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Abstract

In this paper we prove the existence of a weak solution of the
incompressible 2D Euler equations in the exterior of a reflection sym-
metric smooth bluff body with symmetric initial flow corresponding
to vortex sheet type data whose vorticity is of distinguished sign on
each side of the symmetry axis. This work extends a result proved for
full plane flow by the authors in [6].

1 Introduction and Preliminaries

Let D ⊆ R2 be a smooth, bounded, simply connected domain with boundary
∂D = Γ. We assume that D is symmetric with respect to the horizontal
coordinate axis. We will be studying the initial-boundary value problem
for the incompressible 2D Euler equations in the exterior of D, denoted
by Ω ≡ R2 \ D. We will prove the existence of a weak solution of the
incompressible 2D Euler equations in Ω with initial flow symmetric with
respect with the horizontal axis, with distinguished sign vorticity on each
side of the symmetry axis and with vortex sheet initial data. This work
extends a similar result proved for full plane flow by the authors in [6].
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In [6] the authors proved the existence of a weak solution to the incom-
pressible 2D Euler equations in the full plane with initial vorticity odd with
respect to a straight line and with a distinguished sign on each side of the
symmetry line. This is the only extension of Delort’s existence theorem which
includes flows with vortex sheets without distinguished sign.

The main ingredients in proving the existence result in [6] were the fol-
lowing facts:

(F1) An L2
loc a priori estimate on velocity restricted to the symmetry axis

(estimate (4) in [6]),

(F2) An estimate on the mass of vorticity near the symmetry axis in terms
of the integral of velocity at the symmetry axis (estimate (5) in [6]),

(F3) Persistence of cancellation in the weak form of the nonlinearity up to
the symmetry axis (expressed in identity (10) in [6]).

The proofs of (F1), (F2) and (F3), which ultimately concern half-plane flow,
relied heavily on the fact that the boundary of the half-plane is a straight
line.

Each one of these facts, especially (F3), has a certain independent inter-
est, when regarded as information on the behavior of incompressible, ideal
2D flows near a straight rigid boundary. One of the motivations behind
the present work is to show that these facts can be generalized to domains
with curved boundaries. The existence result may be thus regarded as an
application of (F1), (F2) and (F3).

We will consider the 2D Euler equations in vorticity form in an exterior
domain. We must contend, however, with the fact that the system coupling
velocity to vorticity, namely div u = 0, curl u = ω, u · n̂ = 0 and |u(x, t)| → 0
at ∞, does not determine u uniquely in terms of ω. This is due to the
nonvanishing homology of the exterior domain. This issue was examined in
detail in [3], where it was shown that the velocity field is determined by the
vorticity up to a harmonic vector field, called the harmonic part. In our
problem we will assume that the initial velocity u0 is mirror symmetric with
respect to the horizontal axis. This implies two facts: (1) the vorticity is odd
with respect to the variable x2 and therefore its integral in Ω vanishes, and
(2) the circulation of the initial velocity around ∂Ω vanishes. These facts,
together with Lemma 3.1 in [3] imply that the harmonic part of the velocity
must vanish. Consequently, we can write the Biot-Savart law expressing
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velocity in terms of vorticity in the following manner. Let GΩ = GΩ(x, y) be
the Greens function for the Laplacian in Ω, and set KΩ ≡ ∇⊥

x GΩ. With this
notation the Biot-Savart law is given by:

u = u(x, t) = KΩ[ω](x, t) ≡
∫

Ω

KΩ(x, y)ω(y, t) dy. (1)

We now write the vortex sheet initial data problem as:⎧⎨
⎩

ωt + u · ∇ω = 0 in Ω × (0,∞)
u = KΩ[ω] in Ω × (0,∞)
ω(x, 0) = ω0(x) on Ω × {t = 0},

(2)

where n̂ is the unit exterior normal to the boundary Γ.
Our main result will be the existence of weak solutions to (2) for ω0 a

bounded measure, odd with respect to mirror symmetry, nonnegative in the
upper half-plane outside of D. We call μ ∈ BM(Ω) nonnegative mirror
symmetric (NMS) if it is odd with respect to reflection about the horizontal
axis and if it is nonnegative in Ω ∩ {x2 ≥ 0}.

Let us first define what we mean by weak solution in this context. We
introduce A, the set of admissible test functions, defined by:

A ≡ {
ϕ ∈ C∞

c ([0,∞) × Ω) | ϕ ≡ 0 on Γ
}

.

