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Abstract

In this paper, we establish the global existence and stability of a multidimensional conic shock wave
for three dimensional steady supersonic flow past an infinite cone. The flow is assumed to be hypersonic
and described by a steady potential flow equation. Under an appropriate boundary condition on the
curved cone, we show that a pointed shock attached at the vertex of the cone will exist globally in the
whole space.
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§1. Introduction

In this paper we are concerned with the inviscid and isentropic steady supersonic gas flow in three
space dimensions. The steady flow is defined by a motion in which flow velocity, pressure and density
remain unchanged in time. It is described by the following compressible Euler equations:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3∑
j=1

∂j(ρuj) = 0,

3∑
j=1

∂j(ρuiuj) + ∂iP = 0, i = 1, 2, 3,

(1.1)

where ρ, u = (u1, u2, u3) and P stand for the density, the velocity and the pressure respectively. For the
polytropic gas, P (ρ) = Aργ with the constants A > 0 and 1 < γ < 2, here γ is the adiabatic exponent
(especially, γ ≈ 1.4 with respect to the air).

* This research was supported in part by the Zheng Ge Ru Foundation when Huicheng Yin was visiting The Institute
of Mathematical Sciences, The Chinese University of Hong Kong. Xin is supported in part by Hong Kong RGC Earmarked
Research Grants CUHK-4040/02P, CUHK-4279/00P, and CUHK-4028/04P, and research grant at Northwest University.
Yin is supported in part by NNSF of China and Doctoral Program of NEM of China.

1 The Institute of Mathematical Sciences & Department of Mathematics, CUHK, Shatin, N.T., Hong Kong and The
Center of Nonlinear Studies, Northwest University, Xian, P.R.China, Email: zpxin@ims.cuhk.edu.hk

2 Department of Mathematics and IMS, Nanjing University, Nanjing 210093, P.R.China, and The Institute of Mathe-
matical Sciences, CUHK, Shatin, N.T., Hong Kong, Email: huicheng@nju.edu.cn

Typeset by AMS-TEX

1



The system (1.1) is multidimensional quasilinear hyperbolic for the supersonic flow (namely, |u| =√
u2

1 + u2
2 + u2

3 > c(ρ) =
√
P ′(ρ)). In the general case, it can contain the shock waves, the rarefaction

waves, the contact discontinuities and even more complicated singularities (see [1-2], [6], [15-16], [21-25],
[30-35] and the references therein). So the global existence results of weak solutions with the explicit
structures are very rare for the multidimensional conservation law system (1.1). In this paper, we are
interested in the global existence and stability of a conic shock wave, which is formed by the supersonic
flow past a sharp curved cone. As it is described in the book [6], if a supersonic flow hits a circular cone
with an axis being parallel to the velocity of the upstream flow and the vertex angle being less than a
critical value, then there appears a circular conical shock attached at the tip of the cone, moreover the
flow field between the shock front and the surface of the cone can be determined by solving a second
order ordinary differential equation with two boundary conditions. If the infinite cone is symmetrically
curved, in [5] we have proved the global existence and stability of a shock attached at the tip of the
cone. In addition, W.C.Lien and T.P.Liu in [19] obtained the global existence of a weak solution and
long distance asymptotic behavior in the symmetric cone case under suitable conditions on the Mach
number, the vertex angle and the shock strength by using Glimm’s scheme. In this paper, under an
appropriate boundary condition on the cone surface, we focus on establishing the global existence of a
multidimensional conic shock as observed in physical experiments and numerical computations. This
boundary condition on the cone surface is plausible from the physical point of view for the permeable
(porous or perforated) surface of the airfoil (one can see the more explanations in [17-18] for the physical
senses with respect to some boundary conditions).

We will restrict ourselves to the irrotational and isentropic case for (1.1). In this case, by introducing
a velocity potential one can reduce (1.1) to a second order quasilinear equation, which has been used and
strongly recommended in many bibliographies (see [21-25] and so on).

Set ui = ∂iϕ. Then from the second equation in (1.1) we have

1
2
∂i(|∇xϕ|2) + ∂ih(ρ) = 0, (1.2)

where h(ρ) is the specific enthalpy satisfying h′(ρ) = P ′(ρ)
ρ > 0 for ρ > 0. For the polytropic gas,

P (ρ) = Aργ , γ > 1, h(ρ) =
Aγ

γ − 1
ργ−1. (1.3)

Hence, it holds the Bernoulli’s law

1
2
|∇xϕ|2 + h(ρ) ≡ C0. (1.4)

here C0 is the Bernoulli constant of fluid.
Let H(q) be the inverse function of h(ρ). Then

ρ = h−1(C0 − 1
2
|∇ϕ|2) ≡ H(∇ϕ). (1.5)

Substituting (1.5) into the first equation in (1.1), one can get

3∑
j=1

(H(∇ϕ)∂jϕ) = 0. (1.6)
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More precisely, for the smooth solution ϕ, (1.6) is equivalent to the following second order quasilinear
equation

((∂3ϕ)2 − c2)∂2
3ϕ+ ((∂1ϕ)2 − c2)∂2

1ϕ+ ((∂2ϕ)2 − c2)∂2
2ϕ+ 2∂1ϕ∂2ϕ∂

2
12ϕ

+ 2∂1ϕ∂3ϕ∂
2
13ϕ+ 2∂2ϕ∂3ϕ∂

2
23ϕ = 0, (1.7)

where c2(ρ) = P ′(ρ) =
H(∇ϕ)
H ′(∇ϕ)

.

It is easy to verify that (1.6) or (1.7) is strictly hyperbolic with respect to x3−direction if ∂3ϕ > c(ρ),
which means that the third component u3 of velocity u is supersonic.

Suppose that there is a uniform supersonic flow (u1, u2, u3) = (0, 0, q0) with constant density ρ0 > 0
which comes from minus infinity. The flow hits a circular cone, whose surface is denoted by

√
x2

1 + x2
2 =

b0x3 for x3 ≥ 0. When the vertex angle θ0 = arctgb0 is less than a given value θ∗, which is determined by
the parameters of the coming flow, then there will be a conic shock

√
x2

1 + x2
2 = s0x3 (s0 > b0) attached at

the tip of the cone, moreover the solution of (1.1) is self-similar. Under the cylindrical coordinates (r, θ, z)
with r =

√
x2

1 + x2
2, θ = arctg x2

x1
and x3 = z, the potential function ϕ̄(x) has such a form: ϕ̄(x) = zψ(s),

here s = r
z . In addition, by the equation (1.7), the Rankine-Hugoniot condition on the shock s = s0 and

the fixed boundary condition on s = b0, one can arrive at

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2((1 + s2)ψss + 1
sψs) − ((1 + s2)ψs − sψ)2ψss = 0, b0 < s < s0,

((1 + s2)ψs − sψ)H + sρ0q0 = 0 on s = s0,

ψ = q0 on s = s0,

(1 + b20)ψs − sψ = 0 on s = b0.

(1.8)

And Lax’s geometric entropy condition on s = s0 implies

{
λ1(s0) < s0 < λ2(s0)

c(ρ0)√
q2
0−c2(ρ0)

< s0
(1.9)

where λ1,2(s) = ∂rϕ̄∂zϕ̄∓c
√

(∂rϕ̄)2+(∂zϕ̄)2−c2

(∂zϕ̄)2−c2 .
It follows from [6] (or [14] for more details) that the equation (1.8) with (1.9) can be uniquely solved

for the supersonic shock by use of the apple curve. In this paper, we will call this solution ϕ̄(x) as the
background solution.

Our main purpose is to study the case that the supersonic flow (0, 0, q0) with density ρ0 > 0 hits the
three-dimensional curved cone with the surface

√
x2

1 + x2
2 = b(x), here b(x) ∈ Ck0 and satisfies

b(x) ≥ b0x3, b(x) − b0x3 ∈ Ck0
0 (ω) and |∇α(b(x) − b0x3)| ≤ ε

with ω = {x : b0 <
√
x2

1 + x2
2 < 3b0, 1 < x3 < 2}, k0 a suitably large positive integer and 0 ≤ |α| ≤ k0.

Under the cylindrical coordinates (r, θ, z), the cone surface can be rewritten as r = b1(θ, z) satisfying

b1(θ, z) ≥ b0z, b1(θ, z) − b0z ∈ Ck0
0 (ω̃) and |∇α

θ,z(b1(θ, z) − b0z)| ≤ ε, 0 ≤ |α| ≤ k0. (1.10)

with ω = {(r, θ, z) : b0 < r < 3b0, 0 < θ < 2π, 1 < z < 2}.
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Suppose that the equation of possible shock attached at the curved cone is denoted by r = χ(θ, z)
with χ(θ, 0) = 0. For b1(θ, z) ≤ r ≤ χ(θ, z), the equation (1.7) can be written as

((∂zϕ)2 − c2)∂2
zϕ+ 2∂zϕ

(
∂rϕ∂

2
zrϕ+

∂θϕ

r2
∂2

zθϕ

)
+ ((∂rϕ)2 − c2)∂2

rϕ+
2
r2
∂rϕ∂θϕ∂

2
rθϕ

+
(∂θϕ)2

r4
∂2

θϕ+
∂rϕ

r

(
(∂θϕ)2

r2
− c2

)
− 2
r3
∂rϕ(∂θϕ)2 = 0, b0z < r < χ(θ, z). (1.11)

In addition, it follows from the Rankine-Hugoniot condition and the continuity condition of the po-
tential on the shock that

[H(∇ϕ)∂rϕ] − [H(∇ϕ)∂zϕ]∂zχ =
1
r2

[H(∇ϕ)∂θϕ]∂θχ, on r = χ(θ, z) (1.12)

and
ϕ(χ(θ, z), θ, z) = q0z. (1.13)

Finally, on the fixed boundary, we impose the following Dirichlet boundary condition for the potential

ϕ = ϕ̄+ φ(θ, z) on r = b1(θ, z) (1.14)

with

φ(θ, z) ∈ Ck0 , φ(θ, z) ≡ 0 for z ≤ 1, and |(1 + z)1+α2∂α1
θ ∂α2

z φ(θ, z))| ≤ ε, (1.15)

here 0 ≤ |α| = α1 + α2 ≤ k0.
Generally speaking, we do not derive from (1.14) that (∂1ϕ, ∂2ϕ, ∂3ϕ) · (x1

b − ∂1b,
x2
b − ∂2b,−∂3b) = 0

holds on
√
x2

1 + x2
2 = b(x). Namely, there are inflows or outflows through the surface. Therefore, from the

physical viewpoint, the condition (1.14) means that the fixed boundary is permeable (in the engineering
design, this is often done). For more related explanations, one can see the references [17-18] and so on.

Our main results in this paper can be stated as:
Theorem 1.1. Suppose that a supersonic polytropic gas flow parallel to the z-axis comes from

minus infinity with velocity (0, 0, q0), density ρ0 > 0 satisfying q0 > c0 =
√
Aγρ

γ−1
2

0 and it hits a three-
dimensional curved cone with the surface r = b1(θ, z). When b0 > 0 is suitably small and the assumptions
(1.10) and (1.15) hold, then for the large q0 and sufficiently small ε depending on q0, ρ0, b0 and γ, the
problem (1.11)-(1.14) admits a global weak entropy solution with a pointed shock front attached at the
origin.

