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1 Introduction

Let Ω ⊂ R3 be a bounded smooth domain satisfying the topological condition H1(Ω, R) =
0. We investigate the solvability, regularity and the vanishing viscosity limit of the in-
compressible Navier-Stokes equations

∂tu− εΔu+ ω × u+ ∇p = 0; in Ω; (1.1)
∇ · u = 0; in Ω; (1.2)
ω = ∇× u; in Ω; (1.3)

with the following slip boundary conditions

u · n = 0, ω · τ = 0, on ∂Ω, (1.4)

where and below ∇· and ∇× denote the div and curl operators respectively, n is the
outward normal, and τ is the unit tangential vector of ∂Ω.

The investigation of vanishing viscosity limit of solutions of the Navier-Stokes equa-
tions both in the two and three spacial dimensional cases is a classical issue. There are
two related questions arising from here: one is how to describe the inviscid limiting be-
havior of the Navier-Stokes equation; and the other is that does the Euler equation can
be approximated by the Navier-Stokes equations. In the case that the solution to the
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ideal inviscid Euler system is sufficiently regular and there are no physical boundaries,
the answers to both questions are positive ([12-14]). However, these questions become
more subtle in the presence of physical boundaries. The most common boundary con-
dition is the classical no-slip boundary condition, u = 0 on ∂Ω, which gives rise to the
phenomena of strong boundary layers in general as formally derived by Prandtl [30].
However, the rigorous analysis for such boundary layer is still far way from complete ex-
cept in the case of a half-space and analytical initial data by Sammartino-Califish [32],
and the linearized problems by Teman-Wang [39], Xin-Yanagisava [44] and Wang-Xin
[42], see also [45]. For various sufficient conditions to ensure the convergence of viscous
solutions to the ones of the Euler system, see Kato [23] and [41] and the references
therein.

Another commonly used boundary conditions are Navier-type slip boundary condi-
tions, which say that there is a stagnant layer of fluid close to the wall allowing a fluid
to slip, and the slip velocity is proportional to the shear stress, i.e.,

u · n = 0, (D(u)n)τ = ατ uτ on ∂Ω, (1.5)

where D(u) = ∇u+(∇u)τ is the shear stress. Such boundary conditions can be induced
by effects of free capillary boundaries, (see [3]), or a rough boundary as in [2, 20], or a
perforated boundary, which is then called Beavers-Joseph’s law, see [4, 31, 34, 19], or an
exterior electric field as in [9]. This type of boundary conditions were first introduced
by Navier in [29], which was followed by great many applications, numerical studies
and analysis for various fluid mechanical problems, see, for instance [2-5, 8, 12, 15, 17-
21, 24-28, 31-32, 34-36, 43] and the references therein. In particular, we mention that
such type slip boundary conditions are used in the large eddy simulations of turbulent
flows, which seeks to compute the large eddies of a turbulent flow accurately neglecting
small flow structure, for which the slip boundary conditions are more suitable than the
Dirichlet boundary conditions [17].

For the mathematical rigorous analysis of the Navier-Stokes equations with Naiver-
type slip boundary conditions, the first pioneering paper is due to Solonnikov and
Ščadilov [38] for the stationary linearized Navier-Stokes system under the boundary
conditions:

u · n = 0, (D(u)n)τ = 0 on ∂Ω, (1.6)

and the existence of weak solution and regularity for the stationary Navier-Stokes
equations with the Navier slip boundary condition (1.5) has been obtained by Beirǎo
da Veiga [5] for half-space. In the case of two dimensional simply connected bounded
domains, the vanishing viscosity problem has been rigorously justified by J. L. Lions
[25] and P. L. Lions [26] for the free boundary condition:

u · n = 0, w = 0 on ∂Ω, (1.7)

and by Clopeau-Mikelic-Robert [10] for the Navier-slip boundary condition (1.6). Sim-
ilar results have also been obtained by Mucha [28] under some geometrical contraints
on the shape of the domains. It should be noted all these 2-dimensional results are
based on the fact the vorticity is a scalar and satisfies a maximum principle under the
appropriate slip boundary conditions.

In the case of 3-dimensional domains, very little is known on the existence of strong
solutions to Navier-Stokes system with a slip boundary condition. One cannot extend
the techniques used in 2-dimensional case easily due to the lack of maximal principle for
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the vorticity in this case. Furthermore, a standard Sobolev type a priori estimate seems
to require some compatibility of the nonlinear convection term with the slip boundary
condition in order to obtain a ε-independent estimate.

The main purpose of this paper is to establish the well-posedness and asymptotic
behavior as ε → 0+ of strong solutions to the initial-boundary value problem, (1.1)-
(1.4) for a 3-dimensional smooth bounded domain with the constraint H1(Ω, R) = 0.
In particular, for a 3-dimensional smooth bounded simply-connected domain, we would
like to show that the limε→0 u

ε(x, t) = u0(x, t) exists and u0 solves the following initial
boundary value problem for the ideal Euler system:

{
∂t u

0 + w0 × u0 + ∇p0 = 0 in Ω
∇ · u0 = 0 w0 = ∇× u0 (1.8)

with the boundary condition

u0 · n = 0 on ∂Ω (1.9)

and the same initial data as for the Navier-Stokes system (1.1). It should be noted that
our boundary condition (1.4) is indeed a Navier-type slip boundary condition. In fact,
we will show (see Proposition 4.1) that the boundary condition (2.4) is equivalent to

u · n = 0, and ∂n uτ = 0, on ∂Ω. (1.10)

However, it was shown by Watanake [43] that on ∂Ω,

2(D(u)n)τ = ∂n uτ − kτ uτ + (∇(u · n))τ , (1.11)

where kτ is the corresponding principal curvature of ∂Ω. It follows that the slip bound-
ary condition (1.4) is equivalent to

u · n = 0, (D(u)n)τ = −kτ uτ , on ∂Ω. (1.12)

Hence, it is a Navier-type slip boundary condition, and furthermore, it is a geomet-
rical one. In the particular case that Ω is the half space z > 0, then the boundary
condition (1.4) becomes exactly the boundary condition (1.6), which has been studied
for some interesting cases. For example, Scadilov and Solonnikov ([38]) studied the
stationary linearized Navier-Stokes system with the boundary condition (1.6) based on
the following variational formulation:

(D(u),D(v)) = (f, v) (1.13)

for the corresponding Stokes problem, and Watanake ([43]) studied the linearized evo-
lutionary problem with the boundary condition (1.6) for an axi-symmetric domain.
The major difficulty here is that the bilinear form on the left hand side of (1.13) may
not be positive on the spaces they were studying, which leads to some difficulties to
the well-posedness of the associated problem due to the compatibility condition on f .
Our approach in this paper is motivated more by the work of Busuioc and Ratiu [7] on
the second grade Navier-Stokes equations with the slip condition (1.6), where the local
well-posedness theory is established by using the modified functional

α(D(u),D(v)) +
∫

Ω
u · v, (1.14)
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with α > 0. However, their results and analysis depend crucially on α > 0 so that
one cannot modify their approach directly to study the initial-boundary value problem
(1.1)-(1.4) with initial data.