Definition 1 The function ω ∈ L∞([0,∞);BM(Ω)) is called a weak solu-
tion of the incompressible 2D Euler equations with initial data ω0 if:

(a) the velocity u ≡ KΩ[ω] belongs to L∞
loc([0,∞); (L2(Ω))2), and

(b) for any test function ϕ ∈ A, it holds that

W[ω, ϕ] ≡
∫ ∞

0

∫
Ω

ϕtω(x, t)dxdt

+

∫ ∞

0

∫
Ω

∫
Ω

HΩ
ϕ (x, y, t)ω(x, t)ω(y, t)dydxdt

+

∫
Ω

ϕ(x, 0)ω0(x)dx = 0,

(3)

where

HΩ
ϕ (x, y, t) ≡ 1

2
(∇ϕ(x, t) · KΩ(x, y) + ∇ϕ(y, t) · KΩ(y, x)). (4)
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Remark: This is stronger than the standard definition of weak solution,
because usually test functions are required to be compactly supported inside
Ω. The bounded domain version of Delort’s Theorem guaranteed the exis-
tence of such a standard weak solution, see [2]. This stronger notion of weak
solution was introduced by the authors in [6]. We used the expression bound-
ary coupled weak solutions to designate solutions in the sense of Definition
1 in [6] to distinguish these weak solutions from the standard ones, but this
will not be necessary here.

The strategy for obtaining a weak solution is to pass to the weak limit
along a suitably constructed approximate solution sequence. The methods of
constructing such a sequence of approximations in the context of the initial-
value problem for the incompressible 2D Euler equations involve: smooth-
ing out or truncating the initial vorticity, approximation by vanishing vis-
cosity and the use of several numerical methods. Here we will obtain an
approximate solution sequence by smoothing out initial data and we will
use the available global well-posedness theory which can be found in [4].
Next we will observe that the symmetry of the problem is preserved un-
der smooth flows. We denote the reflection about the horizontal axis by
x = (x1, x2) �→ x = (x1,−x2).

Proposition 1 Let ω0 ∈ C∞
c (Ω) be NMS and let ω = ω(x, t) be the unique

solution of the incompressible 2D Euler equations in Ω. Then ω is NMS for
all t ≥ 0.

Proof: Define ω̃(x, t) = −ω(x, t). Then ω̃(x, 0) = ω0(x). As the Euler
equations are covariant with respect to mirror symmetry it follows that ω̃
also satisfies the Euler equations in Ω. It follows from the uniqueness that
ω̃(x, t) = ω(x, t) for all t. The sign condition is a consequence of the fact that
vorticity is transported by the flow, that each half-plane is invariant under
symmetric flow and of the hypothesis on the initial data.

2 Non-concentration of vorticity at the bound-

ary

We will begin with a reasonably straightforward generalization of the argu-
ment used in [6] to show non-concentration in mass of vorticity all the way
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up to the boundary. This argument consists of two Lemmas which are given
below. In fact, it will be shown that versions of (F1) and (F2) hold on certain
domains with curved boundaries.

Let Ω+ ≡ Ω ∩ {x2 > 0} and Γ+ = ∂Ω+.

Lemma 1 Let ω = ω(x, t) be the solution of (2) with smooth, compactly
supported, and NMS initial vorticity. Let ϕ = ϕ(x) be a smooth function on
Ω+ with bounded derivatives up to second order. Then the following identity
holds:

d

dt

∫
Ω+

ϕ(x)ω(x, t) dx =
1

2

∫
Γ+

|u · n̂⊥|2∇ϕ · n̂⊥ dS

+

∫
Ω+

[(
(u1)

2 − (u2)
2
)
ϕx1x2 − u1u2(ϕx1x1 − ϕx2x2)

]
dx.

Proof: We will prove this identity by direct computations. It holds that

I ≡ d

dt

∫
Ω+

ϕ(x)ω(x, t) dx

=

∫
Ω+

ϕωt dx = −
∫

Ω+

ϕ div (uω) dx =

∫
Ω+

(∇ϕ · u)ω dx,

where the boundary terms have disappeared since u is tangent to Γ+ (due
to symmetry) and bounded everywhere and hence ω has compact support at
each fixed time. Re-write ω = −div u⊥ and integrate by parts once more to
obtain:

I =

∫
Ω+

∇(∇ϕ · u) · u⊥ dx −
∫

Γ+

(∇ϕ · u)(u⊥ · n̂)dS,

where again the boundary terms at infinity have vanished, this time because
|u| decays sufficiently fast at infinity. Indeed, |u| = O(|x|−2) for large |x|, see
the discussion in section 2.2 of [3] for a proof. Next, observe that

∇(∇ϕ·u)·u⊥ = ∇
( |u|2

2

)
·∇⊥ϕ+

(
(u1)

2 − (u2)
2
)
ϕx1x2−u1u2(ϕx1x1−ϕx2x2).