Remark 1.1. It should be emphasized that there are no other discontinuities in our solution besides
the main curved shock. This is in consistent with the result for the supersonic flow past a symmetrically
curved cone in [5]. The condition (1.15) especially gives a restriction on the perturbed potential function
φ(θ, z) for small z and large z. Since the perturbation is sufficiently small and the corresponding tangent
velocity on the fixed boundary is controlled, any possible compression of the flow will be absorbed by the
main shock. This is the mechanism to prevent the formation of any new shock inside the flow field (if
there is no the main shock, then in the general case, the new shocks or other complicated singularities can
be formed. For instance, one can see [1-2], [10], [12-13], [27-28], [32-33], [35] and the references therein).
Thus our result demonstrates that the self-similar shock solution with an appropriate boundary condition
on the fixed boundary is multidimensional structurally stable in a global sense.

Remark 1.2. If the Dirichlet boundary condition (1.14) is replaced by the Neumann boundary
condition: (∂1ϕ, ∂2ϕ, ∂3ϕ) · (x1

b − ∂1b,
x2
b − ∂2b,−∂3b) = 0 on

√
x2

1 + x2
2 = b(x), i.e., the boundary is not
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perforated, then the lifespan on the existence of a multidimensional shock is discussed in [34]. But so far
it is not known whether the global shock exists or not for the Neumann type boundary condition. On
the other hand, it follows from the proof procedure on Theorem 1.1 that the global shock exists for the
Neumann boundary condition when the disturbed tangent velocity on the fixed boundary is sufficiently
small and decayed with an appropriate decay rate for large z.

Remark 1.3. Since BV spaces fail for the multidimensional hyperbolic system as shown in [26], then
the method (i.e., the Glimm scheme) in [19] can not be used to treat our multidimensional problem in
this paper.

Remark 1.4. Under the appropriate compatibility conditions, near the vertex of the curved cone, the
compact support properties on b(x) − b0x3 and φ(θ, z) can be removed. Besides, the compact support
property for large z can be substituted by the appropriate decay for large z.

Remark 1.5. Since the velocity q0 is large enough, then the coming flow is hypersonic. The famous
independence principle on the high Mach numbers (that is, there exists a stable limit state for the
hypersonic gas) will be implied in linearizing the equation (1.11), namely, the coefficients of the resulted
linear equation are almost constants for large q0. With respect to more properties on the hypersonic flow,
one can see [3], [7], [29] and the references therein.

In order to prove the global existence of solution in Theorem 1.1, we intend to use the continuity
method and establish some global uniform estimates. To achieve this goal, we need to derive some global
uniform weighted energy estimates for the corresponding linearized problem to (1.11)-(1.14). This can
be done by looking for appropriate multipliers as in [5] or [9]. But compared to the analysis in [9], we
need to give more elaborate estimates because our background solution depends crucially on the position
of boundary of the cone and the Mach number, however, the background solution in [9] is created and
the fixed boundary is artificially chosen so that the shock and the fixed boundary is arbitrarily close
meanwhile the background solution is invariable. It should be noted that the arbitrary closeness of the
boundaries plays a key role in the analysis of [9], which is not the case for our problem. In addition, in
this paper the procedure to search the multipliers is also more delicate than that in [5] for 1 < γ < 2
because the symmetric property of the solution and the related domain is lost. Thanks to the special
properties on the background solution, we can overcome the difficulties to find the needed multipliers.

The rest of the paper is organized as follows. In §2, we reformulate the problem (1.11)-(1.14) by
decomposing its solution as a sum of the background solution and a small perturbation so that its
linearization can be studied further. In §3, we establish the weighted energy estimate for the linearized
problem, where the appropriate multipliers are given. Based on this energy estimate, Theorem 1.1 is
proved in §4 in the special case when the body is a standard circular cone. Finally, in §5, we show that
Theorem 1.1 holds for the general curved cone with some minor modifications in §4.

In what follows, we will use the following conventions:
O(bj0) (j ≥ 1) means that there exists a generic constant M0 such that |O(bj0)| ≤ M0b

j
0, where M0

depends only on γ.
O(q−ν

0 ) (ν > 0) denotes a bounded quantity, which admits the bound |O(q−ν
0 )| ≤ M1q

−ν
0 , where the

generic constant M1 depends only on b0 and γ.
O(ε) denotes a generic quantity, which is bounded by M2ε with M2 depending only on b0, q0 and γ.

§2. The reformulation of the main problem (1.11)-(1.14)

In this section, we reformulate the problem (1.11)-(1.14) so that we can derive a linearized equation
and the corresponding linearized boundary conditions on the fixed boundary and the shock wave. To
this end, we first recall some detailed properties on the background solution of (1.8) with (1.9) when the
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Mach number is sufficiently large. These properties can be summarized in the following two lemmas. For
their proofs, the readers are referred to the reference [5].

Lemma 2.1. If q0 is large, that is, the Mach number of the incoming flow is large, and 1 < γ < 2,
0 < b0 <

√
2 − 1, then

(i). s0 = b0 +O(q
− 2

γ−1
0 ),

(ii). 0 ≤ sψ(s) − (1 + s2)ψ′(s) ≤ O(q
γ−3
γ−1
0 ),

(iii). ψ′(s) = b0q0
1+b20

+O(q
γ−3
γ−1
0 ),

(iv). c2(ρ(s)) = b20(γ−1)q2
0

2(1+b20)
(1 +O( 1

q2
0
) +O(q

− 2
γ−1

0 )).

(v). λ2(s) > s0.

Lemma 2.2. Under the assumptions of Lemma 2.1, we have

(i). λ1(s) < s,

(ii). ψ′′(s) = − q0
(1+b20)2

+O( 1
q0

) +O(q
γ−3
γ−1
0 ),

(iii). |ρ′(s)| ≤ C,

where C is a constant independent of q0.

By using of the assumptions (1.10) and (1.15) and the finite propagation speed property for the wave
equation, for large q0 we know that ϕ(r, θ, z) ≡ ϕ̄(r, z) = zψ( r

z ) and χ(θ, z) = s0z for z ≤ 1
2 . Thus we can

study the global existence by solving an initial boundary value problem with initial data on z = 1
2 . The

initial data on z = 1
2 can be regarded as the background solution. Moreover, the initial data also satisfy

the compatibility conditions on the intersection curve of z = 1
2 with the shock front and the surface

r = b0z.

As in [5], we can extend the potential ϕ̄(r, z), the function ψ(s) and the density ρ(s) in [b0, s0] to the

interval [b0, s0 +η0] for small η0 satisfying 0 < η0 ≤ q
− 2

γ−1
0 (s0−b0). Later on we will denote the extension

of ϕ̄, ψ and ρ(s) in the domain {(r, z) : z ≥ 1
2 , b0z ≤ r ≤ (s0 + η0)z} by ϕ̂, ψ̂ and ρ̂ respectively.

Set ϕ̇ = ϕ− ϕ̂. Then by a direct computation the equation, (1.11) can be changed into:

∂2
z ϕ̇+ 2P1(

r

z
)∂2

zrϕ̇+ P2(
r

z
)∂2

r ϕ̇+ P̃2(
r

z
)(∂2

1 ϕ̇+ ∂2
2 ϕ̇) + P3(r, z)∂zϕ̇+ P4(r, z)∂rϕ̇

=
3∑

i,j=1

fij(θ,
r

z
,∇xϕ̇)∂2

ij ϕ̇+
1
r
f0(θ,

r

z
,∇xϕ̇), z ≥ 1

2
, b1(θ, z) ≤ r ≤ χ(θ, z)

(2.1)
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where fij(θ, s, 0, 0, 0) = 0, f0(θ, s, 0, 0, 0) = ∇qf0(θ, s, q1, q2, q3)|q=0 = 0. Moreover

P1(s) =
(ψ̂(s) − sψ̂′(s))ψ̂′(s)

(ψ̂(s) − sψ̂′(s))2 − ĉ2(s)
,

P2(s) =
(ψ̂′(s))2

(ψ̂(s) − sψ̂′(s))2 − ĉ2(s)
,

P̃2(s) = − ĉ2(s)
(ψ̂(s) − sψ̂′(s))2 − ĉ2(s)

,

P3(r, z) =
1

r((ψ̂(s) − sψ̂′(s))2 − ĉ2(s))

(
−2(ĉ(s)ĉ′(s) + 1)(ψ̂(s) − sψ̂′(s))(ψ̂(s) − sψ̂′(s))′s2

+ 2ĉ(s)ĉ′(s)(ψ̂(s) − sψ̂′(s))ψ̂′′(s)s+ 2ĉ(s)ĉ′(s)(ψ̂(s) − sψ̂′(s))ψ̂′(s) − 2s2ψ̂′(s)ψ̂′′(s)
)

≡ 1
r
P̃3(s),

P4(r, z) =
1

r((ψ̂(s) − sψ̂′(s))2 − ĉ2(s))

(
−2s2ĉ(s)ĉ′(s)ψ̂′(s)(ψ̂(s) − sψ̂′(s))′ + 2s(1 + ĉ(s)ĉ′(s))ψ̂′(s)ψ̂′′(s)

+ 2ĉ(s)ĉ′(s)(ψ̂′)2(s) − 2s2(ψ̂(s) − sψ̂′(s))ψ̂′′(s)
)

≡ 1
r
P̃4(s).

with
ĉ(s) = c(ρ̂(s)), ĉ′(s) = ĉ′(ρ̂(s))ρ̂′(s).

On the boundary r = b1(θ, z), we have
ϕ̇ = φ(θ, z). (2.2)

On the free boundary r = χ(θ, z), by use of the continuity condition (1.13), we can rewrite (1.12) as

H(∇ϕ)
(

(∂1ϕ)2 + (∂2ϕ)2 + (∂zϕ)2 + q0∂zϕ

)
− ρ0q0∂zϕ = 0 on r = χ(θ, z). (2.3)

Using ϕ = ϕ̂+ ϕ̇, and introducing the notation

ξ(θ, z) =
χ(θ, z) − s0z

z
,

which describes the perturbation of the slope of the shock front, one can rewrite (2.3) as

B1∂rϕ̇+B2∂zϕ̇+B3ξ = κ0(ξ,∇xϕ̇) on r = χ(θ, z) (2.4)

where

B1 = −
{

ρ(s)
c2(ρ(s))

(
(ψ′)2(s) + (ψ(s) − sψ′(s))2 + q0(ψ(s) − sψ′(s) − q0)

)
ψ′(s) + 2ρ(s)ψ′(s)

}∣∣∣∣
s=s0

,

B2 = −
{

ρ(s)
c2(ρ(s))

(
(ψ′)2(s) + (ψ(s) − sψ′(s))2 + q0(ψ(s) − sψ′(s) − q0)

)
(ψ(s) − sψ′(s))

+ 2ρ(s)(ψ(s) − sψ′(s) − q0) + (ρ(s) − ρ0)q0

}∣∣∣∣
s=s0

,

B3 =
{
ρ(s)

(
2ψ′(s)ψ̂′′(s) + 2(ψ(s) − sψ′(s))(ψ̂(s) − sψ̂′(s))′ + q0(ψ̂(s) − sψ̂′(s))′

)
+ ρ̂′(s)

(
(ψ′)2(s)

+ (ψ(s) − sψ′(s))2 + q0(ψ(s) − sψ′(s) − q0)
)
− ρ0q0(ψ̂(s) − sψ̂′(s))′

}∣∣∣∣
s=s0

,
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and
κ0(ξ,∇xϕ̇) ≤ C(|(ξ,∇xϕ̇)|2)

Later on the function κj(ξ,∇xϕ̇) will be used to denote any quantity dominated by C|(ξ,∇xϕ̇)|2, here
the generic constant C does not depend on ε.