It is clear from (1.10)-(1.12) that the boundary condition (1.4) is a Navier-type slip
condition and a natural generalization of the boundary conditions (1.6) and (1.7). We
hope that our study on the asymptotic behavior of solutions to the Navier-Stokes sys-
tem with such a slip boundary conditions will share light on the studies for more general
Navier-type slip conditions for general 3-dimensional domains. Our main strategy in
this paper is to formulate the associated boundary value problem by the theory of
Hodge decomposition so that the corresponding Stokes operator is well-behaved. Fur-
thermore, the nonlinearity in the Navier-Stokes systems is shown to match with the
boundary condition (1.4) smoothly. These allow us to show the existence of solutions
by a Galerkin approximation, and the regularity, uniqueness, and asymptotic behavior
of solutions by a priori uniform estimates (independent of the viscosity). Consequently,
we can derive the vanishing viscosity limit of the Navier-Stokes solutions.

The rest of the paper is organized as follows: in next section, we begin with intro-
duction of functional spaces which will be used later and provide some basic Poincare
type estimates for elements in such space. These estimates are based on the well-known
Helmholtz-Wyle decomposition and the vector calculus formed by Cantarella, De Turk
and Gluck [8]. Though most of these results are well-known or simple corollaries of the
general Hodge decomposition theorem for differential forms (see Schwarz [34]), there
are some new estimates (Theorem 2.1, Theorem 2.2, and Lemma 2.3), which cannot be
found in the literatures easily.

Based on these estimates, we study the Stokes problem corresponding to the bound-
ary condition (1.4) in Section 3. The well-posedness of the associated Stokes operator,
its eigenvalue problem, and the regularity of the eigenvectors are proved. In Section 4,
we investigate the compatibility of the nonlinearity in the Navier-Stokes system and the
boundary condition (1.4), and the geometrical characteristics of the boundary condi-
tion. One of the main observation is that nonlinear convection term matches smoothly
with the slip boundary condition (1.4), which is the key to obtain the ε-independent
a priori estimates by the technique of Sobolev spaces. The formulation of a Galerkin
approximation and some energy estimates for such approximate solutions are given in
Section 5. In Section 6, the global existence of a weak solution is obtained, which is
a consequence of the self-adjointness of the Stokes-operator defined in Section 3 (see
Theorem 6.1) and the estimates in Section 5. While the local well-posedness of the
strong solution and some further regularity estimates, which are basis for the studying
of vanishing viscosity limit, are given in Section 7. Then in Section 8, we prove the
desired results that the solutions to the initial boundary value of Navier-Stokes system,
(1.1)-(1.4), converge strongly to that of the Euler system, (1.8)-(1.9), and a rate of
convergence is also obtained. Finally, we give some general remarks is Section 9.

2 Some Preliminaries

In this section, we will introduce some functional spaces and provide basic estimates
which will be useful for our later analysis. All of these are based on the Hodge de-
composition. Let Ω ⊂ R3 be a bounded smooth domain, with the homology group
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H1(Ω, R) = 0. Set
D(Ω) = C∞(Ω),

Dτ (Ω) = {u ∈ D(Ω);∇ · u = 0, u · n = 0},
Dn(Ω) = {u ∈ D(Ω);∇ · u = 0, u · τ = 0},

D0(Ω) = {u ∈ C∞
0 (Ω);∇ · u = 0}.

Since H1(Ω, R) = 0, it holds the following four-fold Hodge decomposition (see
Cantarella- De Turck-Gluck [8])

D(Ω) = Dτ (Ω) ⊕Gc ⊕Gh ⊕Gg, (2.1)

with the property that

ker curl = image grad = Gc ⊕Gh ⊕Gg; (2.2)
image curl = Dτ (Ω) ⊕Gc; (2.3)
ker div = Dτ (Ω) ⊕Gc ⊕Gh, (2.4)

where

Gc = {u = ∇ϕ;∇ · u = 0,
∫

∂Ωi

u · n = 0 ∀ i};

Gh = {u = ∇ϕ;∇ · u = 0, ϕ = C(i) on ∂Ωi};
Gg = {u = ∇ϕ;ϕ = 0 on ∂Ω};

here ∂Ωi denotes the i-th component of ∂Ω.

Define
Hs

τ (Ω) = {u ∈ Hs(Ω);∇ · u = 0, u · n = 0},
for s ≥ 0, and

Hs
n(Ω) = {u ∈ Hs(Ω) ∩H;∇ · u = 0, u · τ = 0},

for s ≥ 1 the closed subspaces of the Hilbert space Hs(Ω) of 3-vector valued functions;
and

W = {u ∈ H2
τ (Ω); (∇×)u ∈ H1

n(Ω)}.
Where u · n and u · τ denote the corresponding normal and tangential component

of the velocity u on the boundary respectively, which make sense in the sense of trace.
Throughout this paper ‖·‖ and ‖·‖s denote the norm of L2(Ω) and Hs(Ω) respectively;
while | · |s denotes the norm of Hs(∂Ω); and C and C(·) are some uniform constants.

Note that H0
τ (Ω) is the L2(Ω) closure of Dτ (Ω)∩C∞

0 (Ω) (see for example Galdi [16]).
It then holds

L2(Ω) = H0
τ ⊕ {∇p; p ∈ H1(Ω)}. (2.5)

It follows from H1(Ω, R) = 0 and the Lemma 1 in Cantarella-De Turch-Gluck [8]
that

Dτ (Ω) = ∇× Dn(Ω). (2.6)
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Since Gh ⊂ Dn(Ω), the following decomposition holds

Dn(Ω) = Gh ⊕ Dnc(Ω), (2.7)

with Dnc(Ω) = G⊥
h ∩ Dn(Ω). Thus u ∈ Dn(Ω) can be written as

u = v + Σ(u, hj)hj , (2.8)

where {hj} is an orthogonal basis of Gh
∼= H2(Ω, R) (see Lemma 3 in Cantarella-De

Turck-Gluck [8]). It is easily seen from (2.6) and (2.7) that

Dτ (Ω) = ∇× (Dn(Ω) ∩G⊥
h ). (2.9)

We also use the notation:

Hs
nc(Ω) = Hs

n(Ω) ∩G⊥
h .

Let us recall some well known estimates:

Lemma 2.1 Let u ∈ Hs(Ω) be a vector valued function. Then

‖u‖s ≤ C(‖∇ × u‖s−1 + ‖div u‖s−1 + |n · u|s− 1
2

+ ‖u‖s−1), (2.10)

for s ≥ 0, where H−s(Ω) is the dual of Hs
0(Ω), the closure of C∞

0 (Ω) in Hs(Ω), |n·u|s− 1
2

is the norm of n · u in Hs− 1
2 (∂Ω).

