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Abstract

In this paper, we study the following problem proposed by Courant and Friedrichs in [6] on transonic
flow phenomena in a 3-dimensional nozzle: Given the appropriately large receiver pressure pr, if the
upstream flow is still supersonic behind the throat of the nozzle, then at a certain place in the diverging
part of the nozzle a shock front intervenes and the gas is compressed and slowed down to subsonic speed.
The position and the strength of the shock front are automatically adjusted so that the end pressure at
the exit becomes pr. The flow is assumed to be described by the inviscid steady potential equation. The
transonic shock is a free boundary dividing the hyperbolic region and the elliptic region in the nozzle. The
potential equation is hyperbolic upstream where the flow is supersonic, and elliptic in the downstream
subsonic region. Our results indicate that the conjecture of Courant and Friedrichs cannot be true for
the arbitrarily given and appropriately large pressure at the exit of a slowly-varying nozzle, namely, the
transonic shock problem is ill-posed for the general given pressure at the exit. Furthermore, we find a
class of pressures which are induced by the appropriate boundary conditions at the exit such that the
transonic shock problem is stable.

Keywords: Transonic flow, ill-posedness, well-posedness, potential equation, multidimensional shock
wave, nozzle
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§1. Introduction and the main results

This is a continuation of our study on the problem of the well-posedness of a multidimensional transonic
shock to the steady flow through a general curved nozzle [24]. Our focus is on transonic flows with shocks
in a general 3-dimensional nozzle, which is an important subject in gas dynamics ([2, 6, 7]). In particular,
we are concerned with the following transonic phenomena in a De Laval nozzle as conjectured by Courant
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and Friedrichs in [6]: Given the appropriately large receiver pressure pr, if the upstream flow is still
supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle a
shock front intervenes and the gas is compressed and slowed down to subsonic speed. The position and
the strength of the shock front are automatically adjusted so that the end pressure at the exit becomes
pr. See Picture 1.
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Picture 1

In [24], we have established the well-posedness of the above-mentioned structure of the transonic flow
with shocks in a general 2-dimensional nozzle for a class of pressures which are induced by appropriate
boundary conditions at the exit of the nozzle. However, as indicated by Courant-Friedrichs (pages 377
in [6]), a flow through a duct should be considered as a steady, isentropic, irrotational flow with cylin-
drical symmetry and should be determined by solving the 3-D potential flow equations with appropriate
boundary conditions. Thus, one of the major goals of this paper is to treat the existence, stability and
well-posedness of such a transonic flow pattern with a multidimensional shock in a general 3-D nozzle
with slowly-varying sections. As to other discussions on transonic flows and transonic flows with shocks
and references on recent studies on multidimensional transonic shocks, we refer to [24] and the references
cited therein, see also [3, 4, 21, 22].

Suppose that there is a uniform supersonic flow (u1, u2, u3) = (q0, 0, 0) with constant density ρ0 > 0
which comes from minus infinity, and the flow enters the nozzle from the entrance. In this paper, we
always assume that the nozzle wall is of a small perturbation of a cylindrical surface {x : x2

2 + x2
3 =

1,−1 ≤ x1 ≤ 1}. Thus, the flow in the nozzle can be approximately assumed to be irrotational and
isentropic (see [1-2, 6, 17, 21-22] and so on).

Let ϕ(x) be the potential of velocity, i.e. (∂1ϕ, ∂2ϕ, ∂3ϕ) = (u1, u2, u3), then the Bernoulli’s law implies

1
2
|∇ϕ|2 + h(ρ) ≡ C0 =

1
2
q2
0 + h(ρ0), (1.1)

where h(ρ) is the specific enthalpy. For the given equation of state P = P (ρ) with P ′(ρ) = c2(ρ) > 0 for
ρ > 0, then h′(ρ) = c2(ρ)

ρ .
Since h′(ρ) > 0, one then can define the inverse function of h(ρ) as H(s), namely,

ρ = H(C0 − 1
2
|∇ϕ|2). (1.2)

Then the continuity equation becomes

3∑
i=1

∂i(∂iϕH) = 0, (1.3)
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which can be rewritten as

3∑
i=1

((∂iϕ)2 − c2)∂2
i ϕ + 2

∑
1≤i<j≤3

∂iϕ∂jϕ∂2
ijϕ = 0. (1.4)

It is easy to verify that (1.4) is strictly hyperbolic for |∇ϕ| > c(ρ) and strictly elliptic for |∇ϕ| < c(ρ).
Suppose that the wall of the nozzle is given by

√
x2

2 + x2
3 = f(x), −1 ≤ x1 ≤ 1, (1.5)

such that
|∇α

x(f(x) − 1)| ≤ ε for − 1 ≤ x1 ≤ 1, |α| ≤ k0, (1.6)

here k0 ∈ N and k0 ≥ 7.
Without loss of generality and for the convenience to study, we assume that

f(−1, x2, x3) = 1, f(1, x2, x3) = 1, ∇α
xf(x)|x1=−1 = 0 for 1 ≤ |α| ≤ k0. (1.7)

When the uniform supersonic flow (q0, 0, 0) enters the entry of the nozzle, then the potential ϕ−(x)
in the nozzle will be determined by the following initial boundary value problem for a quasilinear wave
equation ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i=1

((∂iϕ−)2 − c2
−)∂2

i ϕ− + 2
∑

1≤i<j≤3

∂iϕ−∂jϕ−∂2
ijϕ− = 0,

ϕ−|x1=−1 = −q0,

∂1ϕ−|x1=−1 = q0,

∂1f∂1ϕ− +
3∑

i=2

(∂if − xi

f
)∂iϕ− = 0 on

√
x2

2 + x2
3 = f(x),

(1.8)

where c− = c(ρ−) and ρ− = H(C0 − 1
2 |∇ϕ−|2).

It follows from Lemma 2.1 in §2 that (1.8) has a C5 solution ϕ−(x) in the nozzle {(x1, x2, x3) : −1 ≤
x1 ≤ 1,

√
x2

2 + x2
3 ≤ f(x)}, moreover |∇α

x (ϕ−(x) − q0x1)| ≤ Cε holds for |α| ≤ 5.
Given an appropriately larger pressure P̃+(x2, x3) = P (ρ̃+(x2, x3)) at the exit x1 = 1 of the nozzle than

that in the entry, where ρ̃+(x2, x3) ∈ C4({(x2, x3) :
√

x2
2 + x2

3 ≤ f(1, x2, x3)}) is a small perturbation of
the constant density ρ+, more precisely,

|∇α
x2,x3

(ρ̃+(x2, x3) − ρ+)| ≤ ε for 0 ≤ |α| ≤ 3,

here the density ρ+ and the constant velocity |∇ϕ| = q+ satisfy the following relations

1
2
q2
+ + h(ρ+) = C0, ρ+q+ = ρ0q0 and q+ < c(ρ+). (1.9)

Then it is expected that there appears a transonic shock Σ : x1 = ξ(x2, x3) in the nozzle. To assure
uniqueness of the flow pattern (as in [4] and [24]), we also require that the shock Σ goes through a
specified point, say, (0, 0, 0), namely

ξ(0, 0) = 0. (1.10)
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Denote by ϕ+(x) the velocity potential across the shock Σ. Then the potential is continuous across
the shock Σ [2, 6], i.e.,

ϕ+(x) = ϕ−(x) on x ∈ Σ (1.11)

and ∇ϕ must satisfy the Rankine-Hugoniot condition

[∂1ϕH ] −
3∑

i=2

∂iξ[∂iϕH ] = 0 on Σ. (1.12)

Furthermore, the following physical entropy condition should be satisfied:

H(C0 − 1
2
|∇ϕ−|2) < H(C0 − 1

2
|∇ϕ+|2) on Σ. (1.13)

On the exit of the nozzle, the given pressure is equivalent to

H(C0 − 1
2
|∇ϕ+|2) = ρ̃+(x2, x3) on x1 = 1. (1.14)

Finally, the no-flow boundary condition on the wall of the nozzle says

∂1f∂1ϕ+ +
3∑

i=2

(∂if − xi

f
)∂iϕ+ = 0 on

√
x2

2 + x2
3 = f(x). (1.15)

We will use the following notations

Ω =
{

(x1, x2, x3) : −1 < x1 < 1,
√

x2
2 + x2

3 < f(x)
}

;

Ω+ =
{

(x1, x2, x3) : ξ(x2, x3) < x1 < 1,
√

x2
2 + x2

3 < f(x)
}

;

S =
{

(x2, x3) : (ξ(x2, x3), x2, x3) ∈ Σ
}

which is the projection of the shock surface Σ

on the (x2, x3)−plane;

Γ̃1 = Σ ∩
{

(x1, x2, x3) :
√

x2
2 + x2

3 = f(x)
}

, Γ̃2 =
{

(1, x2, x3) :
√

x2
2 + x2

3 = f(1, x2, x3)
}

;

|dΓ̃1
| = dist(x, Γ̃1), x ∈ Σ and (x2, x3) ∈ S;

|dx| = min{dist(x, Γ̃1), dist(x, Γ̃2)} for x ∈ Ω+.

The first main result in this paper is on the uniqueness of the solution to the equation (1.4) with the
boundary conditions (1.10)-(1.15).

Theorem 1.1. (Uniqueness)
Suppose that (1.6), (1.7) and (1.9) hold. Then for suitably small ε > 0, the equation (1.4) with

the boundary conditions (1.10)-(1.15) has no more than one pair of solution (ϕ+(x), ξ(x2, x3)) with the
following regularities:
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(i). For k = 2, 3 and (x2, x3) ∈ S,

ξ(x2, x3) ∈ C1,1−δ0(S̄) ∩ C3(S), ‖ξ(x2, x3)‖C1,1−δ0 (S̄) ≤ Cε, |∇k
x2,x3

ξ(x2, x3)| ≤ Cε

|dΓ̃1
|k−2+δ0

.

(ii). ϕ+(x) ∈ C1,1−δ0(Ω̄+) ∩ C3(Ω+) such that,

‖ϕ+(x) − q+x1‖C1,1−δ0(Ω̄+) ≤ Cε, |∇k
xϕ+(x)| ≤ Cε

|dx|k−2+δ0
for k = 2, 3; x ∈ Ω+

Remark 1.1. It follows from the regularity theory of the second order elliptic equations with the
cornered boundaries (one can see the references [14] and so on) that the assumptions on the regularities
of solution (ϕ+(x), ξ(x2, x3)) in Theorem 1.1 are plausible. See also Theorem 1.3 below.

Remark 1.2. If the end pressure ρ̃(x2, x3) in (1.14) is given on a C3 smooth surface x1 = g(x2, x3)
with |∇α

x2,x3
(g(x2, x3) − 1)| ≤ ε for 0 ≤ |α| ≤ 3 and (x2, x3) ∈ {(x2, x3) :

√
x2

2 + x2
3 ≤ f(1, x2, x3)}, then

by an analogous proof, we know that Theorem 1.1 still holds in this case.

Remark 1.3. For A1 = (ξ(x1
2, x

1
3), x1

2, x
1
3), ..., Am = (ξ(xm

2 , xm
3 ), xm

2 , xm
3 ) ∈ Σ (m ∈ N), we sup-

pose that γ1, ..., γm are any smooth curves which lie in
√

x2
2 + x2

3 = f(x) and start from A1, ..., Am

respectively. Denote by |d0| = min{|dΓ̃1
|, dist(x, A1), ..., dist(x, Am),

√
x2

2 + x2
3} for x ∈ Σ and |d| =

min{|dx|, dist(x, γ1), ..., dist(x, γm),
√

x2
2 + x2

3} for x ∈ Ω+. Then it follows from a similar procedure as
in §3 that the uniqueness result in Theorem 1.1 continues to hold if the solution (ϕ+(x), ξ(x2, x3)) has
the following regularities and estimates:

(i). ξ(x2, x3) ∈ C1,1−δ0(S̄) ∩ C3(S), ‖ξ(x2, x3)‖C1,1−δ0 (S̄) ≤ Cε and |∇k
x2,x3

ξ(x2, x3)| ≤ Cε
|d0|k−2+δ0

with
k = 2, 3 and (x2, x3) ∈ S.

(ii). ϕ+(x) ∈ C1,1−δ0(Ω̄+) ∩ C3(Ω+) and ‖ϕ+(x) − q+x1‖C1,1−δ0(Ω̄+) ≤ Cε, |∇k
xϕ+(x)| ≤ Cε

|d|k−2+δ0 for
k = 2, 3 and x ∈ Ω+.

This remark will be useful in proving Theorem 1.2 below.
Next, we turn to the non-existence of solutions to the transonic shock problem with general given

pressure ρ̃+(x) at the exit of the nozzle.
Suppose that a nozzle wall is C5−regular for −1 ≤ x1 ≤ 1 and it consists of two surfaces Π1 and Π2,

here Π1 is the converging part of the nozzle, Π2 is a cone surface in − 1
2 ≤ x1 ≤ 1 (i.e. the diverging

part of the nozzle), whose vertex is (x0
1, 0, 0) with x0

1 < 0 sufficiently small. Moreover Π1 and Π2 are
very close to the cylindrical surface {x : x2

2 + x2
3 = 1,−1 ≤ x1 ≤ 1}. More precisely, we assume that the

equation of Π2 is represented by x2
2 + x2

3 = (x1 − x0
1)2tg2α0(α0 > 0), here tgα0 = 1

1−x0
1

(this condition

guarantees that Π2 is very near x2
2 + x2

3 = 1 in − 1
2 ≤ x1 ≤ 1 for sufficiently small x0

1 < 0 since one has

x2
2 + x2

3 = (x1−x0
1)

2

(1−x0
1)

2 ). Besides, the transonic shock is assumed to go through the origin, and suppose that

the supersonic coming flow is symmetric in −x0
1− 1

4 ≤ r ≤ −x0
1 with r =

√
(x1 − x0

1)2 + x2
2 + x2

3 (namely,
the potential ϕ−(x) depends only on r for −x0

1 − 1
4 ≤ r ≤ −x0

1) and is of a small perturbation of the
constant state (ρ0, q0, 0, 0). By the hyperbolicity, we can obtain a supersonic flow ϕ−(x) in the global
nozzle, which is symmetric in −x0

1 − 1
4 ≤ r ≤ (1 − x0

1) sec α0 and very close to q0x1. Furthermore, we let
the boundary condition (1.14) be replaced by

H(C0 − 1
2
|∇ϕ+|2) = ρ+ on r = (1 − x0

1) sec α0. (1.14)′
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Picture 2

where the constant density ρ+ is determined by (1.9). See Picture 2.
Then based on Theorem 1.1, Remark 1.2 and Remark 1.3, we can show the following ill-posedness

result.

Theorem 1.2. (Ill-posedness) If the nozzle wall consists of Π1 and Π2, then the problem (1.4) with
(1.10)-(1.13), (1.14)′ and (1.15) is ill-posed. More precisely, one can find the supersonic coming flows
which are of small perturbations of (ρ0, q0, 0, 0) such that the problem (1.4) with (1.10)-(1.13), (1.14)′

and (1.15) has no transonic shock solution (ϕ+(x), ξ(x2, x3)) with the regularities and estimates as stated
in Theorem 1.1.

Remark 1.4. For the arbitrarily given and appropriately large pressure ρ̃+(x) at the exit, Theorem 1.2
states that the transonic problem (1.4) in the nozzle with a shock can not occur, namely, the conjecture
of Courant and Friedrichs is not true for the general given pressure at the exit of a slowly-varying nozzle.
Similar conclusions hold for the 2-dimensional case, see §4 for details.