By using Lemma 2.1 and Lemma 2.2, as in [5], we have the following estimates for large q0.
Lemma 2.3

B1 =
2b0

1 + b20

(
(γ − 1)b20

2Aγ(1 + b20)

) 1
γ−1

q
γ+1
γ−1
0 (1 +O(q

− 2
γ−1

0 )),

B2 =
1 − b20
1 + b20

(
(γ − 1)b20

2Aγ(1 + b20)

) 1
γ−1

q
γ+1
γ−1
0 (1 +O(q

− 2
γ−1

0 )),

B3 = − b0
(1 + b20)2

(
(γ − 1)b20

2Aγ(1 + b20)

) 1
γ−1

q
2γ

γ−1
0 (1 +O(q

− 2
γ−1

0 )).

Dividing (2.4) by B1 yields

∂rϕ̇+ μ1∂zϕ̇+ μ2ξ = κ1(ξ,∇xϕ̇) on r = χ(θ, z), (2.5)

where

μ1 =
1 − b20
2b0

(1 +O(q
− 2

γ−1
0 )),

μ2 = − q0
2(1 + b20)

(1 +O(q
− 2

γ−1
0 )).

In addition, (1.13) implies ∂zχ(θ, z) = −∂zϕ
∂rϕ on r = χ(θ, z), it follows from Taylor’s expansion that

∂z(zξ) +
1

ψ′(s0)

(
(∂zϕ̇)(χ(θ, z), θ, z) + s0(∂rϕ̇)(χ(θ, z), θ, z)

)
= κ2(ξ,∇ϕ̇).

Since

∂z(ϕ̇(χ(θ, z), θ, z)) = (∂zϕ̇)(χ(θ, z), θ, z) + ∂zχ(θ, z)(∂rϕ̇)(χ(θ, z), θ, z)

= (∂zϕ̇)(χ(θ, z), θ, z) + s0(∂rϕ̇)(χ(θ, z), θ, z) + κ3(ξ,∇ϕ̇),

then by substituting it into the above equation we arrive at

∂z

(
zξ +

1
ψ′(s0)

ϕ̇(χ(θ, z), θ, z)
)

= κ4(ξ,∇xϕ̇) (2.6)

(2.5) and (2.6) are the new forms of the Rankine-Hugoniot condition (1.12) and the continuity condition
(1.13) on the shock front.

After such a reformulation on the problem (1.12)-(1.14), to prove the main theorem we only need to
solve the problem (2.1), (2.2), (2.5) and (2.6) with the initial data ϕ̇(r, θ, z)|z= 1

2
= 0, ∂zϕ̇(r, θ, z)|z= 1

2
= 0,

ξ(θ, z)|z= 1
2

= 0 in the domain {(r, θ, z) : z ≥ 1
2 , θ ∈ [0, 2π], b1(θ, z) ≤ r ≤ χ(θ, z)}.
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When the surface of the cone is curved, then it is convenient to change the boundary into a straight
one by the following coordinates transformation:

⎧⎪⎨
⎪⎩

z̃ = b1(θ,z)
b0

,

θ̃ = θ,

r̃ = r.

(2.7)

Under the transformation (2.7), we use the notations ϕ̃, ˙̃ϕ and χ̃ instead of ϕ, ϕ̇ and χ. By a direct
computation, for z̃ ≥ 1

2 and b0z̃ ≤ r̃ ≤ χ̃(θ̃, z̃), the equation (2.1) can be rewritten as:

∂2
z̃

˙̃ϕ+ 2P1(
r̃

z̃
)∂2

z̃r̃
˙̃ϕ+ P2(

r̃

z̃
)∂2

r̃
˙̃ϕ+ P̃2(

r̃

z̃
)(∂2

1
˙̃ϕ+ ∂2

2
˙̃ϕ) + P3(r̃, z̃)∂z̃

˙̃ϕ+ P4(r̃, z̃)∂r̃
˙̃ϕ

=
3∑

i,j=1

fij(θ̃,
r̃

z̃
,∇x̃

˙̃ϕ)∂2
ij

˙̃ϕ+ (1 − ∂zb1
b0

)
3∑

i,j=1

f1
ij(∇x̃ϕ̃,

∂zb1
b0

, ∂θb1)∂2
ijϕ̃

+
∂θb1
r

3∑
i,j=1

f2
ij(∇x̃ϕ̃,

∂zb1
b0

, ∂θb1)∂2
ijϕ̃+ f3

1 (∇x̃ϕ̃,
∂zb1
b0

, ∂θb1)∂2
zb1∂z̃ϕ̃

+ f3
2 (∇x̃ϕ̃,

∂zb1
b0

, ∂θb1)
∂2

θb1
r2

∂θ̃ϕ̃+
1
r̃
f3
3 (∇x̃ϕ̃,

∂zb1
b0

, ∂θb1)(1 − ∂zb1
b0

)∂r̃ϕ̃+
1
r̃
f0(θ̃,

r̃

z̃
,∇x̃

˙̃ϕ),
(2.8)

where P1, P2, P̃2, P3, P4, fij and f0 are the same as in (2.1), fk
ij and fk

i are smooth on its arguments.

Set ξ̃(θ̃, z̃) = χ̃(θ̃,z̃)−s0z̃
z̃ . Then the boundary conditions (2.5), (2.6) and (2.2) take the forms

∂r̃
˙̃ϕ+ μ1∂z̃

˙̃ϕ+ μ2ξ̃ = κ5(ξ̃,∇x̃
˙̃ϕ) + f̃1(ξ̃,∇x̃ϕ̃,

∂zb1
b0

, ∂θb1)(1 − ∂zb1
b0

) + f̃2(ξ̃,∇x̃ϕ̃,
∂zb1
b0

, ∂θb1)
∂θ̃b1
r

on r̃ = χ̃(θ̃, z̃), (2.9)

∂z̃

(
z̃ξ̃ +

1
ψ′(s0)

˙̃ϕ(χ̃(θ̃, z̃), θ̃, z̃)
)

= κ6(ξ̃,∇x̃
˙̃ϕ(χ̃(θ̃, z̃), θ̃, z̃)) on r̃ = χ̃(θ̃, z̃), (2.10)

˙̃ϕ = φ̃(θ̃, z̃), on r̃ = b0z̃, (2.11)

here φ̃(θ̃, z̃) has the same property as φ(θ, z) in (1.15).
In addition, ˙̃ϕ and ξ̃ have the following initial data

˙̃ϕ(r̃, θ̃, z̃)|z̃= 1
2

= 0, ∂z̃
˙̃ϕ(r̃, θ̃, z̃)|z̃= 1

2
= 0, ξ̃(θ̃, z̃)|z̃= 1

2
= 0. (2.12)

In next section, we will focus on the uniform estimates on the solution ˙̃ϕ to the equation (2.8) with
the boundary conditions (2.9)-(2.11) and the initial data (2.12).

§3. Uniform estimate on the linearized operator

Now we derive an energy estimate for the linear parts in the equation (2.8) with the initial-boundary
conditions (2.9)-(2.12). For simplicity in presentation, we neglect all the notations “∼” in (2.8)-(2.12)
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except P̃2 in (2.8). The following conclusion plays the key role to derive the decay estimate of ϕ̇ with
respect to large z.

Theorem 3.1. Set DT = {(x1, x2, z) : 1
2 ≤ z ≤ T, 0 ≤ θ ≤ 2π, b0z ≤ r ≤ χ(θ, z)} for any T > 1

2 .
Let ΓT = {(x1, x2, z) : 1

2 ≤ z ≤ T, 0 ≤ θ ≤ 2π, r = χ(θ, z)} and BT = {(x1, x2, z) : 1
2 ≤ z ≤ T, 0 ≤ θ ≤

2π, r = b0z} be the lateral boundaries of DT . If ϕ̇ ∈ C∞(DT ) satisfies the initial-boundary conditions
(2.9)-(2.12), moreover, |ξ(θ, z)|+ |z∂zξ(z, θ)|+ |∂θξ(z, θ)| ≤ Cε holds in (θ, z) ∈ [0, 2π; 1

2 , T ] for sufficiently
small ε. Then there exists a multiplier Mϕ̇ = ra( r

z )∂zϕ̇+ zb( r
z )∂rϕ̇+ E( r

z )ϕ̇, such that

C1√
T

∫∫
b0T≤r≤χ(θ,T )

|∇x1,x2ϕ̇(x1, x2, T )|2dx1dx2 + C2

∫∫∫
DT

z−
3
2 |∇ϕ̇|2dx1dx2dz

+ C3

∫∫
BT

z−
1
2 |∂ϕ̇|2dS + C4

∫∫
ΓT

z−
1
2 (|∂zϕ̇|2 + +|∂θϕ̇

r
|2)dS ≤

∫∫∫
DT

z−
3
2Lϕ̇Mϕ̇dx1dx2dz

+ C5

∫∫
ΓT

z−
1
2 (B0ϕ̇)2dS + C6ε

2, (3.1)

where

Lϕ̇ = ∂2
z ϕ̇+ 2P1(

r

z
)∂2

zrϕ̇+ P2(
r

z
)∂2

r ϕ̇+ P̃2(
r

z
)(∂2

1 ϕ̇+ ∂2
2 ϕ̇) + P3(r, z)∂zϕ̇+ P4(r, z)∂rϕ̇,

B0ϕ̇ = (∂r + μ1∂z)ϕ̇,

and Ci(1 ≤ i ≤ 6) are positive constants independent of T, q0 and ε.
Remark 3.1. Although the estimate on the integral

∫∫
ΓT
z−

1
2 |∂rϕ̇|2dS is not given in (3.1) directly,

it can be estimated when
∫∫

ΓT
z−

1
2 |∂zϕ̇|2 and

∫∫
ΓT
z−

1
2 (B0ϕ̇)2dS are known. Indeed, one has

∫∫
ΓT

z−
1
2 |∂rϕ̇|2dS ≤ C(μ2

1

∫∫
ΓT

z−
1
2 |∂rϕ̇|2dS +

∫∫
ΓT

z−
1
2 (B0ϕ̇)2dS.