Proof: See [6] and [12].

Lemma 2.2 Let u ∈ H1
τ (Ω). Then the following Poincare type inequality holds

‖u‖ ≤ C‖∇ × u‖, (2.11)

Proof: See [46].

These two Lemmas yield

‖u‖1 ≤ C‖∇ × u‖, (2.12)

for u ∈ H1
τ (Ω). Moreover, inductively, one can deduce

Corollary 2.1 Let u ∈ Hs
τ (Ω), s ∈ N . Then

‖u‖s ≤ C‖∇ × u‖s−1. (2.13)

It was shown by von Walh [40] (see also Schwarz [34] for more general form) that
the following estimate

‖∇u‖ ≤ C(‖∇ × u‖ + ‖∇ · u‖) (2.14)

is valid for u ∈ H1
τ (Ω) if H1(Ω, R) = 0; or u ∈ H1

n(Ω) if H2(Ω, R) = 0. Noting (2.9), we
would like to obtain similar estimate without assuming H2(Ω, R) = 0.

First, we claim that an estimate similar to (2.10) is also valid in terms of the corre-
sponding tangential component, which is of independent interests and can not be found
in literatures.
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Theorem 2.1 Let u ∈ D(Ω) and s ∈ N . Then it holds that

‖u‖s ≤ C(‖∇ × u‖s−1 + ‖∇ · u‖s−1 + |uτ |s− 1
2

+ ‖u‖s−1). (2.15)

Proof: By the Holge decomposition, one may write

u = v + ∇p+ ∇q, (2.16)

with v, p, and q satisfying respectively

−Δq = ∇ · u, in Ω, (2.17)
q = 0, on ∂Ω (2.18)

∇ · v = 0, in Ω, (2.19)
v · n = 0, on ∂Ω (2.20)

Δp = 0, in Ω, (2.21)
(∇p)τ = (u− v)τ , on ∂Ω. (2.22)

By the standard elliptic regularity, one has

‖∇q‖s ≤ C‖∇ · u‖s−1. (2.23)

It follows from Corollary 2.1 that

‖v‖s ≤ C‖∇ × v‖s−1 = C‖∇ × u‖s−1. (2.24)

On the other hand, Lemma 2.3 below shows

‖∇p‖s ≤ C(‖∇p‖s−1 + |(u− v)τ |s− 1
2
). (2.25)

Note that
|(u− v)τ |s− 1

2
≤ |(u)τ |s− 1

2
+ |(v)τ |s− 1

2
, (2.26)

and
|(v)τ |s− 1

2
≤ C‖v‖s. (2.27)

Thus we conclude

‖u‖s = ‖v + ∇p+ ∇q‖s ≤ C(‖∇ × u‖s−1 + ‖∇ · u‖s−1 + |n× u|s− 1
2

+ ‖u‖s−1). (2.28)

It remains to show

Lemma 2.3 Let Ω be a smooth bounded domain and p ∈ C∞(Ω) be a scalar function
which solves the following problem

Δp = 0, in Ω, (2.29)
(∇p)τ = φ, on ∂Ω (2.30)

with s ∈ N being an integer. Then for w = ∇p, it holds that

‖w‖s+1 ≤ C(‖w‖s + |φ|s+ 1
2
). (2.31)
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Proof: For simplicity, we assume Ω = B(0, 1) ⊂ R3 to be the unit ball (in general
case, we may replace Ω̃ in the following by a tubular neighborhood of ∂Ω. Indeed,
one can see from below that it is just an estimate for a harmonic function which is
independent of the topology), and denote by (	eθ, 	eϕ, 	er)(x) the standard moving frame
at x ∈ B(0, 1) � {0} corresponding to the spherical coordinates. Note that

Δw = 0, in B(0, 1), (2.32)

so from the interior regularity of the Laplace equation implies

‖w‖s+1,B(0, 1
2
) ≤ C‖w‖0,B(0,1). (2.33)

The trace theorem and (2.33) show that

‖w‖s+ 1
2
,∂B(0, 1

2
) ≤ C‖w‖0,B(0,1) (2.34)

holds for s ∈ N. Now set wθ(x) = w ·	eθ and Ω̃ = B(0, 1)�
¯B(0, 1

2 ). Then (2.32) implies
that

Δwθ = 2∂jw · ∂j	eθ +w · Δ	eθ, in Ω̃, (2.35)
wθ = φ · 	eθ, on ∂B(0, 1), (2.36)

wθ = w · 	eθ, on ∂B(0,
1
2

). (2.37)

By the elliptic regularity of Dirichlet problem, (2.34), and noting that

|Dkwθ(x)|R ≤ CΣk
0|Djw(x)|R3 , (2.38)

one has

‖wθ‖s+1,Ω̃ ≤ C(‖wθ‖s,Ω̃ + |wθ|s+ 1
2
,∂B(0, 1

2
) + |φ|s+ 1

2
) ≤ C(‖w‖s,B(0,1) + |φ|s+ 1

2
). (2.39)

Similarly, for wϕ(x) = w · 	eϕ, it also holds that

‖wϕ‖s+1,Ω̃ ≤ C(‖wϕ‖s,B(0,1) + |φ|s+ 1
2
). (2.40)

Next, direct computations show that wr = w(x) · 	er(x) satisfies

Δwr = 2∂jw · ∂j	er + w · Δ	er, in Ω̃; (2.41)
∇wr · n = −(∂θφ+ ∂ϕφ), on ∂B(0, 1); (2.42)

∇wr · n = Dτwτ on ∂B(0,
1
2

), (2.43)

where
Dτwτ = −(∂θwθ + ∂ϕwϕ).

It follows from the elliptic regularity that

‖wr‖s+1,Ω̃ ≤ C(‖wr‖s,Ω̃ + ‖w‖s,Ω̃ + |Dτwτ |s− 1
2
,∂B(0, 1

2
) + |∂θφ+ ∂ϕφ|s− 1

2
). (2.44)

Note that
|∂θφ+ ∂ϕφ|s− 1

2
≤ |φ|s+ 1

2
, (2.45)
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and
|Dkwr(x)|R ≤ CΣk

0|Djw(x)|R3 . (2.46)

Hence, we have arrived at

‖w‖s+1,Ω = ‖w‖s+1,B(0, 1
2
) + ‖wθ	eθ + wϕ	eϕ + vr	er‖s+1,Ω̃ ≤ C(‖w‖s,Ω + |φ|s+ 1

2
), (2.47)

and the lemma is proved.

Remark: The estimates in Lemma 2.3 and Theorem 2.1 also hold in the corresponding
Sobolev spaces by density argument.

As a direct consequence, we have:

Corollary 2.2 Let u ∈ Dτ (Ω) or u ∈ Dn(Ω) and s ∈ N . Then

‖u‖s ≤ C(‖∇ × u‖s−1 + ‖u‖s−1). (2.48)

Next, we show the following Poincare type inequality for u ∈ H1
nc(Ω).