Remark 1.5. For the complete Euler equations, if the pressure at the exit of the nozzle is arbitrarily
given, it then can be proved that the transonic shock wave pattern as conjectured by Courant-Friedrich’s
in [6] cannot occur in a slowly-varying nozzle. The details can be found in [27].

Despite the non-existence results in Theorem 1.2, we can find a class of pressures (although we do not
give the pressure directly at the exit ) which are induced by the following oblique derivative boundary
conditions (1.14)′′ such that the transonic shock problem (1.4) is stable and satisfies the given boundary
conditions

∂1ϕ+ + b2(x)∂2ϕ+ + b3(x)∂3ϕ+ + b1(x)ϕ+ = g(x) on x1 = 1 (1.14)′′

here bi(x) ∈ C3(Ω̄)(i = 1, 2, 3), g(x) ∈ C3(Ω̄) and λ ≤ b1(1, x2, x3) ≤ Λ for (x2, x3) ∈ {(x2, x3) :√
x2

2 + x2
3 = f(1, x2, x3)}, here Λ and λ are two positive constants. Besides, |∇α(g(x)−(1+b1(x)x1)q+)|+

|∇αb2(x)|+ |∇αb3(x)| ≤ ε for 0 ≤ |α| ≤ 3 and x ∈ Ω̄ holds. With the same notations as for Theorem 1.1,
the main existence results can be stated as follows:
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Theorem 1.3. Let the assumptions (1.6), (1.7) and (1.9) hold. Then for suitably small ε > 0, there
exists a unique transonic pair (ϕ(x), ξ(x2 , x3)) such that ϕ(x) is piecewise smooth, i.e.,

ϕ(x) =
{

ϕ−(x), for x1 < ξ(x2, x3)
ϕ+(x), for x1 > ξ(x2, x3)

and (ϕ(x), ξ(x2 , x3)) solves the problem (1.4), (1.11)-(1.13), (1.14)′′ and (1.15).
Moreover, for a given constant 0 < δ0 < 1

3 , there exists a constant C independent of ε with the following
properties:

(i). (Regularity of supersonic flow) ϕ−(x) ∈ C5(Ω̄) solves the initial-boundary value problem (1.8)
in Ω. Furthermore,

‖ϕ−(x) − q0x1‖C5(Ω̄) ≤ Cε

(ii). (Regularity of the shock surface)

ξ(x2, x3) ∈ C1,1−δ0(S̄) ∩ C3(S), and

‖ξ(x2, x3)‖C1,1−δ0(S̄) ≤ Cε, |∇k
x2,x3

ξ(x2, x3)| ≤ Cε

|dΓ̃1
|k−2+δ0

for k = 2, 3; (x2, x3) ∈ S.

(iii). (Regularity of the subsonic flow)
ϕ+(x) ∈ C1,1−δ0(Ω̄+) ∩ C3(Ω+) admits the following estimates:

‖ϕ+(x) − q+x1‖C1,1−δ0 (Ω̄+) ≤ Cε, |∇k
xϕ+(x)| ≤ Cε

|dx|k−2+δ0
for k = 2, 3; x ∈ Ω+.

(iv).(Entropy condition) The physical entropy condition (1.13) holds on the shock Σ.

Remark 1.6. It should be noted that the transonic shock in theorem is perpendicular to the wall of
the nozzle. This fact follows easily from the boundary conditions (1.11) and (1.15), and the ones on the
nozzle wall for ϕ−(x) in (1.8).

Remark 1.7. It will follow from the proof of Theorem 1.3 that one can also establish the structural
stability of the transonic shock solution (ϕ(x), ξ(x2 , x3)) with respect to small perturbation of the initial
state at the entrance. More precisely, for k0 ≥ 7 and 0 ≤ α ≤ k0, if |∇α

x2,x3
(ϕ̂−(−1, x2, x3)+ q0)| ≤ ε and

|∇α
x2,x3

(∂1ϕ̂−(−1, x2, x3) − q0)| ≤ ε hold, then there exists a unique solution (ϕ̂+(x), ξ̂(x2, x3)) to (1.4)
with the corresponding perturbed boundary conditions such that

‖ϕ̂+(x) − q+x1‖C1,1−δ0(Ω̂+)
≤ Cε, ‖ξ̂(x2, x3)‖C1,1−δ0 (

¯̂
S)

≤ Cε

where Ω̂+ = {(x1, x2, x3) : ξ̂(x2, x3) < x1 < 1,
√

x2
2 + x2

3 < f(x)}, Ŝ is the open projection set of the
corresponding shock surface Σ̂ onto the (x2, x3)−plane. Besides, the constant C is independent of ε.

Remark 1.8. It should be noted that the main assumption in Theorem 1.1-1.3 is that the wall of the
nozzle is a small perturbation of a straight cylinder, (1.6). This is in general necessary for the existence of
such a transonic shock wave pattern as conjectured by Courant-Friedrichs and mentioned at the beginning
of this section. Since for the nozzle of large deviation from a flat cylinder, there may be supersonic shocks
in the supersonic region, or supersonic bubbles surrounded by subsonic flow, see [2, 6].

7



Remark 1.9. Some ideas developed in this paper can be used to study the problem of existence,
uniqueness, well-posedness and structural stability or instability of a transonic shock for the supersonic
flow past a three-dimensional wedge. This is reported in [25].

Remark 1.10. If, instead of the no-flow boundary condition (1.15), the wall of the nozzle is assumed
to be porous ( perforated) or curved appropriately large, then the corresponding transonic shock problem
can be shown to be well-posed for the arbitrarily given and appropriately large pressure ρ̃+(x) on x1 = 1.
This will be reported in a forth coming paper [26].

Obviously, combining Theorem 1.1 with Theorem 1.3 yields the following result on the existence and
uniqueness for a class of pressures at the exit of the nozzle.

Theorem 1.4. (Stability for a class of pressures at the exit)
If ρ̃+(x2, x3) in (1.14) and a specified point in (1.10) are determined by Theorem 1.3, then the transonic

shock solution to the problem (1.4) with (1.10)-(1.15) exists uniquely.

We now comment on the proof of the main results. Some of the main difficulties are that (1.4) is
a mixed-type quasilinear equation and the shock surface is a free boundary with nonlinear boundary
condition (1.12). In order to prove Theorem 1.1, the main strategy of the analysis comes from our
treatment on the 2-D problem in [24]. First, we introduce a new partial hodograph transformation
which maps the domain Ω̄+ into the fixed domain Q̄+ = {(X1, X2, X3) : 0 ≤ X1 ≤ 1, X2

2 + X2
3 ≤ 1}

as in [24], see also [5, 18, 20]. Under this transformation, the quasilinear potential equation (1.4),
whose coefficients contain only the first order derivative of ϕ(x), becomes a new second order nonlinear
equation with coefficients and source term containing the unknown function V (X) and its first order
derivative ∇XV (X). Correspondingly, the boundary conditions (1.12)-(1.15) are also changed into new
nonlinear boundary conditions containing V (X) and ∇XV (X). It is crucial in our analysis that we can
choose the partial-hodograph transformation so that the coefficients of V (X) and ∇XV (X) in the second
order elliptic equation and the coefficients of V (X) in the boundary conditions are all suitably small
in appropriately weighted space, and thus avoid the possibility of negative eigenvalue of the resulted
linear equation on v(X) in Theorem 1.1. One of key elements in the proof on Theorem 1.1 is to derive
‖v(X)‖H2 = 0 to the solution v(X) by the multiplier method instead of establishing ‖v‖L∞ = 0 by the
maximum principle, since it seems difficult to obtain ‖v‖L∞ by the maximum principle in [13] due to the
structures of the equation and boundary conditions on v(X). In order to prove Theorem 1.3, we will use
the Schauder fixed point theorem to solve the corresponding nonlinear elliptic equation on Q̄+ which is
resulted by the generalized hodograph transformation in §2. Weighted Hölder spaces will be used to treat
the possible singularities due to the corners of the domain under discussion [3,8,13-15,24]. In addition, one
can use the maximum principle to derive the uniform L∞−estimate by use of (1.14)′′. Although the main
strategy to prove Theorem 1.1 and Theorem 1.3 is similar to our approach used for 2-dimensional case
[24], much more delicate a priori estimates are needed to overcome some main difficulties occurred in the
3-dimensional case. In particular, more complicated and careful analysis are needed for the estimates near
shock and fixed boundaries. Finally, based on Theorem 1.1, making full use of the symmetry of nozzle
wall Π2, the supersonic coming flow in the diverging part for − 1

4 ≤ x1 ≤ 1
4 and the end pressure condition,

we can show that the pressure at the exit should be uniquely determined by the supersonic coming flow
for the transonic solution with a shock. The main approach is that we can derive an ordinary differential
equation by the symmetry of the nonlinear equation, the nozzle wall and the boundary conditions if we
assume that the transonic shock is well-posed with respect to any appropriately large pressure at the
exit for any slowly-varying nozzle or any part of the nozzle which is bounded by the nozzle wall and two
planes through the x1−axis (these assumptions are plausible physically if the transonic problem with one
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shock is indeed well-posed in the nozzle with the end pressure).
Next, we note that there have been many studies on the transonic problems as we mentioned in [24]. See

also [1, 3, 4] and the references therein. Here we mention only the study on the existence and uniqueness
of axially symmetric compressible subsonic flows of jets and cavities by Alt-Caffarelli-Friedman [1], where
they use a variational approach to solve such a free boundary problem. However, we were not able to
adapt their analysis due to different conditions on both free and fixed boundaries and our problem is
truly 3-dimensional.

The rest of the paper is outlined as follows. In Sect.2, we introduce a generalized partial hodograph
transformation and reformulate the original problem (1.4) with the boundary conditions (1.11)-(1.15) in
terms of the new variables. Besides, some basic estimates on the coefficients of this resulted problem are
carried out too. In Sect.3, the H2−norm estimates for the solution v(X) to the linear problem induced
in §2 are derived. This directly yields v(X) ≡ 0, namely, we complete the proof on Theorem 1.1. In
Sect.4, based on Theorem 1.1, we show the ill-posedness result in Theorem 1.2. In addition, we list two
ill-posedness results on the 2-D transonic shock problem and only give a sketch on the proof. Finally, the
proof on Theorem 1.3 is given in Sect.5.

¿From now on, the following convention will be used in this paper:
O(ε) and O(Mε) mean that there exists a generic constant C such that |O(ε)| ≤ Cε and |O(Mε)| ≤

CMε respectively, where C is independent of M and ε.

§2. The reformulation on Theorem 1.1 and the generalized hodograph transformation

With the help of ϕ−(x) determined by solving the initial-boundary value problem (1.8), the nonlinear
mixed-type equation (1.4) with (1.8)-(1.15) can be reduced to a boundary value problem for a second order
quasilinear elliptic equation with a free boundary (the transonic shock). In this section, we reduce this
free boundary value problem on Ω+ to a boundary value problem on a fixed domain Q+ = {(X1, X2, X3) :
0 < X1 < 1, X2

2 + X2
3 < 1} by introducing a generalized hodograph transformation and a coordinate

transformation. First, we estimate the potential ϕ−(x) for the supersonic flow.

Lemma 2.1. Assume that (1.6) and (1.7) hold. Then (1.8) has a unique C5(Ω̄) solution ϕ−(x) such
that

‖ϕ−(x) − q0x1‖C5(Ω̄) ≤ Cε.

holds for small ε > 0, where C is independent of ε.

Proof. Note that ϕ̃(x) = ϕ−(x) − q0x1 satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((q0 + ∂1ϕ̃)2 − c2
−)∂2

1 ϕ̃ + 2(q0 + ∂1ϕ̃)
3∑

i=2

∂iϕ̃∂2
1iϕ̃ +

3∑
i=2

((∂iϕ̃)2 − c2
−)∂2

i ϕ̃ + 2∂2ϕ̃∂3ϕ̃∂2
23ϕ̃ = 0,

ϕ̃(x)|x1=−1 = 0,

∂1ϕ̃(x)|x1=−1 = 0,

∂1f∂1ϕ̃ +
3∑

i=2

(∂if − xi

f
)∂iϕ̃ = −q0∂1f on

√
x2

2 + x2
3 = f(x),

(2.1)
where c− = c(H(C0 − 1

2 (|q0 + ∂1ϕ̃|2 + |∂2ϕ̃|2 + |∂3ϕ̃|2))).
It follows from (1.7) that the initial-boundary values in (2.1) satisfy the compatibility conditions up

to (k0 − 1)−th order.
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Since q0 > c(ρ0), then (2.1) is strictly hyperbolic with respect to x1−direction for the small pertur-
bations of constant solution. By the standard energy estimate on the linear wave equation with the
initial-boundary conditions and the Picard iteration (for example, see [11]), then for small ε > 0, (2.1)
has a unique solution ϕ̃(x) ∈ ∩k0

i=0C
i([−1, 1], Hk0−i(Ω̄)) and there exists a constant C independent of ε

such that
k0∑

i=0

‖ϕ̃(x)‖Ci([−1,1],Hk0−i(Ω̄)) ≤ Cε.

Hence the Sobolev’s imbedding theorem implies that Lemma 2.1 holds.
We now reduce the free boundary value problem (1.4) with (1.9)-(1.15) to a fixed boundary value

problem. Rescaling if necessary, we will assume q0 − q+ = 1 in the rest of the paper unless otherwise
stated. Define new independent variables as{

X1 = 1 − 1−x1
1−x1+ϕ−(x)−ϕ+(x) ,

Xi = xi

f(x) , i = 2, 3.
(2.2)

It is expected that |∂α
x (ϕ+(x) − q+x1)| ≤ Cε for 0 ≤ |α| ≤ 1. Consequently, one has that ∂1(ϕ−(x) −

ϕ+(x)) = ∂1(ϕ−(x) − q0x1) − ∂1(ϕ+(x) − q+x1) + q0 − q+ > 1
2 for small ε and all x ∈ Ω+. This implies

ϕ−(x) > ϕ+(x) when x1 > ξ(x2, x3). It follows that (2.2) is an invertible transformation from the domain
Ω̄+ to

Q̄+ = {(X1, X2, X3) : 0 ≤ X1 ≤ 1, X2
2 + X2

3 ≤ 1}.
Furthermore, the boundaries x1 = ξ(x2, x3), x1 = 1 and

√
x2

2 + x2
3 = f(x) are transformed into

X1 = 0, X1 = 1 and X2
2 + X2

3 = 1 respectively. Besides, the origin (x1, x2, x3) = (0, 0, 0) becomes the
new origin O = (0, 0, 0) in the coordinates X = (X1, X2, X3).

