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§1. Introduction and Main Results

We consider spherically symmetric solutions to the isentropic compressible Navier-

Stokes equations, which satisfy the following system

(1.1)

⎧⎨
⎩

∂t ρ+ ∂x(ρu) +
mρu

x
= 0,

∂t(ρu) + ∂x(ρu
2 + p(ρ)) +

mρu2

x
= μ ∂2

x u+ μm∂x

(u
x

)
,

where m = n− 1 (for n = 2, 3), p(ρ) = aργ , γ > 1, a > 0, and μ > 0 are given constant.

Here ρ, u, p denote the density, velocity and pressure respectively, and x is the radial

variable so x ≥ 0. We impose the following initial-boundary conditions:

(1.2)

{
ρ(x, 0) = ρ0(x), x ≥ 0,

ρ(x, 0) u(x, 0) = v0(x), x ≥ 0,

(1.3) u(0, t) = 0, t ≥ 0.

Our main purpose is to study the properties of vacuum states in weak solutions to the

initial-boundary value problem (1.1) - (1.3).

As it is well-known, the formation and dynamics of the vacuum states are key issues

in the studies of the existence, regularity and long time behavior of strong and weak

solutions for both inviscid and viscous compressible fluids (see [1], [4], [9], [10], [5], [3],

[11]). This is particularly so for multi-dimensional problems. Indeed, the well-posedness

of and stability of strong solutions near a non-vacuum state have been well understood

(see [14], [1], [6] and the references therein). However, the situation becomes much more

complicated in the presence of vacuum and less is known except the existence of weak

solutions and long time dynamics for some special cases (see [6], [7], [10] and the references

therein). The uniqueness and regularity of weak solutions of compressible Navier-Stokes

system obtained in [10, 8] depend crucially on the understanding of the dynamics of

vacuum states in such weak solutions. In fact, it has been shown by Xin in [15, 16] any

smooth solutions to the compressible Navier-Stokes systems with compactly supported

initial densities will blow-up in finite time. This indicates that the dynamics of vacuum

states will play a key role in the theory of regularity of weak solutions of the compressible

Navier-Stokes system.

There have been a lot recent studies on the various topics involving vacuum states for

viscous compressible fluids, see [2, 3, 4, 10, 12, 13, 15, 16, 5, 9, 7], etc. for instances.
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In particular, in [5], Hoff and Smoller studied the dynamics of vacuum states for weak

solutions to the one-dimensional compressible Navier-Stokes equations:

(1.1)′
{

∂t ρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p(ρ))x = μ uxx + ρf

and proved the important conclusion that if for any given open set E ⊂ R
1, it holds that∫

E

ρ(x, 0)dx > 0,

then for any t ∈ [0, T ], and any open set E ⊂ R
1, it holds that∫

E

ρ(x, t)dx > 0,

provided (ρ, u) (x, t) is a suitable weak solution to (1.1)′. For spherical symmetric Navier-

Stokes system (1.1) in the case that γ = 1 and with bounded initial density definitely

away from vacuum states, in [2], Hoff has constructed a global weak solution with initial

data in the class of bounded total variations, and proved such solution contains no vacuum

state far way from the center of symmetry and pointed out there might appear vacuum

state near the center of the symmetry. These results have been generalized in [3].

One of the motivations of this paper is to generalize the one-dimensional results of

Hoff-Smoller in [5] to weak solutions to the initial-boundary value problem (1.1) - (1.3).

To state our main results, we first need a definition of weak solutions to the problem (1.1)

- (1.3).

Definition 1.1 (ρ, u) = (ρ(x, t), u(x, t)) is said to be a weak solution to the initial-

boundary value problem (1.1)-(1.3) on R
1
+ × [0, T ) if

(1) ρ(x, t) ≥ 0 a.e. on (x, t) × R
1
+ × (0, T ),

ρ, ρu2 ∈ L∞(0, T ;L1
loc(R

1
+)),

∂x u,
u

x
∈ L2(0, T ;L2

loc(R
1
+));

(2) for all t1 and t2 such that 0 ≤ t1 < t2 < T , ϕ ∈ C1(0, T ;C1
0(R

1
+)), it holds that

∫
R

1
+

ρϕ xm dx

∣∣∣∣∣
t2

t1

−
∫ t2

t1

∫
R

1
+

(ρ ∂t ϕ+ ρ u ∂x ϕ)xm dx dt = 0,
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and

∫
R

1
+

ρ uϕxm dx

∣∣∣∣∣
t2

t1

−
∫ t2

t1

∫
R

1
+

{
ρ u ∂t ϕ+ ρ u2 ∂x ϕ+ p(ρ)

(
∂x ϕ+

mϕ

x

)}
xm dx dt

= −μ
∫ t2

t1

∫
R1

+

(
∂x u ∂x ϕ+

muϕ

x2

)
xm dx dt.

Set

(1.4) m(t) =

∫
R

1
+

ρ(x, t)xm dx,

(1.5) E(t) =

∫
R1

+

(
1

2
ρ u2 +

a

γ − 1
ργ

)
(x, t)xm dx+ μ

∫ t

0

∫
R1

+

(
(∂x u)

2 +
mu2

x2

)
xm dx dτ,

(1.6) E0 =

∫
R

1
+

(
v2
0

2ρ0
+

a

γ − 1
ργ

0

)
(x)xm dx.

We will assume that the weak solutions satisfy the following conditions:

(1.7) m(t) = m0 ≡
∫

R
1
+

ρ0(x)x
m dx, for all t ∈ (0, T ),

and

(1.8) E(t) ≤ E0, for all t ∈ (0, T ).

It should be noted that by following the analysis in [8], one can constructed weak

solutions to the problem (1.1)-(1.3) such that both (1.7) and (1.8) hold, see Theorem 1.4

below.

We now define for all t ∈ (0, T ),

(1.9) w(t) = sup

{
x ∈ R

1
+;

∫ x

0

ρ(y, t)ym dy = 0

}
.

Then one of the main results in this paper is the following theorem:

Theorem 1.1 Let (ρ, u) be a weak solution to the problem (1.1) - (1.3) on the domain

R
1
+ × R

1
+ such that (1.7) and (1.8) hold. If for any given open set E ⊂ R

1
+, it holds true

that

(1.10)

∫
E

ρ0(x)x
m dx > 0,
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then for any t ∈ R
1
+ and any open set E with E ⊂ Ē ⊂ (w(t),+∞), one has that

(1.11)

∫
E

ρ(x, t)xm dx > 0.

Furthermore, it can be shown that

(1.12) w(t) ≤ C t1/n

for some uniform positive constant C.

It should be noted that in Theorem 1.1, it is allowed that there are vacuum states on

a set of measure zero initially, which is different from the assumptions in [2,3]. It will also

be clear from the proof of the Theorem 1.1 that if the vacuum states appear on an open

interval initially, then the interval of vacuum states will persist in time. Then a natural

question arises: if the vacuum states appear on two or more open intervals initially, then

do these intervals of vacuum states emerge later on in time? Will they interact? Based

on the ideas of the proof of Theorem 1.1, one can derive the following definite answer to

such a question:

Theorem 1.2 Let (ρ, u) be a weak solution to the initial-boundary value problem (1.1)

- (1.3) satisfying (1.7) and (1.8) on [0, T ) × R
1
+ with T < +∞. Assume that there exist

constants ai (i = 1, 2, 3, 4) such that

0 < a1 < a2 < a3 < a4 < +∞

(1.13)

∫ a2

a1

ρ0(x)dx =

∫ a4

a3

ρ0(x)dx = 0,

(1.14)

∫ a2

a1−ε

ρ0(x)dx > 0, ∀ ε ∈ (0, a1),

(1.15)

∫ a2+ε

a1

ρ0(x)dx > 0, ∀ ε ∈
(

0,
(a2 + a3)

2

)
,

(1.16)

∫ a3

a3−ε

ρ0(x)dx > 0, ∀ ε ∈
(

0,
(a2 + a3)

2

)
,

and

(1.17)

∫ a4+ε

a3

ρ0(x)dx > 0, ∀ ε ∈ (0, 1).
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Then there exist xi = xi(t) ∈ C1[0, T ] (i = 1, 2, 3, 4) such that

(1.18) xi(0) = ai, i = 1, 2, 3, 4,

(1.19) 0 < x1(t) < x2(t) < x3(t) < x4(t) < +∞, ∀ t ∈ [0, T ],

with the following properties: for all t ∈ [0, T ],

(1.20)

∫ x2(t)

x1(t)

ρ(x, t)dx =

∫ x4(t)

x3(t)

ρ(x, t)dx = 0,

(1.21)

∫ x2(t)

x1(t)−ε

ρ(x, t)dx > 0, ∀ ε ∈ (0, x1(t)),

(1.22)

∫ x2(t)+ε

x1(t)

ρ(x, t)dx > 0, ∀ ε ∈
(

0,
(x2(t) + x3(t))

2

)
,

(1.23)

∫ x4(t)

x3(t)−ε

ρ(x, t)dx > 0, ∀ ε ∈
(

0,
(x2(t) + x3(t))

2

)
,

and

(1.24)

∫ x4(t)+ε

x3(t)

ρ(x, t)dx > 0, ∀ ε ∈ (0, 1).

In particular, it holds that

(1.25) x3(t) − x2(t) ≥ 1

C

{∫ a3

a2

ρ0(x)x
m dx

}γ/(γ−1)

for all t ∈ [0, T ], where C is a positive constant depending only on m0, E0 and T .

Remark 1.1 It follows from Theorem 1.2 that initially neighboring open intervals of

vacuum states are always separated dynamically.