Theorem 2.2 Let u ∈ H1
nc(Ω). Then it holds that

‖u‖ ≤ C‖∇ × u‖. (2.49)

Proof: If not, then there exists a sequence um ∈ H1
nc(Ω) such that

‖um‖ = 1, and ‖∇ × um‖ → 0, m→ ∞.

It follows from (2.5) that

um = vm + ∇pm, vm ∈ H0
τ (Ω), (2.50)

where pm solves the following problem:

−Δpm = ∇ · um; (2.51)
∇pm · n = um · n, (2.52)

which implies vm and ∇pm ∈ H1(Ω). This, together with (2.12) and Theorem 2.1,
shows that there exist subsequences of (um, vm, pm), denoted still by (um, vm, pm), such
that

um → u weakly in H1(Ω); strongly in L2(Ω); (2.53)
vm → 0, strongly in H1(Ω); (2.54)
∇pm → ∇p weakly in H1(Ω); strongly in L2(Ω), (2.55)

for some u ∈ H1
n(Ω) with ‖u‖ = 1 and ∇p ∈ H1(Ω). Passing to the limit, we find that

−Δp = 0, in Ω, (2.56)
(∇p)n = u · n, on ∂Ω. (2.57)

Consequently, p ∈ H2(Ω) is uniquely determined up to an additive constant and
satisfies

−Δp = 0, in Ω, (2.58)
(∇p)τ = 0, on ∂Ω. (2.59)
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However, (∇p)τ = 0 implies that on ∂Ω, p is locally constant. Hence, u ∈ Gh, which
contradicts to the fact that u is the weak limit of um ∈ H1

nc(Ω) in H1(Ω). The proof is
complete.

It follows from Theorem 2.1 and Theorem 2.2 that (2.12) holds also for u ∈ H1
nc(Ω).

Moreover, we deduce inductively that

Corollary 2.3 Let u ∈ Hs
nc(Ω) and s ∈ N . Then it holds that

‖u‖s ≤ C‖∇ × u‖s−1. (2.60)

3 The Stokes Operator

In this section, we investigate the properties of the Stokes operator −Δ under the given
slip boundary condition (1.4). First, we show that

Theorem 3.1 The linear operator (∇×): H1
nc(Ω) → H0

τ (Ω) is bijective and bounded.

Proof: It is easy to check that (∇×) maps H1
nc(Ω) to H0

τ (Ω) and is a bounded linear
operator, see [46]. Let h ∈ H0

τ (Ω). There exists a sequence hm ∈ D0(Ω) such that
hm → h in L2(Ω). Then (2.9) shows that there exists a sequence vm ∈ G⊥

h ∩D(Ω) such
that

∇× vm = hm.

Corollary 2.3 now shows that {vm} is a Cauchy sequence in H1(Ω). Passing to the
limit shows the surjectiveness. The injectiveness also follows from theorem 2.1.

By the Banach theorem of inverse operator, one can then define a bounded linear
operator R : H0

τ (Ω) → H1
n(Ω) as

h→ u, if ∇× u = h,

i.e.
∇×R(h) = h, ∀ h ∈ H0

τ (Ω).

Next, we have

Theorem 3.2 The linear operator ∇×: W → H1
nc(Ω) is bijective and bounded.

Proof: We first note that

(∇× u, h) = (u,∇× h) = 0, (3.1)

holds for all u ∈ W, h ∈ Gh since h × n = 0 on the boundary. It follows from (3.1)
and the definition of W that ∇× maps W to H1

nc(Ω) and is bounded. Let h ∈ H1
nc(Ω).

Since Dnc(Ω) is dense in H1
nc(Ω) as in Theorem 3.1, so that there exists a subsequence

hm ∈ Dnc(Ω), such that hm → h in H1(Ω). Note that Dnc(Ω) ∩ Gh = {0} and
Dnc(Ω) ∩Gg = {0}.

It follows from the Hodge decomposition (2.1) that there exists a sequence vm ∈
Dτ (Ω) , such that

∇× vm = hm.
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Then {vm} is a Cauchy sequence in H2(Ω) due to Corollary 2.1. Passing to the limit
shows that ∇× : W �→ H1

nc(Ω) is surjective. The injectiveness follows from the fact
that the problem

∇× v = 0, (3.2)
v · n = 0, (3.3)

has unique solution v = 0 by Lemma 2.2.
Based on Theorem 3.2 and the Banach theorem of inverse operators, one can define

a bounded linear operator S : H1
nc(Ω) →W by

u = S(h) for h ∈ H1
nc(Ω) if ∇× u = h.

Thus one has that
∇× S(h) = h, ∀ h ∈ H1

nc(Ω).

Combining both Theorems 3.1 and 3.2, we conclude that

Theorem 3.3 The Stokes operator −Δ: W �→ H0
τ (Ω) is bijective and bounded with its

inverse given by (−Δ)−1 = S ◦R which is positive, symmetric and compact in H0
τ (Ω).

Consequently, the eigenvalues of the Stokes operator can be listed as

0 < λ1 ≤ λ2 ≤ · · · → +∞,

with the corresponding eigenvectors {ej}∞j=1 ⊂ W which form a complete orthogonal
basis in H0

τ (Ω).

Proof: It remains to check that S ◦R is symmetric and positive. Indeed, noting that
∇× (S ◦R(u)) × n = ∇× (S ◦R(v)) × n = 0, for all u and v in H0

τ (Ω), we can obtain
after integration by parts that for all u, v ∈ H0

τ (Ω),

(S ◦R(u), v) = (S ◦R(u),−Δ(S ◦R)(v))

= (S ◦R(u),−Δ(S ◦R(v))) (3.4)

=
∫

∂Ω
S ◦R(u) · ∇ × (S ◦R(v)) × n+ (∇× (S ◦R(u)),∇× (S ◦R(v))) (3.5)

= (∇× (S ◦R(u)),∇ × (S ◦R(v))) = (R(u), R(v)) (3.6)
= (u, S ◦R(v)). (3.7)

Thus, S ◦R is symmetric. The positiveness follows from

(S ◦R(u), u) = (R(u), R(u)) ≥ C‖u‖2 (3.8)

for some uniform positive constant C. The proof of Theorem 3.3 is complete.
It follows from Theorem 3, Corollary 2.1 and Corollary 2.3 that the following regu-

larity results hold.

Theorem 3.4
R(Hs

τ (Ω)) = Hs+1
nc (Ω) for s ≥ 0,

S(Hs
nc(Ω)) = Hs+1

τ (Ω) for s ≥ 1,
(−Δ)−1(Hs

τ (Ω)) = Hs+2
τ (Ω) for s ≥ 0.