Now, as in [24], we define the new unknown function as

V (X) = 1 − x1 + ϕ−(x) − ϕ+(x). (2.3)

One would expect that V (X) = 1 + O(ε) and ∇XV (X) = O(ε). These properties are important in
our later analysis. It now follows from (2.2) and (2.3) that{

x1 = 1 + (X1 − 1)V (X),
xi = xi(1 + (X1 − 1)V (X), X2, X3), i = 2, 3,

(2.4)

here xi(1 + (X1 − 1)V, X2, X3) ∈ Ck0(i = 1, 2) on X and V , which follows from the smoothness of f(x)
and the assumption (1.7). By direct calculations, one has⎧⎪⎨

⎪⎩
∂xj X1 = D(X, V,∇V )

(
δij − (X1 − 1)

3∑
i=2

∂XiV ∂xj Xi

)
, j = 2, 3,

∂xj Xi = f−2(fδij − xi∂xj f) = δij + O(ε), i = 2, 3; j = 1, 2, 3,

(2.5)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2
xjxk

X1 =
3∑

i,l=1

bjk
il ∂2

XiXl
V + bjk

0 , j, k = 1, 2, 3,

∂2
xjxk

Xi = −f−2(δij∂xk
f + δik∂xj f + xi∂

2
xjxk

f) + 2f−3xi∂xj f∂xk
f

= O(ε), i = 2, 3, j, k = 1, 2, 3,

(2.6)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D(X, V,∇V ) = (V + (X1 − 1)∂X1V )−1,

bjk
il ≡ bjk

il (X, V,∇V ) = 1
2D(X, V,∇V )(1 − X1)(∂xk

Xl∂xj Xi + ∂xk
Xi∂xj Xl),

bjk
0 ≡ bjk

0 (X, V,∇V ) = −D(X, V,∇V )
(

2∂xk
X1∂xj X1 + ∂xk

X2∂xj X1 + ∂xj X2∂xk
X1

+(X1 − 1)∂2
xjxk

X2 + ∂xj X3∂xk
X1 + ∂xk

X3∂xj X1 + (X1 − 1)∂2
xjxk

X3

)
∇XV.

(2.7)

It should be noted that for suitably small ε, all the functions D(X, V,∇V ), bjk
il (X, V,∇V ) and

bjk
0 (X, V,∇V ) are smooth functions of X, V and ∇XV .

In terms of the new variables (2.2) and (2.3), the equation (1.4) becomes

3∑
i,j=1

aij(X, V,∇XV )∂2
XiXj

V + F0(X, V,∇XV ) = 0, (2.8)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aij(X, V,∇XV ) = −
3∑

k,l=1

ãkl(ϕ+)(∂xk
Xi∂xl

Xj + bkl
ij∂X1V ),

F0(X, V,∇XV ) = −
3∑

i,k=1

ãik(ϕ+)
(

bik
0 ∂X1V +

3∑
j=2

∂Xj V ∂2
xixk

Xj

)

+
3∑

i,k=1

(ãik(ϕ+) − ãik(ϕ−))∂2
xixk

ϕ−,

(2.9)

here the matrix (ãik) is defined by

(
ãij(ϕ)

)
=

⎛
⎝ (∂x1ϕ)2 − C2(∇ϕ) ∂x1ϕ∂x2ϕ ∂x1ϕ∂x3ϕ

∂x1ϕ∂x2ϕ (∂x2ϕ)2 − C2(∇ϕ) ∂x2ϕ∂x3ϕ

∂x1ϕ∂x3ϕ ∂x2ϕ∂x3ϕ (∂x3ϕ)2 − C2(∇ϕ)

⎞
⎠

with sound speed C(∇ϕ) = c(H(C0 − 1
2 |∇ϕ|2)). In the derivation of (2.8) from (1.4), we have used the

equations (1.8). It is important to note that the quasilinear equation (2.8) is uniformly elliptic on Q+ in
the region we are interested provided that ε is suitably small.

This and other important properties of aij(X, V,∇XV ) and F0(X, V,∇XV ) are listed in Lemma 2.4.
Next, we transform the boundary conditions in terms of the new variables. First, it follows from (1.11)

that the Rankine-Hugoniot condition (1.12) is equivalent to

3∑
i=1

[∂iϕH ]∂i(ϕ+ − ϕ−) = 0 on x1 = ξ(x2, x3),

which takes the form in the new coordinates as

G(X, V,∇XV ) = 0 on X1 = 0, (2.10)
11



where

G(X, V,∇XV ) = H(C0 − 1
2
((1 + ∂x1V − ∂1ϕ−)2 +

3∑
i=2

(∂xiV − ∂iϕ−)2))
(

(∂1ϕ− − ∂x1V − 1)(1 + ∂x1V )

+
3∑

i=2

(∂iϕ− − ∂xiV )∂xiV

)
− (∂1ϕ−(1 + ∂x1V ) +

3∑
i=2

∂iϕ−∂xiV )H(C0 − 1
2
|∇ϕ−|2).

Analogously, (1.14) and (1.15) are transformed respectively as follows

H(C0 − 1
2
((1 + ∂x1V − ∂1ϕ−)2 +

3∑
i=2

(∂xiV − ∂iϕ−)2)) = ρ̃+(x) on X1 = 1,
(2.11)

3∑
j=1

( 3∑
i=2

(
xi

f
− ∂if)

∂Xj

∂xi
− ∂1f

∂Xj

∂x1

)
∂Xj V = ∂1f(1 − ∂1ϕ−)

+
3∑

i=2

(
xi

f
− ∂if)∂iϕ− on X2

2 + X2
3 = 1, (2.12)

here the variable x = (x1, x2, x3) is a function of X = (X1, X2, X3) and V (X). It will be clear that (2.10)
and (2.11) represent nonlinear uniform oblique derivative boundary conditions for (2.8).

Finally, it follows from (1.10) and the transformation (2.2) that

V (0, 0, 0) = 1. (2.13)

Hence our major problem is reduced to study the quasilinear equation (2.8) on the domain Q+ with
nonlinear boundary conditions (2.10)-(2.13).

By the assumptions in Theorem 1.1, we derive that V (X) ∈ C1,1−δ0(Q̄+)∩C3(Q̄+ \∪2
i=1Γi) holds and

satisfies the following estimates:

‖V (X) − 1‖C1,1−δ0(Q̄+) ≤ Cε, |∇k
XV (X)| ≤ Cε

|RX |k−2+δ0
, k = 2, 3, (2.14)

where ⎧⎪⎨
⎪⎩

Γ1 = {(0, X2, X3) : X2
2 + X2

3 = 1},
Γ2 = {(1, X2, X3) : X2

2 + X2
3 = 1},

RX = X1(1 − X1) +
√

1 − (X2
2 + X2

3 )

(2.15)

Next we analyze the nonlinear boundary conditions (2.10)-(2.12) so that one can treat the uniqueness
result in Theorem 1.1.

Let us consider the boundary condition for V on X1 = 0 first. Note that the boundary condition (2.10)
can be rewritten as

3∑
i=1

B1i(X, V,∇XV )∂XiV + B1(X, V,∇XV )(V − 1) = −G(X, 1, 0, 0, 0) on X1 = 0, (2.16)
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with

B1i(X, V,∇XV ) =
∫ 1

0

∂∂Xi
V G(X, θ(V − 1) + 1, θ∇XV )dθ, i = 1, 2, 3,

B1(X, V,∇XV ) =
∫ 1

0

∂V G(X, θ(V − 1) + 1, θ∇XV )dθ.

The following estimates hold true for the coefficients of (2.16).

Lemma 2.2. In terms of (2.14), then one has

3∑
k=0

|∇k
XG(X, 1, 0, 0, 0)| ≤ Cε, (2.17)

B11(X, V,∇XV ) = −ρ+(q+ − q0)(c2(ρ+) − q2
+)

c2(ρ+)
(1 + O(ε)), (2.18)

B1i(X, V,∇XV ) = O(ε), i = 2, 3, (2.19)

B1(X, V,∇XV ) = O(ε), (2.20)
2∑

i=1

|∇k
XB1i(X, V,∇XV )| + |∇k

XB1(X, V,∇XV )| = O(
ε

Rk−1+δ0
), k = 1, 2.

(2.21)

Proof. We start with the proof of (2.17). By definition, one has

G(X, 1, 0, 0, 0) =
(

H(C0 − 1
2
((1 − ∂1ϕ−)2 +

3∑
i=2

(∂iϕ−)2)(∂1ϕ− − 1) − H(C0 − 1
2
|∇ϕ−|2)∂1ϕ−

)
(x̄)

with x̄ = (x̄1, x̄2, x̄3) given by

{
x̄1 = X1,

x̄i = x̄i(X1, X2, X3), i = 2, 3.

More precisely, (x̄2, x̄3) is determined by

{
X2 = x̄2(f(x̄))−1,

X3 = x̄3(f(x̄))−1.

Making use of Lemma 2.1 and the assumption q0 − q+ = 1, one can compute to get

G(X, 1, 0, 0, 0) =
(

H

(
C0 − 1

2
(q0 − 1)2 + O(ε)

)
(q0 − 1 + O(ε)) − H

(
C0 − 1

2
q2
0 + O(ε)(q0 + O(ε))

)
(x̄)

=
(

H

(
C0 − 1

2
(q0 − 1)2

)
(q0 − 1) − H

(
C0 − 1

2
q2
0

)
q0

)
+ O(ε)

= (ρ+q+ − ρ0q0) + O(ε) = O(ε)
13



where we have used the fact that ρ+q+ = ρ0q0 (see (1.9)). Thus

|G(X, 1, 0, 0, 0)| ≤ Cε

Similarly, noting also (1.6), one has

3∑
k=1

|∇k
XG(X, 1, 0, 0, 0)| ≤ Cε.

Thus (2.17) is proved.
Next, we verify the rest of the lemma, i.e., (2.18)-(2.21). Direct calculations based on (2.4)-(2.5) show:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x1
∂V = X1 − 1,
∂xi

∂V = (X1 − 1)∂X1f(1 − (X2∂x2f + X3∂x3f))−1Xi, i = 2, 3
∂(∂xi

V )

∂(∂Xj
V ) = D(X, V, ∂XV )V ∂Xj

∂xi
, i, j = 1, 2, 3,

∂(∂iϕ−)
∂V =

3∑
j=1

∂2
ijϕ−(x)

∂xj

∂V
, i = 1, 2, 3,

∂(∂iϕ+)
∂V =

3∑
j=1

(
∂2

ijϕ−(x)
∂xj

∂V
− ∂Xj V

∂

∂V
(
∂Xj

∂xi
)
)

, i = 1, 2, 3.

(2.22)

Define Ḡ(∇ϕ+,∇ϕ−) =
3∑

j=1

[∂jϕH ]∂j(ϕ+ − ϕ−). Then G(X, V,∇XV ) = Ḡ(∇ϕ+,∇ϕ−) and one can

compute⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂∂Xi
V G = −V D(X, V,∇XV )

3∑
k=1

∂∂kϕ+Ḡ
∂Xi

∂xk
,

∂V G =
3∑

k=1

(
∂∂kϕ+Ḡ

∂(∂kϕ+)
∂V

+ ∂∂kϕ−Ḡ
∂(∂kϕ−)

∂V

)
,

∂∂iϕ+Ḡ =
3∑

j=1

(
[∂jϕH ]δij + (H+δij − ∂jϕ+∂iϕ+H ′

+)(∂jϕ+ − ∂jϕ−)
)

, i = 1, 2, 3

∂∂iϕ−Ḡ = −
3∑

j=1

(
[∂jϕH ]δij + (H−δij − ∂jϕ−∂iϕ−H ′

−)(∂jϕ+ − ∂jϕ−)
)

, i = 1, 2, 3.

(2.23)

One can obtain from (2.5) and (2.14) that{
∂xiX1 = δ1i + O(ε), i = 1, 2, 3
∂xj Xi = δij + O(ε), i = 2, 3, j = 1, 2, 3

(2.24)

and it follows from (2.22), (2.24) and Lemma 2.1 that⎧⎪⎪⎨
⎪⎪⎩

(∂(∂iϕ−)
∂V )(X, V ) = O(ε), i = 1, 2, 3

(∂(∂iϕ+)
∂V )(X, V ) = O(ε), i = 1, 2, 3

( ∂(∂xi
V )

∂(∂Xj
V ) )(X, V,∇XV ) = δij + O(ε), i, j = 1, 2, 3,

(2.25)
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Note that ⎧⎪⎪⎨
⎪⎪⎩

∂∂1ϕ+Ḡ = ρ+(q+−q0)(c2(ρ+)−q2
+)

c2(ρ+) (1 + O(ε)),

∂∂1ϕ−Ḡ = − ρ+(q+−q0)(c2(ρ+)−q2
+)

c2(ρ+) (1 + O(ε)),

∂∂iϕ±Ḡ = O(ε), i = 2, 3.

(2.26)

Indeed, recall that we have assumed that q+−q0 = 1, then it follows from V (X) = 1−x1+ϕ−(x)−ϕ+(x)
that ∂iϕ+ = ∂iϕ− − δ1i −∇XV ∂X

∂xi
. So one can derive from Lemma 2.1 and (2.24) that

⎧⎪⎨
⎪⎩

∂1ϕ− = q0 + O(ε),
∂1ϕ+ = q+ + O(ε),
∂iϕ± = O(ε), i = 2, 3

(2.27)

On the other hand, the Bernoulli’s law, (1.1) and (1.2) imply that c2(ρ) = H
H′ . Hence, one obtains

from (2.23) and (2.27) that

∂∂1ϕ+Ḡ = [∂1ϕH ] +
(

H+(∂1ϕ+ − ∂1ϕ−) −
3∑

j=1

(∂jϕ+∂1ϕ+H ′
+)(∂jϕ+ − ∂jϕ−)

)

= (∂1ϕ+H+ − ∂1ϕ−H−) + H+(∂1ϕ+ − ∂1ϕ−)
(

1 − (∂1ϕ+)2
H ′

+

H+

)
+ O(ε)

=
ρ+(q+ − q0)(c2(ρ+) − q2

+)
c2(ρ+)

(1 + O(ε)).

The other estimates in (2.26) can be estimated similarly.
Substituting the computations above into expressions for B1i and B1, we obtain that

B11(X, V,∇XV ) = −ρ+(q+ − q0)(c2(ρ+) − q2
+)

c2(ρ+)
(1 + O(ε)),

B1i(X, V,∇XV ) = O(ε), i = 2, 3,

B1(X, V,∇XV )(W − 1) = O(ε).

These prove (2.18)-(2.20). the other property (2.21) can be verified similarly. Hence the proof of Lemma
2.2 is completed.

It follows from q+ < c(ρ+), q+ < q0 and (2.18) in Lemma 2.2 that B11(X, V,∇XV ) 
= 0 for small ε.
Thus one can rewrite (2.16) as

∂X1V +
3∑

i=2

B̃1i(X, V,∇XV )∂XiV + B̃1(X, V,∇XV )(V − 1) = 0 on X1 = 0, (2.28)

where the coefficients satisfy the estimates⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B̃1i(X, V,∇XV ) = O(ε), i = 2, 3,

B̃1(X, V,∇XV ) = O(ε),

∇k
XB̃1i(X, V,∇XV ) = O( ε

Rk−1+δ0 ), k = 1, 2; i = 2, 3,

∇k
XB̃1(X, V,∇XV ) = O( ε

Rk−1+δ0 ), k = 1, 2,

(2.29)
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which follow from Lemma 2.2.
Next we determine the boundary condition for V (X) on X1 = 1.
Set

G̃(X, V,∇XV ) = H(C0 − 1
2
((1 + ∂x1V − ∂1ϕ−)2 +

3∑
i=2

(∂xiV − ∂iϕ−)2)) − H(C0 − 1
2
q2
+).