We now turn to another important question: for a given weak solution to (1.1) - (1.3)

satisfying (1.7), (1.8) and (1.10), can the vacuum states appear on an open interval near

the center x = 0? i.e., when do we have

(1.26) w(t) = 0 ∀ t ∈ [0, T ]?
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It seems that the answer to this question depends on the further regularity of the weak

solution. A sufficient condition to ensure that there will be no open interval near x = 0

on which vacuum states appear is the following:

(1.27) limδ→0+

∣∣∣∣1δ
∫ T

0

∫ 2δ

δ

u

x
dx dt

∣∣∣∣ <∞,

or

(1.28) limδ→0+

∣∣∣∣1δ
∫ T

0

∫ 2δ

δ

ux dx dt

∣∣∣∣ <∞.

Indeed, we have

Theorem 1.3 Let (ρ, u) be a weak solution to the initial-boundary value problem (1.1)

- (1.3) such that (1.7), (1.8), and (1.10) hold. If either (1.27) or (1.28) holds true, then

(1.29)

∫
E

ρ(x, t)xm dx > 0

holds for all t ∈ (0, T ) and arbitrary open set in R
1
+.

It should be pointed out that in the Theorems 1.1 - 1.3 above, we have assumed that

the mass is conserved and the total energy is finite, i.e., (1.7) and (1.8) hold. In fact, the

existence of such weak solutions to the initial-boundary value problem can be proved by

following the analysis in [19]. Indeed, we have

Theorem 1.4 Assume that the initial data, (1.2), are given such that both m0 and E0

are finite. Then there exists a weak solution (ρ, u) to the initial-boundary value problem

(1.1) - (1.3) such that (1.7) and (1.8) hold.

The rest of the paper is organized as follows: we start with some basic lemmas in

§2. Since the interfaces between vacuum states and non-vacuum states are governed by

particle paths, so the basic lemmas concern the time-integrability of the velocity and the

estimates on the progation of the interfaces as in [5], see Lemmas 2.2 and 2.3. In §3, we

show that there are no vacuum states far away from the center under the assumptions of

Theorem 1.1, see Theorem 3.1. The main part of the proof of Theorem 1.1 is given in

§4, where we will show the non-formation of vacuum states in some intermediate region.

This is achieved by studying the evolution of an open interval of vacuum state. Through

careful estimate of the interfaces separating vacuum and non-vacuum states, we can prove

Theorem 1.1 by generalizing some of ideas in [5]. Based on the ideas in the analysis in

§4, the Theorems 1.2, 1.3 and 1.4 are proved in §5, §6 and §7 respectively.
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§2. Some Preliminary Lemmas

In this section, we list some elementary facts which are simple but useful for our later

on analysis.

First, we will use the following simple fact often.

Lemma 2.1 For any λ ∈ (0,+∞) and any k ∈ (0,+∞), it holds that

xke−λx ≤ C1(k, λ)

for all x ∈ [0,+∞), where C1(k, λ) is some positive constant depending only on k and λ.

Next, we estimate the time-integrability of the velocity field for a weak solution.

Lemma 2.2 Let (ρ, u) be a weak solution to (1.1) - (1.3). Then∫ t

s

|u(·, λ)|L∞(R,2R) dλ ≤ C2(t− s)1/2 R(2−n)/2, ∀ 0 < s < t,

for all R ∈ (0,+∞), where C2 is a positive constant depending only on E0.

Proof We compute

(2.1)

∫ t

s

|u(·, λ)|L∞(R,2R) dλ =

∫ t

s

ess sup
x∈(R,2R)

|ξR(x)u(x, λ)|L∞(R,2R) dλ,

where ξR ∈ C∞
0 (R) such that⎧⎪⎨

⎪⎩
0 ≤ ξR ≤ 1, |ξ′R| ≤ CR−1,

ξR = 1 on (R, 2R)

ξR = 0 on R \ (R/2, 3R).

Note that for almost all λ ∈ (0, T ),

ess supR≤x≤2R |ξR(x)u(x, λ)|

= ess sup
R≤x≤2R

∣∣∣∣
∫ x

R/2

∂

∂y
[ξR(y)u(y, λ)]dy

∣∣∣∣
≤ C

R

∫ 2R

R/2

|u(x, λ)|dx+

∫ 2R

R/2

|ux(x, λ)|dx.
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Hence, by the regularity assumptions on a weak solution,∫ t

s

|u(·, λ)|L∞(R,2R) dλ

≤ C

R

∫ t

s

∫ 2R

R/2

|u(x, λ)|dx dλ+

∫ t

s

∫ 2R

R/2

|ux(x, λ)|dx dλ

≤ C

R

{∫ t

s

∫ 2R

R/2

u2

x2
· xm dx dλ

}1/2{∫ t

s

∫ 2R

R/2

x2−m dx dλ

}1/2

+

{∫ t

s

∫ 2R

R/2

u2
x x

m dx dλ

}1/2{∫ t

s

∫ 2R

R/2

x−m dx dλ

}1/2

≤ CE
1/2
0 R(1−m)/2(t− s)1/2.

Thus the proof is completed.

As an immediate consequence, one has

Corollary 2.1 For 0 < s < t and r > 0, it holds that∫ t

s

|u(·, λ)|L∞(r,R) dλ ≤ C2(t− s)1/2 r(2−n)/2

for all R ∈ (r,+∞), where C is a positive constant depending only on E0.

Proof For R ∈ (r,+∞) with r > 0, there exists a positive integer k such that R ∈
[2k−1 r, 2k r). It then follows from Lemma 2.2 that∫ t

s

|u(·, λ)|L∞(2j−1 r,2jr) dλ ≤ C2(t− s)1/2 (2j−1r)(2−n)/2 ≤ C2(2
(2−n)/2)j−1 (t− s)1/2 r(2−n)/2

for j = 1, 2, · · · , k. Therefore, we get∫ t

s

|u(·, λ)|L∞(r,2kr) dλ ≤ C2(t− s)1/2 r(2−n)/2.

So the proof is completed.

Next lemma gives an estimate on the evolution of an open interval of vacuum states.

Lemma 2.3 Let t0 ∈ (0, T ) and suppose that

ρ(·, t0) = 0 a. e. (a, b)
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with 0 < a < b < +∞. Let

t1 = inf

{
t ∈ [0, t0] :

∫ t0

t

|u(·, λ)|L∞(a,b) dλ <
b− a

2

}

and

t2 = sup

{
t ∈ [t0, T ] :

∫ t

t0

|u(·, λ)|L∞(a,b) dλ <
b− a

2

}
.

Then t1 < t0 < t2, and for any t ∈ (t1, t2), ρ(·, t) = 0 a. e. on(
a+

∣∣∣∣
∫ t

t0

|u(·, λ)|L∞(a,b) dλ

∣∣∣∣ , b−
∣∣∣∣
∫ t

t0

|u(·, λ)|L∞(a,b) dλ

∣∣∣∣
)
.

Proof Lemma 2.2 shows that

t1 < t0 < t2.

Now suppose that t > t0. The proof for t < t0 is similar. We prove Lemma 2.3 by

studying the approximate particle pathes.

Fix δ > 0 satisfying

0 < δ <
b− a

6
.

For small ε > 0, let uε denote the usual spatial regularization of u. Then for a. e.

t ∈ [t0, T ], we have

|uε(·, t)|L∞(a+δ,b−δ) ≤ |u(·, t)|L∞(a,b).

Define a smooth function wεδ(·, t) by

wεδ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

|uε(·, t)|L∞(a+δ,b−δ), if x <
a + b

2
− δ

−|uε(·, t)|L∞(a+δ,b−δ), if x >
a + b

2
+ δ

and wεδ is decreasing on

(
a+ b

2
− δ,

a+ b

2
+ δ

)
.

Next, set

ψδ(x) =

{
1, if a+ 2δ < x < b− 2δ

0, if x < a+ δ or x > b− δ,

and ψδ is increasing on (a + δ, a+ 2δ), and decreasing on (b− 2δ, b− δ).

Let φεδ be the solution to the problem{
φt + wεδφx = 0, t > t0

φ|t=t0 = ψδ.
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Consider the curves

xε
r = xε

r(t)

defined by ⎧⎨
⎩

dx

dt
= wεδ, t > t0

x|t=t0 = r, r ∈ [0,+∞).

Set

V1 =
{
(x, t) : 0 < x < xε

a+δ(t), t ∈ [t0, T ]
}
,

V2 =
{
(x, t) : xε

a+δ(t) < x < xε
a+2δ(t), t ∈ [t0, T ]

}
,

V3 =
{
(x, t) : xε

a+2δ(t) < x < xε
b−2δ(t), t ∈ [t0, T ]

}
,

V4 =
{
(x, t) : xε

b−2δ(t) < x < xε
b−δ(t), t ∈ [t0, T ]

}
,

V5 =
{
(x, t) : xε

b−δ(t) < x < +∞, t ∈ [t0, T ]
}
.

Then,

φεδ(x, t) =

{
0, if (x, t) ∈ V1 ∩ V5

1, if (x, t) ∈ V3

and

φεδ
x (x, t)

{
> 0, if (x, t) ∈ V2

< 0, if (x, t) ∈ V4.

Denote

T εδ = sup

{
t ∈ [t0, T ] : xε

a+2δ(s) <
a+ b

2
− δ, xε

b−2δ(s) >
a+ b

2
+ δ, ∀ s ∈ [t0, t]

}
.

Without loss of generality, we may assume that

xε
a+2δ(T

εδ) =
a+ b

2
− δ.

Then,

xε
a+2δ(T

εδ) − xε
a+2δ(t0) =

∫ T εδ

t0

wεδ dt,

which yields (
a+ b

2
− δ

)
− (a + 2δ) ≤

∫ T εδ

t0

|u(·, λ)|L∞(a,b) dλ.