As an immediate consequence, one has from the Sobolev’s imbedding theorem that

Corollary 3.1 All the eigenvectors of the Stokes operator are smooth, i.e.,

ej ∈ D(Ω), j ∈ N. (3.9)
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4 The Boundary Condition And The Nonlinearity

In this section, we investigate some properties of the slip boundary condition (1.4).
In particular, we will show that the nonlinearity in the Navier-Stokes system matches
smoothly with the slip boundary condition (1.4). We begin with describing a geomet-
rical representation of the boundary conditions (1.4).

Proposition 4.1 Let u ∈ D(Ω). Then the slip boundary condition (1.4) is equivalent
to

u · n = 0, and ∂n uτ = 0 on ∂Ω. (4.1)

Proof: Let x0 ∈ ∂Ω. Since all the quantities involved are independent of choice of the
coordinates, we may assume x0 = (0, 0, 0) and the coordinates frame (	i,	j,	k) with 	k
being the outward normal direction. Then, it follows from u · n = 0 that

∂j u3 = 0; j = 1, 2 (4.2)

at x0. Hence,
ω2 = ∂3 u1 − ∂1 u3, (4.3)

implies that
∂3 u1 = 0 (4.4)

at x0. Similarly, we have
∂3 u2 = 0 (4.5)

at x0. Note that this argument can be reversed. Thus the proposition follows.
Now, for u ∈ D(Ω), we denote the nonlinearity in the Navier-Stokes system by

B(u) = ω × u+ ∇p, (4.6)

with
ω = ∇× u, (4.7)

and ∇p determined by

Δp = ∇ · (ω × u), in Ω, (4.8)
∇p · n = (u× ω) · n on ∂Ω. (4.9)

Then our main result in this section is that B(u) matches smoothly with the bound-
ary condition (1.4), i.e.,

Theorem 4.1 For u ∈ D(Ω) ∩W , B(u) ∈ D(Ω) ∩W .

Proof: It follows from the definitions, (4.6)-(4.9) and elliptic regularity that B(u) ∈
D(Ω) and B(u) · n = 0 on the boundary. It remains is to show (∇ × B(u)) · τ = 0 on
∂Ω. Let x0 ∈ ∂Ω. Note that

∇×B(u) = (u · ∇)ω − (ω · ∇)u ≡ [u, ω] (4.10)

is independent of choices of the coordinates. We may assume that x0 = (0, 0, 0) and
the normal direction of ∂Ω at x0 coincides with 	k of the standard chart (	i,	j,	k). Then,
(∇×B(u)) · τ can be calculated by

(∇×B(u),	i) = u1 ∂1 ω1 + u2 ∂2 ω1 + u3 ∂3 ω1 − (ω1 ∂1 u1 + ω2 ∂2 u1 + ω3 ∂3 u1) (4.11)
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at x0, where ui and ∂i denote the corresponding i-th components of u and ∇ respec-
tively. It follows from ω · τ = 0 on ∂Ω that

ω1 = 0, ω2 = 0, (4.12)

and
∂i ωj = 0, i, j = 1, 2, (4.13)

at x0. Since u3 = 0 at x0, we get from (1.10)-(1.13) that

(∇×B(u),	i) = −ω3 ∂3 u1 (4.14)

at x0. (4.13), together with Proposition 4.1, shows that

(∇×B(u),	i) = 0 (4.15)

at x0. Similarly, we have
(∇×B(u),	j) = 0, (4.16)

at x0 and the theorem is proved.

5 The Galerkin Approximations

In this section, we study a Galerkin approximation for the initial-boundary value prob-
lem (1.1)-(1.4) based on the orthogonal basis given in Theorem 3.3. Let u0 ∈ H0

τ (Ω).
We consider the following system of ordinary differential equations

u′j(t) + ελj uj(t) + gj(U) = 0, (5.1)
uj(0) = (u0, ej), (5.2)

j = 1, · · ·m, where U = (uj) and

gi(U) = (B(Σm
1 ujej), ei).

It is clear that (gj(U)) is Lipshitz continuous in U and thus the initial problem,
(5.1)-(5.2), is locally well posed, and is equivalent to the following initial value problem

u′m(t, x) − εΔum(t, x) + PmB(um)(t, x) = 0, (5.3)
um(0) = Pm(u0), (5.4)

where um(t, x) = Σm
1 uj(t)ej(x) and Pm is the orthogonal projection of H0

τ onto the
finite dimensional space spanned by {ej}m

1 .
Taking the inner product with um and noting that

(PmB(um), um) = (B(um), um) =
∫

Ω
∇× um · (um × um)dx = 0, (5.5)

we get

d

dt
‖um‖2 + 2‖∇ × um‖2 = 0, (5.6)

where we have used the fact that ej ∈W .
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Set ωm(t, x) = ∇× um(t, x). Then it follows from (5.3) and (5.4) that

ω′
m(t, x) − εΔωm(t, x) + Σgj∇× ej = 0, (5.7)
ωm(0) = ∇× um(0). (5.8)

Taking the inner product with ωm, and noting that

(∇× ei,∇× ej) = λj(ei, ej), (5.9)

we get

d

dt
‖ωm‖2 + 2ε‖∇ × ωm‖2 + 2(∇×B(um), ωm) = 0. (5.10)

Set vm(t, x) = −Δum(t, x). Then it follows from (5.3) and (5.4) that

v′m(t, x) − εΔvm(t, x) + Σgj λj ej = 0, (5.11)
vm(0) = Pm(v0). (5.12)

Due to Theorem 4.1, B(um) ∈W , which implies that

(−ΔPmB(um), ei) = (Σgjλjej , ei) = (B(um),−Δei) = (−ΔB(um), ei). (5.13)

Thus,

−ΔPmB(um) = Pm(−ΔB(um)). (5.14)

Here we have used the facts that ∇×ei×n = 0, ∇×ej×n = 0 and ∇×B(um)×n = 0
on the boundary.

Taking the inner product of (5.11) with vm and −Δvm respectively, and noting (5.14),
we find

d

dt
‖vm‖2 + 2ε‖∇ × vm‖2 + 2(−ΔB(um), vm) = 0, (5.15)

and
d

dt
‖∇ × vm‖2 + 2ε‖Δvm‖2 + 2((∇×)3B(um),∇× vm) = 0. (5.16)

6 The Weak Solutions

In this section, we will obtain a weak solution to the initial-boundary value problem
(1.1)-(1.4) by using the Galerkin approximation given in Section 5. This argument is
similar to the argument in [12]. We begin by showing

Theorem 6.1 The Stokes operator −Δ with D(−Δ) = W defined in Section 3 is
self-adjoint on H0

τ (Ω).