Remark 3.2. It follows from (3.1) that we can obtain the all weighted L2 estimates (including the
interior of the domain D and boundaries) on ∇ϕ̇ in terms of the equation (2.8) itself and the boundary
condition on the shock. Thus, roughly speaking, the hyperbolic equation (2.8) has some analogous
properties as does a second order elliptic equation in the domain D which is formed by the shock surface
and the fixed boundary.

Proof. Let A = A(r, z) and B = B(r, z) be determined later. Setting Mϕ̇ = A(r, z)∂zϕ̇+B(r, z)∂rϕ̇+
E( r

z )ϕ̇, we have through integration by parts that

∫∫∫
DT

z−
3
2Lϕ̇Mϕ̇dx1dx2dz =

∫∫∫
DT

z−
3
2

{
K0(∂zϕ̇)2 +K1(∂rϕ̇)2 +K2∂zϕ̇∂rϕ̇+K3((∂1ϕ̇)2

+ (∂2ϕ̇)2) + (
E

z
+

r

z2
E′)∂zϕ̇ϕ̇−

(
∂r((P2 + P̃2)E) + 2(∂z(P1E) − P1E

z
) +

(P2 + P̃2)E
r

)
∂rϕ̇

× ϕ̇

}
dx1dx2dz + T− 3

2

∫∫
b0T≤r≤χ(θ,T )

K4(x1, x2, T )dx1dx2 +
∫∫

BT

z−
3
2

(
b0K4 − x1

r
K5 − x2

r
K6)dS

+
∫∫

ΓT

z−
3
2

(
(
x1

r
− cosθ∂θχ)K5 + (

x2

r
− sinθ∂θχ)K6 − ∂zχK4

)
dS. (3.2)
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where

K0 = −∂zA

2
+
∂rB

2
− ∂r(P1A) +

B

2r
− P1A

r
+ P3A+

3A
4z

− E,

K1 = −∂z(P1B) +
1
2
∂z(P2A) − 1

2
∂r((P2 + P̃2)B) − P2B

2r
+ P4B +

3
4z

(2P1B − P2A)

− P2E,

K2 = −∂zB − ∂r((P2 + P̃2)A) − P2A

r
+ P3B + P4A+

3B
2z

− 2P1E,

K3 =
1
2
∂z(P̃2A) +

1
2
∂r(P̃2B) − P̃2B

2r
− 3

4z
P̃2A− P̃2E,

K4 =
A

2
(∂zϕ̇)2 +B∂zϕ̇∂rϕ̇+ (P1B − P2A

2
)(∂rϕ̇)2 − P̃2A

2
((∂1ϕ̇)2 + (∂2ϕ̇)2)

+ E∂zϕ̇ϕ̇+ 2P1E∂rϕ̇ϕ̇,

K5 =
x1

r
(P1A− B

2
)(∂zϕ̇)2 +

x1

r
P2A∂zϕ̇∂rϕ̇+

x1

2r
P2B(∂rϕ̇)2 + P̃2A∂1ϕ̇∂zϕ̇

+ P̃2B∂1ϕ̇∂rϕ̇− x1

2r
P̃2B((∂1ϕ̇)2 + (∂2ϕ̇)2) +

x1

r
(P2 + P̃2)E∂rϕ̇ϕ̇− x2

r2
P̃2E∂θϕ̇ϕ̇,

K6 =
x2

r
(P1A− B

2
)(∂zϕ̇)2 +

x2

r
P2A∂zϕ̇∂rϕ̇+

x2

2r
P2B(∂rϕ̇)2 + P̃2A∂2ϕ̇∂zϕ̇

+ P̃2B∂2ϕ̇∂rϕ̇− x2

2r
P̃2B((∂1ϕ̇)2 + (∂2ϕ̇)2) +

x2

r
(P2 + P̃2)E∂rϕ̇ϕ̇+

x1

r2
P̃2E∂θϕ̇ϕ̇.

Our purpose is to choose suitable coefficients A(r, z), B(r, z) and E( r
z ) so that all integrals on DT ,

BT and t = T in the right hand side of (3.2) are definitely positive and the integral on ΓT gives an
appropriate control on ∂zϕ̇, ∂θϕ̇

r and B0ϕ̇. We will derive some sufficient conditions for A(r, z), B(r, z)
and E( r

z ) in the process of studying each integral. Assume A(r, z) = ra( r
z ) and B(r, z) = zb( r

z ) with
a(s) > 0 and b(s) > 0. Then a(s), b(s) and E(s) will be determined by the following six steps. In what
follows, we will denote by C a generic positive constant independent of q0 and ε, it may take different
value in different places.

Step 1. Estimate on
∫∫

BT
z−

3
2 (b0K4 − x1

r K5 − x2
r K6)dS.

Since

b0K4 − x1

r
K5 − x2

r
K6 =

(
b0
2
A− (P1A− B

2
)
)

(∂zϕ̇)2 +
(
b0B − (P2 + P̃2)A

)
∂rϕ̇∂zϕ̇

+
(
b0(P1B − (P2 + P̃2)A

2
) − (P2 + P̃2)B

2

)
(∂rϕ̇)2 +

P̃2

2r
(B − b0A)(∂θϕ̇)2

+ b0E∂zϕ̇ϕ̇+
(

2b0P1 − (P2 + P̃2)
)
E∂rϕ̇ϕ̇,

then using the boundary condition (2.11) on r = b0z, one has

b0K4 − x1

r
K5 − x2

r
K6 = z(∂rϕ̇)2

(
P1(b0)b0 − b20

2
− (P2 + P̃2)(b0)

2
)(b(b0) − b20a(b0) − δ0

)

+O((∂θφ)2 +
|φ|2
z

),
11



here δ0 > 0 is an appropriate small constant.
By the expressions of P1(b0), P2(b0) and P̃2(b0), one then can obtain

P1(b0)b0 − b20
2

− (P2 + P̃2)(b0)
2

=
(1 + b20)c2(ρ(b0))

2((ψ(b0) − b0ψ′(b0))2 − c2(ρ(b0)))
> 0.

Hence by assuming that
b(b0) > b20a(b0), (3.3)

one has

b0K4 − x1

r
K5 − x2

r
K6 ≥ Cz(∂rϕ̇)2 − C(|∂θφ|2 +

|φ|2
z

).

This implies

∫∫
BT

z−
3
2 (b0K4 − x1

r
K5 − x2

r
K6)dS ≥ C

∫∫
BT

z−
1
2 (∂rϕ̇)2dS − Cε2. (3.4)

In fact, (3.3) gives the first constraint for a(s) and b(s).

Step 2. Estimate on
∫∫

b0T≤r≤χ(θ,T ) T
−3

2K4(x1, x2, T )dx1dx2.
On z = T , we have

K4(x1, x2, T ) = z

(
sa(s)

2
(∂zϕ̇)2 + b(s)∂zϕ̇∂rϕ̇+ (P1b(s) − (P2 + P̃2)s

2
a(s))(∂rϕ̇)2

)

− P̃2a(s)
2r

(∂θϕ̇)2 + E∂zϕ̇ϕ̇+ 2P1E∂rϕ̇ϕ̇.

To ensure the positivity of quadratic terms on (∂rϕ̇, ∂zϕ̇, ∂θϕ̇) in K4, one requires that the coefficient
of (∂θϕ̇)2 is positive and the discriminant of the quadratic form on ∂zϕ̇ and ∂rϕ̇ should be negative,
namely, { −P̃2a(s) > 0,

Δ = b2(s)(1 − 2P1
sa(s)
b(s) + (P2 + P̃2)(

sa(s)
b(s) )2) < 0.

Since −P̃2 > 0, then −P̃2a(s) > 0 is obvious for a(s) > 0.
Let

D1 = P 2
1 − P2 − P̃2.

Then the second inequality above leads to

sa(s)
b(s)

>
P1 −

√
D1

P2 + P̃2

=
1

P1 +
√
D1

=
1

λ2(s)
.

Therefore,
∫∫

b0T≤r≤χ(θ,T ) T
−1K4(x1, x2, T )dx1dx2 ≥ C

∫∫
b0T≤r≤χ(θ,T )(|∇x1,x2ϕ̇|2 − E2|ϕ̇|2)dx1dx2 as

long as a(s) and b(s) are chosen to satisfy

0 <
b(s)
sa(s)

< λ2(s). (3.5)
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In this case, we have

∫∫
b0T≤r≤χ(θ,T )

T− 3
2K4(x1, x2, T )dx1dx2 ≥ C√

T

∫∫
b0T≤r≤χ(θ,T )

|∇ϕ̇|2dx1dx2

− C

T
5
2

∫∫
b0T≤r≤χ(θ,T )

|ϕ̇|2dx1dx2. (3.6)

Step 3. Positivity of the integral on DT .
We will choose a(s), b(s) and E(s) such that

K0(∂zϕ̇)2 +K1(∂rϕ̇)2 +K2∂zϕ̇∂rϕ̇+K3((∂1ϕ̇)2 + (∂2ϕ̇)2) ≥ C((∂zϕ̇)2 + (∂1ϕ̇)2 + (∂2ϕ̇)2) − C| ϕ̇
z
|2.

In fact, the constant C will be explicitly computed as in the Lemma A.9 of Appendix in [5].
The above estimate holds if the coefficients K0,K1 and K2 satisfy

K0 > 0,K2
2 − 4K0(K1 +K3) < 0,K3 > 0. (3.7)

Substituting a(s) and b(s) into the expressions of K0,K1,K2 and K3 yields

K0 = (
s2

2
− P1s)a′(s) +

b′(s)
2

− P ′
1sa(s) − 2P1a(s) + P̃3a(s) +

3
4
sa(s) +

b(s)
2s

− E(s),

K2
2 − 4K0(K1 +K3) =

(
−(P2 + P̃2)sa′(s) + sb′(s) − (P2 + P̃2)a(s) − (P2 + P̃2)′sa(s) − P2a(s) +

b(s)
2

+
P̃3

s
b(s) + P̃4a(s) − 2P1E(s)

)2

− 4
(

(
s2

2
− P1s)a′(s) +

b′(s)
2

− P ′
1sa(s) − 2P1a(s) + P̃3a(s)

+
3
4
sa(s) +

b(s)
2s

− E(s)
)(

−P2 + P̃2

2
s2a′(s) + (P1s− P2 + P̃2

2
)b′(s) + P ′

1sb(s)

− 1
2
(P2 + P̃2)′s2a(s) − 1

2
(P2 + P̃2)′b(s) − P2 + P̃2

2s
b(s) +

P1b(s)
2

+
P̃4

s
b(s)

− 3
4
(P2 + P̃2)sa(s) − (P2 + P̃2)E(s)

)
,

K3 = −s
2

2
P̃2a

′(s) +
P̃2

2
b′(s) − s2

2
P̃ ′

2a(s) +
P̃ ′

2

2
b(s) − 3

4
P̃2sa(s) − P̃2

2s
b(s) − P̃2E(s).