Therefore,

(2.5)

∫ T εδ

t0

|u(·, λ)|L∞(a,b) dλ ≥ b− a

2
− 3δ.
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Define

T δ = sup

{
t ∈ [t0, T ] :

∫ t

t0

|u(·, λ)|L∞(a,b) dλ <
b− a

2
− 3δ

}
.

It then follows from the definition and (2.5) that

T εδ ≥ T δ.

By the definition of weak solution, one may obtain that for t ∈ (t0, T
δ),∫ ∞

0

ρ φεδ xm dx

∣∣∣∣
t

t0

=

∫ t

t0

∫ ∞

0

ρ(u− uε)φεδ
x x

m dx dτ +

∫ t

t0

∫ ∞

0

ρ(uε − wεδ)φεδ
x x

m dx dτ

≤
∫ t

t0

∫ ∞

0

ρ(u− uε)φεδ
x x

m dx dτ

which implies that ∫ b−δ

a+δ

ρ φεδ xm dx ≤
∫ t

t0

∫ b−δ

a+δ

ρ(u− uε)φεδ
x x

m dx dτ.

Consequently, it follows from the definition of the particle path that

(2.6)

∫
Iδ(t)

ρ(x, t)xm dx ≤
∫ t

t0

∫ b−δ

a+δ

ρ(u− uε)φεδ
x x

m dx dτ,

where

Iδ(t) =

(
a+ 2δ +

∫ t

t0

|u(·, λ)|L∞(a,b) dλ, b− 2δ −
∫ t

t0

|u(·, λ)|L∞(a,b) dλ

)
.

Letting ε→ 0+ in (2.6) yields ∫
Iδ(t)

ρ(x, t)xm dx ≤ 0

and therefore,

ρ(·, t) = 0 a.e. on Iδ(t).

On the other hand, for t ∈ (t1, t2) we have∫ t

t0

|u(·, λ)|L∞(a,b) dλ <
b− a

2
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There exists a δ0 ∈
(

0,
b− a

6

)
such that if δ ∈ (0, δ0) then

∫ t

t0

|u(·, λ)|L∞(a,b) dλ <
b− a

2
− 4δ.

Therefore we have

t ≤ T δ

and then

ρ(·, t) = 0

for a. e. x ∈ Iδ(t). Letting δ → 0 we get

ρ(·, t) = 0

a. e. on (
a +

∣∣∣∣
∫ t

t0

|u(·, λ)|L∞(a,b) dλ

∣∣∣∣ , b−
∣∣∣∣
∫ t

t0

|u(·, λ)|L∞(a,b) dλ

∣∣∣∣
)
.

Thus the proof is completed.

Finally, we also need the following lemma.

Lemma 2.4 Let (ρ, u) be a weak solution to (1.1) - (1.3). Then it holds that

∫ T

0

ess sup
0<x<1

|xm/2 u(x, t)|2 dt ≤ C3

for all T ∈ (0,+∞), where C3 is a positive constant depending only on E0.

Proof In a similar way as in the Proof of Lemma 2.2, one can show that∫ T

0

ess sup
R<x<1

|xm/2 u(x, t)|2 dt ≤ C

∫ T

0

∫ 1

R/2

(|uy(y, t)|2 + y2 u2(y, t)
)
ym dy dt,

which implies that ∫ T

0

ess sup
R<x<1

|xm/2 u(x, t)|2dt ≤ C E0

for all R ∈ (0, 1). Letting R → 0+ yields the desired estimate. Thus the proof is complete.
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§3. Non-formation of Vacuum near x = +∞

In this section, we will show that if there is no vacuum initially, there will be no

formation of vacuum state near infinity. More precisely,

Theorem 3.1 Let (ρ, u) be a global weak solution of (1.1) - (1.3) satisfying (1.7) and

(1.8). If

(3.1)

∫
E

ρ0(x)dx > 0

for every open set E ⊂ (0,+∞), then for any t ∈ (0,+∞), it holds that

(3.2)

∫ 2R

R

ρ(x, t)dx > 0

for all R ∈ (R∗(t),+∞), where

(3.3) R∗(t) = C3 t
1/n,

and C3 is a positive constant depending only on E0.

Proof of Theorem 3.1 It follows from Lemma 2.2 that

(3.4)

∫ t

0

|u(·, λ)|L∞(R,2R) dλ ≤ C2 t
1/2 R(2−n)/2

for all t ∈ (0,+∞) and all R ∈ (0,+∞), where C2 is defined in Lemma 2.2.

Define

(3.5) R∗(t) = (4C2)
2/n t1/n.

Then

(3.6) C2 t
1/2[R∗(t)](2−n)/2 =

R∗(t)
4

for all t ∈ (0,+∞).

We claim that for any t ∈ (0,+∞),

(3.7)

∫ 2R

R

ρ(x, t)dx > 0

for all R ∈ (R∗(t),+∞) with R∗(t) defined by (3.5).

14



In fact, if (3.7) is not true for some t0 ∈ (0,+∞) and some R0 ∈ (R∗(t0),+∞) then

(3.8) ρ(x, t0) = 0

for a. e. x ∈ (R0, 2R0). Then Lemma 2.3 implies that

(3.9) ρ(·, t) = 0

a. e. on (
R0 +

∫ t0

t

|u(·, λ)|L∞(R0,2R0) dλ, 2R0 −
∫ t0

t

|u(·, λ)|L∞(R0,2R0) dλ

)

for all t ∈ [t∗, t0], where

(3.10) t∗ = inf

{
t ∈ [0, t0] :

∫ t0

t

|u(·, λ)|L∞(R0,2R0) dλ <
R0

4

}
.

It follows from (3.4) and (3.6) that

(3.11)

∫ t0

0

|u(·, λ)|L∞(R0,2R0) dλ ≤ C2 t
1/2
0 R

(2−n)/2
0 <

R0

4

for all R ∈ (R∗(t0),+∞). Combining (3.10) - (3.11) with (3.9) one may conclude that

ρ0(x) = ρ(x, 0) = 0

for a. e. x ∈ (R0 +R/4, 2R0 −R0/4). This contradicts to the assumption (3.1). Thus the

proof is completed.

§4. Vacuum at the Interior

Next, we turn to the Proof of Theorem 1.1. We assume that

(4.1) ρ(·, t0) = 0 a. e. on (a, b)

with

(4.2) ω(t0) < a < b < +∞,
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and

(4.3) y(t) = inf

{
x : ρ(·, t) = 0 a. e. on

(
x,
a+ b

2

)}
,

(4.4) z(t) = sup

{
x : ρ(·, t) = 0 a. e. on

(
a+ b

2
, x

)}
,

and

(4.5) y(t0) = a, z(t0) = b.

Then Theorem 3.1 implies

(4.6) b < +∞.

We start with some elementary estimates on the curves x = y(t) and x = z(t).

Lemma 4.1 There exists a constant h0 = h0(a, b) > 0 such that y(t) and z(t) are

absolutely continuous functions on [t0 − h0, t0], and

a

2
≤ y(t) ≤ a+

a

4
< b− b− a

8
≤ z(t) ≤ a0

for some positive constant a0 depending only on a, b, E0 and t0.

Proof Lemma 2.3 shows

(4.7) ρ(·, t) = 0 a. e. on(
a+

∣∣∣∣
∫ t

t0

|u(·, λ)|L∞(a,b)

∣∣∣∣ , b−
∣∣∣∣
∫ t

t0

|u(·, λ)|L∞(a,b)

∣∣∣∣
)
.

for t ∈ [t1, t0], where

(4.8) t1 = inf

{
t ∈ [0, t0] :

∫ t0

t

|u(·, λ)|L∞(a,b) dλ <
b− a

2

}
.

Then (4.7) and (4.8) lead to

(4.9) y(t) < a+
b− a

2

for all t ∈ [t1, t0]. Similarly, one can show that

z(t) > b− b− a

2
=
b+ a

2
.
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Combining (4.9) with Theorem 3.1 one concludes that

(4.10) z(t) ≤ 2 max

{
b− b− a

2
, R∗(t0)

}

for all t ∈ [t1, t0], where R∗(t0) is defined by (3.3). It follows from (4.9), (4.10) and (4.7)

that

(4.11) 0 ≤ y(t) <
a+ b

2
< z(t) ≤ a0

for all t ∈ [t0 − h1, t0], where

(4.12) a0 = 2 max

{
a +

b− a

2
, R∗(t0)

}
,

(4.13) h1 = t0 − t1 > 0.

Then Corollary 2.1 shows that

(4.14)

∫ t0

t0−h

|u(·, λ)|L∞(a/2,(a+b)/2) dλ ≤ Ch1/2(a/2)(2−n)/2

for all h ∈ (0, h1), where C is a positive constant depending only on E0. Choose h0 ∈
(0, h1) such that

Ch1/2(a/2)(2−n)/2 ≤ min

{
a

4
,
b− a

8

}
so that

(4.15)

∫ t0

t0−h0

|u(·, λ)|L∞(a/2,(a+b)/2) dλ ≤ min

{
a

4
,
b− a

8

}

Then we claim that

(4.16) y(t) ≥ a

2

for all t ∈ [t0 − h0, t0].

In fact, if (4.16) fails then

y(t∗) <
a

2

for some t∗ ∈ [t0 − h, t0). Due to (4.11), one gets that

ρ(x, t∗) = 0
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for a. e. x ∈ (a/2, (a+ b)/2). Applying Lemma 2.3 we obtain ρ(·, t) = 0 a. e. on(
a

2
+

∫ t

t∗
|u(·, λ)|L∞(a/2,(a+b)/2),

a+ b

2
−
∫ t

t∗
|u(·, λ)|L∞(a/2,(a+b)/2) dλ

)

for all t ∈ (t∗, t∗), where

t∗ = sup

{
t ∈ [t∗, T ] :

∫ t

t∗
|u(·, λ)|L∞(a/2,(a+b)/2) dλ <

b− a

4

}
.