Proof: We have shown that −Δ is symmetric in Section 3. To show that −Δ is
self-adjoint on H0

τ (Ω), we introduce a bilinear from

a(u, v) = (∇× u,∇× v); u, v ∈ D(a), (6.1)

14



with D(a) being the closure of W under the inner product ((u, v)) = a(u, v). First,
we claim that D(a) = H1

τ (Ω). It is clear that D(a) ⊂ H1
τ (Ω) is a closed subspace. If

D(a) �= H1
τ (Ω), by the orthogonal decomposition theorem in Hilbert spaces, there exists

a v ∈ H1
τ (Ω) \ D(a) which is orthogonal to D(a) under the inner product (6.1). Since

ej ∈ D(a), it follows that

0 = (∇× ej ,∇× v) = (−Δej , v) = λj(ej , v) (6.2)

and then v = 0 that is a contradiction. Next, it is clear that a(u, v) is symmetric,
positive and closed due to Lemma 2.2 and (2.12). Since D0(Ω) ⊂ D(a) which is dense
in H0

τ (Ω), thus a(u, v) is densely defined. Hence there exists an operator A : D(A) →
H0

τ (Ω) which is the Friedrichs self-adjoint extension of −Δ with the domain D(A),
W ⊂ D(A) ⊂ D(a) such that for any h ∈ H0

τ (Ω) there exists a unique u ∈ D(A) with
Au = h satisfying

(Au, v) = a(u, v) = (∇× u,∇× v); ∀v ∈ D(a). (6.3)

Now let u ∈ D(A), and set h = Au. It then follows from Theorem 3.3 that there
exists a ū ∈W such that −Δū = h and then

(−Δū, v) = (∇× ū,∇× v); ∀v ∈ D(a). (6.4)

Combining (6.3) with (6.4) shows that

(∇× (u− ū),∇× v); ∀ v ∈ D(a). (6.5)

Set v = u− ū. Note that u and ū ∈ D(a). It follows from (6.5) that

∇× (u− ū) = 0. (6.6)

Since H1(Ω, R) = 0, (6.6) implies there exists a p ∈ L2(Ω) such that

(u− ū) = ∇p. (6.7)

Finally, noting (u− ū) · n = 0, we show that u = ū since

Δp = 0; (6.8)
∇p · n = 0 (6.9)

has only constant solution which implies D(A) = W and A = −Δ.
We now can define the weak solutions for the initial-boundary value problem (1.1)-

(1.4).

Definition 6.1 u is a weak solution of (1.1)-(1.4) with the initial data u0 ∈ H0
τ (Ω) on

the time interval [0, T ) if u ∈ L2(0, T ;V )∩Cw[0, T ;H0
τ (Ω)) satisfying u′ ∈ L1(0, T ;V ∗)

and
(u′, v) + ε(∇× u,∇× v) + (ω × u,∇× v) = 0, a.e. t (6.10)

for all v ∈ V , and
u(0) = u0. (6.11)

where V ∗ denotes the dual space of V = D(a) = H1
τ (Ω). And a weak solution u is said to

be strong solution to (1.1)-(1.4) with the initial data u0 ∈ H1
τ (Ω) if u ∈ C([0, T ],H1(Ω))

and u1 ∈ L2((0, T ), L2(Ω)).
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Our main result in this section in the following existence of weak solution:

Theorem 6.2 For u0 ∈ H0
τ (Ω) and T > 0, there exists at least one weak solution u of

(1.1)-(1.4) which satisfies the energy inequality

d

dt
‖u‖2 + 2ε‖∇ × u‖2 ≤ 0 (6.12)

in the sense of distribution.

Proof: Let u0 ∈ H0
τ (Ω), T > 0, and {um} be the Galerkin approximations constructed

in Section 5. It follows from the energy equation (5.6) and the Gronwall inequality that

{um} bounded in L∞(0, T ;H0
τ (Ω)),

{um} bounded in L2(0, T ;H1
τ (Ω)).

Note that for v ∈ H1
τ (Ω), one has

|(−Δum, v)| = |(ωm,∇× v)|, (6.13)

which implies that
{−Δum} bounded in �L2(0, T ;V ∗); (6.14)

and

|(PmB(um), v)| = |(ωm × um, vm)| = |(um · ∇)vm, um)| ≤ C

∫
Ω
|um|2|∇vm|dx. (6.15)

Since H1
τ (Ω) ⊂ L6(Ω), (6.15) implies that

{B(um)} bounded in �L
4
3 (0, T ;V ∗). (6.16)

Hence,
{u′m} bounded in �L

4
3 (0, T ;V ∗). (6.17)

Now, the rest of argument is similar to the standard one as in [12], thus the theorem
is proved.

Remark: It should be noted that for a weak solution u, boundary condition ω · τ = 0
is missed somehow since it makes no sense by a tangential trace of a vector-valued
function in L2(Ω). However, it can be shown that there exists a T0 > 0 such that
u(t) ∈ W for t ∈ (0, T0] for a weak solution u. Thus the boundary condition ω · τ = 0
is recovered. We will not pursue this issue in this paper.

7 The Strong Solutions

In this section, we investigate the local well posed-ness of strong solution and its regu-
larities on the time interval.

Let u0 ∈ H1
τ (Ω) and um be the Galerkin approximate solutions. It follows from the

energy equation (5.10), Corollary 2.1, and the inequality

‖v‖2
L∞(Ω) ≤ C‖v‖1‖v‖2, ∀ v ∈ H2(Ω), (7.1)
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that
(∇×B(um), ωm) = (ωm × um,−Δum) ≤ C‖ωm‖ 3

2‖Δum‖ 3
2 , (7.2)

and
d

dt
‖ωm‖2 + ε‖Δum‖2 ≤ C‖ωm‖6. (7.3)

Consequently, there is time T0 > 0 such that, for any fixed T ∈ (0, T0),

{um} bounded in L∞(0, T ;H1(Ω)), and (7.4)
{um} bounded in L2(0, T ;H2(Ω)). (7.5)

Note that
‖Pm(v × u)‖ ≤ ‖v × u‖ ≤ C‖v‖‖u‖L∞(Ω). (7.6)

It follows from (7.4)-(7.6) and (5.3) that

{u′m} bounded in L2(0, T ;L2(Ω)). (7.7)

Then the standard compactness arguments show that there exists a subsequence of
um, denoted still by um, and a u such that

um → u in L∞(0, T ;H1(Ω)) weak − star, (7.8)
um → u in L2(0, T ;H2(Ω)) weakly, (7.9)
um → u in L2(0, T ;H1(Ω)) strongly. (7.10)

Passing to the limit shows that u is a weak solution and such that u ∈ L∞(0, T ;H1(Ω))∩
L2(0, T ;H2(Ω)).