It follows from H(C0 − 1
2q2

+) = ρ+ that (2.11) becomes

G̃(X, V,∇XV ) = ρ̃+(x) − ρ+ on X1 = 1.

which may be written as

3∑
i=1

B2i(X, V,∇XV )∂XiV + B2(X, V,∇XV )(V − 1) = G̃(X, 1, 0, 0, 0) on X1 = 1,

where

B2i(X, V,∇XV ) =
∫ 1

0

∂∂Xi
V G̃(X, θ(V − 1) + 1, θ∇XV )dθ,

B2(X, V,∇XV ) =
∫ 1

0

∂V G̃(X, θ(V − 1) + 1, θ∇XV )dθ,

G̃(X, 1, 0, 0) =
(

H(C0 − 1
2
((1 − ∂1ϕ−)2 +

3∑
i=2

(∂iϕ−)2)) − H(C0 − 1
2
q2
+)

)
(x̄).

As for (2.28), a direct computation yields

∂X1V +
3∑

i=2

B̃2i(X, V,∇XV )∂XiV + B̃2(X, V,∇XV )(V − 1) = ρ̃+(x) − ρ+ on X1 = 1, (2.30)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B̃2i(X, V,∇XV ) = O(ε), i = 2, 3,

B̃2(X, V,∇XV ) = O(ε),

∇k
XB̃2i(X, V,∇XV ) = O( ε

Rk−1+δ0 ), k = 1, 2; i = 2, 3,

∇k
XB̃2(X, V,∇XV ) = O( ε

Rk−1+δ0 ), k = 1, 2.

(2.31)

Similarly, we can obtain the boundary condition for V (X) on X2
2 + X2

3 = 1 as follows

3∑
i=1

B̃3i(X, V,∇XV )∂XiV + B̃3(X, V )(V − 1) = 0 on X2
2 + X2

3 = 1. (2.32)

The properties of B̃3i and B̃3 can be described by the following lemma whose proof will be omitted.
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Lemma 2.3. Under the assumptions in (2.14), it holds that

B̃31(X, V,∇XV ) = O(ε),

B̃3i(X, V,∇XV ) − Xi = O(ε), i = 2, 3,

∇k
XB̃31(X, V,∇XV ) = O(

ε

Rk−1+δ0
), k = 1, 2,

∇k
X(B̃3i(X, V,∇XV ) − Xi) = O(

ε

Rk−1+δ0
), k = 1, 2; i = 2, 3,

∇k
XB̃3(X, V ) = O(ε), k = 0, 1,

∇k
XB̃3(X, V ) = O(

ε

Rk−2+δ0
), k = 2, 3.

In addition, we need more information on aij(X, V,∇XV ) and F0(X, V,∇XV ). In the following lemma,
we list some important estimates on aij and F0 which will be used later.

Lemma 2.4. It follows from (2.14) that

a11(X, V,∇XV ) = −(q2
+ − c2

+)(1 + O(ε)),

aij(X, V,∇XV ) = O(ε), 1 ≤ i < j ≤ 3,

aii(X, V,∇XV ) = −c2
+(1 + O(ε)), i = 2, 3,

F0(X, V,∇XV ) = O(ε),

∇k
Xaij(X, V,∇XV ) = O(

ε

Rk−1+δ0
), k = 1, 2,

∇k
XF0(X, V,∇XV ) = O(

ε

Rk−1+δ0
), k = 1, 2.

Proof. We will only sketch the proof since it mostly involves tedious computations. By (2.9), one has

a11(X, V,∇XV ) = −
3∑

k=1

(
(∂kϕ+)2 − c2

+

)(
(∂xk

X1)2 + bkk
11∂X1V

)

−
∑
k �=l

∂kϕ+∂lϕ+(∂xk
X1∂xl

X1 + bkl
11∂X1V )

Taking into account of (2.24), (2.27), (2.5) and (2.14), one can get from above that

a11(X, V,∇XV ) = −(q2
+ − c2

+)(1 + O(ε)). (2.33)

Similarly, for i = 2, 3,

aii(X, V,∇XV ) = −
3∑

k=1

(
(∂kϕ+)2 − c2

+

)(
(∂xk

Xi)2 + bkk
ii ∂X1V

)

−
∑
k �=l

∂kϕ+∂lϕ+(∂xk
Xi∂xl

Xi + bkl
ii ∂X1V )

= c2
+

(
∂Xi

∂xi

)2

+ O(ε) = c2
+(1 + O(ε)) (2.34)
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and for i 
= j,

aij(X, V,∇XV ) = −
3∑

k=1

(
(∂kϕ+)2 − c2

+

)(
∂xk

Xi∂xk
Xj + bkk

ij ∂X1V

)

−
∑
k �=l

∂kϕ+∂lϕ+(∂xk
Xi∂xl

Xj + bkl
ij∂X1V )

= O(ε) (2.35)

Next, noting (2.5)-(2.7), (2.24) and (2.14), one can estimate blk
0 as

|blk
0 (X, V,∇XV )| = O(ε).

This, together with (2.9) and Lemma 2.1, leads to

|F0(X, V,∇XV )| = O(ε).

The rest of Lemma 2.4 follows from similar argument and direct computations. This proves the lemma.
So far we have outlined the linearization of the equation (2.8) and the boundary conditions (2.10)-

(2.12) and derived some estimates on the corresponding coefficients. In the subsequent section, we will
focus on the solvability of (2.8) with (2.28), (2.30), (2.32) and (2.13).

§3. The proof of Uniqueness

Based on the preparations in §2, we start to prove Theorem 1.1. Suppose that there are two solutions
(ϕ1

+(x), ξ1(x2, x3)) and (ϕ2
+(x), ξ2(x2, x3)) to the equation (1.4) with (1.10)-(1.15), which satisfy the cor-

responding regularity conditions in Theorem 1.1. Through the general partial hodograph transformation
(2.2), then one gets two corresponding solutions V1(X) and V2(X) to the equation (2.8) with the boundary
conditions (2.28), (2.30), (2.32) and (2.13). Moreover, Vj(X) ∈ C1,1−δ0(Q̄+)∩C3(Q̄+ \ ∪2

i=1Γi)(j = 1, 2)
and satisfy the estimates in (2.14). Our aim in this section is to prove V1(X) ≡ V2(X) in Q̄+.

Set v(X) = V1(X) − V2(X), then it follows from the equation (2.8) with (2.28), (2.30), (2.32) and
(2.13) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i,j=1

aij(X, V1,∇XV1)∂2
XiXj

v +
3∑

i=1

bi(X)∂Xiv + c(X)v = 0, X ∈ Q+,

∂X1v +
3∑

i=2

γ1i(X)∂Xiv + d1(X)v = 0 on X1 = 0,

∂X1v +
3∑

i=2

γ2i(X)∂Xiv + d2(X)v = 0 on X1 = 1,

3∑
i=1

γ3i(X)∂Xiv + d3(X)v = 0 on X2
2 + X2

3 = 1,

v(0) = 0,

(3.1)
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With respect to the regularities and the estimates of bi(X), c(X) and γij(X), di(X), in terms of (2.14),
Lemma 2.1- 2.4 and the assumption on ρ̃+(x) we have

Lemma 3.1. bi(X), c(X) ∈ C1(Q̄+\∪2
i=1Γi) and γij(X), di(X), di(X) ∈ C1(Q̄+\∪2

i=1Γi)∩C1−δ0(Q̄+).
Moreover, these coefficients satisfy the following estimates

3∑
i=1

|∇k
Xbi(X)| + |∇k

Xc(X)| ≤ Cε

Rk+δ0
, k = 0, 1,

∑
j

‖γij‖C1−δ0 +
3∑

j=1

‖dj‖C1−δ0 ≤ Cε, i = 1, 2,

3∑
j=2

‖γ3j − Xj‖C1−δ0 +
3∑

i=1

‖γ31‖C1−δ0 ≤ Cε,

∑
j

|∇k
Xγij | +

3∑
j=1

|∇k
Xdj | ≤ Cε

Rk−1+δ0
, i = 1, 2; k = 1, 2,

3∑
j=2

|∇k
X(γ3j − Xj)| + |∇k

Xγ31| ≤ Cε

Rk−1+δ0
, k = 1, 2.

As commented in [24], it seems to be difficult to apply the maximum principle directly to derive v ≡ 0.
We intend to establish ‖v‖H2(Q+) = 0 to obtain v ≡ 0. To this end, we first need an inequality with
Poincare’s type.

Lemma 3.2. If u(X) ∈ H2(Q+) and u(0) = 0, then there exists a constant C independent of u such
that ∫

Q+

|u|2dX ≤ C

∫
Q+

(|∇u|2 + |∇2u|2)dX. (3.2)

Proof. We use the techniques in [19] to prove (3.2).
If (3.2) does not hold, then for each m ∈ N, there exists a function um ∈ H2(Q+) with um(0) = 0 such

that ∫
Q+

|um|2dX > m

∫
Q+

(|∇um|2 + |∇2um|2)dX.

Let vm = um

‖um‖L2(Q+)
, then vm has the following properties

(i). ‖vm‖L2(Q+) = 1.
(ii). vm(0) = 0.
(iii). vm ∈ H2(Q+).
(iv).

∫
Q+

(|∇vm|2 + |∇2vm|2)dX < 1
m .

By (i) and (iv) one knows easily that there exist a subsequence {vmj} ⊂ {vm} and a function v ∈
H2(Q+) such that

vmj ⇀ v, H2(Q+).

It follows from (iv) that v = C, a.e.X ∈ Q+. In addition, vmj ⇀ v, H2(Q+) implies vmj → v in C(Q̄+).
Thus v(0) = 0 and v ≡ 0. But this is contradictory with ‖v‖L2(Q+) = 1. Hence Lemma 3.2 is proved.
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Lemma 3.3. For the problem (3.1), if v has the regularities and estimates in (2.14), then for suitably
small ε we have

v(X) ≡ 0.

Proof. This proof procedure will be divided into three steps.
Step 1. Estimate on ‖∇v‖L2(Q+).
Multiplying v on two sides of (3.1) and integrating on Q+ by parts, we have

∫
Q+

−
3∑

i,j=1

aij∂iv∂jvdX =
5∑

i=1

I5, (3.3)

where

I1 =
∫

Q+

3∑
i,j=1

∂iaij∂jvvdX,

I2 =
∫

X1=0

3∑
j=1

a1j∂jvvdS,

I3 = −
∫

X1=1

3∑
j=1

a1j∂jvvdS,

I4 = −
∫

X2
2+X2

3=1

3∑
i=2

(
3∑

j=1

aij∂jvv)XidS,

I5 = −
∫

Q+

( 3∑
i=1

bi(X)∂iv + c(X)v
)

vdX.

Ii(i = 1, ..., 5) will be treated respectively.
(i). Estimate on I1.
For a small constant δ > 0, there exists a constant Cδ > 0 such that

|
3∑

i,j=1

∂iaij∂jvv| ≤ δ|∇v|2 + Cδ

3∑
i,j=1

|∇aij |2|v|2.

Hence by Lemma 2.4, Sobolev’s imbedding theorem and Lemma 3.2, one has

|I1| ≤ δ

∫
Q+

|∇v|2dX + Cδ

∫
Q+

ε2|v|2
R2δ0

dX

≤ δ

∫
Q+

|∇v|2dX + Cδε
2(

∫
Q+

|v|4dX)
1
2

≤ δ

∫
Q+

|∇v|2dX + Cδε

∫
Q+

(|v|2 + |∇v|2)dX

≤ δ

∫
Q+

|∇v|2dX + Cδε

∫
Q+

(|∇v|2 + |∇2v|2)dX.
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(ii). Estimate on I2 and I3.
We only estimate I2; the estimate on I3 is completely parallel.
We rewrite I2 as

I2 = I21 + I22,

where

I21 =
∫

X1=0

a11∂1vvdS,

I22 =
∫

X1=0

3∑
j=2

a1j∂jvvdS.

By the boundary conditions in (3.1), the trace theorem and Lemma 3.2, one has

|I21| ≤ Cε

∫
X1=0

(|v|2 + |∇v|2)dS

≤ Cε

∫
Q+

(|∇v|2 + |∇2v|2)dX.

Similarly, it follows from Lemma 2.4 that the same estimate holds for I22. Thus

|I2| ≤ Cε

∫
Q+

(|∇v|2 + |∇2v|2)dX.

(iii). Estimate on I4.
It follows from the boundary conditions in (3.1), Lemma 2.3 and Lemma 2.4 that

|I4| ≤
∫

X2
2+X2

3=1

|X2

(∑
j �=2

a2j∂jv

)
+ X3

(∑
j �=3

a3j∂jv

)
||v|dS

+
∫

X2
2+X2

3=1

|(a22 + c2
+)X2∂2v + (a33 + c2

+)X3∂3v||v|dS

+ c2
+

∫
X2

2+X2
3=1

|(γ32 − X2)∂2v + (γ33 − X3)∂3v||v|dS + c2
+

∫
X2

2+X2
3=1

|γ31∂1v + d3v||v|dS

≤ Cε

∫
X2

2+X2
3=1

(|v|2 + |∇v|2)dS.

Hence by the trace theorem and Lemma 3.2, one gets

|I4| ≤ Cε

∫
Q+

(|∇v|2 + |∇2v|2)dX.

(iv). Estimate on I5

|I5| ≤ Cε

∫
Q+

(|∇v| + |v|)|v|
Rδ0

dX ≤ Cε

∫
Q+

(|∇v|2 + |∇2v|2)dX.
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Substituting all the above estimates on Ii(1 ≤ i ≤ 5) into (3.3), then for small δ > 0 and ε > 0 we
obtain ∫

Q+

|∇v|2dX ≤ Cε

∫
Q+

|∇2v|2dX. (3.4)

Step 2. Estimate on ‖∇∂1v‖L2(Q+).
Set wi = ∂iv(i = 1, 2, 3). Then w1 satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i,j=1

aij∂
2
ijw1 +

3∑
i,j=1

∂1aij∂iwj + ∂1

( 3∑
i=1

bi(X)∂Xiv + c(X)v
)

= 0,

w1 +
3∑

i=2

γ1iwi + d1v = 0 on X1 = 0,

w1 +
3∑

i=2

γ2iwi + d2v = 0 on X1 = 1,

3∑
i=1

γ3i∂iw1 +
3∑

i=1

∂1γ3iwi + d3w1 + ∂1d3v = 0 on X2
2 + X2

3 = 1.

(3.5)

Multiplying w1 on two sides of (3.5) and integrating by parts in Q+, we get

∫
Q+

−
3∑

i,j=1

aij∂iw1∂jw1dX =
5∑

i=1

Ji, (3.6)

where

J1 =
∫

Q+

3∑
i,j=1

∂iaij∂jw1w1dX −
∫

Q+

3∑
i,j=1

∂1aij∂iwjw1dX,

J2 =
∫

X1=0

3∑
j=1

a1j∂jw1w1dS,

J3 = −
∫

X1=1

3∑
j=1

a1j∂jw1w1dS,

J4 = −
∫

X2
2+X2

3=1

3∑
i=2

(
3∑

j=1

aij∂jw1w1)XidS,

J5 = −
∫

Q+

∂1

( 3∑
i=1

bi(X)∂Xiv + c(X)v
)

w1dX.

Now we treat Ji(i = 1, ..., 5) separately.
(i). Estimate on J1.
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By Lemma 2.4, Sobolev’s imbedding theorem and δ0 < 1
2 , one can get

|J1| ≤ δ

∫
Q+

3∑
j=1

|∇wj |2dX + Cδ

∫
Q+

ε2|w1|2
R2δ0

dX

≤ δ

∫
Q+

3∑
j=1

|∇wj |2dX + Cδε
2

∫
Q+

(|w1|2 + |∇w1|2)dX.