Using (4.15) we have ρ(·, t) = 0 a. e. on(
a

2
+
a

4
,
b+ a

2
− b− a

8

)
.

This contradicts to (4.3) and (4.5). Therefore, (4.16) holds and then (4.11) gives

(4.17)
a

2
≤ y(t) < z(t) ≤ a0

for all t ∈ [t0 − h0, t0].

Next, we prove that y and z are absolutely continuous functions on [t0 − h0, t0].

Let s and t be such that

t0 − h0 ≤ s < t ≤ t0.

It follows from Lemma 2.3 and Corollary 2.1 that ρ(·, s) = 0 a. e. on(
y(t) +

∫ t

s

|u(·, λ)|L∞(a/2,a0) dλ, z(t) −
∫ t

s

|u(·, λ)|L∞(a/2,a0) dλ

)
,

since ρ(·, t) = 0 a. e. on (y(t), z(t)). So that

(4.18) z(s) ≥ z(t) −
∫ t

s

|u(·, λ)|L∞(a/2,a0) dλ.

Similarly, if ρ(·, s) = 0 a. e. on (y(s), z(s)) then

(4.19) z(t) ≥ z(s) −
∫ t

s

|u(·, λ)|L∞(a/2,a0)dλ.

Hence (4.18) and (4.19) give, for t0 − h0 ≤ s < t ≤ t0,

(4.20) |z(t) − z(s)| ≤
∫ t

s

|u(·, λ)|L∞(a/2,a0) dλ.

Then the absolute continuity of z(t) follows from this and

(4.21)

∫ T

0

|u(·, λ)|L∞(a/2,a0)dλ ≤ C,
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where C is a positive constant depending only on a and T , which follows from Corollary

2.1.

Similarly, y is also a absolutely continuous function. Thus the proof is completed.

Let S be defined as the set of all t ≥ 0 such that there exists extensions of y and z to

[t, t0] with the following three properties:

(i) y and z are absolutely continuous on [t, t0];

(ii) y < z on [t, t0];

(iii) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ z(s)

y(s)−ε

ρ(x, s)dx > 0, ∀ ε ∈ (0, y(s)), ∀ s ∈ [t, t0],∫ z(s)+ε

y(s)

ρ(x, s)dx > 0, ∀ ε > 0, ∀ s ∈ [t, t0],∫ z(s)

y(s)

ρ(x, s)dx = 0, ∀ s ∈ [t, t0].

It follows from Lemma 4.1 that [t0 − h0, t0] ⊂ S and so,

S �= ∅.

Thus one can set

(4.22) τ = inf S.

Lemma 4.2 It holds that

(4.23) 0 < a∗ ≤ y(t) < z(t) ≤ b∗ < +∞

for all t ∈ (τ, t0], where

a∗ =

[
1

C

∫ a

0

ρ(x, t0)x
m dx

]γ/[n(γ−1)]

,

b∗ =

⎡
⎢⎢⎣ C∫ +∞

b

ρ(x, t0)e
−x xm dx

⎤
⎥⎥⎦

2

,

19



where C is a positive constant depending only on m0, E0, a, b and t0.

Proof Note that (4.2), (4.5) and (1.9) shows that∫ a

0

ρ(x, t0)x
m dx > 0

for a > ω(t0). So we have

a∗ > 0.

On the other hand, b = z(t0) < +∞ implies that∫ +∞

b

ρ(x, t0)e
−xxm dx > 0.

And so,

b∗ < +∞.

For s ∈ (τ, t0], y = y(t) and z = z(t) are absolutely continuous functions on [s, t0], and

y(t) < z(t)

for all t ∈ [s, t0]. Then we have

(4.24) d ≡ d(s) = inf
t∈[s,t0]

|z(t) − y(t)| > 0.

Set

(4.25) R(t) =
1

2
(y(t) + z(t)).

Therefore, for any t ∈ [s, t0 − h0/2], one can find a small positive constant h(t) > 0

such that

(4.26) |y(t1) − y(t)| + |z(t1) − z(t)| < d

4

for all t1 ∈ [t− h(t), t+ h(t)]. Thus

Ω(t) ⊂ V,

where

Ω(t) ≡
[
R(t) − d

4
, R(t) +

d

4

]
× [t− h(t), t+ h(t)],

V ≡ {(x, t) : y(t) < x < z(t), τ < t ≤ t0} .
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Clearly,

[s, t0 − h0] ⊂
⋃

t∈[s,t0−h0/2]

(t− h(t), t+ h(t)).

Therefore there exist {tj}N
j=1 and {hj}N

j=1 such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t1 > t2 > · · · > tN ,

[s, t0 − h0] ⊂ ∪N
j=1(tj − hj , tj + hj),

s ∈ (tN − hN , tN + hN),

t0 − h0/2 ∈ (t1 − h1, t1 + h1),

and

(4.27) ∪N
j=1Ωj ⊂ V, Ωj ∩ Ωj+1 �= ∅,

where

(4.28) Ωj =

[
Rj − d

4
, Rj +

d

4

]
× [tj − hj , tj + hj],

with

(4.29) Rj = R(tj), j = 1, 2, · · · , N.

Denote by

(4.30) Ω0 =

[
a+

a

4
, b− b− a

8

]
× [t0 − h0, t0].

Choose φ0 ∈ C∞(R) such that

(4.31)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ φ0 ≤ 1,

φ0 = 0 on [0, ā]

φ0 = 1 on

[
b− b− a

8
,+∞

)

where

ā =
1

2

[(
a +

a

4

)
+

(
b− b− a

8

)]
.

It follows from Definition 1.1 that∫ ∞

0

ρ φ0 xm dx

∣∣∣∣
t0

t

−
∫ t0

t

∫ ∞

0

(ρ φ0
t + ρ u φ0

x)x
m dx dt = 0
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for t ∈ [t0 − h0, t0]. Thus∫ ∞

0

ρ(x, t0)φ
0(x)xmdx =

∫ ∞

0

ρ(x, t)φ0(x)xmdx

which implies that

(4.32)

∫ ∞

z(t)

ρ(x, t)xm dx =

∫ ∞

b

ρ(x, t0)x
m dx

for all t ∈ [t0 − h0, t0].

In addition, we claim that

(4.33)

∫ ∞

z(t)

ρ(x, t)xm dx =

∫ ∞

b

ρ(x, t0)x
m dx

for all t ∈ [s, t0] ⊂ ∪N
j=0Ij , where

I0 = (t0 − h0, t0), Ij = (tj − hj , tj + hj), j = 1, 2, · · · , N.

For j = 1, it follows from (4.32), and t0 − h0/2 ∈ I1 that

(4.34)

∫ ∞

z(t)

ρ(x, t)xm dx =

∫ ∞

b

ρ(x, t0)x
m dx

for t = t1 + h1.

Define φ1 ∈ C∞(R) by⎧⎪⎨
⎪⎩

0 ≤ φ1 ≤ 1,

φ1 = 0 on [0, R1]

φ1 = 1 on [R1 + d/4,+∞).

Then Definition 1.1 shows:∫ ∞

0

ρ φ1 xm dx

∣∣∣∣
t1+h1

t

−
∫ t1+h1

t

∫ ∞

0

(ρ φ1
t + ρ u φ1

x)x
m dx dt = 0

for t ∈ [t1 − h1, t1 + h1]. This implies that∫ ∞

0

ρ(x, t)φ1(x)xm dx =

∫ ∞

0

ρ(x, t1 + h1)φ
1(x)xm dx

and so, ∫ ∞

z(t)

ρ(x, t)xm dx =

∫ ∞

z(t1+h1)

ρ(x, t1 + h1)x
m dx
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for all t ∈ [t1 − h1, t1 + h1]. This, together with (4.34), shows that (4.33) holds for t ∈ I1.

Repeating the above process shows that∫ ∞

z(t)

ρ(x, t)xm dx =

∫ ∞

b

ρ(x, t0)x
m dx

for all t ∈ [s, t0] with s ∈ (τ, t0]. Therefore,

(4.35)

∫ ∞

z(t)

ρ(x, t)xm dx =

∫ ∞

b

ρ(x, t0)x
m dx

for all t ∈ (τ, t0] . Note that∫ ∞

0

ρ(x, t)xm dx =

∫ ∞

0

ρ(x, t0)x
m dx

for all t ∈ (0,+∞) due to (1.7). One gets from (4.35) that

(4.36)

∫ y(t)

0

ρ(x, t)xm dx =

∫ a

0

ρ(x, t0)x
m dx

for all t ∈ (τ, t0].

On the other hand, it follows from (1.5) and (1.8) that

∫ y(t)

0

ρ(x, t)xm dx ≤ Cyn(1−1/γ)(t),

where C is a positive constant depending only on E0. This, together with (4.36), shows

Cyn(1−1/γ)(t) ≥
∫ a

0

ρ(x, t0)x
m dx.

So that

y(t) ≥
(

1

C

∫ a

0

ρ(x, t0)x
m dx

)γ/[n(γ−1)]

≡ a∗.

for all t ∈ (τ, t0].

Next, we prove that

(4.37) z(t) ≤ b∗

for all t ∈ (τ, t0].

Set

l = z(t∗) ≡ sup
t∈[s,t0]

z(t)
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for s ∈ (τ, t0]. Without loss of generality we may assume that l ≥ 1.