Therefore, this vector calculus identity yields

I =

∫
Ω+

[
∇

( |u|2
2

)
· ∇⊥ϕ +

(
(u1)

2 − (u2)
2
)
ϕx1x2 − u1u2(ϕx1x1 − ϕx2x2)

]
dx
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−
∫

Γ+

(∇ϕ · u)(u⊥ · n̂) dS

=

∫
Ω+

[(
(u1)

2 − (u2)
2
)
ϕx1x2 − u1u2(ϕx1x1 − ϕx2x2)

]
dx

+

∫
Γ+

( |u|2
2

∇⊥ϕ − (∇ϕ · u)u⊥
)
· n̂ dS,

where, once again, we have used the decay of |u| at infinity. Finally, using
the fact that the velocity u is tangent to the boundary, one can compute that
there is a simpler expression for the boundary term:( |u|2

2
∇⊥ϕ − (∇ϕ · u)u⊥

)
· n̂ =

1

2
|u · n̂⊥|2∇ϕ · n̂⊥.

This concludes the proof. In fact, since kinetic energy is finite initially,
conserved exactly for smooth flows and ϕ has been assumed to have bounded
derivatives up to second order, it follows that the expression on the right-
hand-side of the identity we have just proved is finite and integrable in time.

We now use this identity to deduce an a priori estimate for the L2
loc-

norm (on Γ+ × (0,∞)) of the tangential component of velocity, namely, a
generalization of (F1). For the sake of convenience, we assume that Γ+ is
the graph of a piecewise smooth, compactly supported function γ = γ(x1).
In this case we will use in Lemma 1 the function ϕ(x) = arctan(x1). Note
that, for this test function, for each compact subset K of Γ+ there exists
C̃ > 0 such that ∇ϕ · n̂⊥ ≥ C̃ a.e. on K. Indeed, this follows easily from the
observations that ∇ϕ = ((1 + x2

1)
−1, 0) and that n̂⊥ = (1, 0) on the straight

portion of Γ+ and n̂⊥ = (1 + (γ′(x1))
2)−1/2(1, γ′(x1)) on the curved portion

of Γ+. We then obtain that, for every K ⊂⊂ Γ+ and for every T > 0 there
exists C > 0, depending only on K, T , ‖ω0‖L1(Ω) and ‖u0‖L2(Ω) such that:

∫ T

0

∫
K
|u|2 dSdt ≤ C. (5)

This is (the generalization of) (F1). To verify (5) we estimate directly:∫ T

0

∫
K
|u|2 dSdt =

∫ T

0

∫
K
|u · n̂⊥|2 dSdt
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≤ 1

C̃

∫ T

0

∫
K
|u · n̂⊥|2∇ϕ · n̂⊥ dSdt,

=
2

C̃

(∫
Ω+

ϕ(x)ω(x, T ) dx−
∫

Ω+

ϕ(x)ω0(x) dx

+

∫ T

0

∫
Ω+

[(
(u2)

2 − (u1)
2
)
ϕx1x2 + u1u2(ϕx1x1 − ϕx2x2)

]
dx

)

≤ 2

C̃

(
2T‖ϕ‖L∞(Ω+)‖ω0‖L1(Ω+) + T‖D2ϕ‖L∞(Ω+)‖u0‖2

L2(Ω+)

)
,

where D2ϕ stands for a generic second derivative of ϕ. In the last inequality
we have used the fact that smooth incompressible Euler flows preserve the
mass of vorticity and kinetic energy. It follows also from the symmetry that
‖ω0‖L1(Ω) = 2‖ω0‖L1(Ω+) and ‖u0‖2

L2(Ω) = 2‖u0‖2
L2(Ω+).

Finally, we obtain the nonconcentration result on the mass of vorticity
up to the boundary.

Lemma 2 Let ω0 ∈ C∞
c (Ω) be NMS and let ω = ω(x, t), u = KΩ[ω] be the

solution to (2) with initial data ω0. For each T > 0 and each compact set
K ⊆ Ω there exists a constant C > 0 such that for any 0 < δ < 1,∫ T

0

(
sup
x∈K

∫
B(x;δ)∩Ω

|ω(y, t)| dy

)
dt ≤ C| log δ|−1/2.

Proof:
Fix K ⊆ Ω and 0 < δ < 1. We make use of the following cut-off function,

also used by S. Schochet in [11]:

ηδ(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if |z| ≤ δ

log(|z|)−log(
√

δ)

log(
√

δ)
, if δ ≤ |z| ≤ √

δ

0, if |z| ≥ √
δ.