Furthermore, standard arguments based on (7.7)-(7.11) show that u′ ∈ L2(0, T ;L2(Ω))
and u ∈ C([0, T ];H1(Ω)). Hence, u is a strong solution. Now, let u and v be two strong
solutions. Then w = u− v satisfies the following equation

w′ − εΔw +B(u) −B(v) = 0. (7.11)

Taking the inner of (7.11) with w and noting (7.6) and (7.1), we find

d

dt
‖w‖2 ≤ C(T )‖w‖2. (7.12)

Then, u = v follows from w(0) = 0 and the Gronwall inequality. Then by the
standard continuation method, we can conclude that

Theorem 7.1 Let u0 ∈ H1
τ (Ω). Then there is a time T ∗ = T ∗(u0) > 0, such that the

problem (1.1)-(1.4) with initial data u0 has a unique strong solution of u on the interval
[0, T ∗) satisfying

u ∈ L2(0, T ∗;W ) ∩ C([0, T ∗);H1
τ (Ω)); (7.13)

u′ ∈ L2(0, T ∗;H0
τ (Ω)); (7.14)

‖u‖1 → ∞, as t→ T ∗, if T ∗ <∞, (7.15)

for any T ∈ (0, T ∗). Furthermore, the following identity

d

dt
‖ω‖2 + 2ε‖Δu‖2 + 2(∇×B(u), ω) = 0, (7.16)

holds and (6.12) also becomes the energy identity.
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Remark: Let u0 ∈ H1
τ . Our previous arguments show that there exists a unique strong

solution, u(t), to the initial-boundary value problem (1.1)-(1.4) with initial data u0,
which can be obtained as a limit of the Galerkin approximations constructed in Section
5. In fact, the uniqueness of the strong solution implies that the whole sequence of
the Galerkin approximate solutions converges. Furthermore, the boundary condition,
w · τ = 0, is satisfied in the sense of trace.

Next, we study further regularity of the strong solution if the initial data is more
regular. First, we assume that u0 ∈ W . Let um be the Galerkin approximate solution
in Section 5, and vm = −Δum. Note that

|(ΔB(um), vm)| = |(∇×B(um),∇×vm)| ≤ C(‖um‖L∞ ‖um‖2 +‖∇um‖2
L4(Ω))‖∇×vm‖,

(7.17)
due to Theorem 4.1. It follows from (5.15), Sobolev’s inequality and Corollary 2.1 that

d

dt
‖vm‖2 ≤ C‖vm‖4. (7.18)

Hence, one can show that

um is uniformly bounded in L∞(0, T ;H2(Ω)), (7.19)
um is uniformly bounded in L2((0, T );H3(Ω)), (7.20)

which imply the following regularity result:

Theorem 7.2 The unique strong solution u also belongs to C((0, T ∗);W ). Moreover,
if u0 ∈W , then

u ∈ L2(0, T ∗;H3(Ω)) ∩ C([0, T ∗);W ); (7.21)
u′ ∈ L2(0, T ∗;H1

τ (Ω)). (7.22)

and the energy equation

d

dt
‖v‖2 + 2ε‖∇ × v‖2 + 2(−ΔB(u), v) = 0, (7.23)

holds for v = −Δu on the time interval (0, T ∗).

Similarly, if u0 ∈W ∩H3(Ω), one can conclude from (5.16) that

{um} bounded in L∞(0, T ;H3(Ω)), (7.24)
{um} bounded in L2(0, T ;H4(Ω)), (7.25)
{u′m} bounded in L2(0, T ;W ) (7.26)

and the following further regularity result can be obtained:

Theorem 7.3 The unique strong solution u also belong to C((0, T ∗);H3(Ω)). If u0 ∈
W ∩H3(Ω), then

u ∈ L2(0, T ∗;H4(Ω)) ∩C([0, T ∗);H3(Ω)); (7.27)
u′ ∈ L2(0, T ∗;W ), (7.28)

and the energy equation

d

dt
‖∇ × v‖2 + 2ε‖Δv‖2 + 2(ΔB(u),Δv) = 0, (7.29)
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holds for v = −Δu in the sense of distribution. Moreover v satisfies

(∇× v) · τ = 0. (7.30)

for a.e.t ∈ (0, T ∗).

Remark: Indeed, we have shown that ω = ∇× u satisfies

∂tω − εΔω + (u · ∇)ω − (ω · ∇)u = 0; in Ω; (7.31)
∇ · ω = 0; in Ω; (7.32)
ω · τ = 0; (Δω) · τ = 0, (7.33)

and v = −Δu satisfies

∂tv − εΔv + ∇× (u · ∇)ω − (ω · ∇)u = 0; in Ω; (7.34)
∇ · v = 0; in Ω; (7.35)
v · n = 0; (∇× v) · τ = 0, (7.36)

for the corresponding solutions with initial data u0 ∈W ∩H3(Ω).

8 The Vanishing Viscosity Limit

In this section, we investigate the asymptotic behavior of the solutions to the Navier-
Stokes systems with the Navier-type boundary condition to the solution to the Euler
system (1.8) with the boundary condition (1.9) as the viscosity ε → 0. We begin by
recalling the classical result of local smooth solution to the Euler equations:

∂tu+ ω × u+ ∇p̄ = 0; in Ω; (8.1)
∇ · u = 0; in Ω; (8.2)
ω = ∇× u; in Ω; (8.3)

with the following boundary condition

u · n = 0, on ∂Ω. (8.4)

Proposition 8.1 Let u0 ∈ H3
τ (Ω). Then there is a T0 > 0 and a unique vector-valued

function
u ∈ C([0, T0];H3

τ (Ω))

satisfying (8.1)-(8.4) and u(0) = u0.

For the proof, we refer to the references [6, 14, 22].
Next, we prove

Theorem 8.1 Let u0 ∈ W ∩ H3(Ω). Then there is a T0 > 0 such that the strong
solution u(ε) to the problem (1.1)-(1.4) with the initial data u0 converges to the unique
solution u of the problem (8.1)-(8.4) with the same initial data u0 in the following sense

u(ε) → u in Lp(0, T0;H3(Ω)); (8.5)
u(ε) → u in C([0, T0];H2(Ω)), (8.6)

1 ≤ p <∞, as ε→ 0.
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Proof: Let u0 ∈ W ∩H3(Ω) be given. It follows from Theorem 7.1 and Theorem 7.3
that for any ε > 0 there is time T ∗ = T ∗(ε) > 0 such that the solution u(ε) satisfies

u(ε) ∈ L2(0, T ∗;H4(Ω)) ∩ C([0, T ∗);H3(Ω)), (8.7)
‖u(ε)‖1 → ∞, as t→ T ∗, (8.8)
d

dt
‖∇ × v(ε)‖2 + 2ε‖Δv(ε)‖2 + 2(ΔB(u(ε)),Δv(ε)) = 0, (8.9)

(∇× v) · τ = 0, a.e. t ∈ [0, T ∗), (8.10)

where v(ε) = −Δu(ε).
First, we claim that T ∗(ε) is bounded from below for all ε > 0. Indeed, (7.30) implies

(ΔB(u(ε)),Δv(ε)) = ((∇×)3B(u(ε)),∇ × v(ε)). (8.11)

Director calculations show

(∇×)3B(u(ε)) = −(u(ε) · ∇)∇× v(ε) + Σi,j=1,2,3;i+j=4, Fi,j(Diu(ε),Dju(ε)), (8.12)

where Fi,j(Diu,Dj) are bilinear forms and Di is the i − order differential operator.
Note