Assume that t∗ ∈ Ik for some k ∈ {0, 1, 2, · · · , N}. For λ ∈ (0, 1), it follows from

Definition 1.1 that∫ ∞

0

ρ φ0 e−λx xm dx

∣∣∣∣
t0

t

−
∫ t0

t

∫ ∞

0

(ρ(φ0 e−λx)t + ρ u(φ0 e−λx)x)x
m dx dt = 0,

where φ0 is defined in (4.31). Thus,∫ ∞

z(t)

ρ(x, t)e−λx xm dx =

∫ ∞

b

ρ(x, t0)e
−λx xm dx+ λ

∫ t0

t

∫ ∞

z(s)

ρ u e−λx xm dx ds

for all t ∈ [t0 − h0, t0]. In particular, since t1 + h1 = t0, it holds that∫ ∞

z(t1+h1)

ρ(x, t1 + h1)e
−λx xm dx =

∫ ∞

b

ρ(x, t0)e
−λx xm dx+ λ

∫ t0

t1+h1

∫ ∞

z(s)

ρ u e−λx xm dx ds.

Repeating the above process we conclude that∫ ∞

z(t2+h2)

ρ(x, t2 + h2)e
−λx xm dx

=

∫ ∞

z(t1+h1)

ρ(x, t1 + h1)e
−λx xm dx+ λ

∫ t1+h1

t2+h2

∫ ∞

z(s)

ρ u e−λx xm dx ds

· · ·∫ ∞

z(tk+hk)

ρ(x, tk + hk)e
−λx xm dx

=

∫ ∞

z(tk−1+hk−1)

ρ(x, tk−1 + hk−1)e
−λx xm dx+ λ

∫ tk+hk

tk−1+hk−1

∫ ∞

z(s)

ρ u e−λx xm dx ds

and∫ ∞

z(t∗)

ρ(x, t∗)e−λx xm dx =

∫ ∞

z(tk+hk)

ρ(x, tk+hk)e
−λx xm dx+λ

∫ tk+hk

t∗

∫ ∞

z(s)

ρ u e−λx xm dx ds.

Consequently,∫ ∞

z(t∗)

ρ(x, t∗)e−λx xm dx =

∫ ∞

b

ρ(x, t0)e
−λx xm dx+ λ

∫ t0

t∗

∫ ∞

z(s)

ρ u e−λx xm dx ds

i.e.,

(4.38)

∫ ∞

l

ρ(x, t∗)e−λx xm dx =

∫ ∞

b

ρ(x, t0)e
−λx xm dx+ λ

∫ t0

t∗

∫ ∞

z(s)

ρ u e−λx xm dx ds.
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By (1.7) and the lower bounds on y(t), one gets∣∣∣∣
∫ t0

t∗

∫ ∞

z(s)

ρ u e−λx xm dx ds

∣∣∣∣
≤

∫ t0

t∗
|u(·, s)|L∞(a∗,+∞)

(∫ ∞

a∗
ρ(x, s)xm dx

)
ds

≤ m0

∫ t0

t∗
|u(·, s)|L∞(a∗,+∞)ds.

Then Corollary 2.1 implies∣∣∣∣
∫ t0

t∗

∫ ∞

z(s)

ρ u e−λx xm dx ds

∣∣∣∣ ≤ m0 a
(2−n)/2
∗ (t0 − t∗)1/2 ≤ m0 a

(2−n)/2
∗ t

1/2
0 ,

consequently,

(4.39)

∣∣∣∣
∫ t0

t∗

∫ ∞

z(s)

ρ u e−λx xm dx ds

∣∣∣∣ ≤ m0 a
(2−n)/2
∗ t

1/2
0 .

On the other hand, direct computations show that∫ ∞

l

ρ(x, t)e−λx xm dx

≤
(∫ ∞

l

ργ(x, t)xm dx

)1/γ (∫ ∞

l

(e−λx)γ/(γ−1) xm dx

)1−1/γ

≤ C

(
1

λn

∫ ∞

λl

e−γy/(γ−1) ym dy

)1−1/γ

≤ C λ−n(γ−1)/γe−λ l(γ−1)/γ ,

where we have used Lemma 2.1.

It follows from this and (4.38) that

(4.40)

∫ ∞

b

ρ(x, t0)e
−λx xm dx ≤ λm0 a

(2−n)/2
∗ t

1/2
0 + C λ−n(γ−1)/γe−λ(γ−1)l/γ ,

which implies that ∫ ∞

b

ρ(x, t0)e
−λx xm dx ≤ C√

l
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for λ = l−1/2 ≤ 1, where C is a positive constant depending only on m0, E0, γ and t0. So

that ∫ ∞

b

ρ(x, t0)e
−x xm dx ≤ C√

l

and then

sup
t∈[s,t0]

z(t) = l ≤

⎛
⎜⎜⎝ C∫ ∞

b

ρ(x, t0)e
−x xm dx

⎞
⎟⎟⎠

2

≡ b∗

Therefore we obtain

z(t) ≤ b∗

for all t ∈ (τ, t0]. Thus the Proof of Lemma 4.2 is completed.

Next, we describe the qualitative of the velocity field on the interval of vacuum.

Lemma 4.3 It holds that

u(x, t) = x−m[xm+1α(t) + β(t)]

for all x ∈ (y(t), z(t)) and a. e. t ∈ (τ, t0], where α ∈ L2
loc(τ, t0] and β ∈ L2

loc(τ, t0].

The proof is similar to [5], so we omit details.

Based on Lemma 4.2 and Lemma 4.3, the growth of x = y(t) and x = z(t) can be

estimated more precisely as follows:

Lemma 4.4 It holds that

dz

dt
≤ z−m(t)(α(t)zm+1(t) + β(t))

and
dy

dt
≥ y−m(t)(α(t)ym+1(t) + β(t))

for almost all t ∈ (τ, t0].

Proof We will only prove

dz

dt
≤ z−m(t)(α(t)zm+1(t) + β(t))

for almost all t ∈ (τ, t0].
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For any t1 ∈ (τ, t0), we shall prove

(4.41)
dz

dt
≤ z−m(t)(α(t)zm+1(t) + β(t))

for almost all t ∈ [t1, t0].

By Lemma 4.2 and Lemma 4.3, for any t ∈ [t1, t0], there exists a positive number h(t)

such that ∣∣∣∣∣
∫ t+h(t)

t−h(t)

z−m(s)(α(s)zm+1(s) + β(s))ds

∣∣∣∣∣ < a∗
8
.

Clearly, we have

[t1, t0] ⊂
⋃

t∈[t1,t0]

(t− h(t), t+ h(t)).

There exist t∗j (j = 1, 2, · · · , n) such that

[t1, t0] ⊂
n⋃

j=1

(t∗j − hj, t
∗
j + hj),

where hj ≡ h(t∗j ) for j = 1, 2, · · · , n. In particular, it holds that∣∣∣∣∣
∫ t∗j +hj

t∗j−hj

z−m(s)(α(s)zm+1(s) + β(s))ds

∣∣∣∣∣ < a∗
8

for j = 1, 2, · · · , n. Therefore, we only prove that (4.41) holds a. e. in (t∗j − hj , t
∗
j + hj)

for j = 1, 2, · · · , n.

Without loss of generality we may assume that

|θ(t)| < a∗
8

for all t ∈ [t1, t0], where

θ(t) ≡
∫ t0

t

z−m(s)(α(s)zm+1(s) + β(s))ds.

Define ⎧⎪⎨
⎪⎩

h(ξ, t) = ρ(x, t)

v(ξ, t) = u(x, t) + θ′(t)

ξ = x+ θ(t).

Then
∂

∂t
[(ξ − θ(t))mh] +

∂

∂ξ
[(ξ − θ(t))mhv] = 0
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in the sense of distribution due to (1.1).

Note that
∂v

∂ξ
=
∂u

∂x

and ∫ t0

t1

|v(·, t)|L∞(a∗/4,R)dt

≤
∫ t0

t1

ess sup
a∗/4−θ(t)<x<R−θ(t)

|u(x, t)|dt+
∫ t0

t1

ess sup
a∗/4−θ(t)<x<R−θ(t)

|θ′(t)|dt

≤
∫ t0

t1

|u(·, t)|L∞(a∗/8,R+a∗/8)dt+

∫ t0

t1

|z−m(t)[α(t)zm+1(t) + β(t)]|dt

≤
∫ t0

t1

|u(·, t)|L∞(a∗/8,R+a∗/8)dt+ C

{∫ t0

t1

[α2(t) + β2(t)]dt

}1/2

for all R ≥ a∗/4, where C is a positive constant depending only on a∗ and b∗. In addition,

we also have ∫ t0

t1

∫ R

a∗/4

∣∣∣∣∂v(ξ, t)∂ξ

∣∣∣∣
2

dξ dt ≤
∫ t0

t1

∫ R+a∗/8

a∗/8

∣∣∣∣∂u(x, t)∂x

∣∣∣∣
2

dx dt

for all R ≥ a∗/4.

Clearly,

h(ξ, t) = 0

for a. e. ξ ∈ (yξ(t), zξ(t)) with t ∈ (τ, t0], where

yξ(t) ≡ y(t) + θ(t)

and

zξ(t) ≡ z(t) + θ(t).

It holds that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ − θ(t) ≥ a∗
4

− a∗
8

=
a∗
8
> 0, f ξ ∈ (a∗/4,+∞)

|θ(t)| ≤ a∗
8

yξ(t) = y(t) − θ(t) ≥ a∗ − a∗
8

=
7a∗
8

>
a∗
4
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for all t ∈ [t1, t0], and then for any φ ∈ C1(0, T ;C1
0(a∗/4,+∞)) we also have∫ +∞

a∗/4

(ξ − θ(t3))
mh(ξ, t3)φ(ξ, t3)dξ −

∫ +∞

a∗/4

(ξ − θ(t2))
mh(ξ, t2)φ(ξ, t2)dξ

=

∫ t3

t2

∫ +∞

a∗/4

h

(
∂φ

∂t
+ v

∂φ

∂ξ

)
(ξ − θ(s))m dξ ds

for t1 ≤ t2 < t3 ≤ t0.