Denote by Q0, Q1 and Q2 the terms which involve only a(s) and b(s), but not their derivatives in
K0,K1 +K3 and K2, namely,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q0 = (3
4s− P ′

1s− 2P1 + P̃3)a(s) + b(s)
2s ,

Q1 = P ′
1sb(s) − 1

2 (P2 + P̃2)′s2a(s) − 1
2 (P2 + P̃2)′b(s) − P2+P̃2

2s b(s) + P1b(s)
2

− 3
4 (P2 + P̃2)sa(s) + P̃4

s b(s),

Q2 = −(P2 + P̃2)a(s) − (P2 + P̃2)′sa(s) − P2a(s) + P̃3
s b(s) + P̃4a(s) + b(s)

2 .
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Then

K2
2 − 4K0(K1 +K3) =

(
−(P2 + P̃2)sa′(s) + sb′(s)

)2

− 4
(

(
s2

2
− P1s)a′(s) +

b′(s)
2

)

×
(
−P2 + P̃2

2
s2a′(s) + (P1s− P2 + P̃2

2
)b′(s)

)
+ 2Q2

(
−(P2 + P̃2)sa′(s) + sb′(s)

)

+ 4Q0

(
P2 + P̃2

2
s2a′(s) − (P1s− P2 + P̃2

2
)b′(s)

)
− 4Q1

(
(
s2

2
− P1s)a′(s)

+
b′(s)

2

)
+Q2

2 − 4Q0Q1 + 4(P 2
1 − P2 − P̃2)E2(s) + 4E(s)

(
Q1 − P1Q2 + (P2 + P̃2)Q0

)
.

The right hand side is a quadratic form of a′(s), b′(s) and E(s). Denoting the coefficients of a′(s) and
b′(s) by 2a1(s) and 2a2(s) respectively, then

{
a1 = −(P2 + P̃2)Q2s+ (P2 + P̃2)Q0s

2 −Q1(s2 − 2P1s),

a2 = Q2s−Q0(2P1s− P2 − P̃2) −Q1.
(3.8)

Thus we have

K2
2 − 4K0(K1 +K3) = (P2 + P̃2 + s2 − 2P1s)

(
(P2 + P̃2)s2a′(s)2 − 2P1sa

′(s)b′(s) + b′(s)2
)

+ 2a1a
′(s) + 2a2b

′(s) +Q2
2 − 4Q0Q1 + 4(P 2

1 − P2 − P̃2)E2(s) + 4E(s)
(
Q1 − P1Q2

+ (P2 + P̃2)Q0

)
. (3.9)

The coefficient P2+P̃2+s2−2P1s, which will be denoted by −Ã, is equal to −(λ2(s)−s)(s−λ1(s)) < 0
in [b0, s0 + η0] due to Lemma 2.1 and Lemma 2.2.

To transform (3.9) to a standard quadratic form, we introduce⎧⎪⎪⎨
⎪⎪⎩

Y1 = a′(s) + a1+a2P1s
Ãs2D1

,

Y2 = −P1sa
′(s) + b′(s) − a2

Ã
,

Ẽ = E(s) + Q1−P1Q2+(P2+P̃2)Q0
2D1

Substituting them into the expressions of K0 and K2
2 − 4K0(K1 +K3) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K0 = s2−P1s
2 Y1 + Y2

2 − Ẽ +Q0 + a2

2Ã
− (s−P1)(a1+a2P1s)

2ÃsD1
+ Q1−P1Q2+(P2+P̃2)Q0

2D1
,

K2
2 − 4K0(K1 +K3) = Ãs2D1Y

2
1 − ÃY 2

2 + 4(P 2
1 − P2 − P̃2)Ẽ2 +Q2

2 − 4Q0Q1 + a2
2

Ã

− (a1+a2P1s)2

Ãs2D1
− (Q1−P1Q2+(P2+P̃2)Q0)2

D1
,

K3 = P1s−s2

2 P̃2Y1 + P̃2
2 Y2 − P̃2Ẽ + P̃2

(
(s−P1)(a1+a2P1s)

2ÃsD1
+ a2

2Ã
+ Q1−P1Q2+(P2+P̃2)Q0

2D1

+ P̃ ′
2

2P̃2
(b(s) − s2a(s)) − s

2a(s) − b(s)
2s

)
.
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A key observation is the fact:⎧⎨
⎩

Q0 + a2

2Ã
− (s−P1)(a1+a2P1s)

2ÃsD1
+ Q1−P1Q2+(P2+P̃2)Q0

2D1
= 0,

Q2
2 − 4Q0Q1 + a2

2

Ã
− (a1+a2P1s)2

Ãs2D1
− (Q1−P1Q2+(P2+P̃2)Q0)

2

D1
= 0.

Hence K0 > 0, K2
2 − 4K0(K1 +K3) < 0 and K3 > 0 are equivalent to

⎧⎪⎨
⎪⎩

(s2 − P1s)Y1 + Y2 − 2Ẽ > 0,

Ãs2D1Y
2
1 − ÃY 2

2 + 4D1Ẽ
2 < 0,

(P1s− s2)Y1 + Y2 − 2Ẽ + 2Q < 0,

(3.10)

where 2Q = −Q0 + (s−P1)(a1+a2P1s)

ÃsD1
+ P̃ ′

2
2P̃2

(b(s) − s2a(s)) − s
2a(s) − b(s)

2s .
Step 4. Construction of a(s), b(s) and E(s).
To solve the system (3.10), we require to study the solvability of the following equation system:

⎧⎪⎨
⎪⎩

(P1s− s2)Y1 − Y2 + 2Ẽ = −δ0,
Ãs2D1Y

2
1 − ÃY 2

2 + 4D1Ẽ
2 = −δ0,

(P1s− s2)Y1 + Y2 − 2Ẽ = −2Q− δ0,

(3.11)

with δ0 > 0 an appropriate constant to be determined, which is only dependent on b0 and γ for large q0
and small b0.

It follows from (3.11) that {
Y1 = −Q(s)+δ0

P1s−s2 ,

Y2 = 2Ẽ −Q(s),
(3.12)

here Ẽ satisfies

4(D1 − Ã)Ẽ2 + 4ÃQẼ +
ÃD1(Q+ δ0)2

(P1 − s)2
+ δ0 − ÃQ2 = 0. (3.13)

In order to solve (3.13), one requires that the discriminant Δ satisfies

Δ = 16
(
Ã2Q2 + (Ã−D1)(

ÃD1Q
2

(P1 − s)2
− ÃQ2 +

ÃD1

(P1 − s)2
δ20 + (1 +

2ÃD1Q

(P1 − s)2
)δ0)

)
> 0. (3.14)

Next we choose the constant δ0 such that (3.14) holds.
By Lemma 2.1 and Lemma 2.2 (or see Lemma A.1 and Lemma A.3 in [5]), we can obtain

Ã =
(γ − 1)b20(1 + b20)

2

2 − (γ − 1)b20(1 + b20)
+O(q

− 2
γ−1

0 ) +O(q−2
0 ),

D1 =
(γ − 1)b20(1 + b20)2(1 − 1

2 (γ − 1)b20)
2(1 − 1

2 (γ − 1)b20(1 + b20))2
+O(q

− 2
γ−1

0 ) +O(q−2
0 ).

Thus

Ã−D1 = − (γ − 1)2b60(1 + b20)
2

(2 − (γ − 1)b20(1 + b20))2
+O(q

− 2
γ−1

0 ) +O(q−2
0 ).
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Now we start to analyze the troublesome term Q.
In fact, it follows from Lemma 2.1 and Lemma 2.2 that (or see the Appendix in [5])

P1 =
b0

1 − 1
2 (γ − 1)b20(1 + b20)

+O(q
− 2

γ−1
0 ) +O(q−2

0 ),

P2 + P̃2 =
b20(1 − 1

2 (γ − 1)(1 + b20))
1 − 1

2 (γ − 1)b20(1 + b20)
+O(q

− 2
γ−1

0 ) +O(q−2
0 ),

λ2(s) = s+
√
γ − 1b0(1 + b20)(

√
2 − (γ − 1)b20) +

√
γ − 1b20

2 − (γ − 1)b20(1 + b20)
+O(q

− 2
γ−1

0 ) +O(q−2
0 ),

P̃2 =
(γ − 1)b20(1 + b20)

2 − (γ − 1)b20(1 + b20)
+O(q

− 2
γ−1

0 ) +O(q−2
0 ),

P1 − s =
(γ − 1)b30(1 + b20)

2 − (γ − 1)b20(1 + b20)
+O(q

− 2
γ−1

0 ) +O(q−2
0 ),

P ′
1 = − 1

(1 + b20)(1 − 1
2 (γ − 1)b20(1 + b20))

− (1 + 1
2 (γ − 1)b20(1 + b20))b

2
0

(1 − 1
2 (γ − 1)b20(1 + b20))(1 + b20)

+O(q
− 2

γ−1
0 ) +O(q−2

0 ),

|P ′
2| ≤ C, |P̃ ′

2| ≤ C,

|P̃3| ≤ Cq
2(γ−2)

γ−1
0 , |P̃4| ≤ Cq

2(γ−2)
γ−1

0 .

Set
b(s) = s2b̃(s).

Then it follows from the expressions of Q1 and Q2 and the computations above that

Q1 = b0O(q
2(γ−2)

γ−1
0 ) +O(b20) +O(q

− 2
γ−1

0 ) + O(q−2
0 ),

Q2 = O(b0) +O(q
2(γ−2)

γ−1
0 ) +O(q

− 2
γ−1

0 ) +O(q−2
0 )

and

a1 = O(b40) + b30O(q
2(γ−2)

γ−1
0 ) +O(q

− 2
γ−1

0 ) +O(q−2
0 ),

a2 = O(b20) + b0O(q
2(γ−2)

γ−1
0 ) +O(q

− 2
γ−1

0 ) +O(q−2
0 )

This leads to

2Q = −Q0 +
P̃ ′

2

2P̃2

(b(s) − s2a(s)) − s

2
a(s) − b(s)

2s
+O(b20) + b0O(q

2(γ−2)
γ−1

0 ) +O(q
− 2

γ−1
0 ) +O(q−2

0 )

= (2P1 + P ′
1s−

5
4
s)a(s) − sb̃(s) +

P̃ ′
2s

2

2P̃2

(b̃(s) − a(s)) +O(b20) +O(q
2(γ−2)

γ−1
0 ) +O(q

− 2
γ−1

0 ) +O(q−2
0 )

= −b0
4
a(s) − b0b̃(s) +

P̃ ′
2s

2

2P̃2

(b̃(s) − a(s)) +O(b20) +O(q
2(γ−2)

γ−1
0 ) +O(q

− 2
γ−1

0 ) +O(q−2
0 ). (3.15)

In addition, a direct computation yields

Δ = 16(Ã−D1)δ0

(
ÃD1

(P1 − s)2
δ0 +

2ÃD1Q

(P1 − s)2
+ 1

)
.
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Thus, in order to ensure that Δ > 0, we need

ÃD1

(P1 − s)2
δ0 +

2ÃD1Q

(P1 − s)2
+ 1 < 0. (3.16)

We now assume that

b̃(s) = a(s) +O(b20) + O(q
− 2

γ−1
0 ), a(s) = 2 +O(q

− 2
γ−1

0 ), (3.17)

and
δ0 = b20. (3.18)

Then for small b0 and large q0, (3.16) is equivalent to

Q+ b20 < 0. (3.19)

It follows from (3.15) and (3.17) that

Q = −5
4
b0 +O(b20), (3.20)

which implies (3.19).
Finally, we determine a(s), b(s) and E(s) such that (3.3), (3.5) and (3.17) hold.
Set

a(b0) = 2, b̃(b0) = 2 + b20.