Substituting (3.4) into the above expression, we get

|J1| ≤ C(δε + Cδε
2)

∫
Q+

|∇2v|2dX. (3.7)

(ii). Estimate on J2 and J3.
We decompose J2 as

J2 = J21 + J22

with

J21 =
∫

X1=0

3∑
j=2

a1j∂jw1w1dS,

J22 =
∫

X1=0

a11∂1w1w1dS.

We treat the term J21 first.
Integrating by parts leads to

2J21 = −
∫

X1=0

3∑
j=2

∂ja1jw
2
1dS +

∫
L

3∑
j=2

a1jXjw
2
1dl,

here L = {X : X1 = 0, X2
2 + X2

3 = 1}.
The first term on the right hand side above can be treated by Lemma 2.4 and Sobolev’s imbedding

theorem as

|
∫

X1=0

3∑
j=2

∂ja1jw
2
1dS| ≤ C

∫
X1=0

εw2
1

Rδ0
dS ≤ Cε

∫
Q+

(|w1|2 + |∇w1|2)dX.

It is a bit more difficult to treat the second term in 2J21 because one can not use the trace theorem to
control

∫
L |w1|2dl directly by

∫
Q+

(|w1|2 + |∇w1|2)dX . To overcome this difficulty, we will use
∫

L |∂θv|2dl

to control
∫

L |w1|2dl since
∫

L |∂θv|2dl can be estimated by the trace theorem, here ∂θ = X2∂3 − X3∂2.
Indeed, it follows from the trace theorem that

∫
L

|∂θv|2dl ≤ ‖v|L‖2
H1(L) ≤ C

∫
Q+

(|v|2 + |∇v|2 + |∇2v|2)dX. (3.8)
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Additionally, by the boundary conditions in (3.1) and the expression of ∂θv, one gets on L

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w1 +
3∑

i=2

γ1iwi + d1v = 0,

3∑
i=1

γ3iwi + d3v = 0,

X2w3 − X3w2 = ∂θv.

(3.9)

By Lemma 2.2 and Lemma 2.3, we obtain that on the curve L

wi = Ci1(X)d1v + Ci2(X)d3v + Ci3(X)∂θv, i = 1, 2, 3, (3.10)

here |Cij(X)| ≤ C.
It follows from (3.10), (3.8), Lemma 3.2 and (3.4) that

|
∫

L

3∑
j=2

a1jXjw
2
1dl| ≤ Cε

∫
L

|w1|2dl ≤ Cε

∫
L

(|∂θv|2 + |v|2)dl

≤ Cε

∫
Q+

|∇2v|2dX.

Hence
|J21| ≤ Cε

∫
Q+

|∇2v|2dX. (3.11)

We now treat the term J22.
¿From the equation (3.1), we derive that

∂1w1 = − 1
a11

( 3∑
j=2

a1j∂jw1 +
3∑

i,j=2

aij∂iwj +
3∑

i=1

bi(X)∂Xiv + c(X)v
)

.

Then

|J22| ≤ |J21| + |J ′
22| +

∣∣∣∣
∫

X1=0

( 3∑
i=1

bi(X)∂Xiv + c(X)v
)

w1dS

∣∣∣∣
with J ′

22 = − ∫
X1=0

3∑
i,j=2

aij∂iwjw1dS.

Substituting the boundary condition in (3.1) into J ′
22 yields

J ′
22 =

∫
X1=0

3∑
i,j=2

aij∂iwj(
3∑

k=2

γ1kwk + d1v)dS.

Noting ∂iwjwk = 1
2 [∂i(wjwk) − ∂k(wiwj) + ∂j(wiwk)], then analogous to the treatment on J21, we

obtain
|J ′

22| ≤ Cε

∫
Q+

|∇2v|2dX. (3.12)
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Thus
|J2| ≤ Cε

∫
Q+

|∇2v|2dX. (3.13)

(iii). Estimate on J4.
Set

J4 = J41 + J42

with

J41 = −
∫

X2
2+X2

3=1

3∑
i=2

Xiai1∂1w1w1dS

and

J42 = −
∫

X2
2+X2

3=1

3∑
i,j=2

Xiaij∂jw1w1dS.

Since

J41 = −1
2

∫
X2

2+X2
3=1

∂1(
3∑

i=2

Xiai1w
2
1)dS +

1
2

∫
X2

2+X2
3=1

3∑
i=2

∂1(Xiai1)w2
1dS,

then one has
|J41| ≤ Cε

∫
L

|w1|2dl + Cε(
∫

X2
2+X2

3=1

|w1|4dS)
1
2 ≤ Cε

∫
Q+

|∇2v|2dX.

Next we estimate J42.
In terms of the cylindrical coordinates ⎧⎪⎨

⎪⎩
X1 = X1,

X2 = r cos θ,

X3 = r sin θ,

(3.14)

one has

J42 = −
∫ 1

0

∫ 2π

0

[(a22cos
2θ+a33sin

2θ+a23sin2θ)∂rw1w1+(a23cos2θ+(a33−a22)sinθcosθ)∂θw1w1]dθdX1.

It follows from the third boundary condition in (3.5) that

∂rw1 = D11(X)∂1w1 + D12(X)∂θw1 +
3∑

i=1

Di
13(X)wi + D14(X)v on X2

2 + X2
3 = 1,

where

|D11(X)| + |D12(X)| ≤ Cε,

|∇D11(X)| + |∇D12(X)| ≤ Cε

Rδ0
,

3∑
i=1

|Di
13(X)| ≤ Cε

Rδ0
,

|D14(X)| ≤ Cε

Rδ0
.
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By Lemma 2.4, integration by parts and (3.8), we get

|J42| ≤ Cε

(∫
Q+

(|w1|2 + |∇w1|2)dX +
∫

L

|∂θv|2dl +
∫

L

|v|2
R2δ0

)

≤ Cε

∫
Q+

|∇2v|2dX.

Hence one has
|J4| ≤ Cε

∫
Q+

|∇2v|2dX. (3.15)

(iv). Estimate on J5.

|J5| ≤ Cε

(∫
Q+

|∇v|2 + |v|2
R1+δ0

dX +
∫

Q+

|∇2v||∇v|
Rδ0

dX

)
.

Since H1(Q̄+) ⊂ L6(Q+) and H
1
2 (Q̄+) ⊂ L3(Q+), noting 0 < δ0 < 1

3 , then we have

∫
Q+

|∇v|2
R1+δ0

dX ≤
(∫

Q+

dX

R
3
2 (1+δ0)

) 2
3
(∫

Q+

|∇v|6dX

) 1
3

≤ C

∫
Q+

(
|∇v|2 + |∇2v|2

)
dX,

∫
Q+

|v|2
R1+δ0

dX ≤ C

(∫
Q+

|v|6dX

) 1
3

≤ C

∫
Q+

(|v|2 + |∇v|2)dX,

∫
Q+

|∇2v||∇v|
Rδ0

dX ≤
∫

Q+

|∇2v|2dX +
∫

Q+

|∇v|2
R2δ0

dX ≤ C

∫
Q+

(|∇v|2 + |∇2v|2)dX.

It follows that
|J5| ≤ Cε

∫
Q+

|∇2v|2dX. (3.16)

Finally, substituting the all estimates on Ji(1 ≤ i ≤ 5) into (3.6) yields∫
Q+

|∇∂1v|2dX ≤ Cε

∫
Q+

|∇2v|2dX. (3.17)

Step 3. Estimate on
3∑

k=2

‖∇∂kv‖L2(Q+).

Since wk = ∂kv(k = 2, 3) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i,j=1

aij∂
2
ijwk +

3∑
i,j=1

∂kaij∂iwj + ∂k

( 3∑
i=1

bi(X)∂Xiv + c(X)v
)

= 0,

∂1wk +
3∑

i=2

γ1i∂iwk + +
3∑

i=2

∂kγ1iwi + ∂k(d1v) = 0 on X1 = 0,

∂1wk +
3∑

i=2

γ2i∂iwk + +
3∑

i=2

∂kg2iwi + ∂k(d2v) = 0 on X1 = 1,

3∑
i=1

γ3iwi + d3v = 0 on X2
2 + X2

3 = 1,

(3.18)
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then multiplying wk on two sides of (3.18) and integrating by parts in Q+, we get

∫
Q+

−
3∑

k=2

3∑
i,j=1

aij∂iwk∂jwkdX =
5∑

i=1

Ki. (3.19)

where

K1 =
∫

Q+

3∑
k=2

3∑
i,j=1

∂iaij∂jwkwkdX −
∫

Q+

3∑
k=2

3∑
i,j=1

∂kaij∂iwjwkdX,

K2 =
∫

X1=0

3∑
k=2

3∑
j=1

a1j∂jwkwkdS,

K3 = −
∫

X1=1

3∑
k=2

3∑
j=1

a1j∂jwkwkdS,

K4 = −
∫

X2
2+X2

3=1

3∑
k=2

3∑
i=2

( 3∑
j=1

aij∂jwkwk

)
XidS,

K5 = −
∫

Q+

3∑
k=2

∂k

( 3∑
i=1

bi(X)∂Xiv + c(X)v
)

wkdX.

The terms Ki(i = 1, 2, 3, 5) can be treated analogously as for Ji(i = 1, 2, 3, 5) in Step 2. Namely, one
has

|K1| + |K2| + |K3| + |K5| ≤ Cε

∫
Q+

|∇2v|2dX. (3.20)

However, one can not expect to control |K4| in terms of Cε
∫

Q+
|∇2v|2dX since it contains a term

− ∫
X2

2+X2
3=1

|∂θv|2dS with no small coefficients. So additional case is needed. Our main observation is
that

K4 −
∫

X2
2+X2

3=1

a22|∂θv|2dS ≥ −Cε

∫
Q+

|∇2v|2dX, (3.21)

which, together (3.19)-(3.20), yields the derived estimate.
We now verify (3.21). First we decompose K4 as

K4 = K41 + K42

with

K41 = −
∫

X2
2+X2

3=1

3∑
k=2

( 3∑
i=2

ai1∂1wkwkXi

)
dS,

K42 = −
∫

X2
2+X2

3=1

3∑
k=2

3∑
i,j=2

aijXi∂jwkwkdS.

In a similar way as for J41, one can show

|K41| ≤ Cε

∫
L

|wk|2dl + Cε

(∫
X2

2+X2
3=1

|wk|4dS

) 1
2

≤ Cε

∫
Q+

|∇2v|2dX. (3.22)
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Next we estimate K42.
Using the cylindrical coordinate transformation (3.14), one has

K42 = K ′
42 + K ′′

42 (3.23)

with

K ′
42 = −

∫
X2

2+X2
3=1

a22(∂2
rv∂rv + ∂2

rθv∂θv − (∂θv)2)dS,

K ′′
42 =

∫
X2

2+X2
3=1

(
E11(X)∂2

rv + E12(X)∂2
rθv + E13(X)∂2

θv + E14(X)∂rv + E15(X)∂θv

)(
H1(θ)∂rv

+ H2(θ)∂θv

)
dS,

where

5∑
i=1

|E1i(X)| ≤ Cε,

5∑
i=1

|∇E1i(X)| ≤ Cε

Rδ0
,

and Hi(θ)(i = 1, 2) are smooth functions on θ.
¿From the equation (3.1), we have on X2

2 + X2
3 = 1

∂2
rv = E21(X)∂2

1v + E22∂
2
θv + E23(X)∂2

1rv + E24(X)∂2
1θv + E25(X)∂2

rθv

+ E26(X)∂θv + E27∂rv + E28(X)v, (3.24)

here

|E21| + |E22| ≤ C,

|∇E21| + |∇E22| ≤ Cε

Rδ0
,

5∑
j=3

|E2j | + |E28| ≤ Cε,

5∑
j=3

|∇E2j | ≤ Cε

Rδ0
,

|E26| + |E27| + |E28| ≤ Cε

Rδ0
, |∇E26| + |∇E27| + |∇E28| ≤ Cε

R1+δ0
.

Additionally, it follows from the boundary condition in (3.1) that

∂rv = E31(X)∂1v + E32(X)∂θv + E33(X)v on X2
2 + X2

3 = 1, (3.25)
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here

|E31| + |E32| + |E33| ≤ Cε,

|∇E31| + |∇E32| + |∇E33| ≤ Cε

Rδ0
.

Substituting (3.24) and (3.25) into K ′
42 yields

K ′
42 =

∫
X2

2+X2
3=1

a22(∂θv)2dS + |
∫

X2
2+X2

3=1

G(∂1v, ∂2
1v, ∂θv, ∂2

θv, ∂2
1θv)dS|

with

G(∂1v,∂2
1v, ∂θv, ∂2

θv, ∂2
1θv) = E51(X)∂2

1v∂1v + E52(X)∂2
1v∂θv + E53(X)∂2

θv∂1v

+ E54(X)∂2
θv∂θv + E55(X)∂2

1θv∂1v + E56(X)∂2
1θv∂θv + E57(X)(∂1v)2 + E58(X)∂1v∂θv

+ E59(X)(∂θv)2 + N1(X)∂2
1vv + N2(X)∂2

θvv + N3(X)∂1vv + N4(X)∂θvv + N5(X)v2,

where

6∑
i=1

|E5i(X)| ≤ Cε,

6∑
i=1

|∇E5i(X)| ≤ Cε

Rδ0
,

9∑
i=7

|E5i(X)| ≤ Cε

Rδ0
,

9∑
i=7

|∇E5i(X)| ≤ Cε

R1+δ0
,

|N1(X)| + |N2(X)| ≤ Cε, |∇N1(X)| + |∇N2(X)| ≤ Cε

Rδ0
,

|N3(X)| + |N4(X)| + |N5(X)| ≤ Cε

Rδ0
, |∇N3(X)| + |∇N4(X)| + |∇N5(X)| ≤ Cε

R1+δ0
.

Similar to the treatment on J42 in Step 2, we have

∣∣∣∣
∫

X2
2+X2

3=1

G(∂1v, ∂2
1v, ∂θv, ∂2

θv, ∂2
1θv)dS

∣∣∣∣ ≤ Cε

(∫
X2

2+X2
3=1

|∇v|2 + |v|2
Rδ0

dS

+
∫

L

(|∇v|2 + |v|2)dl +
∫

L

|v|2
R1+δ0

dl

)

≤ Cε

(∫
Q+

|∇2v|2dX + (
∫

L

|v|6dl)
1
3

)

≤ Cε

∫
Q+

|∇2v|2dX. (3.26)

By the same method, we can conclude that

|K ′′
42| ≤ Cε

∫
Q+

|∇2v|2dX. (3.27)
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Thus, it follows from (3.19)-(3.21) that

∫
Q+

3∑
k=2

|∇wk|2dX +
∫

X2
2+X2

3=1

|∂θv|2dS ≤ Cε

∫
Q+

|∇2v|2dX. (3.28)

Summing up (3.17) and (3.28), we obtain∫
Q+

|∇2v|2dX +
∫

X2
2+X2

3=1

|∂θv|2dS ≤ Cε

∫
Q+

|∇2v|2dX.

Hence if we choose ε such that Cε < 1
2 , then

∫
Q+

|∇2v|2dX = 0. (3.29)

In light of Lemma 3.2, we obtain∫
Q+

(|v|2 + |∇v|2 + |∇2v|2)dX = 0.

Thus v ≡ 0 and the proof of Lemma 3.3 is completed.