Now, arguing in a similar way as in the Proof of Lemma 2.3, one can show that if

there exists s0 ∈ (t1, t0) such that

h(·, s0) = 0 a. e. on (a, b)

where

a = yξ(s0), b = zξ(s0),

then for any t ∈ (s1, s2), it holds that

(4.42) h(·, t) = 0

a. e. on (
a+

∣∣∣∣
∫ t

s0

|v(·, λ)|L∞(a,b)dλ

∣∣∣∣ , b−
∣∣∣∣
∫ t

s0

|v(·, λ)|L∞(a,b)dλ

∣∣∣∣
)
,

where

s1 = inf

{
t ∈ [0, s0] :

∫ s0

t

|v(·, λ)|L∞(a,b)dλ <
b− a

2

}

s2 = sup

{
t ∈ [s0, t0] :

∫ t

s0

|v(·, λ)|L∞(a,b)dλ <
b− a

2

}
.

Define

Vξ ≡ {(ξ, t) : yξ(t) < ξ < zξ(t), t ∈ (τ, t0]}.
Set also

A =

{
t ∈ [t1, t0] :

∂v

∂ξ
(·, t) /∈ L2[a∗/8, b∗ + a∗ + 1]

}
,

B = {t ∈ [t1, t0] : (x, t) ∈ Vξ, v(ξ, t) �= (ξ − θ(t))−m[(ξ − θ(t))m+1α(t) + β(t)] + θ′(t)},
C = {t ∈ [t1, t0] : zξ = zξ(t) is not differentiable at t},
D = ∪Fjk,

Fjk = {t ∈ [t1, t0] : t is not a Lebesgue point of |v(·, t)|L∞(Bjk)},
Bjk =

{
x : |x− rk| < 1

j

}
, j, k = 1, 2, · · ·
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where {rk} is the set of rational numbers.

It follows from Lemma 4.3 that

meas (A ∪ B ∪ C ∪D) = 0.

For any t ∈ [t0 − h, t0] \ (A ∪ B ∪ C ∪ D) we now show that (4.41) holds. By the

definition of zξ(t), we need only to prove

(4.43)
dzξ(t)

dt
≤ 0,

since
dzξ(t)

dt
=
dz(t)

dt
+ θ′(t).

In fact, if there exists t̄ ∈ [t1, t0] \ (A ∪ B ∪ C ∪D) such that (4.43) is not true, then

there exits ε > 0, for any n, there exists a tn such that 0 < |t̄− tn| < 1/n and

zξ(tn) − z̄ξ

tn − t0
≥ ε,

where

z̄ξ ≡ zξ(t̄).

We may assume that

t̄ < tn < t̄+
1

n
, n = 1, 2, · · · ,

and then,

(4.44) zξ(tn) ≥ z̄ξ + ε(tn − t̄)

for n = 1, 2, · · ·.
Since v(·, t) is in H1

loc, we can find δ > 0 such that if |ξ − z̄ξ| ≤ δ,

(4.45) |v(ξ, t̄)| = |v(ξ, t̄) − v(z̄ξ, t̄)| ≤ ε

2

due to t̄ ∈ [t1, t0] \ (A ∪ B ∪ C ∪D) so that v(z̄ξ, t̄) = 0, and

yξ(t̄) < z̄ξ − δ.

Then choose Bjk such that

z̄ξ ∈ Bjk ⊂ [z̄ξ − δ, z̄ξ + δ].

30



Let Bjk = (c, d) and choose e such that

z̄ξ − δ < c < e < z̄ξ < d < z̄ξ + δ.

We can find N1 > 1 such that

|t− t̄| < 1

N1

and

yξ(t) < c, e ≤ zξ(t) ≤ d;

Then if |t− t̄| < 1/N1

h(·, t) = 0

a. e. on (yξ(t), zξ(t)) ⊃ (c, e). By (4.42), there exists a N2 > 1 such that

h(·, s) = 0

a. e. on (
c +

∣∣∣∣
∫ t

s

|v(·, λ)|L∞(c,zξ(t))dλ

∣∣∣∣ , zξ(t) −
∣∣∣∣
∫ t

s

|v(·, λ)|L∞(a,zξ(t))

∣∣∣∣ dλ
)
,

if

|t− s| < 1

N2
, |t− t̄| < 1

N1
.

Thus for these s and t,

zξ(s) ≥ zξ(t) −
∣∣∣∣
∫ t

s

|v(·, λ)|L∞(c,zξ(t))dλ

∣∣∣∣
≥ zξ(t) −

∣∣∣∣
∫ t

s

|v(·, λ)|L∞(Bjk)dλ

∣∣∣∣ .
Let s = t̄. Then for |tn − t̄| < 1

N
with N = N1 +N2, tn > t̄, one gets

zξ(t̄) ≥ zξ(tn) −
∫ tn

t̄

|v(·, λ)|L∞(Bjk)dλ

It follows from this and (4.44) that

z̄ξ + ε(tn − t̄) ≤ z̄ξ +

∫ tn

t̄

|v(·, λ)|L∞(Bjk)dλ.

So that

ε ≤ 1

tn − t̄

∫ tn

t̄

|v(·, λ)|L∞(Bjk),
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which contradicts to (4.44) since Bjk ⊂ [z̄ξ − δ, z̄ξ + δ]. Thus the proof is completed.

Lemma 4.5 It holds that ∣∣∣∣
∫ t0

t

α(λ)dλ

∣∣∣∣ ≤ C

for all t ∈ (τ, t0], where C is a positive constant depending only on E0, a∗ and b∗.

Proof Fix a s ∈ (τ, t0]. Define θ ∈ C∞(R) such that⎧⎪⎨
⎪⎩

0 ≤ θ ≤ 1

θ = 0 on [0, a∗/2] ∪ [2b∗,+∞)

θ = 1 on [a∗, b∗],

and

wε(x, t) = x−m(αε(t)xm+1 + βε(t))θ(x),

where αε(t) and βε(t) are regularizations of α(t) and β(t),respectively.

We consider {
φε

t + wε(x, t)φε
x = 0

φε|t=t0 = ψ,

where ψ ∈ C∞
0 (R) such that ⎧⎪⎨

⎪⎩
0 ≤ ψ ≤ 1

ψ = 0 on [0, r∗]

ψ = 1 on [R∗,+∞),

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r∗ = r +
1

3
(R− r)

R∗ = r +
2

3
(R− r)

r = a+
1

3
(b− a)

R = a+
2

3
(b− a).

Using Lemma 4.2 and Lemma 4.3, one can define r(t) and R(t) such that

0 < a∗ ≤ y(t) ≤ r(t) ≤ R(t) ≤ z(t) ≤ b∗ < +∞
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for a. e. t ∈ (τ, t0]. Indeed, we can define r(t) and R(t) to be the solutions of the following

problems respectively:

(4.46)

⎧⎪⎨
⎪⎩

dr(t)

dt
= r−m(t)[rm+1(t)α(t) + β(t)]

r(t)|t=t0 = r,

and

(4.47)

⎧⎪⎨
⎪⎩

dR(t)

dt
= R−m(t)[Rm+1(t)α(t) + β(t)]

R(t)|t=t0 = R,

The regularized problems associated with (4.46) and (4.47) are given respectively as

(4.48)

⎧⎪⎨
⎪⎩

drε
∗(t)
dt

= [rε
∗]
−m(t)[[rε

∗]
m+1αε(t) + βε(t)]

rε
∗(t)|t=t0 = r∗,

and

(4.49)

⎧⎪⎨
⎪⎩

dRε
∗(t)
dt

= [Rε
∗]

−m(t)[[Rε
∗]

m+1αε(t) + βε(t)]

Rε
∗(t)|t=t0 = R∗.

There exists a ε0 > 0 such that

(4.50) r(t) ≤ rε
∗(t) ≤ Rε

∗(t) ≤ R(t)

for all t ∈ [s, t0], and 0 < ε < ε0.

Set

(4.51)

⎧⎪⎨
⎪⎩

D1 = {(x, t) : 0 ≤ x ≤ r(t), s ≤ t ≤ t0}
D2 = {(x, t) : r(t) ≤ x ≤ R(t), s ≤ t ≤ t0}
D3 = {(x, t) : x > R(t), s ≤ t ≤ t0} .