Then it follows from (3.10) that
Ẽ(b0) can be determined. Subsequently, Y1(b0) and Y2(b0) are also known.
By use of the expressions of Y1, Y2, Ẽ and b̃′(b0) = 1

b20
(b′(b0)−2b0b̃(b0)), we can determine a′(b0), b̃′(b0)

and E(b0).
Therefore, define

a(s) = 2 + a′(b0)(s− b0), b(s) = s2(2 + b20 + b̃′(b0)(s− b0)), E(s) = E(b0).

Then they satisfy the all requirements above. Consequently, we arrive at

∫∫∫
DT

z−
3
2

{
K0(∂zϕ̇)2 +K1(∂rϕ̇)2 +K2∂zϕ̇∂rϕ̇+K3((∂1ϕ̇)2 + (∂2ϕ̇)2) + (

E

z
+

r

z2
E′)∂zϕ̇ϕ̇

−
(
∂r((P2 + P̃2)E) + 2(∂z(P1E) − P1E

z
) +

(P2 + P̃2)E
r

)
∂rϕ̇ϕ̇

}
dx1dx2dz

≥ C

(∫∫∫
DT

z−
3
2 |∇ϕ̇|2dx1dx2dz −

∫∫∫
DT

z−
7
2 |ϕ̇|2dx1dx2dz

)
. (3.21)

Step 5. The estimate on
∫∫

ΓT
z−

3
2

(
(x1

r − cosθ∂θχ)K5 + (x2
r − sinθ∂θχ)K6 − ∂zχK4

)
dS.
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By the assumptions on ξ(z, θ) in Theorem 3.1 and η0 ≤ q
− 2

γ−1
0 (s0− b0), it follows from the expressions

of K4,K5 and K6 that,

(
x1

r
− cosθ∂θχ)K5 + (

x2

r
− sinθ∂θχ)K6 − ∂zχK4 =

(
P1A− B

2
− ∂zχ

A

2

)
(∂zϕ̇)2

+ ((P2 + P̃2)A− ∂zχB)∂rϕ̇∂zϕ̇+
(
P2 + P̃2

2
B − ∂zχ(P1B − (P2 + P̃2)A

2
)
)

(∂rϕ̇)2

− P̃2

2r2
(B − ∂zχA)(∂θϕ̇)2 + (

P2 + P̃2

r
− 2∂zχP1)E∂rϕ̇ϕ̇− E∂zχ∂zϕ̇ϕ̇

+ (O(ε) +O(q
− 2

γ−1
0 ))

1
z

(
|∇r,zϕ̇|2 + |∂θϕ̇

r
|2 + |∂rϕ̇ϕ̇| + |∂zϕ̇ϕ̇|

)

= ra(s0)
{(

β0(∂zϕ̇)2 + β1∂rϕ̇∂zϕ̇+ β2(∂rϕ̇)2 − P̃2

2r2
(
b(s0)
s0a(s0)

− s0)(∂θϕ̇)2
)

+
1
z

(
(O(ε) +O(b20) +O(q

− 2
γ−1

0 ))(|∇r,zϕ̇|2 + |∂θϕ̇

r
|2 + |∂rϕ̇ϕ̇| + |∂zϕ̇ϕ̇|

)}
≡ zb0a(s0)(I + II). (3.22)

here

β0 = P1(s0) − b(s0)
2s0a(s0)

− s0
2
,

β1 = (P2 + P̃2)(s0) − b(s0)
a(s0)

,

β2 =
(P2 + P̃2)(s0)b(s0)

2s0a(s0)
− s0

(
P1(s0)b(s0)
s0a(s0)

− (P2 + P̃2)(s0)
2

)
.

Noting ∂rϕ̇ = B0ϕ̇− μ1∂zϕ̇, one has

I = {β0 − μ1β1 + μ2
1β2}(∂zϕ̇)2 + {β1 − 2μ1β2}∂zϕ̇B0ϕ̇+ β2(B0ϕ̇)2 − P̃2

2r2

(
b(s0)
s0a(s0)

− s0

)
(∂θϕ̇)2. (3.23)

A direct computation yields

β0 = O(b30) +O(q
− 2

γ−1
0 ) +O(q−2

0 ),

β1 = −γ + 1
2

b20 +O(b30) +O(q
− 2

γ−1
0 ) +O(q−2

0 ),

β2 = −γ + 1
2

b30 +O(b50) +O(q
− 2

γ−1
0 ) +O(q−2

0 ),

− P̃2

(
b(s0)
s0a(s0)

− s0

)
=

(γ − 1)b50
4

+O(b50) +O(q
− 2

γ−1
0 ) +O(q−2

0 ).

Thus, one has

β0 − μ1β1 + μ1
2β2 =

γ + 1
8

b0 +O(b20) +O(q
− 2

γ−1
0 ) +O(q−2

0 ), (3.24)

β1 − 2μ1β2 = O(b30) +O(q
− 2

γ−1
0 ) +O(q−2

0 ). (3.25)
18



Using ∂zϕ̇B0ϕ̇ ≥ − 1
2 (b0(B0ϕ̇)2 + 1

b0
(∂zϕ̇)2) and then substituting (3.24) and (3.25) into (3.23), we get

I ≥(
γ + 1

8
b0 +O(b20) +O(q

− 2
γ−1

0 ) +O(q−2
0 ))(∂z ϕ̇)2

− (
γ + 1

2
b30 +O(b40) +O(q

− 2
γ−1

0 ) +O(q−2
0 ))(B0ϕ̇)2

+ (
(γ − 1)b50

8
+O(b50) +O(q

− 2
γ−1

0 ) +O(q−2
0 ))|∂θϕ̇

r
|2. (3.26)

Consequently, we have∫∫
ΓT

z−
3
2

(
(
x1

r
− cosθ∂θχ)K5 + (

x2

r
− sinθ∂θχ)K6 − ∂zχK4

)
dS ≥ γ + 1

16
b0

∫∫
ΓT

z−
1
2 (∂zϕ̇)2dS

+
(γ − 1)b50

16

∫∫
ΓT

z−
1
2 |∂θϕ̇

r
|2dS − 2(γ + 1)

3
b30

∫∫
ΓT

z−
1
2 (B0ϕ̇)2dS

+ ((O(ε) +O(b20) +O(q
− 2

γ−1
0 ))

∫∫
ΓT

z−
3
2 (|∂rϕ̇ϕ̇| + |∂zϕ̇ϕ̇|)dS. (3.27)

Step 6. The estimates on 1

T
5
2

∫∫
b0T≤r≤χ(θ,T ) |ϕ̇(x1, x2, T )|2dx1dx2,

∫∫
ΓT
z−

3
2 (|∂rϕ̇ϕ̇|+ |∂zϕ̇ϕ̇|)dS and∫∫∫

DT
z−

7
2 |ϕ̇|2dx.

We estimate only 1

T
5
2

∫∫
b0T≤r≤χ(θ,T )

|ϕ̇(x1, x2, T )|2dx1dx2, the other integrals can be treated similarly.
Since

ϕ̇(r, θ, z) = φ(θ, z) +
∫ r

b0T

∂rϕ̇(r, θ, z)dr,

then

ϕ̇2(r, θ, T ) ≤ 2
(
φ2(θ, T ) + ln

χ(θ, T )
b0T

∫ r

b0T

r|∂rϕ̇(r, θ, T )|2dr
)

and ∫ χ(θ,T )

b0T

r(ϕ̇)2(r, θ, T )dr ≤ C(χ2(θ, T ) − b20T
2)

(
φ2(θ, T ) + ln

χ(θ, T )
b0T

∫ χ(θ,T )

b0T

|∂rϕ̇(r, θ, T )|2dr
)
.

Thus

1
T

5
2

∫∫
b0T≤r≤χ(θ,T )

|ϕ̇(x1, x2, T )|2dx1dx2 ≤ C

(
(O(ε) +O(q

− 2
γ−1

0 ))√
T

∫∫
b0T≤r≤χ(θ,T )

|∂rϕ̇(x1, x2, T )|2dS

+ ε2
)
. (3.28)

Analogously, using the boundary value of ϕ̇ on BT as above (or see Lemma 1 in [9]), one can obtain

from Lemma 2.1 and s0 + η0 − b0 ≤ Cq
− 2

γ−1
0 that∫∫

ΓT

z−
5
2 (|∂rϕ̇ϕ̇| + |∂zϕ̇ϕ̇|)dS ≤ C

{
(O(ε) +O(q

− 2
γ−1

0 ))
(∫∫

ΓT

z−
1
2 |∇ϕ̇|2dS

+
∫∫∫

DT

z−
3
2 |∇ϕ̇|2dx

)
+ ε2

}
, (3.29)∫∫∫

DT

z−
7
2 |ϕ̇|2dx ≤ C

(
(O(ε) +O(q

− 2
γ−1

0 ))
∫∫∫

DT

z−
3
2 |∇ϕ̇|2dx+ ε2

)
. (3.30)

19



Substituting (3.4), (3.6), (3.21) and (3.27)-(3.30) into (3.2) yields

C1√
T

∫∫
b0T≤r≤χ(θ,T )

|∇ϕ̇|2dS + C2

∫∫∫
DT

z−
3
2 |∇ϕ̇|2dx+ C3

∫∫
ΓT

z−
1
2 |∇ϕ̇|2dS + C4

∫∫
BT

z−
1
2 |∇ϕ̇|2dS

≤
∫∫∫

DT

z−
3
2Lϕ̇Mϕ̇dx+ C5

∫∫
ΓT

z−
1
2 (B0ϕ̇)2dS + C6ε

2 (3.31)

where the constants Ci(1 ≤ i ≤ 6) are independent of q0 and ε (but depends on b0) thanks to the
appropriate choices of a(s) and b(s). Therefore Theorem 3.1 is proved.

§4. The proof of Theorem 1.1 for the case b1(θ, z) = b0z

In order to prove Theorem 1.1 for the case b1(θ, z) = b0z, we first derive the following higher order
energy estimates so that one can derive the decay properties of ∇ϕ̇ and ξ for large z.