Note that for x ∈ K:∫
B(x;δ)∩Ω

|ω(y, t)| dy =

∫
B(x;δ)∩Ω+

ω(y, t) dy −
∫

B(x;δ)∩(Ω\Ω+)

ω(y, t) dy.
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Each integral above can be estimated by using the fact that ω has a distin-
guished sign in each of Ω+ and Ω \ Ω+. Indeed, for the first integral, one
has ∫

B(x;δ)∩Ω+

ω(y, t) dy ≤
∫

B(x;
√

δ)∩Ω+

ηδ(x − y)ω(y, t) dy

=

∫
B(x;

√
δ)∩Ω+

∇yηδ(x−y) ·u⊥(y, t) dy+

∫
B(x;

√
δ)∩Γ+

ηδ(x−y)u(y, t) · n̂⊥(y) dS,

by integrating by parts. Note that the other boundary terms vanish since
ηδ(x − y) = 0 for y ∈ ∂B(x;

√
δ). Therefore,∫

B(x;δ)∩Ω+

ω(y, t) dy ≤ C| log δ|−1/2‖u0‖2
L2(Ω+)

+

(∫
B(x;

√
δ)∩Γ+

|u · n̂⊥|2 dS

)1/2

|B(x;
√

δ) ∩ Γ+|1/2.

Finally, since the boundary Γ+ was assumed to be piecewise smooth it follows
easily that |B(x;

√
δ) ∩ Γ+| ≤ C

√
δ, which, together with (5), yields the

desired estimate of the first integral.
The estimate of the second integral follows in an analogous way.

It should be noted that Γ+ was assumed to be a graph of a piecewise
smooth, compactly supported function. This simplified the derivation of (5)
by allowing us to explicitly produce an appropriate test function ϕ. However,
this hypothesis is not needed and the derivation of (5) can be obtained, for
example, through deformation of Γ+ into a graph. Lemma 2 is the curved
domain generalization of (F2).

3 Desingularization of the nonlinearity

Let ω0 ∈ BMc(Ω) be NMS and assume that u0 ≡ KΩ[ω0] ∈ L2(Ω). To
produce a weak solution to (2) with initial data ω0, it is a key step to study the
concentration-cancellation effects of the nonlinearity in the Euler equations.
To this end, we will show the persistence of cancellation in the weak form of
the nonlinearity up to the symmetry axis, (F3). We begin by considering a
smooth approximation of the initial data. Let ωn

0 be a sequence in C∞
c (Ω)

such that
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1. ωn
0 ⇀ ω0 weak-∗ in BM(Ω),

2. ‖ωn
0‖L1(Ω) and ‖un

0 ≡ KΩ[ωn
0 ]‖L2(Ω) are uniformly bounded with respect

to n,

3. ωn
0 is NMS.

One way of building such an sequence of approximations is to solve the heat
equation in Ω with ω0 as initial data for time 1/n and then smoothly truncate
near infinity.

Let ωn = ωn(x, t) be the smooth solution of (2) with un = KΩ[ωn] and
initial vorticity ωn

0 , given by Kikuchi’s Theorem, see [4]. Of course, since
ωn

0 is NMS we have that ωn is NMS as well for all n and t. Therefore the
conclusion of Lemma 2 can be re-formulated as a uniform a priori estimate
on the mass of vorticity in small balls. For any T > 0 and any compact set
K ⊂⊂ Ω there exists a constant C > 0 such that, for all n,∫ T

0

(
sup
x∈K

∫
B(x;δ)∩Ω

|ωn(y, t)| dy

)
dt ≤ C| log δ|−1/2. (6)

We wish to pass to the limit in the weak formulation of (2) given in
Definition 1 for this approximate solution sequence. The crucial step is to
pass the limit in the nonlinearity. To do so we will need to establish the
boundedness of the auxiliary function HΩ

ϕ , for ϕ ∈ A, where HΩ
ϕ was defined

in (4). This is the content of the Theorem below.

Theorem 1 Let ϕ ∈ A. Then there exists C > 0 such that

|HΩ
ϕ (x, y, t)| ≤ C,

for all x, y ∈ Ω and t ∈ [0,∞).