It follows from the definition that

(4.52) φε(x, t) =

{
0, if (x, t) ∈ D1

1, if (x, t) ∈ D3,

with

(4.53) 0 ≤ φε(x, t) ≤ 1
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for all (x, t) ∈ D2. Using x−m ϕε θ as a test function in Definition 1.1 and noting that

ρ θ ∂x φ
ε ≡ 0, one gets

(4.54)

∫ ∞

0

ρu(x−mφεθ)xmdx

∣∣∣∣
t0

s

−
∫ t0

s

∫ ∞

0

(ρu(x−mφεθ)t + ρu2(x−mφεθ)x)x
m dx dt

+

∫ t0

s

∫ ∞

0

P (ρ)

[
(x−mφεθ)x +

m(x−mφεθ)

x

]
xm dx dt

= −μ
∫ t0

s

∫ ∞

0

x−m(xm u)x (xm x−m φε θ)dx dt

Direct estimate shows that∣∣∣∣
∫ ∞

0

ρ u φε(x, t)θ(x)dx

∣∣∣∣
≤
∫ 3b∗

a∗/2

ρ|u(x, t)|θ(x)dx

≤
(∫ 3b∗

a∗/2

ρu2(x, t)xmdx

)1/2(∫ 3b∗

a∗/2

ρx−mdx

)1/2

≤ C,

and so,

(4.55)

∣∣∣∣
∫ ∞

0

ρu(x, t)(x−mφεθ)xmdx

∣∣∣∣ ≤ C

for all t ∈ [s, t0], where C is a constant depending only on m0, E0, a, b, a∗ and b∗. In

addition, ∣∣∣∣
∫ t0

s

∫ ∞

0

(ρu(x−mφεθ)t + ρu2(x−mφεθ)x)x
m dx dt

∣∣∣∣
=

∣∣∣∣
∫ t0

s

∫ ∞

0

ρ u θ(u− wε)φε
x dx dt+

∫ t0

s

∫ ∞

0

ρ u2(x−mθ)xφ
ε xm dx dt

∣∣∣∣
≤
∣∣∣∣
∫ t0

s

∫ 2b∗

a∗/2

ρ u2(x−mθ)x x
m dx dt

∣∣∣∣
≤ |(x−mθ)x|L∞(a∗/2,2b∗)

∫ t0

s

∫ 2b∗

a∗/2

ρ u2 xm dx dt ≤ C,

which implies that

(4.56)

∣∣∣∣
∫ t0

s

∫ ∞

0

(ρu(x−mφεθ)t + ρu2(x−mφεθ)x)x
m dx dt

∣∣∣∣ ≤ C.
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In addition,∣∣∣∣
∫ t0

s

∫ ∞

0

P (ρ)

[
(x−mφεθ)x +

m(x−mφεθ)

x

]
xm dx dt

∣∣∣∣
=

∣∣∣∣
∫ t0

s

∫ ∞

0

P (ρ)(x−mθ)φε
x x

m dx dt+

∫ t0

s

∫ ∞

0

P (ρ)

[
(x−mθ)xφ

ε +
m(x−mφεθ)

x

]
xm dx dt

∣∣∣∣
≤ C

∫ t0

s

∫ 2b∗

a∗/2

P (ρ)xm dx dt ≤ C.

Therefore,

(4.57)

∣∣∣∣
∫ t0

s

∫ ∞

0

P (ρ)

[
(x−mφεθ)x +

m(x−mφεθ)

x

]
xmdxdt

∣∣∣∣ ≤ C.

Finally,

(4.58)

∫ t0

s

∫ ∞

0

[
x−m(xm u)x(x

m · x−mφεθ)x

]
dx dt

=

∫ t0

s

∫ ∞

0

x−m(xm u)xφ
ε
xθ dx dt+

∫ t0

s

∫ ∞

0

x−m(xm u)xφ
εθx dx dt

= (m+ 1)

∫ t0

s

α(λ)d λ+

∫ t0

s

∫ ∞

0

x−m(xm u)xφ
εθx dx dt

and

(4.59)

∣∣∣∣
∫ t0

s

∫ ∞

0

x−m(xm u)xφ
εθx dx dt

∣∣∣∣ ≤
∫ t0

s

∫ 2b∗

a∗/2

x−m|(xm u)x||θx|dx dt ≤ C

Now the conclusion of the lemma follows from (4.55) - (4.59) and (4.54).

Thus the proof is completed.

Lemma 4.6 y = y(t) and z = z(t) are uniformly continuous on the interval (τ, t0].

Proof Let ε > 0 be given. Choose δ > 0 such that if 0 ≤ s < t ≤ T ,|s− t| ≤ δ, then∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ ≤ ε.

By Lemma 2.3, there exists h = h(t) > 0 with h < δ, such that ρ(·, s) = 0 a. e. on(
y(t) +

∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ, z(t) −
∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ

)

if |t− s| < h.
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So that

z(s) ≥ z(t) −
∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ.

Similarly, if ρ(·, s) = 0 a.e. on (y(s), z(s)) then ρ(·, t) = 0 a.e. on(
y(s) +

∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ, z(s) −
∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ

)

if |t− s| < h.

So that

z(t) ≥ z(s) −
∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ.

Therefore, we get

(4.60) |z(t) − z(s)| ≤
∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ.

if |t− s| < h.

Now, fix s < t with |s − t| < δ and s, t ∈ (τ, t0],then the interval [s, t] is covered by

∪q
k=1Bhk/2(sk), where s1 < s2 < · · · < sq, and

sj +
hj

2
> sj+1 − hj+1

2
, hj < δ, j = 1, 2, · · · , q.

Then

|sj+1 − sj| ≤ hj + hj+1

2
≤ max{hj, hj+1} < δ.

Thus by (4.60),

|z(sj) − z(sj+1)| ≤
∫ sj+1

sj

|u(·, λ)|L∞(a∗/2,2b∗)dλ.

For some j and k ,

s ∈ Bhk/2(sk), t ∈ Bhj/2(sj).

we have

|z(t) − z(s)|
≤ |z(s) − z(sj)| + |z(sj) − z(sj−1)| + · · · + |z(sk) − z(t)|

≤
∫ sj

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ+ · · · +
∫ t

sk

|u(·, λ)|L∞(a∗/2,2b∗)dλ

≤
∫ t

s

|u(·, λ)|L∞(a∗/2,2b∗)dλ ≤ ε
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Thus the proof is completed.

Proof of Theorem 1.1 Assume that (1.13) is not true, then

ρ(·, t0) = 0

a. e. on (a, b) with ω(t0) < a < b < +∞. Then we have y(τ) = z(τ) if τ > 0. Then in

this case, by (4.46) and (4.47) we have

d(Rm+1(t) − rm+1(t))

dt
= (m+ 1)α(t)(Rm+1(t) − rm+1(t)).

So

Rm+1(t) − rm+1(t) = (R − r)exp

(
−
∫ t0

t

α(s)ds

)
.

Thus,

lim
t→τ

∫ t0

t

α(s)ds = +∞
which contradicts to Lemma 4.5. Therefore, the only possibility is

y(τ) < z(τ), τ = 0,

which contradicts to (1.10). Therefore, (1.13) holds true. Thus the Proof of Theorem 1.1

is completed.

§5. Proof of Theorem 1.2

It follows from the Proof of Theorem 1.1 that

(5.1) 0 < x1(t) < x2(t) < x3(t) < x4(t) < +∞
and

(5.2)

∫ x3(t)

x2(t)

ρ(x, t)xm dx =

∫ a3

a2

ρ0(x)x
m dx.

Since∫ x3(t)

x2(t)

ρ(x, t)xm dx ≤
(∫ x3(t)

x2(t)

ργ(x, t)xm dx

)1/γ (∫ x3(t)

x2(t)

xmdx

)1−1/γ

≤ C (x3(t) − x2(t))
1−1/γ

37



This, together with (5.1) and (5.2), implies

x3(t) − x2(t) ≥ 1

C

(∫ a3

a2

ρ0(x)x
m dx

)(γ−1)/γ

for all t ∈ (0,+∞). Thus the Proof of Theorem 1.2 is completed.

§6. Proof of Theorem 1.3

In this section we shall prove Theorem 1.3.

We assume that

(6.1) ρ(·, t0) = 0

a. e. on (0, a) with a > 0, and

a = sup{x > 0 :

∫ x

0

ρ(y, t0)dy = 0} > 0.

It follows from Lemma 2.3 that there exists a positive number h0 = h0(a) > 0 such

that

(6.2) ρ(·, t) = 0

a. e. on (a/4, a/2) and all t ∈ (t0 − h0, t0). Similar to the proof of (4.35) one has∫ ∞

a/2

ρ(x, t)xmdx =

∫ ∞

a

ρ(x, t0)x
mdx

for all t ∈ [t0 − h0, t0]. On the other hand it follows from (1.7) that∫ ∞

0

ρ(x, t)xmdx =

∫ ∞

0

ρ(x, t0)x
mdx

for all t ∈ [t0 − h0, t0]. Therefore, we conclude that∫ a/2

0

ρ(x, t)xmdx = 0

for all t ∈ [t0 − h0, t0]. Thus

(6.3) ρ(·, t) = 0
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a. e. on (0, a/2) and all t ∈ (t0 − h0, t0).

Denote

z(t) = sup{x > 0 :

∫ x

0

ρ(y, t)dy = 0} > 0

and assume that z(t0) = a. Similarly to the proof of Lemma 4.1 we can show that

(6.4) z = z(t)

is a absolutely continuous functions in [t0 − h0, t0].

Let S be defines as the set of all t ≥ 0 such that there are extensions of z to [t, t0] such

that the following three properties hold:

(i) z is a absolutely continuous on [t, t0];

(ii) z > 0 on [t, t0];

(iii) For all s ∈ [t, t0], we have ∫ z(s)

0

ρ(x, t)dx = 0

and ∫ z(s)+ε

0

ρ(x, t)dx > 0 ∀ε > 0.

By (6.3) and (6.4), S �= ∅. So

(6.5) τ = inf S

is well-defined.

Lemma 6.1 It holds true that

u(x, t) = xα(t)

for all x ∈ (0, z(t)) and a. e. t ∈ (τ, t0].

Proof It follows from Lemma 4.3 that

u(x, t) = x−m[xm+1α(t) + β(t)]

for all x ∈ (0, z(t)) and a. e. t ∈ (τ, t0]. Note that∫ t0

s

∫ 1

0

u2
x x

m dx dt =

∫ t0

s

∫ 1

0

[α(t) −mx−m−1β(t)]2 xm dx dt

≥ 1

2

∫ t0

s

∫ 1

0

m2 x−m−2 β2(t)dx dt−
∫ t0

s

∫ 1

0

α2(t)xm dx dt,
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which implies that

1

2

∫ t0

s

∫ 1

0

m2 x−m−2 β2(t)dx dt ≤
∫ t0

s

∫ 1

0

α2(t)xm dx dt+

∫ t0

s

∫ 1

0

u2
x x

m dx dt.