Proof of Theorem 1.1. Based on Lemma 3.3, it follows from the transformation (2.2) and the
definition of V (X) in (2.3) that the uniqueness of solution (ϕ+(x), ξ(x2, x3)) in Theorem 1.1 holds.

Remark 3.1. It follows from the proof of Theorem 1.1 that the same uniqueness still holds true under
the weaker assumptions on the regularities of the shock front Σ and the potential ϕ+(x) as stated in
Remark 1.3. Indeed, it can be checked easily that the key ingredients in the proof of the uniqueness are
the uniform ellipticity of the equation (1.4) and the appropriate integrability of ∇kξ and ∇kϕ+(k = 2, 3)
on S and Q+ respectively. Thus, the Remark 1.3 holds true. This observation will be useful in the
non-existence analysis given in the next section.

§4. On the non-existence

In this section, we study the non-existence of transonic shock waves patterns conjectured by Courant-
Friedrich’s as mentioned in the introduction for a class of nozzles. In particular, we will prove the Theorem
1.2. This will be done by contradiction. Thus, we assume that for a supersonic incoming flow, which is of
small perturbation of the uniform flow (ρ0, q0, 0, 0), passing through a nozzle, a transonic shock pattern
as in Theorem 1.1 always exists for any appropriately large pressure (which is a small perturbation of
p+ ≡ p(ρ+)) given at the exist of the nozzle for any slowly-varying nozzle. To analyze the nozzle given
in the Theorem 1.2, we introduce the following spherical coordinate transformation:⎧⎪⎨

⎪⎩
x1 = x0

1 + r cosα,

x2 = r sin α cos θ,

x3 = r sin α sin θ

(4.1)

with −α0 ≤ α ≤ α0 and 0 ≤ θ ≤ 2π.
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In terms of the spherical coordinates (4.1), the equation (1.4) on ϕ+ can be written as

c2(H+)
{

1
r2

∂r(r2∂rϕ+) +
1

r2 sin α
∂α(sin α∂αϕ+) +

1
r2 sin2 α

∂2
θϕ+

}

− 1
2

(
∂rϕ+∂r +

1
r2 sin2 α

∂θϕ+∂θ +
1
r2

∂αϕ+∂α

)
(|∇ϕ+|2) = 0 (4.2)

with H+ = H

(
C0 − 1

2 ((∂rϕ+)2 + 1
r2 sin2 α (∂θϕ+)2 + 1

r2 (∂αϕ+)2)
)

.

Suppose that the equation of the shock surface Σ : x1 = ξ(x2, x3) is expressed by r = r(θ, α)−x0
1 with

0 ≤ θ ≤ 2π and −α0 ≤ α ≤ α0, moreover Σ goes through the origin, namely,

r(θ, 0) = 0. (4.3)

In addition, the corresponding boundary conditions are described as follows

ϕ+ = ϕ− on Σ, (4.4)(
∂rϕ+∂r +

1
r2 sin2 α

∂θϕ+∂θ +
1
r2

∂αϕ+∂α

)
(ϕ+ − ϕ−)H+

−
(

∂rϕ−∂r +
1

r2 sin2 α
∂θϕ−∂θ +

1
r2

∂αϕ−∂α

)
(ϕ+ − ϕ−)H− = 0 on Σ, (4.5)

H

(
C0 − 1

2
((∂rϕ+)2 +

1
r2 sin2 α

(∂θϕ+)2 +
1
r2

(∂αϕ+)2)
)

= ρ+ on r = (1 − x0
1) sec α0

(4.6)

∂αϕ+ = 0 on Π2 (4.7)

Let two planes Ξθ1 : x3 = x2tgθ1 and Ξθ2 : x3 = x2tgθ2 (0 ≤ θ1 < θ2 ≤ π
2 ), which go through the

x1−axis, be the fixed solid boundaries. Then the appropriate boundary conditions are

∂2ϕ+tgθi − ∂3ϕ+ = 0 on Ξθi , i = 1, 2,

i.e.,
∂θϕ+ = 0 on Ξθi , i = 1, 2, (4.8)

Let Ω be the domain bounded by Π1 ∪ Π2, x1 = −1 and r = (1 − x0
1) sec α0. The following notations

will be used:

Ωθ1,θ2 = Ω ∩ {x : θ1 ≤ θ ≤ θ2};

Ω+
θ1,θ2

= Ωθ1,θ2 ∩
{

x : r(θ, α) − x0
1 ≤ r ≤ (1 − x0

1) sec α0

}
;

Sθ1,θ2 =
{

(x2, x3) : (ξ(x2, x3), x2, x3) ∈ Σ
}
∩ {x : θ1 ≤ θ ≤ θ2} which is the projection of the shock

surface Σ ∩ {x : θ1 ≤ θ ≤ θ2} on the (x2, x3) − plane;

Γ1
θ1,θ2

= Σ ∩ Π2 ∩ {x : θ1 ≤ θ ≤ θ2}, Γ2
θ1,θ2

= Π2 ∩ {x : r = (1 − x0
1) sec α0} ∩ {x : θ1 ≤ θ ≤ θ2};

T 1
θi

= Σ ∩ Ξθi , T 2
θi

= Ξθi ∩ {x : r = (1 − x0
1) secα0}, γθi = Π2 ∩ Ξθi , i = 1, 2;

P j
θi

= Γj
θ1,θ2

∩ T j
θi

, i, j = 1, 2; Mj = T j
θ1

∩ T j
θ2

j = 1, 2.
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It follows by similar arguments as in §3 that one can obtain following uniqueness result on any part
of the nozzle which is bounded by the slowly-varying nozzle wall and two planes through the x1−axis for
any appropriately large pressure at the exit.

Proposition 4.1. Suppose that (1.6) and (1.9) hold. Then for suitably small ε > 0, if the equation
(4.2) with the boundary conditions (4.3)-(4.8) has a pair of solution (ϕ+(x), ξ(x2, x3)) with the following
regularities and estimates

(i). ξ(x2, x3) ∈ Lip(S̄θ1,θ2) ∩ C1,1−δ0(S̄θ1,θ2 \ P 1
θ1

∪ P 1
θ2

∪ M1) ∩ C3(Sθ1,θ2).
For x ∈ Σ and (x2, x3) ∈ Sθ1,θ2 , define

|d0| = min{dist(x, P 1
θ1

), dist(x, P 1
θ2

), dist(x, M1)}; |d1| = min{dist(x, T 1
θ1

), dist(x, T 1
θ2

), dist(x, Γ1
θ1θ2

)}

Then, near the points P 1
θ1

, P 1
θ2

and M1,

|∇k
x2,x3

ξ(x2, x3)| ≤ Cε

|d0|k−1
, k = 1, 2, 3;

Away from the points P 1
θ1

, P 1
θ2

and M1,

‖ξ(x2, x3)‖C1,1−δ0 ≤ Cε, |∇k
x2,x3

ξ(x2, x3)| ≤ Cε

|d1|k−2+δ0
.

(ii). For x ∈ Ω+
θ1,θ2

, set

|d̃x| = min{dist(x, P j
θi

), i, j = 1, 2; dist(x, Mj), j = 1, 2};
|dx| = min{dist(x, Γ1

θ1,θ2
), dist(x, Γ2

θ1,θ2
), dist(x, T j

θi
), i, j = 1, 2, dist(x, γθi), i = 1, 2,

√
x2

2 + x2
3},

then ϕ+(x) ∈ Lip(Ω̄+
θ1,θ2

) ∩ C1,1−δ0(Ω̄+
θ1,θ2

\ ∪T j
θi
∪ Mk) ∩ C3(Ω+

θ1,θ2
) admits the following estimates:

Near the points P j
θi

and Mk,

|∇k
xϕ+(x)| ≤ Cε

|d̃x|k−1
, k = 1, 2, 3;

Away from the points P j
θi

and Mk,

‖ϕ+(x) − q+x1‖C1,1−δ0 ≤ Cε, |∇k
xϕ+(x)| ≤ Cε

|dx|k−2+δ0
.

Then the corresponding solution (ϕ+(x), ξ(x2, x3)) is unique. Furthermore, a corresponding general-
ization of Remark 1.3 is available in this case also.

Remark 4.1. By the regularity theory for second order elliptic equations with cornered boundaries (see
the references in [23]), we know that the assumptions on the regularities of solution (ϕ+(x), ξ(x2, x3)) in
Proposition 4.1 are plausible.
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Choose θ1 = 0 and θ2 = π
2 in Proposition 4.1 and denote the corresponding solution by (ϕ1(r, θ, α),

r1(θ, α)) in the spherical coordinates (4.1). We then extend this solution as

ϕ̃1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1(r, θ, α), 0 ≤ θ ≤ π
2 ;

ϕ1(r, π − θ, α), π
2 ≤ θ ≤ π;

ϕ1(r, θ − π, α), π ≤ θ ≤ 3π
2 ;

ϕ1(r, 2π − θ, α), 3π
2 ≤ θ ≤ 2π;

and

r̃1(θ, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r1(θ, α), 0 ≤ θ ≤ π
2 ;

r1(π − θ, α), π
2 ≤ θ ≤ π;

r1(θ − π, α), π ≤ θ ≤ 3π
2 ;

r1(2π − θ, α), 3π
2 ≤ θ ≤ 2π;

Return to the x−coordinates and denote by x1 = ξ̃1(x2, x3) instead of r = r̃(θ, α) − x0
1. Then by the

symmetry of ϕ−(x) near the shock and the equation (4.2) with (4.3)-(4.7), one can verify that (ϕ̃1, ξ̃1)
is a solution of (1.4) with (1.10)-(1.13), (1.14)

′
and (1.15), moreover (ϕ̃1(x), ξ̃1(x2, x3)) has the following

regularity properties
(i). ξ̃1(x2, x3) ∈ Lip(S̄) ∩ C1,1−δ0(S̄ \ ∪P 1

lπ
2
∪ M1) ∩ C3(S) with l = 0, 1, 2, 3.

Near the points P 1
lπ
2

and M1,

|∇k
x2,x3

ξ̃1(x2, x3)| ≤ Cε

|d1
0|k−1

, k = 1, 2, 3;

Away from the points P 1
lπ
2

and M1,

‖ξ̃1(x2, x3)‖C1,1−δ0 ≤ Cε, |∇k
x2,x3

ξ̃1(x2, x3)| ≤ Cε

|d1
1|k−2+δ0

, k = 2, 3

here |d1
0| = min{dist(x, P 1

lπ
2

), l = 0, 1, 2, 3; dist(x, M1)} and |d1
1| = min{dist(x, T 1

lπ
2

), l = 0, 1, 2, 3; dist(x,

Γ1
0,2π)}.
(ii). ϕ̃1(x) ∈ Lip(Ω̄+) ∩ C1,1−δ0(Ω̄+ \ ∪P j

lπ
2
∪ Mj) ∩ C3(Ω+) admits the following estimates:

Near the points P j
lπ
2

and Mj with l = 0, 1, 2, 3 and j = 1, 2,

|∇k
xϕ̃1(x)| ≤ Cε

|d̃1
x|k−1

, k = 1, 2, 3;

Away from the points P j
lπ
2

and Mj ,

‖ϕ̃1(x) − q+x1‖C1,1−δ0 ≤ Cε, |∇k
xϕ̃1(x)| ≤ Cε

|d1
x|k−2+δ0

.

here |d̃1
x| = min{dist(x, P j

lπ
2

), l = 0, 1, 2, 3; j = 1, 2; dist(x, Mj), j = 1, 2}, |d1
x| = min{dist(x, Γ1

lπ
2 , (l+1)π

2

),

dist(x, Γ2
lπ
2 , (l+1)π

2
), l = 0, 1, 2; dist(x, T j

lπ
2

), dist(x, γ lπ
2

), l = 0, 1, 2, 3; j = 1, 2,
√

x2
2 + x2

3}.
33



It follows from the uniqueness results in Proposition 4.1 with θ1 = 0 and θ2 = 2π, in particular the
results corresponding to Remark 3.1 that (ϕ̃1(x), ξ̃1(x2, x3)) = (ϕ+(x), ξ(x2, x3)). Therefore, we have
shown the assertion that

(ϕ+(r, θ, α), r(θ, α)) is symmetric with respect to θ = π
2 , π, 3π

2 . (4.9)

Next, choosing θ1 = 0 and θ2 = π
4 in Proposition 4.1, then one denotes the corresponding solution by

(ϕ2(r, θ, α), r2(θ, α)) in Ω+
0, π

4
.

Set

ϕ2,1(r, θ, α) =
{

ϕ2(r, θ, α), 0 ≤ θ ≤ π
4 ,

ϕ2(r, π
2 − θ, α), π

4 ≤ θ ≤ π
2 ,

and

r2,1(θ, α) =
{

r2(θ, α), 0 ≤ θ ≤ π
4 ,

r2(π
2 − θ, α), π

4 ≤ θ ≤ π
2 ,

then we obtain a solution (ϕ2,1, r2,1) in the domain Ω+
0, π

2
to (4.2) with (4.3)-(4.8). As in the previous

step, one can get a solution (ϕ̃2(x), ξ̃2(x2, x3)) in Ω+ with the following properties

(i). ξ̃2(x2, x3) ∈ Lip(S̄) ∩ C1,1−δ0(S̄ \ ∪P 1
lπ
4
∪ M1) ∩ C3(S) with l = 0, 1, ..., 7.

Near the points P 1
lπ
4

and M1,

|∇k
x2,x3

ξ̃2(x2, x3)| ≤ Cε

|d2
0|k−1

, k = 1, 2, 3;

Away from the points P 1
lπ
4

and M1,

‖ξ̃2(x2, x3)‖C1,1−δ0 ≤ Cε, |∇k
x2,x3

ξ̃2(x2, x3)| ≤ Cε

|d2
1|k−2+δ0

, k = 2, 3

here |d2
0| = min{dist(x, P 1

lπ
4

), l = 0, 1, ..., 7; dist(x, M1)} and |d2
1| = min{dist(x, T 1

lπ
4

), l = 0, 1, ..., 7;

dist(x, Γ1
0,2π)}.

