proof. �

We define

F (R) =
∫ 1

0
KM (c̃(r,R))l̃(r,R)r2dr for R ≥ 0. (3.9)

By Lemmas 3.1 and 3.4, F (R) is continuous and monotone non-increasing for R ≥ 0, and

F (0) =
∫ 1

0
KM (1)m(1)r2dr =

1
3
(KB(1) + μ − KD(1)) >

1
3
μ,

lim
R→∞

F (R) =
∫ 1

0
KM (0)m(0)r2dr =

1
3
(μ − KD(0)) <

1
3
μ.

Thus there exists a unique R̃ > 0 such that F (R̃) = 1
3μ. We denote

c̃(r) = c̃(r, R̃), l̃(r) = l̃(r, R̃).

Then we get a mapping S: (c, l) → (c̃, l̃). Note that, by (1.30), we have

v(r)l̃′(r) = [KM (c̃(r)) − KD(c̃(r))]l̃(r) − KM (c̃(r))l̃2(r) (0 < r < 1), (3.10)

and the equation F (R̃) = 1
3μ can be rewritten as

∫ 1

0
KM (c̃(r))l̃(r)r2dr =

1
3
μ. (3.11)

It is clear that S maps the subset of C[0, 1] × C[0, 1] consisting of functions satisfying the
condition (1.26) into itself. From (1.27), (1.28), (3.4), (3.10) and (3.11) it is also clear that a
fixed point of S corresponds to a solution of the problem (1.20)–(1.25).

3.2 Preliminary estimates

For any given R ≥ 0, we denote by c̄(r,R) (0 ≤ r ≤ 1) the solution of the boundary value
problem ⎧⎪⎨

⎪⎩
c̄′′ + 2

r c̄′ = R2f(c̄) (0 < r < 1),

c̄′|r=0 = 0, c̄|r=1 = 1.
(3.12)

We define

F̄ (R) =
∫ 1

0
KM (c̄(r,R))m(c̄(r,R))r2dr for R ≥ 0. (3.13)
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By Lemma 3.1, F̄ (R) is continuous and monotone non-increasing in R, and

F̄ (0) =
∫ 1

0
KM (1)m(1)r2dr =

1
3
(KB(1) + μ − KD(1)) >

1
3
μ,

lim
R→∞

F̄ (R) =
∫ 1

0
KM (0)m(0)r2dr =

1
3
(μ − KD(0)) <

1
3
μ.

Thus there exists a unique number R0 > 0 such that F̄ (R0) = 1
3μ. Note that R0 depends only

on the functions f , KB, KD and the number μ; it does not depends on any other variables.
Since l(r) ≤ 1, by a standard comparison argument we have

c̃(r,R) ≥ c̄(r,R) (3.14)

(for any 0 ≤ r ≤ 1 and R ≥ 0). This implies that

l̃(r,R) ≥ m(c̃(r,R)) ≥ m(c̄(r,R)) (3.15)

(also for any 0 ≤ r ≤ 1 and R ≥ 0). Hence, for any 0 ≤ R < R0 we have

F (R) > F (R0) ≥ F̄ (R0) =
1
3
μ.

Thus the following lemma holds:
Lemma 3.5 R̃ ≥ R0.
Next, we have

v(r)= 1
r2

∫ r
0 KM (c(ρ))l(ρ)ρ2dρ − r

∫ 1
0 KM (c(ρ))l(ρ)ρ2dρ

= ( 1
r2 − r)

∫ r
0 KM (c(ρ))l(ρ)ρ2dρ − r

∫ 1
r KM (c(ρ))l(ρ)ρ2dρ

≥ −r
∫ 1
r KM (c(ρ))l(ρ)ρ2dρ ≥ −r

∫ 1
r KM (1)ρ2dρ ≥ −KM (1)r(1 − r).

Hence, defining
v0(r) = −KM (1)r(1 − r), (3.16)

we get
Lemma 3.6 v(r) ≥ v0(r) for 0 ≤ r ≤ 1.
We now assume that

l(r) ≥ m(0) = 1 − KD(0)
μ

for 0 ≤ r ≤ 1. (3.17)

Note that m(0) > 0 (by the assumption (A5)). By a standard comparison argument we have

c̃(r,R) ≤ ĉ(r,R) for 0 ≤ r ≤ 1, R ≥ 0, (3.18)

where, for fixed R ≥ 0, ĉ(r,R) is the solution of the boundary value problem
⎧⎪⎨
⎪⎩

ĉ′′ + 2
r ĉ′ = R2m(0)f(ĉ) (0 < r < 1),

ĉ′|r=0 = 0, ĉ|r=1 = 1.
(3.19)
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By Lemma 3.1 we know that ĉ(r,R) is monotone decreasing in R, and

lim
R→∞

ĉ(r,R) = 0, lim
R→0+

ĉ(r,R) = 1

(for fixed 0 ≤ r < 1). We denote by l̂(r,R) the admissible solution of the equation

v0(r)l̂′ = [KM (ĉ(r,R)) − KD(ĉ(r,R))]l̂ − KM (ĉ(r,R))l̂2 (0 < r < 1). (3.20)