Proof: Note that, as ϕ has compact support in Ω × [0,∞), it is enough
to prove the boundedness of HΩ

ϕ in a compact set K ⊂⊂ Ω and on a finite
interval [0, T ]. Re-write HΩ

ϕ as:

HΩ
ϕ (x, y, t) =

1

2
(∇ϕ(x, t) −∇ϕ(y, t)) · KΩ(x, y)

+
1

2
∇ϕ(y, t) · (KΩ(x, y) + KΩ(y, x)) ≡ I + J .
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We will use the basic framework developed in Sections 2.1 and 2.2 of [3].
Let U = {|x| > 1} and let T : Ω → U be the biholomorphic mapping given in
Lemma 2.1 of [3]. The mapping T induces a diffeomorphism between Γ and
{|x| = 1}. Recall that the Biot-Savart kernel KΩ can be explicitly expressed
using this mapping in the following manner:

KΩ(x, y) =
((T (x) − T (y))DT (x))⊥

2π|T (x) − T (y)|2 − ((T (x) − (T (y))∗)DT (x))⊥

2π|T (x) − (T (y))∗|2 , (7)

where z �→ z∗ = z/|z|2 is the inversion with respect to the unit circle. Note
that KΩ(x, y) = (DT (x))tKU(T (x), T (y)). Next we recall an estimate ob-
tained in Section 2.2 of [3], namely,

|KΩ(x, y)| ≤ C
|T (y)− (T (y))∗|

|T (x) − T (y)||T (x)− (T (y))∗| ,

for some constant C > 0. It is easy to see that, for each z ∈ U fixed, we
have, for any w ∈ U ,

|z − z∗|
|w − z∗| ≤

|z − z∗|
|(z/|z|) − z∗| = |z| + 1.

Hence,

|KΩ(x, y)| ≤ C

|T (x) − T (y)| ≤
C

|x − y| ,

for all (x, y) ∈ K × K, since DT and its inverse are bounded. This implies
that I is bounded.

Next we re-write J in the following manner:

J =
1

2
∇ϕ(y, t)[(DT (x))t − (DT (y))t]KU(T (x), T (y))]

+
1

2
∇ϕ(y, t)(DT (y))t[KU(T (x), T (y))+KU(T (y), T (x))] ≡ J1(x, y, t)+J2(x, y, t).

As before we find that

|KU(T (x), T (y))| ≤ C

|x − y| ,

for x, y in K, so that, since D2T is also bounded, we conclude that J1 is
bounded in K ×K.
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We are left with the estimate of J2, which is the heart of the matter. We
will need the following claim.

Claim: If y ∈ Γ then J2(x, y, t) ≡ 0.

Proof of Claim: Let y ∈ Γ. For each θ ∈ [0, 2π) let Cθ ≡ T−1({reiθ | r ∈
(1,∞)}). Of course, Cθ is a smooth curve in Ω, naturally parametrized by
r ∈ (1,∞). Let A(z) ≡ arg(T (z)). Note that A(z) = θ for z ∈ Cθ. Therefore,
∇A is orthogonal to the family of curves Cθ and we have that

∇A(z) = (DT (z))t (T (z))⊥

|T (z)|2 . (8)

As ϕ is admissible, the boundary Γ is a level curve of ϕ and hence ∇ϕ(y, t)
is orthogonal to Γ. On the other hand, the curves Cθ are also orthogonal
to Γ because T is conformal and T (Cθ) is a straight ray perpendicular to
T (Γ) = {|z| = 1}. Therefore,

∇ϕ(y, t) · ∇A(y) = 0. (9)

Let z and w be points in the plane such that |z| ≥ 1 and |w| ≥ 1. We use
(7), with T being the identity, and a straightforward calculation to obtain

KU(z, w) + KU(w, z) = − 1

2π

{
(|w|2 − 1)z⊥

|w|2|z − w∗|2 +
(|z|2 − 1)w⊥

|z|2|w − z∗|2
}

. (10)

Since y ∈ Γ, we have that |T (y)| = 1, and therefore,

KU(T (x), T (y)) + KU(T (y), T (x)) = − 1

2π

(|T (x)|2 − 1)(T (y))⊥

|T (x)|2|T (y)− (T (x))∗|2 . (11)

Putting together (9), (11) and (8) it follows that J2(x, y, t) ≡ 0 for y ∈ Γ,
which concludes the proof of the Claim.

For x �= 0 in the plane, we write x̂ = x/|x|. Let (x, y) ∈ K × K. First
we observe that, for z and w with |z| ≥ 1 and |w| ≥ 1 we have the following
elementary fact

|w||z − w∗| = |z||w − z∗|. (12)
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Next, using (10) and (12) we write

−4πJ2(x, y, t) = ∇ϕ(y, t)(DT (y))t (|T (y)|2 − 1)(T (x))⊥

|T (x)|2|T (y) − (T (x))∗|2

+∇ϕ(y, t)(DT (y))t (|T (x)|2 − 1)(T (y))⊥

|T (y)|2|T (x) − (T (y))∗|2 ≡ M1 + M2.