(ii). ϕ̃2(x) ∈ Lip(Ω̄+) ∩ C1,1−δ0(Ω̄+ \ ∪P j
lπ
4
∪ Mj) ∩ C3(Ω+) admits the following estimates:

Near the points P j
lπ
4

and Mj with l = 0, 1, ..., 7 and j = 1, 2,

|∇k
xϕ̃1(x)| ≤ Cε

|d̃2
x|k−1

, k = 1, 2, 3;

Away from the points P j
lπ
2

and Mj ,

‖ϕ̃2(x) − q+x1‖C1,1−δ0 ≤ Cε, |∇k
xϕ̃2(x)| ≤ Cε

|d2
x|k−2+δ0

.

here |d̃2
x| = min{dist(x, P j

lπ
4

), l = 0, 1, ..., 7; j = 1, 2; dist(x, Mj), j = 1, 2}, |d2
x| = min{dist(x, Γ1

lπ
4 , (l+1)π

2

),

dist(x, Γ2
lπ
2 , (l+1)π

2
), l = 0, 1, ..., 6; dist(x, T j

lπ
2

), dist(x, γ lπ
2

), l = 0, 1, ..., 7; j = 1, 2,
√

x2
2 + x2

3}.
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Thus, one can applying Proposition 4.1 again to conclude that (ϕ̃2(x), ξ̃2(x2, x3)) = (ϕ+(x), ξ(x2, x3)),
and so

(ϕ+(r, θ, α), r(θ, α)) is symmetric with respect to θ = π
4 , π

2 , 3π
4 , π, 5π

4 , 3π
2 , 7π

4 . (4.10)

Repeating this procedure shows that

(ϕ+(r, θ, α), r(θ, α)) is symmetric with respect to θ = kπ
2m , k = 1, 2, ..., 2m−1, m ∈ N. (4.11)

By the continuity of (ϕ+(r, θ, α), r(θ, α)) , we conclude that

(ϕ+(r, θ, α), r(θ, α)) is independent of the invariable θ. (4.12)

From now on, we will use the notations (ϕ+(r, α), r(α)) instead of (ϕ+(r, θ, α), r(θ, α)).
Now, the equation (4.4) with (4.3)-(4.8) can be simplified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2(H+)
(

1
r2 ∂r(r2∂rϕ+) + 1

r2 sin α∂α(sin α∂αϕ+)
)
− 1

2

(
∂rϕ+∂r + 1

r2 ∂αϕ+∂α

)
(|∇ϕ+|2) = 0, (4.13)

ϕ+ = ϕ− on Σ, (4.14)
r(0) = 0, (4.15)(

∂rϕ+∂r + 1
r2 ∂αϕ+∂α

)
(ϕ+ − ϕ−)H+ −

(
∂rϕ−∂r + 1

r2 ∂αϕ−∂α

)
(ϕ+ − ϕ−)H− = 0 on Σ, (4.16)

H

(
C0 − 1

2 ((∂rϕ+)2 + 1
r2 (∂αϕ+)2)

)
= ρ+ on r = (1 − x0

1) sec α0, (4.17)

∂αϕ+ = 0 on Π2 (4.18)

with H+ = H

(
C0 − 1

2 ((∂rϕ+)2 + 1
r2 (∂αϕ+)2)

)
.

To study the problem (4.13)-(4.18), we introduce the following notations: for α1, α2 ∈ [−α0, α0],

Ωα1,α2 = Ω ∩ {x : α1 ≤ α ≤ α2};

Ω+
α1,α2

= Ωα1,α2 ∩
{

x : r(α) − x0
1 ≤ r ≤ (1 − x0

1) secα0

}
;

Sα1,α2 =
{

(x2, x3) : (ξ(x2, x3), x2, x3) ∈ Σ
}
∩ {x : α1 ≤ α ≤ α2};

Π2
α1,α2

= {x : |x2
2 + x2

3 = (x1 − x0
1)

2 tgαi, i = 1, 2, −1
2
≤ x1 ≤ 1};

Γ1
α1,α2

= Σ ∩ Π2
α1,α2

, and Γ2
α1,α2

= Π2
α1,α2

∩ {x : r = (1 − x0
1) sec α0}.

Then, in a similar way as for the proof of Theorem 1.1, one can show the uniqueness result on the
transonic problem in half a nozzle.

Proposition 4.2. Suppose that (1.6) and (1.9) hold. Then for suitably small ε > 0, if the equation
(4.13)-(4.18) with the boundary conditions ∂αϕ+ = 0 on α = 0 and α = α1 has a pair of solution
(ϕ+(x), ξ(x2, x3)) with the following regularities and estimates

(i). ξ(x2, x3) ∈ C1,1−δ0(S̄0,α1) ∩ C3(S0,α1), ‖ξ(x2, x3)‖C1,1−δ0 (S̄0,α1) ≤ Cε, |∇k
x2,x3

ξ(x2, x3)|
≤ Cε

|d1|k−2+δ0 , here k = 2, 3; (x2, x3) ∈ S0,α1 and |d1| = dist(x, Γ1
0,α1

) for x ∈ Σ and (x2, x3) ∈ S0,α1 .
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(ii). ϕ+(x) ∈ C1,1−δ0(Ω̄+
0,α1

) ∩ C3(Ω+
0,α1

) admits the following estimates:

‖ϕ+(x) − q+x1‖C1,1−δ0(Ω̄+
0,α1

) ≤ Cε, |∇k
xϕ+(x)| ≤ Cε

|dx|k−2+δ0
for k = 2, 3; x ∈ Ω+

0,α1

here |dx| = min{dist(x, Γ1
0,α1

), dist(x, Γ2
0,α1

)} for x ∈ Ω+
0,α1

.

Then the corresponding solution (ϕ+(x), ξ(x2, x3)) is unique. Furthermore, a corresponding general-
ization of Remark 1.3 holds true in this case.

We choose α1 = α0 in Proposition 4.2 and denote the corresponding solution by (φ1(r, α), R1(α)) in
the spherical coordinates (4.1).

Set

φ̄1(x) =
{

φ1(r, α), 0 ≤ α ≤ α0;
φ1(r,−α), −α0 ≤ α ≤ 0

and

R̄1(α) =
{

R1(α), 0 ≤ α ≤ α0;
R1(−α), −α0 ≤ α ≤ 0

Denote by x1 = ξ̄1(x2, x3) instead of r = R̄1(α) − x0
1. Then one can verify that (φ̄1, ξ̄1) is a solution

of (4.13)-(4.18), moreover (φ̄1(x), ξ̄1(x2, x3)) has the following regularity and satisfies the estimates

(i). ξ̄1(x2, x3) ∈ C1,1−δ0(S̄) ∩ C3(S), ‖ξ̄1(x2, x3)‖C1,1−δ0(S̄) ≤ Cε, |∇k
x2,x3

ξ̄1(x2, x3)| ≤ Cε
|d̄1|k−2+δ0

,

here k = 2, 3; (x2, x3) ∈ S and |d̄1| = min{dist(x, Γ1
0,α0

), dist(x, Γ1
0,−α0

)} for x ∈ Σ and (x2, x3) ∈ S.

(ii). φ̄1(x) ∈ C1,1−δ0(Ω̄+) ∩ C3(Ω+) admits the following estimates:

‖φ̄1(x) − q+x1‖C1,1−δ0 (Ω̄+) ≤ Cε, |∇k
xφ̄1(x)| ≤ Cε

|d̄1
x|k−2+δ0

for k = 2, 3; x ∈ Ω+

here |d̄1
x| = min{dist(x, Γi

0,−α0
), dist(x, Γi

0,α0
) : i = 1, 2}.

It follows from a similar uniqueness results as in Theorem 1.1 and Remark 1.3 that (φ̄1(x), ξ̄1(x2, x3)) =
(ϕ+(x), ξ(x2, x3)) and thus

(ϕ+(r, α), r(α)) is symmetric with respect to α = 0. (4.19)

Next, choosing α1 = α0
2 in Proposition 4.2, and denoting the corresponding solution in Ω+

0,
α0
2

by
(φ2(r, α), R2(α)), we may extend it as follow

Set

φ2,1(r, α) =
{

φ2(r, α), 0 ≤ α ≤ α0
2 ,

φ2(r, α0 − α), α0
2 ≤ α ≤ α0,

and

R2,1(α) =
{

R2(α), 0 ≤ α ≤ α0
2 ,

R2(α0 − α), α0
2 ≤ α ≤ α0,

Then (φ2,1, R2,1) is defined on the domain Ω+
0,α0

, which can extend evenly to Ω+ as above to obtain a
solution (φ̄2(x), ξ̄2(x2, x3)) in Ω+ with the following regularities and estimates

(i). ξ2(x2, x3) ∈ C1,1−δ0(S̄) ∩ C3(S), ‖ξ2(x2, x3)‖C1,1−δ0(S̄) ≤ Cε, |∇k
x2,x3

ξ2(x2, x3)| ≤ Cε
|d̄2|k−2+δ0

,
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here k = 2, 3; (x2, x3) ∈ S and

min

{
dist(x, Γ1

α1,α2
), (α1, α2) = (0, α0

2 ), (α0
2 , α0), (−α0

2 , 0), (−α0,−α0
2 )

}
for x ∈ Σ and (x2, x3) ∈ S.

(ii). φ̄2(x) ∈ C1,1−δ0(Ω̄+) ∩ C3(Ω+) admits the following estimates:

‖φ̄2(x) − q+x1‖C1,1−δ0 (Ω̄+) ≤ Cε, |∇k
xφ̄2(x)| ≤ Cε

|d̄2
x|k−2+δ0

for k = 2, 3; x ∈ Ω+

here |d̄2
x| = min{dist(x, Γi

α1,α2
); i = 1, 2, (α1, α2) = (0, α0

2 ), (α0
2 , α0), (−α0

2 , 0), (−α0,−α0
2 )}.

It follows from a similar argument as in the proof in §3, one can show that (φ̄2(x), ξ̄2(x2, x3)) =
(ϕ+(x), ξ(x2, x3)). Thus

(ϕ+(r, α), r(α)) is symmetric with respect to α = 0,±α0
2 . (4.20)

Continue this procedure repeatedly to get that

(ϕ+(r, α), r(θ, α)) is symmetric with respect to α = ±kα0
2m , k = 0, 1, 2, ..., 2m − 1, m ∈ N. (4.21)

By the continuity of (ϕ+(r, α), r(α)), we conclude that

(ϕ+(r, α), r(α)) is independent of the invariable α. (4.22)

Subsequently, we will use the notations (ϕ+(r), 0) instead of (ϕ+(r, α), r(α)). Then the equation
(4.13)-(4.18) can be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2(H+)∂r(r2∂rϕ+) − r2

2 ∂rϕ+∂r(|∂rϕ+|2) = 0, (4.23)
ϕ+ = ϕ− on Σ (4.24)
∂rϕ+H+ − ∂rϕ−H− = 0 on Σ, (4.25)
H(C0 − 1

2 (∂rϕ+)2) = ρ+ on r = (1 − x0
1) secα0, (4.26)

with H+ = H(C0 − 1
2 (∂rϕ+)2).

Since 1
2 (∂rϕ+(r))2 + h(ρ+(r)) ≡ C0, then it follows from (4.23)-(4.26) that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2(C0 − h(ρ+(r))) − c2(ρ+(r))

)
∂rρ+(r) + 4ρ+(r)

r (C0 − h(ρ+(r))) = 0,−x0
1 ≤ r ≤ (1 − x0

1) secα0,

ρ2
+(r)(C0 − h(ρ+(r))) = ρ2

−(r)(C0 − h(ρ−(r))) on r = −x0
1,

ρ+(r) = ρ+ on r = (1 − x0
1) secα0.

(4.27)
Let ρ−(−x0

1) = ρ0. Then we obtain ρ+(−x0
1) = ρ+ in terms of the Rankine-Hugoniot condition in

(4.27). Thus the problem (4.27) can be reduced as follows

⎧⎪⎪⎨
⎪⎪⎩

(
2(C0 − h(ρ+(r))) − c2(ρ+(r))

)
∂rρ+(r) + 4ρ+(r)

r (C0 − h(ρ+(r))) = 0,

ρ+(−x0
1) = ρ+,

ρ+((1 − x0
1) secα0) = ρ+

(4.28)
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Obviously, it follows from the first equation in (4.28) that ∂rρ+(r) > 0 holds for the subsonic flow in
the domain {r : −x0

1 ≤ r ≤ (1 − x0
1) sec α0}. Hence the problem (4.28) has no solution.

Proof of Theorem 1.2. If we choose Π1 ∪ Π2 as the nozzle wall, and the supersonic coming flow is
determined by solving the following hyperbolic equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i=1

((∂iϕ−)2 − c2
−)∂2

i ϕ− + 2
∑

1≤i<j≤3

∂iϕ−∂jϕ−∂2
ijϕ− = 0,

ϕ−|√(x1−x0
1)

2+x2
2+x2

3=−x0
1

= 0,

∂rϕ−|√(x1−x0
1)

2+x2
2+x2

3=−x0
1

= q0,

∂1f∂1ϕ− +
3∑

i=2

(∂if − xi

f
)∂iϕ− = 0 on Π1 ∪ Π2.

here
√

x2
2 + x2

3 = f(x) represents the equation of Π1 ∪ Π2.
Then for any given constant pressure pr 
= p0

r (here p0
r is determined by the first two equations in

(4.28)), by (4.28) we have shown that the problem (1.4) with (1.10)-(1.15) has no transonic shock solution
(ϕ+(x), ξ(x2, x3)) with the regularities and estimates as stated in Theorem 1.1. Thus we complete the
proof on Theorem 1.2.

Remark. 4.2. It follows from the equation (4.28), we know that the pressure P+(x) at the exit of
the nozzle cannot be given arbitrarily, otherwise the problem is over-determined. Even if we adjust the
position of the shock at the diverging part in − 1

4 ≤ x1 ≤ 1, the corresponding transonic shock problem
on the potential equation is still ill-posed for the arbitrarily given pressure at the exit of a slowly-varying
nozzle.

In the rest of this section, we will present some non-existence results for the transonic shock problem
in a 2-D nozzle.

Suppose that there is a uniform supersonic flow (u1, u2) = (q0, 0) with constant density ρ0 > 0 which
comes from negative infinity, and the flow enters the 2 − D nozzle from the entrance. We assume that
the two nozzle walls are a small perturbation of two straight line segments x2 = −1 and x2 = 1 with
−1 ≤ x1 ≤ 1 respectively. The flow in the nozzle is assumed to be irrotational and isentropic.

Let ϕ(x) be the potential of velocity, i.e. (∂1ϕ, ∂2ϕ) = (u1, u2), then it follows from the Bernoulli’s
law and mass conservation that

((∂1ϕ)2 − c2)∂2
1ϕ + 2∂1ϕ∂2ϕ∂2

12ϕ + ((∂2ϕ)2 − c2)∂2
2ϕ = 0 (4.29)

with c = c(ρ) and ρ = H(C0 − 1
2 |∇ϕ|2).