Theorem 4.1. Assume that ϕ̇ ∈ Ck0(DT ) and ξ(θ, z) ∈ Ck0([0, 2π; 1
2 , T ] with k0 ≥ 6 is a so-

lution of (2.1) with (2.2), (2.5) and (2.6). In addition, |ξ(θ, z)| + |z∂zξ(θ, z)| + |∂θξ(θ, z)| ≤ Cε and∑
0≤l≤[

k0
2 ]+1

zl|∇l+1ϕ̇(r, z)| ≤ Cε hold for (θ, z) ∈ [0, π; 1
2 , T ]. Then for sufficiently small ε, we have

∫∫
b0T≤r≤χ(θ,T )

∑
0≤l≤k0−1

T 2l− 1
2 |∇l+1ϕ̇(r, θ, T )|2dS +

∫∫
DT

∑
0≤l≤k0−1

z2l− 3
2 |∇l+1ϕ̇|2dx

+
∫∫

ΓT

∑
0≤l≤k0−1

z2l− 1
2 |∇l+1ϕ̇|2dS +

∫∫
BT

∑
0≤l≤k0−1

z2l− 1
2 |∇l+1ϕ̇|2dS

≤ Cε2, (4.1)

here and below C > 0 denotes a generic constant depending on q0, b0 and γ.
Next, we turn to the main arguments for the proof of Theorem 4.1. As in [8-9] or [15-16], we will use

the vector fields which are tangent to the surface of the cone and nearly tangential to the shock front so
that we can raise the order of the energy estimate by the standard commutation argument. The difference
from the usual commutation argument is that the vector field is only nearly tangential to the shock front
boundary, and thus there will appear some error terms caused by the perturbation of the shock front to
be treated. We first state an elementary estimate.

Lemma 4.2. Assume that ϕ̇ is a Ck0 solution, then there is a constant C independent of ϕ̇ and T , so
that ∑

0≤l≤k0−1

zl|∇l+1ϕ̇| ≤ C
∑

0≤l≤k0−1

|∇Slϕ̇| in DT , (4.2)

where S = z∂z + r∂r or ∂θ.
Proof. This lemma can be found in [9] and [16]. So we omit the proof here.
Return to the proof of Theorem 4.1. Since the vector field S is tangent to the boundary r = b0z, then

Smϕ̇ = Smφ on r = b0z in view of the boundary condition (2.2). Thus one can apply Theorem 3.1 and
the Remark 3.1 to Smϕ̇(0 ≤ m ≤ k0 − 1) (at this moment, one can contemporarily neglect the concrete
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expressions of the constants in (3.1)) to obtain

1√
T

∫∫
b0T≤r≤χ(θ,T )

∑
0≤m≤k0−1

|∇Smϕ̇(r, θ, T )|2dS +
∫∫∫

DT

z−
3
2

∑
0≤m≤k0−1

|∇Smϕ̇|2dx

+
∫∫

ΓT

z−
1
2

∑
0≤m≤k0−1

|∇Smϕ̇|2dS +
∫∫

BT

z−
1
2

∑
0≤m≤k0−1

|∇Smϕ̇|2dS

≤ C(q0, b0, γ)
(∫∫∫

DT

z−
3
2

∑
0≤m≤k0−1

LSmϕ̇MSmϕ̇dx+
∫

ΓT

z−
1
2

∑
0≤m≤k0−1

(B0S
mϕ̇)2dS + ε2

)
(4.3)

To estimate the first term in the right hand side of (4.3), we need an explicit representation of LSmϕ̇.
Thanks to SP1( r

z ) = SP2( r
z ) = 0 and S(1

r ) = − 1
r or S(1

r ) = 0, we have LSϕ̇ = SLϕ̇ − 2Lϕ̇. It follows
from the equation (2.1) that

LSmϕ̇ =
3∑

i,j=1

∑
0≤l≤m

Cl

{ ∑
l1+l2≤l

Cl1l2

(
Sl1(fij)∂2

ijS
l2 ϕ̇+

(−1)l1

r
Sl2(f0)

)}
, (4.4)

where fi,j and f0 are the functions appeared in (2.1). By the properties of fij and f0 and the assumptions
in Theorem 4.1, one can show that for m ≤ k0 − 1

|Sl1fij | ≤ C
∑

m≤k0−1

|∇Smϕ̇|, |Sl1(f0)| ≤ C
∑

m≤k0−1

|∇Smϕ̇|2. (4.5)

We will treat
∫∫∫

DT
z−

3
2Sl1(f33)∂2

zS
l2ϕ̇MSmϕ̇dx only, because the other terms can be disposed simi-

larly. This is divided into two cases:
If l2 ≤ m− 1, from Lemma 4.2 and assumptions in Theorem 4.1, as in [9] or [16], one can get

|Sl1(f33)∂2
zS

l2ϕ̇MSmϕ̇| ≤ Cε
∑

m≤k0−1

|∇Smϕ̇|2. (4.6)

If l1 = 0, l2 = m, then

Sl1(f33)∂2
zS

l2ϕ̇MSmϕ̇ = ∂z(f33B∂zS
mϕ̇∂rS

mϕ̇− 1
2
Af33(∂zS

mϕ̇)2) − 1
2
∂r(f33B(∂zS

mϕ̇)2)

+
1
2
(∂r(f33B) − ∂z(f33A))(∂zS

mϕ̇)2 − ∂z(f33B)∂zS
mϕ̇∂rS

mϕ̇. (4.7)

Hence by the integration by parts we get

∫∫∫
DT

z−
3
2

∑
0≤m≤k0−1

LSmϕ̇MSmϕ̇dx ≤ Cε

(∫∫
ΓT

z−
1
2

∑
0≤m≤k0−1

|∇Smϕ̇|2dS

+
∫∫∫

DT

z−
3
2

∑
0≤m≤k0−1

|∇Smϕ̇|2dx+
1√
T

∫∫
b0T≤r≤χ(θ,T )

∑
m≤k0−1

|∇Smϕ̇(r, θ, T )|2dS

+
∫∫

BT

z−
1
2

∑
0≤m≤k0−1

|∇Smϕ̇|2dS
)

+ Cε2. (4.8)
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Next, we estimate the second term on the right hand side of (4.3), that is
∫∫

ΓT
z−

1
2

∑
m

(B0S
mϕ̇)2dS,

which is a major term, because it involves the boundary of shock front. Write

B0S
mϕ̇ = [B0, S

m]ϕ̇+ (Sm − Sm
Γ )B0ϕ̇+ Sm

Γ B0ϕ̇,

we estimate each term separately. The first term has the form

[B0, S
m]ϕ̇ =

∑
0≤l≤m−1

ClS
lB0ϕ̇. (4.9)

To estimate other two terms, we notice that from the equation (2.6)

∑
0≤m=m1+m2≤k0−1

zm1 |∂m1
z ∂m2

θ ξ| ≤ C(
∑

0≤m≤k0−2

zm|∇m+1ϕ̇| + |ξ|) on r = χ(θ, z). (4.10)

Hence by the assumptions in Theorem 4.1, we have

∑
0≤m≤[

k0
2 ]+1

zm1 |∂m1
z ∂m2

θ ξ| ≤ Cε. (4.11)

In addition, the equation (2.5) yields

Sm
Γ B0ϕ̇+ μ2S

m
Γ ξ = Sm

Γ κ1(ξ,∇r,zϕ̇) on r = χ(θ, z), (4.12)

where SΓ = z∂z + z∂zχ(z)∂r or ∂θ + ∂θχ∂r are tangent to the shock surface r = χ(θ, z). It should be
noted that |μ2| is a large constant with the same order as q0.

Using (4.11) and (4.12), for m ≤ k0 − 1 we have the following estimate:

|Sm
Γ B0ϕ̇| ≤ C(q0

∑
0≤l≤m

zl1 |∂l1
z ∂

l2
θ ξ| + ε

∑
0≤l≤m

zl|∇l+1ϕ̇|). (4.13)

As in the Lemma 10 in [9], one can prove that

|(Sm − Sm
Γ )B0ϕ̇| ≤ Cε0(

∑
0≤l≤m

zl|∇l+1ϕ̇| + |ξ|). (4.14)

Now collecting (4.9), (4.13) and (4.14) and using (4.10) and Lemma 4.2 one can get that

∫∫
b0T≤r≤χ(θ,T )

∑
0≤l≤k0−1

T 2l− 1
2 |∇l+1ϕ̇(r, θ, T )|2dS +

∫∫∫
DT

∑
0≤l≤k0−1

z2l− 3
2 |∇l+1ϕ̇|2dx

+
∫∫

ΓT

∑
0≤l≤k0−1

z2l− 1
2 |∇l+1ϕ̇|2dS +

∫∫
BT

∑
0≤l≤k0−1

z2l− 1
2 |∇l+1ϕ̇|2dS

≤ C(q0, b0, γ)
(∫∫

ΓT

∑
0≤l≤k0−2

z2l− 1
2 |∇l+1ϕ̇|2dS +

∫∫
ΓT

z−
1
2 |ξ|2dS + ε2

)
. (4.15)
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In particular, for k0 = 1, due to the estimate (3.1) and the equation (2.5) and the inequality (4.8),
then (4.15) becomes

C1√
T

∫∫
b0T≤r≤χ(θ,T )

|∇ϕ̇(r, θ, T )|2dS + C2

∫∫∫
DT

z−
3
2 |∇ϕ̇|2dS + C3

∫∫
ΓT

z−
1
2 |∇ϕ̇|2dS

+ C4

∫∫
BT

z−
1
2 |∇ϕ̇|2dS ≤ C5q

2
0

∫∫
ΓT

z−
1
2 |ξ|2dS + C6ε

2. (4.16)

Here Ci(1 ≤ i ≤ 6) are generic constants independent of q0 and ε0.
It follows from (4.15) and the inductive argument that the crucial step to prove (4.1) is to estimate

the first term in the right hand side of (4.16). Note that the first term in the right side of (4.16) has a
large factor q20 . We will try to absorb this term into the left hand side of (4.16).

In fact, by the assumption on ξ(θ, z), we have∫∫
ΓT

z−
1
2 |ξ(θ, z)|2dS = (1 +O(b20) +O(ε20) +O(q

− 2
γ−1

0 ))
∫ 2π

0

dθ

∫ T

1
2

z−
1
2 |ξ(θ, z)|2dz. (4.17)

In addition, by the Hardy inequality (see [11]) the term
∫ T

1
2
z−

1
2 |ξ(θ, z)|2dz can be treated as follows∫ T

1
2

z−
1
2 |ξ(θ, z)|2dz =

∫ T

1
2

z−
5
2 |zξ(θ, z)|2dz

≤ 2
∫ T

1
2

z−
1
2 |zξ(θ, z) +

1
U+

ϕ̇(χ(θ, z), z)|2dz + 2
∫ T

1
2

z−
5
2 | 1
U+

ϕ̇(χ(θ, z), θ, z)|2dz

≡ I + II. (4.18)

Here and below we will use the inequality (x+ y)2 ≤ 2x2 + 2y2 repeatedly.
By the Hardy type inequality again, the equation (2.6) and the assumptions in Theorem 4.1, as in [5],

we have

|I| ≤ C

∫ T

1
2

z−
1
2 |∂z(zξ(θ, z) +

1
U+

ϕ̇(χ(θ, z), θ, z))|2dz

≤ C(b0, γ)ε2
∫ T

1
2

z−
1
2 (|ξ(θ, z)|2 + |∇ϕ̇(χ(θ, z), θ, z)|2)dz. (4.19)

Now we dominate II by II1 + II2 so that II can be bounded by some integrals on r = b0z and the
interior of DT , where

II1 =
4
U2

+

∫ T

1
2

z−
5
2 |ϕ̇(χ(θ, z), θ, z) − ϕ̇(b0z, θ, z)|2dz,

II2 =
4
U2

+

∫ T

1
2

z−
5
2 |ϕ̇(b0z, θ, z)|2dz.