Then by (3.18), Lemma 3.6 and Theorem 2.4 we get

l̃(r,R) ≤ l̂(r,R) for 0 ≤ r ≤ 1, R ≥ 0. (3.21)

Hence, defining

F̂ (R) =
∫ 1

0
KM (ĉ(r,R))l̂(r,R)r2dr for R ≥ 0, (3.22)

we infer that F (R) ≤ F̂ (R) for all R ≥ 0. Similarly as before we have

lim
R→0+

F̂ (R) =
1
3
KM (1)m(1) >

1
3
μ, lim

R→∞
F̂ (R) =

1
3
KM (0)m(0) <

1
3
μ,

and F̂ (R) is continuous and monotone decreasing. Thus there exists a unique number R∗ > 0
such that F̂ (R∗) = 1

3μ. It follows that F (R∗) ≤ 1
3μ, so that R̃ ≤ R∗. Hence we have proved the

following result:
Lemma 3.7 Assume that (3.17) holds. Then R̃ ≤ R∗.
Note that similarly as for R0, R∗ also depends only on the functions F , KB, KD and the

number μ. We denote
c0(r) = c̄(r,R∗), c∗(r) = ĉ(r,R0).

Then from (3.14), (3.18) and Lemmas 3.5, 3.7 we get the following result:
Lemma 3.8 Assume that (3.17) holds. Then there hold estimates:

c0(r) ≤ c̃(r) ≤ c∗(r) (0 ≤ r ≤ 1). (3.23)

Let h(r) (0 ≤ r ≤ 1) be the solution of the boundary value problem
⎧⎪⎨
⎪⎩

h′′(r) + 2
rh′(r) = R0m(0)f(c0(r)) (0 < r < 1),

h′(0) = 0, h(1) = 1.
(3.24)

It is clear that 0 < h(r) ≤ 1 for 0 ≤ r ≤ 1, and h′(r) > 0 for 0 < r ≤ 1. Let

κ = min
0≤c≤1

K ′
M (c) = min

0≤c≤1
K ′

B(c),

and let v∗(r) (0 ≤ r ≤ 1) be the solution of the initial value problem
⎧⎪⎨
⎪⎩

v′∗(r) + 2
rv∗(r) = κm(0)h(r) − 3κm(0)

∫ 1
0 h(ρ)ρ2dρ (0 < r < 1),

v∗(0) = 0.
(3.25)
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Obviously,

v∗(r) = κm(0)r
{ 1

r3

∫ r

0
h(ρ)ρ2dρ −

∫ 1

0
h(ρ)ρ2dρ

}
.

Thus using Lemma 3.3 we see readily that v∗ satisfies the condition (B1).
Lemma 3.9 Assume that c(r) − h(r) is monotone nondecreasing. Then v(r) ≤ v∗(r) for

0 ≤ r ≤ 1.
Proof: We denote

u(r) = KM (c(r))l(r) − κm(0)h(r) (0 ≤ r ≤ 1).

Then u(r) is clearly nonconstant. We write

u(r) =[KM (c(r))l(r) − m(0)KM (c(r))] + [m(0)KM (c(r))

−κm(0)c(r)] + [κm(0)c(r) − κm(0)h(r)].

From this expression we see immediately that u(r) is also monotone nondecreasing. By Lemma
3.3, it follows that the function

g(r) =
1
r3

∫ r

0
u(ρ)ρ2dρ −

∫ 1

0
u(ρ)ρ2dρ

is negative for 0 < r < 1. Since v(r) = v∗(r) + rg(r), we get the desired assertion. �

3.3 Existence of a fixed point

We introduce a set E in C[0, 1] × C[0, 1] as follows:

E ={(c, l) ∈ C[0, 1] × C[0, 1] : 0 ≤ c(r) ≤ 1, 0 ≤ l(r) ≤ 1 (0 ≤ r ≤ 1), c(1) = 1, l(1) = m(1),

c(r) ≥ c0(r), l(r) ≥ m(0) (0 ≤ r ≤ 1) and c(r) − h(r), l(r) are monotone nondecreasing}.

Clearly, E is a bounded closed convex subset of the Banach space C[0, 1] × C[0, 1].
Lemma 3.10 The mapping S maps the set E into itself.
Proof: Let (c, l) ∈ E and let (c̃, l̃) = S(c, l). It is clear that (c̃, l̃) satisfies the following

conditions:
0 ≤ c̃(r) ≤ 1, 0 ≤ l̃(r) ≤ 1 (0 ≤ r ≤ 1), c̃(1) = 1, l̃(1) = m(1).

From (3.23) we see that c̃(r) ≥ c0(r), and from the inequality l̃(r) ≥ m(c̃(r)) (see (3.15)) we
have l̃(r) ≥ m(0). Besides, it is clear that l̃(r) is monotone nondecreasing. From (1.27) and
(3.24) we respectively have

c̃′(r) =
R̃2

r2

∫ r

0
l(ρ)f(c̃(ρ))ρ2dρ and h′(r) =

R2
0

r2

∫ r

0
m(0)f(c0(ρ))ρ2dρ.