Let us first estimate M1. Using the Claim above we find:

M1 = ∇ϕ(y, t)(DT (y))t (|T (y)|2 − 1)(T (x))⊥

|T (x)|2|T (y) − (T (x))∗|2

= [∇ϕ(y, t) −∇ϕ(T−1(T̂ (x)), t)](DT (y))t (|T (y)|2 − 1)(T (x))⊥

|T (x)|2|T (y) − (T (x))∗|2

+∇ϕ(T−1(T̂ (x)), t)[(DT (y))t − (DT (T−1(T̂ (x)))t]
(|T (y)|2 − 1)(T (x))⊥

|T (x)|2|T (y)− (T (x))∗|2 ,

as T−1(T̂ (x)) ∈ Γ. Therefore, there exists C > 0, depending only on ϕ and
T and their derivatives up to second order, such that

|M1| ≤ C|y − T−1(T̂ (x))|
∣∣∣∣ (|T (y)|2 − 1)(T (x))⊥

|T (x)|2|T (y) − (T (x))∗|2
∣∣∣∣ .

Next we note that |T (y)|2 − 1 = (T (y) − T̂ (x))(T (y) + T̂ (x)), so that, since
|T (x)| and |T (y)| are bounded for x and y in K, it follows that

|M1| ≤ C
|y − T−1(T̂ (x))||T (y) − T̂ (x)|

|T (y) − (T (x))∗|2

≤ C
|T (y) − T̂ (x)|2

|T (y) − (T (x))∗|2 ,

as T−1 is a diffeomorphism with bounded derivative in K. We conclude by
observing that

|T (y) − (T (x))∗| ≥ |T̂ (x) − (T (x))∗|, (13)

as T̂ (x) is the point in U closest to (T (x))∗, and

|T (y) − T̂ (x)|2 ≤ 2(|T (y)− (T (x))∗|2 + |(T (x))∗ − T̂ (x)|2).
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These inequalities allow us to conclude that |M1| ≤ 4C.
Next we estimate M2. We have, once again using the Claim proved

above,

M2 = ∇ϕ(y, t)(DT (y))t (|T (x)|2 − 1)(T (y))⊥

|T (y)|2|T (x) − (T (y))∗|2

= [∇ϕ(y, t) −∇ϕ(T−1(T̂ (y)), t)](DT (y))t (|T (x)|2 − 1)(T (y))⊥

|T (y)|2|T (x) − (T (y))∗|2

+∇ϕ(T−1(T̂ (y)), t)[DT (y))t − (DT (T−1(T̂ (y)))t]
(|T (x)|2 − 1)(T (y))⊥

|T (y)|2|T (x) − (T (y))∗|2 ,

as T−1(T̂ (y)) ∈ Γ. Therefore, as before, we find

|M2| ≤ C
|T (y)− T̂ (y)||T (x) − T̂ (y)|

|T (x) − (T (y))∗|2 ,

for some constant C > 0 depending on ϕ, T , T−1, their derivatives up to
second order, and the diameter of T (K). Using again (13) we obtain

|M2| ≤ C
|T (y) − T̂ (y)||T (x) − T̂ (y)|

|T̂ (y)− (T (y))∗||T (x) − (T (y))∗|

≤ C
|T (x) − (T (y))∗| + |(T (y))∗ − T̂ (y)|

|T (x) − (T (y))∗| ≤ 2C.

This concludes the proof.

Remark: We observe that the proof of Theorem 1 can easily be adapted
to a simply connected bounded domain.

Next we discuss the relation between this result and (F3). Let us begin
by considering the case Ω = R2. The nonlinearity in the vorticity equation
(2) has the form u ω = KR2 [ω] ω, where

KR2 [ω] = K ∗ ω ≡ 1

2π

∫
R2

(x − y)⊥

|x − y|2 ω(y) dy.

If ω ∈ Lp, 1 < p < 2, then, by the Hardy-Littlewood-Sobolev inequality, u
belongs to Lp∗ , with p∗ = 2p/(p − 2). The näıve condition needed to make
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sense of u ω is therefore p ≥ 4/3. However, due to the antisymmetry of the
kernel KR2, we easily deduce that, for any test function ϕ ∈ C∞

c ((0,∞)×R2),
the auxiliary function HR

2

ϕ is smooth away from x = y and globally bounded,
see [2], Proposition 1.2.3 and see [11] for an alternative proof. The weak form
of the nonlinearity, which is∫

R2

∇ϕ(x)u(x)ω(x) dx =

∫
R2

∫
R2

HR
2

ϕ (x, y)ω(x)ω(y) dxdy,

clearly makes sense for any ω ∈ L1, and even for ω a continuous measure in
BM. It is the boundedness of HR

2

ϕ which we refer to as cancellation in the
weak form of the nonlinearity.