((u(ε) · ∇)∇× v(ε),∇ × v(ε)) = 0, (8.13)

and
‖Σi,j=1,2,3;i+j=4, Fi,j(Diu(ε),Dju(ε))‖ ≤ C‖u(ε)‖2

3. (8.14)

It follows from (8.11)-(8.14) and Corollary 2.1 that

|(ΔB(u(ε)),Δv(ε))| ≤ C‖∇ × v(ε)‖3, (8.15)

and
d

dt
‖∇ × v(ε)‖2 + 2ε‖Δv(ε)‖2 ≤ C‖∇ × v(ε)‖3. (8.16)

Comparing (8.16) with the following problem

y′(t) = Cy(t)
3
2 , (8.17)

y(0) = ‖∇ × v(0)‖2, (8.18)

and denoting by T̄ a time before the blow up time for (8.17)-(8.18), one can show that

T ∗(ε) ≥ T̄ ,∀ε > 0. (8.19)

Next, for any T < T̄ , it follows from the energy inequality (8.16) and the equation
(1.1)-(1.4) that

u(ε) uniforly bounded in C([0, T ];H3(Ω)); (8.20)
u′(ε) uniformly bounded in L2(0, T ;W ), (8.21)

for all ε > 0. By using the standard compactness result (see [37] for example) there is
a subsequence εn of ε and a vector function u such that

un → u in Lp(0, T ;H3(Ω)), (8.22)
un → u in C([0, T ];H2(Ω)) (8.23)
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for all 1 ≤ p < ∞, as εn → 0, where un = u(εn) denotes the corresponding solution of
the equation (1.1)-(1.4) with the initial data u0.

Passing to the limit shows that u solves the Euler equation (8.1)-(8.4) and satisfies
the following extra boundary condition

(∇× u)τ = 0, on ∂Ω, (8.24)

with p satisfying (4.7)-(4.9) corresponding to u. Since the solution to the initial bound-
ary value problem of the Euler equation is unique, we get the desired convergence
results.

Consequently, we have

Corollary 8.1 Let u0 ∈ H3(Ω)∩W . Then the unique solution u of the Euler equation
with initial data u0 and the slip boundary condition u · n = 0 on ∂Ω satisfies an extra
boundary condition (∇× u)τ = 0 on ∂Ω on its maximum existent interval [0, T̄ ).

Finally, we can obtain the following rate of convergence.

Theorem 8.2 Let u0 ∈ H3(Ω) ∩W , and T, T̄ be defined as above. Then we have

‖u(ε) − u‖2
2 ≤ C(T )ε, (8.25)

on the interval [0,min{T, T̄ }].

Proof: Set w = u(ε) − u. Then w̃ = −Δw ∈ H1(Ω) solves equations

∂tw̃ − (Δ)(B(u(ε)) −B(u)) = −ε(Δ)2u(ε); in Ω; (8.26)
∇ · w̃ = 0, in Ω; (8.27)
w̃ · n = 0, on ∂Ω, (8.28)

and ∇× u(ε) × n = 0, ∇× u× n = 0, (∇×)3u(ε) × n = 0 on ∂Ω. Taking the L2(Ω)
inner product of (8.26) with w̃ and integrating by part, one gets that

d

dt
‖w̃‖2 − 2(Δ(B(u(ε)) −B(u)), w̃) = −2ε((∇×)3u(ε),∇× w̃). (8.29)

By noting ((ψ · ∇)w,w) = 0 for any ψ ∈ H1
τ (Ω), and

ΔB(u(ε) −B(u)) = (ψ · ∇)w̃ + Σj=1,2, Fi,j(Diu,Djw), (8.30)

for some ψ ∈ H1
τ (Ω), where Fij are bilinear forms, one can get the following estimate

|(Δ(B(u(ε)) −B(u)), w̃)| ≤ C(‖u(ε)‖3 + ‖u‖3)‖∇ × w̃‖2, (8.31)

with C a uniform constant independent of ε.
On the other hand,

|((∇×)3u(ε),∇× w̃)| ≤ C‖(∇×)3u(ε)‖(‖(∇×)3u(ε)‖ + ‖(∇×)3u‖), (8.32)

for a uniform constant C independent of ε.
It follows from (8.29), (8.31) and (8.32) that

d

dt
‖w̃‖2 ≤ C(T )(‖w̃‖2 + ε). (8.33)

Since w(0) = 0, then the Gronwall’s inequality shows

‖w̃‖2 ≤ C(T )ε, (8.34)

and the theorem is proved.
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9 Further remark on general domains

If Ω is a general bounded smooth domain, the subspace of harmonic knots

Dτ,h(Ω) = {u ∈ D(Ω);∇× u = 0, ∇ · u = 0, u · n = 0},

of Dτ (Ω) may be not empty. By using the following Hodge decomposition

D(Ω) = Dτ,f (Ω) ⊕ Dτ,h(Ω) ⊕Gc ⊕Gh ⊕Gg, (9.1)

where Dτ,f (Ω) = {u ∈ Dτ,f (Ω); all interior fluxes = 0}, and replacingHs
τ (Ω) byHs

τ,f (Ω),
we can consider the topological Navier-Stokes equations

∂tu− εΔu+ ω × u+ ∇p = Σfk(u)hF
k ; in Ω; (9.2)

∇ · u = 0; in Ω; (9.3)∫
Σ
u · nΣ = 0,∀ Σ; (9.4)

ω = ∇× u; in Ω; (9.5)

with the following slip boundary conditions

u · n = 0, ω · τ = 0, on ∂Ω, (9.6)

and obtain similar results as in previous sections, where {hF
k } is a basis of Dτ,h(Ω) ∼=

H2(Ω, R), fk(u) = (ω× u, hF
k ) and Σ be an interior section. It is helpful to understand

the term Σfk(u)hF
k as a topological force by recalling the derivation of the Newton

fluids (see for example [26]). However, it is clear at this moment that the above formula
describes a natural fluid motion, and we leave it to be studied further in the future.
By taking the curl of these equations, it takes the following form

∂tω − εΔω + ∇× (ω × u) = 0; in Ω; (9.7)
∇ · u = 0; in Ω; (9.8)∫

Σ
u · nΣ = 0 (9.9)

ω = ∇× u; in Ω, (9.10)

the boundary conditions may be assumed as above.
We also note that an external force F can be also considered under assumptions such

that (∇× F ) · τ = 0 make sense, all results of this paper are still true.

References

[1] Alekseenko,S.N., Existence and asymptotic representation of weak solution to the flowing
problem under the condition of regular slippage on solid walls, Sibrian Math. J. 35 (1994),
209-230.

[2] Achdou,Y., Pironneau,O. and Valentin,F., Effective boundary conditions for laminar flow
over periodic rough boundaries, J. Comput. Phys. 147(1998), 187-218.

22
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