Since R̃ ≥ R0, l(r) ≥ m(0) and c̃(r) ≥ c0(r), we see that c̃′(r) − h′(r) ≥ 0. Hence c̃(r) − h(r) is
monotone nondecreasing. This proves that (c̃, l̃) ∈ E. �

Lemma 3.11 The mapping S is continuous when restricted on E.
Proof: Let (cj , lj) ∈ E (j = 1, 2, · · ·) and assume that limj→∞(cj , lj) = (c, l) in C[0, 1] ×

C[0, 1]. Let (c̃j , l̃j) = S(cj , lj), j = 1, 2, · · ·, and (c̃, l̃) = S(c, l). We need to show that also
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limj→∞(c̃j , l̃j) = (c̃, l̃) in C[0, 1]×C[0, 1]. In the sequel we use the same notation of variables as
before to denote those variables related to (c, l), and use the notation with subscript j to denote
the corresponding variables related to (cj , lj). By Lemmas 3.5–3.9 we have

R0 ≤ R̃j ≤ R∗, c0(r) ≤ c̃j(r) ≤ c∗(r), v0(r) ≤ vj(r) ≤ v∗(r) (j = 1, 2, · · ·).
Clearly,

lim
j→∞

vj(r) = v(r) uniformly for 0 ≤ r ≤ 1,

and
lim

j→∞
c̃j(r,R) = c̃(r,R) uniformly for 0 ≤ r ≤ 1 and R0 ≤ R ≤ R∗.

This further implies, by a similar argument as in the proof of Theorem 2.5, that also

lim
j→∞

l̃j(r,R) = l̃(r,R) uniformly for 0 ≤ r ≤ 1 and R0 ≤ R ≤ R∗.

Thus
lim

j→∞
Fj(R) = F (R) uniformly for R0 ≤ R ≤ R∗.

It follows that limj→∞ R̃j = R̃. Clearly, c̃(r,R) is continuous in R uniformly for 0 ≤ r ≤ 1. By
Theorem 2.5, this further implies that also l̃(r,R) is continuous in R uniformly for 0 ≤ r ≤ 1.
Using these facts and the expressions c̃j(r) = c̃j(r, R̃j), l̃j(r) = l̃j(r, R̃j), c̃(r) = c̃(r, R̃) and
l̃(r) = l̃(r, R̃), one readily get the desired assertion. �

Lemma 3.12 S(E) is a pre-compact subset of C[0, 1] × C[0, 1].
Proof: Let (cj , lj) ∈ E, j = 1, 2, · · ·. As before we use the notation with subscript j to

denote various variables related to (cj , lj). For instance, (c̃j , l̃j) = S(cj , lj), and vj is the solution
of the problem (1.28) when c(r) and l(r) there are respectively replaced with cj(r) and lj(r).
By definition, c̃j satisfies the equation

c̃′′j (r) +
2
r
c̃′j(r) = R̃2

j lj(r)f(c̃j(r)) (0 < r < 1).

Since R0 ≤ R̃j ≤ R∗, j = 1, 2, · · ·, we see easily that c̃′′j (r) + 2
r c̃′j(r) is uniformly bounded

for 0 < r < 1 and j = 1, 2, · · ·. It follows that {c̃j} has a subsequence which is uniformly
convergent in [0, 1]; for simplicity we use the same notation {c̃j} to denote this subsequence,
and the corresponding subsequence of {vj} is also denoted by the same notation {vj}. From
(1.28) it is clear that v′j(r) + 2

rvj(r) is uniformly bounded for 0 < r < 1 and j = 1, 2, · · ·. Thus
{vj} has a subsequence which is uniformly convergent in [0, 1]. From (3.10) we see that l̃j is the
admissible solution of the equation

vj(r)l̃′j(r) = [KM (c̃j(r)) − KD(c̃j(r))]l̃j(r) − KM (c̃j(r))l̃2j (r) (0 < r < 1).

Thus by Theorem 2.5 we infer that the corresponding subsequence of {l̃j} is also uniformly
convergent in [0, 1]. Hence, we have proved that {(c̃j , l̃j)} has a subsequence which is convergent
in C[0, 1] × C[0, 1], so that S(E) is pre-compact. �

From Lemma 10 – Lemma 12 and the Schauder fixed point theorem, we conclude that the
mapping S has a fixed point in the set E, which, by what we pointed out earlier, corresponds
to a solution of the problem (1.20)–(1.25). This proves Theorem 1.1.

Acknowledgement: This work is partially supported by the China National Natural
Science Foundation under the grant number 10171112, and partially supported by The Institute

18



of Mathematical Sciences (IMS) of The Chinese University of Hong Kong and the Zheng Ge Ru
Foundation. The author would like to express his sincere thanks to the faculty and staff of IMS
for their hospitality when he was visiting IMS during November 1, 2004 through December 31,
2004.

References

[1] J. Adam and N. Bellomo, A Survey of Models for Tumor-Immune System Dynamics,
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