For domains with boundary, the kernel KΩ is no longer antisymmetric.
Nevertheless, in the case of bounded domains, Delort observed that HΩ

ϕ is still
bounded if ϕ is compactly supported in the interior of Ω, see the comment
following identity (2.3.12) in [2]. In [6] we proved that, if Ω is the half-plane
H, then HH

ϕ is bounded for all ϕ ∈ C∞
c (H), with ϕ = 0 on ∂H. This is what

we are calling persistence of cancellation in the weak form of the nonlinearity
up to the boundary, i.e. (F3). Theorem 1 is thus a generalization of (F3) to
domains with curved boundaries.

The boundedness of HΩ
ϕ is a key ingredient in the proof of existence of

weak solution of (2) with vortex sheet initial data, see [2, 5, 7, 11, 12], and the
stronger version where ϕ is not required to be compactly supported was used
in [6] for the same purpose. The boundedness of HΩ

ϕ can be also be useful
in other problems regarding (2), see for example, the proof of Theorem 2.1
in [3] and the discussion following Definition 1.1 in [9]. Moreover, a very
similar idea applies to the Vlasov-Poisson system and was used in [8, 10]. In
conclusion, there is broad potential applicability for Theorem 1, beyond the
existence result which we will present in the next section.

4 Existence of a weak solution and conclud-

ing remarks

We are now ready to state and prove our main result, extending the half-plane
existence result in [6] to exterior domains.
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Theorem 2 Let D be a closed bounded region of the plane with smooth
boundary and symmetric with respect to reflection about the horizontal co-
ordinate axis and let Ω = R2 − D. Let ω0 ∈ BM+

c (Ω), be NMS and such
that u0 = KΩ[ω0] ∈ (L2(Ω))2. Then there exists a weak solution of the 2D
incompressible Euler equations in Ω with initial data ω0.

Proof: Let ωn
0 ∈ C∞

c (Ω) be such that ωn
0 ⇀ ω0 weak-∗ BM(Ω). Let ωn,

un = KΩ[ωn], be the unique global smooth solutions of (2) with initial data
ωn

0 . The existence of such solutions follow from the well-posedness of 2D
Euler with smooth initial data in exterior domains, due to K. Kikuchi in [4].
It is an easy calculation to verify that ωn satisfies Definition 1.

The sequence ωn satisfies the following a priori estimates:

1. ‖ωn‖L∞((0,∞);L1(Ω)) ≤ C < ∞;

2. ‖un‖L∞((0,∞);(L2(Ω))2) ≤ C < ∞;

3. {ωn} is equicontinuous from (0, T ), for any T > 0, to H−M(Ω) for some
M > 0.

Indeed, the first estimate follows from conservation in time of L1 norm
of vorticity for smooth solutions and the second follows from the standard
energy estimate. The third estimate is a bit more complicated. To prove it
we consider a test function ϕ ∈ C∞

c ((0,∞)×Ω). We use this test function in
identity (3), noting that the initial data term disappears because ϕ(x, 0) ≡ 0,
to get:∫ ∞

0

∫
Ω

ϕtω
n(x, t)dxdt +

∫ ∞

0

∫
Ω

∫
Ω

HΩ
ϕ (x, y, t)ωn(x, t)ωn(y, t)dydxdt = 0.

Hence,∣∣∣∣
∫ ∞

0

∫
Ω

ϕtω
n(x, t)dxdt

∣∣∣∣ ≤ ‖HΩ
ϕ ‖L1((0,∞);L∞(Ω))‖ωn‖2

L∞((0,∞);L1(Ω)).

It follows from the first a priori estimate above and Lemma 1 that∣∣∣∣
∫ ∞

0

∫
Ω

ϕtω
n(x, t)dxdt

∣∣∣∣ ≤ Cϕ.

The dependence of Cϕ on ϕ comes from Lemma 1. Examining the proof
of Lemma 1 it is possible to infer that Cϕ = C‖ϕ‖W 2,∞(Ω). This, together
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with the Sobolev imbedding theorem, gives, by duality, an estimate of ωt in
L∞((0, T ); H−M(Ω)), for any T > 0 and some M > 3. This clearly implies
the third a priori estimate.