II1 can be treated as follows

|II1| ≤ C(b0, γ)
q20

(1 +O(q
− 2

γ−1
0 ))

∫ T

1
2

z−
5
2

(∫ χ(θ,z)

b0z

∂rϕ̇(r, θ, z)dr
)2

dz

≤ C(b0, γ)
q20

(1 +O(q
− 2

γ−1
0 ))

∫ T

1
2

z−
3
2

(∫ χ(θ,z)

b0z

|∂rϕ̇(r, θ, z)|2dr
)
χ(θ, z) − b0z

z
dz

≤ 1
q20

(O(ε) +O(q
− 2

γ−1
0 ))

∫∫
DT

z−
3
2 |∂rϕ̇(r, θ, z)|2drdz. (4.20)
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Using the boundary condition (2.2), we have

|II2| ≤ C(b0, γ)ε2. (4.21)

Substituting (4.21), (4.20), (4.19) into (4.18), (4.17) and (4.16), for the fixed b0 and 1
q0

which are very
small but 1

q0
is much smaller than b0, for sufficiently small ε, we have

C1√
T

∫∫
b0T≤r≤χ(θ,T )

|∇ϕ̇(r, θ, T )|2dS + C2

∫∫∫
DT

z−
3
2 |∇ϕ̇|2dx+ C3

∫∫
ΓT

z−
1
2 |∇ϕ̇|2dS

+ C4

∫∫
BT

|∇ϕ̇(b0z, θ, z)|2dS ≤ C(b0, γ)ε2. (4.22)

Where Ci(1 ≤ i ≤ 4) depend only on b0 and γ.
Hence we obtain (4.1) for k0 = 1.
Furthermore, (4.15) shows that the higher order derivatives of ϕ̇ can be dominated by its lower order

derivatives, then by inductive argument we obtain (4.1). This completes the proof of Theorem 4.1.

The proof of Theorem 1.1
Based on the the energy estimate of higher order we can easily prove the global existence of the

shock wave by using the local existence theorem and the standard continuity extension method. The
local existence of the solution of (1.11) with (1.12)-(1.14) can be achieved as in [20], while for any given
z0 >

1
2 , the solution of (1.11) with the initial data given on z = z0 and the boundary conditions (1.12)-

(1.14) in [z0, z0 + η0] for some η0 > 0 can be obtained ( see [8] ), provided that the initial data is smooth
and satisfies the compatibility conditions. Moreover, if the perturbation of the initial data given on z = z0
is small as O(ε), the lifespan of the solution is at least as large as Cε−1 with C > 0. Therefore, as long
as we can establish that the maximum norm of ϕ̇, ξ and their derivatives decays with a rate in z, then
the solution can be extended continuously to the whole domain. That is, by using the local existence
theorem and the property of decay of the solution we can obtain the uniform bound of ϕ̇, ξ and their
derivatives, and then extend the solution continuously from z0 < z < z1 to z0 < z < z1 +η0 with η0 being
independent of z1. Hence the key point to prove Theorem 1.1 is to give the decay rate of the maximum
norm of ϕ̇, ξ and their derivatives.

It follows from the Sobolev’s imbedding theorem (or see Lemma 14 in [9]) and the assumptions of
Theorem 4.1 that for b0z ≤ r ≤ χ(θ, z) and 1

2 ≤ z ≤ T , one has

∑
0≤l≤k0−2

|zl∇l+1ϕ̇|2 ≤ Cz−1

∫∫
b0z≤r≤χ(θ,z)

∑
0≤l≤k0−1

|zl∇l+1ϕ̇(r, θ, z)|2dS. (4.22)

On the other hand, (4.1) shows that∫∫
b0z≤r≤χ(θ,z)

∑
0≤l≤k0−1

|zl∇l+1ϕ̇(r, θ, z)|2dS ≤ Cε2z
1
2 . (4.23)

Hence
∑

0≤l≤k0−2

|zl∇l+1ϕ̇|2 ≤ Cε2z−1/2 for b0z ≤ r ≤ χ(θ, z) and 1
2 ≤ z ≤ T .

For k0 ≥ 6, one has ∑
l≤[

k0
2 ]+1

|zl∇l+1ϕ̇| ≤ Cεz−
1
4 . (4.24)
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In addition, due to k0 − 2 ≥ [k0
2 ] + 1, the equations (2.5) and (2.6) yield

|ξ(θ, z)| + |z∂zξ(θ, z)| + |∂θξ(θ, z)| ≤ Cεz−
1
4 . (4.25)

(4.24) and (4.25) imply that the assumptions on ξ and ϕ̇ hold for any T > 1
2 . Thus, noting that

the constant C is independent of T in Theorem 4.1, we complete the proof on Theorem 1.1 under the
additional assumption b1(θ, z) = b0z.

§5. The general boundary case

In this section, we discuss the equation (2.8) with (2.9)-(2.12). In order to prove Theorem 1.1 for
general boundary, as in [5], we have to analyze the contributions of the perturbed boundary. It turns out
that we can modify the arguments in the proof of Theorem 4.1 slightly to deal this general case. As in
(4.3), we first estimate the term

∫∫∫
DT

z̃−
3
2

∑
0≤m≤k0−1

LS̃m ˙̃ϕMS̃m ˙̃ϕdx̃, where S̃ = r̃∂r̃ + z̃∂z̃ or ∂θ̃.

Note that the first four terms on the right side of (2.8) have been estimated in §4. Without loss
of generality, we only estimate

∫∫∫
DT

z̃−
3
2 S̃m((1 − ∂zb1(θ,z)

b0
)f1

33(∇ϕ̃, ∂zb1(θ,z)
b0

, ∂θb1)∂2
z̃z̃ϕ̃)MS̃m ˙̃ϕdx̃ and∫∫∫

DT
z̃−

3
2 S̃m(f3

1 (∇ϕ̃, ∂zb1(θ,z)
b0

, ∂θ̃b1)∂
2
zb1(θ, z)∂z̃ϕ̃) MS̃m ˙̃ϕdx̃, the other terms can be analyzed similarly.

To estimate the integrals, as in [5], we use the following decomposition:

(1 − ∂zb1(θ, z)
b0

)f1
33(∇ϕ̃,

∂zb1(θ, z)
b0

, ∂θb1)∂2
z̃z̃ϕ̃ = I1 + II1 + III1,

f3
1 (∇ϕ̃, ∂zb1(θ, z)

b0
, ∂θb1)∂2

z b1(θ, z)∂z̃ϕ̃ = I2 + II2 + III2,

where

I1 = (1 − ∂zb1(θ, z)
b0

)
(
f1
33(∇ϕ̃,

∂zb1(θ, z)
b0

, ∂θb1) − f1
33(∇ϕ̂,

∂zb1(θ, z)
b0

, ∂θb1)
)
∂2

z̃z̃ϕ̂,

II1 = (1 − ∂zb1(θ, z)
b0

)f1
33(∇ϕ̂,

∂zb1(θ, z)
b0

, ∂θb1)∂2
z̃z̃ϕ̂,

III1 = (1 − ∂zb1(θ, z)
b0

)f1
33(∇ϕ̃,

∂zb1(θ, z)
b0

, ∂θb1)∂2
z̃z̃

˙̃ϕ,

I2 = ∂2
zb1(θ, z)(f

3
1 (∇ϕ̃, ∂zb1(θ, z)

b0
, ∂θb1) − f3

1 (∇ϕ̂, ∂zb1(θ, z)
b0

), ∂θb1)∂z̃ϕ̂,

II2 = ∂2
zb1(θ, z)f

3
1 (∇ϕ̂, ∂zb1(θ, z)

b0
, ∂θb1)∂z̃ϕ̂,

III2 = ∂2
zb1(θ, z)f

3
1 (∇ϕ̃, ∂zb1(θ, z)

b0
, ∂θb1)∂z̃

˙̃ϕ.

Note also that |b1(θ, z) − b0z| ≤ ε and |z(z∂z)k1∂k2
θ (∂zb1(θ, z) − b0)| ≤ ε for 0 ≤ k ≤ k2 − 1 with

k2 ≥ k0 + 1 due to (1.10), here k0 is the number appeared in Theorem 4.1. Additionally, ∂r̃ϕ̂ and ∂z̃ϕ̂
25



are positively homogeneous of degree 0. Hence we have the following estimates for m ≤ k0 − 1

|S̃mI1MS̃m ˙̃ϕ| ≤ Cε

z̃

∑
l≤m

|∇r̃,z̃S̃
l ˙̃ϕ|2,

|S̃mII1MS̃m ˙̃ϕ| ≤ Cε

z̃

∑
l≤m

|∇r̃,z̃S̃
l ˙̃ϕ|,

|S̃mI2MS̃m ˙̃ϕ| ≤ Cε

z̃

∑
l≤m

|∇r̃,z̃S̃
l ˙̃ϕ|2,

|S̃mII2MS̃m ˙̃ϕ| ≤ Cε

z̃

∑
l≤m

|∇r̃,z̃S̃
l ˙̃ϕ|,

|S̃mIII2MS̃m ˙̃ϕ| ≤ Cε

z̃

∑
l≤m

|∇r̃,z̃S̃
l ˙̃ϕ|2.

In addition, the term S̃mIII1MS̃m ˙̃ϕ can be treated similarly as in (4.5), (4.6) and (4.7) of §4. Using
the inequality ε

z̃ |g| ≤ η|g|2 + C(η) ε2

z̃2 , here η > 0 is an appropriate small constant, then these estimates
and the integration by parts lead to∫∫∫

DT

z̃−
3
2

∑
0≤m≤k0−1

LS̃m ˙̃ϕMS̃m ˙̃ϕdx̃ ≤ O(ε)
(

1√
T

∫∫
b0T≤r≤χ̃(θ,T )

∑
m≤k0−1

|∇S̃m ˙̃ϕ(r, θ, T )|2dS

+
∫∫∫

DT

z̃−
3
2

∑
0≤m≤k0−1

|∇S̃m ˙̃ϕ|2dx̃+
∫∫

ΓT

z̃−
1
2

∑
0≤m≤k0−1

|∇S̃m ˙̃ϕ|2dS

+
∫∫

BT

z̃−
1
2

∑
0≤m≤k0−1

|∇S̃m ˙̃ϕ|2dS + ε

)
+

1
2C(q0, b0, γ)

∫∫∫
DT

z̃−
3
2

∑
0≤m≤k0−1

|∇S̃m ˙̃ϕ|2dx̃,

here C(q0, b0, γ) is the constant in (4.3).
Secondly, as in §4 we need to estimate the term

∫∫
ΓT
z̃−

1
2

∑
0≤m≤k0−1

|B0S̃
m ˙̃ϕ|2dS. Since the equations

(2.9) and (2.10) are very similar to (2.5) and (2.6) respectively, then this term can be estimated by the
same method in §4.

Therefore, Theorem 1.1 is proved in the general case.
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