Therefore we conclude that

β(t) ≡ 0

for a. e. t ∈ [s, t0] with s ∈ (τ, t0]. Thus Lemma 6.1 is proved.

Lemma 6.2 It holds that
dz

dt
≤ zα(t)

for almost all t ∈ (τ, t0].

The proof is similarly to Lemma 4.4. Therefore the details are omitted.

We are now ready to show Theorem 1.3.

Proof of Theorem 1.3 Assume that the conclusion of Theorem 1.3 is not true. Then

ρ(·, t0) = 0 a.e. on (0, a)

for some a ∈ (0,+∞) and some t0 ∈ (0,∞). By (6.3) we define z(t0) = a and

z(t) = sup

{
x > 0 :

∫ x

0

ρ(y, t)dy = 0

}
.

Define

V = {(x, t) : 0 ≤ x ≤ z(s), τ < s < t0}
where τ is defined by (6.5).

Denote by

limt→τ+z(t) = z̄, limt→τ+z(t) = z.

If z > 0 and τ > 0, then there exists a small δ ∈ (0, 1) such that

z(t) ≥ z/2 > 0

for all t ∈ [τ, τ + δ]. Therefore we get

ρ(x, τ) = 0

for a. e. x ∈ (0, z/2).By Lemma 2.3 there exists a positive h∗ > 0 such that

ρ(x, t) = 0
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for a. e. x ∈ (0, z/4), for all t ∈ [τ − h∗, τ + h∗]. By the proof of Lemma 4.6, z(t) is

uniformly continuous on [τ − h∗, τ + h∗]. In particular,

z̄ = z = lim
t→τ

z(t) = z(τ) > 0

then τ is not minimal. Therefore, we conclude that either

(6.6) z = 0

or

(6.7) z > 0, τ = 0.

The case (6.7) is impossible due to the assumption (1.10). We now show that (6.6) is

also impossible. Then it follows from (1.12) or (1.13) that

(6.8)

∣∣∣∣
∫ t0

τ

α(s)ds

∣∣∣∣ < +∞.

Choose R ∈ (0, a) and define R(t) such that

dR(t)

dt
= R(t)α(t), R(t0) = R.

Then

R(t) = R exp

(
−
∫ t0

t

α(s)ds

)
.

On the other hand,

0 < R(t) < z(t), ∀ t ∈ (τ, t0].

Therefore

R exp

(
−
∫ t0

t

α(s)ds

)
< z(t).

Letting t→ τ+ and using (6.8), we get

z ≥ R exp

(
−
∫ t0

t

α(s)ds

)
> 0

which contradicts to (6.6). Thus the Proof of Theorem 1.3 is completed.
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§7. Proof of Theorem 1.4

We consider the approximate solutions (ρε, uε) defined to be solutions of the following

equations

(7.1)

⎧⎪⎨
⎪⎩

ρεt + (ρε uε)x +
mρε uε

x
= 0

(ρε uε)t + (ρε u
2
ε + P (ρε))x +

mρε u
2
ε

x
= μ uεxx + μm

(uε

x

)
x

with initial conditions

(7.2)

{
ρε(x, t)|t=0 = ρε

0(x)

ρε(x, t)uε(x, t)|t=0 = mε
0(x)

and the boundary conditions

(7.3) uε(x, t)|x=ε = 0, t ≥ 0,

where ρε
0(x) and mε

0(x) are defined by [8].

Choose ξR ∈ C∞(0,+∞) such that

(7.4)

⎧⎪⎨
⎪⎩

0 ≤ ξR ≤ 1

ξR = 1 on (0, R)

ξR = 0 on (2R,+∞)

for R ∈ (1,+∞), and |ξR| ≤ CR−1. By (7.1) we have

(7.5)

∫ ∞

ε

ξ2
R ρε(x, t)x

m dx−
∫ ∞

ε

ξ2
R ρ

ε
0(x)x

m dx = −
∫ t

0

∫ ∞

ε

2ξR ξ
′
R ρε uε x

m dx ds.

It has been shown in [8] that

(7.6)

∫ ∞

ε

ψε(ρε(x, t))x
m dx+

∫ ∞

ε

ρεu
2
ε(x, t)x

m dx ≤ C0

for all t ≥ 0, where C0 is a positive constant depending only on m0 and E0, and

ψε(ρ) ≡ Aργ

γ − 1
− Aεγ−1ρ

γ − 1
−Aεγ−1ρ+ Aεγ .
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It follows from (7.5) and (7.6) that

(7.7)

∣∣∣∣
∫ ∞

ε

ξ2
R ρε(x, t)x

m dx−
∫ ∞

ε

ξ2
R ρ

ε
0(x)x

m dx

∣∣∣∣
=

∣∣∣∣−
∫ t

0

∫ ∞

ε

2ξR ξ
′
R ρε uε x

m dx ds

∣∣∣∣
≤
(∫ t

0

∫ ∞

ε

ρε u
2
ε x

m dx ds

)1/2(∫ t

0

∫ ∞

ε

4ξ2
R|ξ′R|2ρε x

m dx ds

)1/2

≤ Ct1/2

R

(
1 +

∫ t

0

∫ ∞

ε

ξ2
R ρε x

m dx ds

)
.

On the other hand we compute∫ δ

ε

ργ
ε x

m dx dt

=
γ − 1

a

∫ δ

ε

aργ
εx

m

γ − 1
dx dt

=
γ − 1

a

{∫ δ

ε

ψε(ρε(x, t))x
m dx+

∫ δ

ε

(
aεγ−1ρε

γ − 1
+ aεγ−1 ρε − aεγ

)
xm dx

}

≤ C

{∫ δ

ε

ργ
ε (x, t)x

m dx

}1/γ {∫ δ

ε

xm dx

}1−1/γ

+ C,

which implies that

(7.8)

∫ δ

ε

ργ
εx

m dx dt ≤ C

for all δ ∈ (ε, 1), where C is a positive constant depending only on C0.
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By (7.7) and (7.8), we can estimate that∣∣∣∣
∫ +∞

δ

ξ2
R ρε(x, t)x

m dx−
∫ +∞

δ

ξ2
R ρ0(x)x

m dx

∣∣∣∣
≤
∣∣∣∣
∫ +∞

δ

ξ2
R(ρ(x, t) − ρε(x, t))x

m dx

∣∣∣∣
+

∣∣∣∣
∫ +∞

δ

ξ2
R(ρ0(x) − ρε

0(x))x
m dx

∣∣∣∣
+

∣∣∣∣
∫ +∞

δ

ξ2
R ρε(x, t)x

m dx−
∫ +∞

δ

ξ2
R ρ

ε
0(x)x

m dx

∣∣∣∣
≤
∣∣∣∣
∫ +∞

δ

ξ2
R(ρ(x, t) − ρε(x, t))x

m dx

∣∣∣∣
+

∣∣∣∣
∫ +∞

δ

ξ2
R(ρ0(x) − ρε

0(x))x
m dx

∣∣∣∣
+
Ct1/2

R

(
1 +

∫ t

0

∫ ∞

ε

ξ2
R ρε(x, τ)x

m dx dτ + 1

)

+

∣∣∣∣
∫ δ

ε

ξ2
R ρε(x, t)x

m dx

∣∣∣∣ +
∣∣∣∣
∫ δ

ε

ξ2
R ρ

ε
0(x)x

m dx

∣∣∣∣
≤
∣∣∣∣
∫ +∞

δ

ξ2
R(ρ(x, t) − ρε(x, t))x

m dx

∣∣∣∣
+

∣∣∣∣
∫ +∞

δ

ξ2
R(ρ0(x) − ρε

0(x))x
m dx

∣∣∣∣
+
Ct1/2

R

(
1 +

∫ t

0

∫ ∞

δ

ξ2
R ρε(x, τ)x

m dx dτ +

∫ t

0

∫ δ

ε

ξ2
R ρε(x, τ)x

m dx dτ

)

+

∣∣∣∣
∫ δ

ε

ξ2
R ρε(x, t)x

m dx

∣∣∣∣ +
∣∣∣∣
∫ δ

ε

ξ2
R ρ

ε
0(x)x

m dx

∣∣∣∣
≤
∣∣∣∣
∫ +∞

δ

ξ2
R(ρ(x, t) − ρε(x, t))x

m dx

∣∣∣∣
+

∣∣∣∣
∫ +∞

δ

ξ2
R(ρ0(x) − ρε

0(x))x
m dx

∣∣∣∣
+
Ct1/2

R

(
1 +

∫ t

0

∫ ∞

δ

ξ2
R ρε(x, τ)x

m dx dτ + Cδn(1−1/γ)

)

+Cδn(1−1/γ) +

∫ δ

ε

ξ2
R|ρε

0(x) − ρ0 − ε|xm dx+

∫ δ

ε

ξ2
R(ρ0(x) + ε)xm dx
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Letting ε→ 0+ and using (3.1) in [8], we get∣∣∣∣
∫ +∞

δ

ξ2
R ρ(x, t)x

m dx−
∫ +∞

δ

ξ2
R ρ0(x)x

m dx

∣∣∣∣
≤ Ct1/2

R

(
1 +

∫ t

0

∫ ∞

δ

ξ2
R ρ(x, τ)x

m dx dτ + Cδn(1−1/γ)

)

+Cδn(1−1/γ) +

∫ δ

0

ξ2
R ρ0(x)x

m dx

Letting R → +∞ and δ → 0+ in the above estimate, we get∫ ∞

0

ρ(x, t)xm dx =

∫ ∞

0

ρ0(x)x
m dx

which is (1.7). Similarly, (1.8) follows from letting ε → 0+ in (7.6).

Thus the proof is completed.
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