It follows, by the Aubin-Lions Lemma and the Banach-Alaoglu Theo-
rem, that there exists ω ∈ L∞((0,∞);BM(Ω)) ∩C((0, T ); H−L(Ω)), for any
T > 0 and some L < M , such that, passing to a subsequence if necessary,
we have ωn ⇀ ω weak-∗ in L∞((0,∞);BM(Ω)) and ωn → ω strongly in
C((0, T ); H−L(Ω)). We will observe that ω is a weak solution with initial
data ω0. Let ϕ ∈ A. As usual, the only difficulty in passing to the limit in
each of the terms in (3) is the nonlinear term,

WNL[ωn, ϕ] ≡
∫ ∞

0

∫
Ω

∫
Ω

HΩ
ϕ (x, y, t)ωn(x, t)ωn(y, t)dydxdt.

By Lemma 2 we have that there are no time-averaged concentrations, i.e. |ωn|
does not form Diracs when n → ∞. This fact, together with the boundedness
of HΩ

ϕ derived in Lemma 1, and the fact that HΩ
ϕ is continuous off of the

diagonal x = y, allows us to deduce that WNL[ωn, ϕ] → WNL[ω, ϕ] as n → ∞.
The proof of this last convergence follows precisely the same argument of the
proof of Theorem 1 in [6] so we choose not to repeat it.

One issue that was discussed at length in [6] was the method of images.
The relevant formulation states that smooth flow on a half-plane is a solution
of the the incompressible 2D Euler equations if and only if its symmetric
extension is a solution in the full plane. This is not true for weak solutions if
one uses the standard definition of weak solution in domains with boundary,
as in [2], but if one uses the definition as it was stated here, this equivalence
was proved in [6] for the half plane. The extension of the method of images
to weak solutions also works in the present case, mirror symmetric flow in
the exterior of a bluff body. More precisely we have

Theorem 3 The function ω = ω(x, t) ∈ L∞([0,∞);BM(Ω+) is a weak so-
lution of the incompressible 2D Euler equations in the sense of Definition
1 in Ω+ if and only if its odd extension is a weak solution in the sense of
Definition 1 in Ω.

The proof is somewhat involved, but it is a straightforward adaptation of
the proof of Theorem 2 in [6]. One immediate consequence of Theorems 2
and 3 is the following
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Corollary 1 Let ω0 ∈ BM+
c (Ω+) ∩ H−1(Ω+). There exists a weak solution

ω of the incompressible 2D Euler equations in the sense of Definition 1 in
Ω+ with initial data ω0.

A few remarks are in order. First, All the conclusions discussed above
remain true if the initial vorticity is perturbed by an integrable function
with reflection symmetry as we did in [6]. Second, the weak solution in the
Theorem 2 is a limit of the approximate solutions obtained by regularizing
the initial data, it would be extremely interesting to study the limits of
approximate solutions generated by either Navier-Stokes approximations as
in [7] or vortex methods as in [5]in this case.

Finally, It is natural to investigate the problem of existence of weak solu-
tions in the sense of Definition 1 in a general domain. We already understand
the special cases of the half-plane (see [6]) and certain compactly supported
perturbations of the half plane, as noted above. The argument we presented
here can be used to prove such a result for domains in the plane with sim-
ply connected boundary (plus technical assumptions on the behavior of said
boundary at infinity), such as curved boundary half planes and channels. In
the case of a bounded domain, a version of Corollary 1 would be a slight
improvement of Delort’s Theorem for bounded domains. However, our argu-
ment cannot be adapted to prove existence for bounded domain flow.

This is somewhat surprising, and the difficulty stems from the derivation
of the a priori L2

loc bound on the tangential velocity at the boundary, given by
(5). To derive (5), we need to exhibit a test function with derivatives bounded
up to second order which is monotonic when restricted to each connected
component of the boundary. Otherwise, the identity obtained in Lemma 1
does not lead to an actual a priori estimate. Such a test function cannot exist
on a domain with compact boundary components. It may be that this is just
a technical difficulty, and that a “boundary coupled” weak solution does exist
for distinguished signed vortex sheet initial data in a bounded domain, but
we would like to argue that this might not be the case. In fact we observe
that this restriction might be the result of a meaningful physical distinction
between compact and noncompact boundary components with respect to
concentrations of vorticity. For a noncompact boundary component, vorticity
that concentrates, forming a Dirac, and at the same time approaching the
boundary, tends to move with large velocity and leave the compact parts of
the flow domain. Since the test functions involved in the definition of weak
solutions are compactly supported this kind of concentration ends up being
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irrelevant. However, with a compact boundary component, concentration of
vorticity near the boundary leads to this vorticity moving faster and faster
around this boundary component, without disappearing. Such concentration
behavior would be entirely consistent with Lemma 1 and would require a
substantially different approach to handle existence.
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