Suppose that the two walls of the nozzle are given respectively by

x2 = f2(x1) and x2 = f1(x1) (4.30)

where fi(x1)(i = 1, 2) satisfies

| dk

dxk
1

(f2(x1) − 1)| ≤ ε, | dk

dxk
1

(f1(x1) + 1)| ≤ ε for − 1 ≤ x1 ≤ 1, k ≤ 4, k ∈ N ∪ {0} (4.31)
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Without loss of generality and for the convenience to write, it will be assumed that

f1(−1) = f1(1) = −1, f2(−1) = f2(1) = 1, f
(k)
i (−1) = 0 for i = 1, 2; 1 ≤ k ≤ 4

(4.32)
When the uniform supersonic flow (q0, 0) enters the entry of the nozzle, then the potential ϕ−(x) in

the nozzle will be determined by the equation (4.29) with the corresponding initial-boundary conditions.
One can show that ϕ−(x) ∈ C4 holds in the whole nozzle {(x1, x2) : −1 ≤ x1 ≤ 1, f1(x1) ≤ x2 ≤ f2(x1)},
moreover |∇α

x(ϕ−(x) − q0x1)| ≤ Cε holds for |α| ≤ 4.
Given an appropriate pressure P̃+(x2) = P (ρ̃+(x2)) at the exit x1 = 1 of the nozzle, where ρ̃+(x2) is

a small perturbation of the constant density ρ+.
For the definiteness, we assume that the shock x1 = ξ(x2) goes through the point (0, 0),

ξ(0) = 0 (4.33)

Across the shock x1 = ξ(x2), we denote the potential by ϕ+(x). Then

ϕ+(x) = ϕ−(x) on x1 = ξ(x2) (4.34)

and the derivative of ϕ+(x) must satisfy the Rankine-Hugoniot condition

[∂1ϕ+H ] − ξ′(x2)[∂2ϕ+H ] = 0 on x1 = ξ(x2) (4.35)

In addition, ϕ+ should satisfy the physical entropy condition (see [6]):

H(C0 − 1
2
|∇ϕ−|2) < H(C0 − 1

2
|∇ϕ+|2) on x1 = ξ(x2) (4.36)

At the exit of the nozzle, the density ρ(x) is given by

H(C0 − 1
2
|∇ϕ+|2) = ρ̃+(x2) on x1 = 1 (4.37)

Finally, the velocity of the flow is tangent to the nozzle walls, hence

∂2ϕ+ = f ′
i(x1)∂1ϕ+ on x2 = fi(x1), i = 1, 2 (4.38)

Completely similar to Theorem 1.2, we have

Theorem 4.3.(Ill-posedness)

(i). If the walls of the nozzle are straight, namely, f1(x1) ≡ −1 and f2(x1) ≡ 1. Let ρ̃+(x2) = ρ+

in (4.38), then for the constant supersonic coming flow (ρ̃0, q̃0, 0) with (ρ̃0, q̃0) 
= (ρ0, q0), the problem
(4.29) with (4.33)-(4.38) has no transonic shock solution (ϕ+(x), ξ(x2)) such that (ϕ+(x), ξ(x2)) have
the following regularities

(I). Denote by P̃i = (xi
1, x

i
2)(i = 1, 2) the intersection points of x1 = ξ(x2) with x2 = fi(x1) and define

|dx2 | = min{dist(x, P̃1), dist(x, P̃2)} with x = (ξ(x2), x2). Then for k = 2, 3 and x2 ∈ (x1
2, x

2
2)

ξ(x2) ∈ C1,1−δ0 [x1
2, x

2
2] ∩ C3(x1

2, x
2
2), ‖ξ(x2)‖C1,1−δ0 ≤ Cε, |d

kξ(x2)
dxk

2

| ≤ Cε

|dx2 |k−2+δ0
.

39



here and below δ0 ∈ (0, 1
3 ) is any fixed constant.

(II). Denote by Ω+ = {(x1, x2) : ξ(x2) < x1 < 1, f1(x1) < x2 < f2(x1)}. For x ∈ Ω+, write
|dx| = min

1≤i≤4
{dist(x, P̃i)} with P̃3 = (1, 1) and P̃4 = (1,−1). We assume that ϕ+(x) ∈ C1,1−δ0(Ω̄+) ∩

C3(Ω̄+ \ ∪4
i=1P̃i) satisfies

‖ϕ+(x) − q+x1‖C1,1−δ0 ≤ Cε, |∇k
xϕ+(x)| ≤ Cε

|dx|k−2+δ0
for k = 2, 3; x ∈ Ω+

(ii). If a diverging exhaust section of the nozzle is a two-dimensional angular section, then for the
given pressure pr at the exit , which is appropriately larger than that in the entry and is of a small
perturbation of ρ+, then the problem (4.29) with (4.33)-(4.38) is ill-posed. More concretely, one can
find the supersonic coming flows which are of small perturbations of (ρ0, q0) such that the problem (4.29)
with (4.33)-(4.38) has no transonic shock solution (ϕ+(x), ξ(x2)) with the corresponding regularities and
estimates as stated in (i).

Sketch of Proof:

(i). As in Theorem 1.1, if a pair of solution (ϕ+(x), ξ(x2)) of (4.29) with (4.33)-(4.38) has the regular-
ities and estimates stated in (i), then such a solution (ϕ+(x), ξ(x2)) is unique. Based on this uniqueness
result, we can arrive at

(I)1. (ϕ+(x), ξ(x2)) is symmetric with respect to x2 = 0.
(I)2. (ϕ+(x), ξ(x2)) is symmetric with respect to x2 = 0,± 1

2 .
More generally, for any m ≥ 2 and m ∈ N one has
(I)m. (ϕ+(x), ξ(x2)) is symmetric with respect to x2 = ± k

2m , k = 0, 1, ..., 2m − 1.
Thus we get

ϕ+(x) = ϕ+(x1), ξ(x2) ≡ 0.

It follows from (4.29) with (4.33)-(4.38) that
⎧⎪⎨
⎪⎩

∂2
1ϕ+ = 0, x1 > 0

∂1ϕ+H+ = ρ̃0q̃0 on x1 = 0
H+ = ρ+ on x1 = 1

(4.39)

The first and the second equations in (4.39) imply that

∂1ϕ+ = q̃+, H+ = ρ̃+

here the constants ρ̃+ and q̃+ are determined by

ρ̃+q̃+ = ρ̃0q̃0,
1
2
q̃2
+ + h(ρ̃+) =

1
2
q̃2
0 + h(ρ̃0), q̃+ < c(ρ̃+).

Since (ρ̃0, q̃0) 
= (ρ0, q0), then ρ̃+ 
= ρ+. This is contradictory with the third equation in (4.39).

(ii). Its proof is completely similar to that for (4.13)-(4.18) (even much simpler), thus we omit it here.

Remark 4.3. For the complete steady compressible Euler system, the non-existence result still holds
for the general given pressure condition at the exit of a slowly-varying nozzle. See [27] for details.

40



Furthermore, for the case of 3-D standard cylindrical surface, the ill-posedness problem for the transonic
shock with a given pressure at the exit will also be treated in [27]. But if the fixed boundaries of the nozzle
are porous( perforated) or curved appropriately large, then we can show that the transonic shock problem
for the full Euler system is well-posed for the arbitrarily given and appropriately large pressure P̃+(x) at
the exit, the details see [26].

§5. The proof on Theorem 1.3

In this section, we will prove the existence results, i.e. Theorem 1.3. We will use the notations
introduced in §2. Under the transformation (2.2), it follows from the equation (1.4) and the boundary
conditions (1.11)-(1.12), (1.13), (1.14)

′′
and (1.15) that the unknown function V (X) defined in (2.3)

satisfies the following second order equation with the corresponding nonlinear boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i,j=1

aij(X, V,∇XV )∂2
XiXj

V + F0(X, V,∇XV ) = 0 in Q+,

G(X, V,∇XV ) = 0 on X1 = 0,
3∑

j=1

( 3∑
i=2

(
xi

f
− ∂if)

∂Xj

∂xi
− ∂1f

∂Xj

∂x1

)
∂Xj V = ∂1f(1 − ∂1ϕ−)

+
3∑

i=2

(
xi

f
− ∂if)∂iϕ− on X2

2 + X2
3 = 1,

3∑
k=1

∂Xk

∂x1
∂Xk

V +
3∑

l=2

3∑
k=1

bl(x)
∂Xk

∂xl
∂Xk

V + b1(x)V = −1 + ∂1ϕ− + b2(x)∂2ϕ−

+b3(x)∂3ϕ− + b1(x)(1 − x1 + ϕ−(x)) − g(x) on X1 = 1.

(5.1)

For the problem (5.1), we will establish the following existence, uniqueness and regularity results:

Theorem 5.1. Let δ0 ∈ (0, 1
3 ) be a given constant. Assume that (1.6)-(1.9) hold. Then there exist

positive constants ε0 and C depending only on ρ+, q+ and δ0 such that for any ε ∈ (0, ε0), the problem
(5.1) has a unique solution V (X) ∈ C1,1−δ0(Q̄+) ∩ C3,δ0(Q̄+ \ ∪2

i=1Γi) with the following estimates:

⎧⎪⎨
⎪⎩

‖V (X) − 1‖C1,1−δ0 ≤ Cε, |∇k
XV (X)| ≤ Cε

|RX |k−2+δ0 , k = 2, 3,

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=3

|dX,Y |1+2δ0
|∇kV (X) −∇kV (Y )|

|X − Y |δ0
≤ Cε,

(5.2)

and ⎧⎪⎨
⎪⎩

‖∂θV (X)‖C1,1−δ0 ≤ Cε, |∇2
X∂θV (X)| ≤ Cε

|RX |δ0 , k = 2, 3,

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=2

|dX,Y |2δ0
|∇k∂θV (X) −∇k∂θV (Y )|

|X − Y |δ0
≤ Cε,

(5.3)
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where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γ1 = {(0, X2, X3) : X2
2 + X2

3 = 1},
Γ2 = {(1, X2, X3) : X2

2 + X2
3 = 1},

RX = X1(1 − X1) + 1 − (X2
2 + X2

3 ),
dX,Y = min{RX , RY },
∂θ = X2∂3 − X3∂2.

(5.4)

Once Theorem 5.1 is proved, then Theorem 1.3 can be deduced easily from Theorem 5.1 and the
generalized partial hodograph transformation (2.2) and (2.3). It thus remains to prove Theorem 5.1.

The basic strategy for the proof of Theorem 5.1 is to generalize the one for the 2-dimensional case [24].
We will use the following Schauder fixed point theorem.

Theorem 5.2.(Theorem 11.1 in [9]) Let K be a compact, convex subset of a Banach space B, and
let J be a continuous mapping from K into itself. Then J has a fixed point in K.

To prove Theorem 5.1, we choose the Banach space to be the following weighted Hölder space B

B = {W (X) ∈ C1,1−δ̃0(Q̄+) ∩ C3,δ̃0(Q̄+ \ ∪2
i=1Γi) : ‖W‖C1,1−δ̃0 ≤ C, sup

X
|RX |δ̃0 |∇2

XW | ≤ C,

sup
X

|RX |1+δ̃0 |∇3
XW | ≤ C, sup

X,Y ∈Q̄+\∪2
i=1Γi

∑
k=3

|dX,Y |1+δ̃0+
δ0
2
|∇kV (X) −∇kV (Y )|

|X − Y | δ0
2

≤ C, δ0 < δ̃0 <
1
3
}

B is equipped with the norm

‖W‖B = ‖W‖C1,1−δ̃0 +
3∑

k=2

sup
X

|RX |k−2+δ̃0 |∇k
XW |

+ sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=3

|dX,Y |1+δ̃0+
δ0
2
|∇kV (X) −∇kV (Y )|

|X − Y | δ0
2

It can be shown that B is a Banach space ([8]). The role of RX in B is to measure the loss of regularity
of W (X) near the circles Γ1 and Γ2. Sometimes we neglect the subscript X in RX for convenience.

Next we define a subset K of B as

K = {W (X) ∈ C1,1−δ0(Q̄+) ∩ C3,δ0(Q̄+ \ ∪2
i=1Γi) : ‖W − 1‖

C1,1−δ̃0 ≤ Mε, ‖∂θW‖
C1,1−δ̃0 ≤ Mε,

sup
X

3∑
k=2

|R|k−2+δ0 |∇k
XW | ≤ Mε, sup

X
|R|δ0 |∇2

X∂θW | ≤ Mε,

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=2

|dX,Y |2δ0
|∇k∂θV (X) −∇k∂θV (Y )|

|X − Y |δ0
≤ Mε,

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=3

|dX,Y |1+2δ0
|∇kV (X) −∇kV (Y )|

|X − Y |δ0
≤ Mε}

where M ≥ 1 is a constant to be determined later.
It is clear that K is a convex subset of B, and furthermore, K is also compact in B (see [8]).
We now define a continuous mapping J , which maps K into itself, by solving an appropriate boundary

value problem for some second order linear elliptic equation on a fixed domain with linear boundary
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conditions, which is an appropriate linearization of the nonlinear problem of (5.1). More precisely, for
any W ∈ K, we define J : K → K by

JW = Ṽ + 1 (5.5)

here Ṽ is required to solve the equation

3∑
i,j=1

aij(X, W,∇XW )∂XiXj Ṽ + F0(X, W,∇XW ) = 0 in Q+. (5.6)

Motivated by (2.16) in §2, Ṽ is required to satisfy the following linear boundary condition on X1 = 0:

3∑
i=1

B1i(X, W,∇XW )∂Xi Ṽ + B1(X, W,∇XW )(W − 1) = G(X, 1, 0, 0, 0). (5.7)

Since B11(X, W,∇XW ) 
= 0 for small ε. And so (5.7) can be rewritten as

∂X1 Ṽ +
3∑

i=2

B̃1i(X, W,∇XW )∂Xi Ṽ + B̃1(X, W,∇XW ) = 0 on X1 = 0, (5.8)

with the coefficients satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B̃1i(X, W,∇XW ) = O(Mε), i = 2, 3

B̃1(X, W,∇XW ) = O(ε),

∇k
XB̃1i(X, W,∇XW ) = O( Mε

Rk−1+δ0 ), k = 1, 2; i = 2, 3

∇k
XB̃1(X, W,∇XW ) = O( ε

Rk−1+δ0 ), k = 1, 2,

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=2

|dX,Y |1+2δ0
|∇kB̃1i(X) −∇kB̃1i(Y )|

|X − Y |δ0
= O(Mε), i = 2, 3,

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=2

|dX,Y |1+2δ0
|∇kB̃1(X) −∇kB̃1(Y )|

|X − Y |δ0
= O(ε)

which follow from Lemma 2.2. Here we emphasize that the fact B̃1(X, W,∇XW ) = O(ε) will be critical
to determine the constant M in K.

Analogously, we require Ṽ to satisfy the following boundary conditions on X1 = 1 and X2
2 + X2

3 = 1
respectively

∂X1 Ṽ +
3∑

i=2

B̃2i(X, W,∇XW )∂Xi Ṽ + B0(X, W )Ṽ + B̃2(X, W,∇XW ) = 0 on X1 = 1, (5.9)

and
3∑

i=1

B̃3i(X, W,∇XW )∂Xi Ṽ + B̃3(X, W,∇XW ) = 0 on X2
2 + X2

3 = 1, (5.10)
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where B̃2i(X, W,∇XW ) and B̃2(X, W,∇XW ) have the same estimates as for B̃1i(X, W,∇XW ) and
B̃1(X, W, ∇XW ) respectively, and⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ
2 < B0(X, W ) < 2Λ,

∇XB̃0(X, W ) = O(Mε), ∇2
XB̃0(X, W ) = O( Mε

Rδ0 ),

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=2

|dX,Y |2δ0
|∇kB̃1(X) −∇kB̃1(Y )|

|X − Y |δ0
= O(Mε)

In addition,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B̃31(X, W,∇XW ) = O(Mε)

B̃3i(X, W,∇XW ) − Xi = O(Mε), i = 2, 3

∇k
X B̃31(X, W,∇XW ) = O( Mε

Rk−1+δ0 ), k = 1, 2

∇k
X(B̃3i(X, W,∇XW ) − Xi) = O( Mε

Rk−1+δ0 ), k = 1, 2; i = 2, 3

∇k
X B̃3(X, W ) = O(ε), k = 0, 1

∇k
X B̃3(X, W ) = O( ε

Rk−2+δ0 ), k = 2, 3

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=2

|dX,Y |1+2δ0
|∇kB̃3i(X) −∇kB̃3i(Y )|

|X − Y |δ0
= O(Mε), i = 1, 2, 3

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=3

|dX,Y |1+2δ0
|∇kB̃3(X) −∇kB̃3(Y )|

|X − Y |δ0
= O(ε)

Since B0(X, W ) > λ
2 , then by the maximal principle we arrive at

|Ṽ | ≤ C0ε (5.11)

here the constant C0 > 0 is independent of M and ε.
With the basic L∞ estimate on Ṽ in (5.11), we now can derive the required higher order estimates for

Ṽ in order to define the mapping J in (5.5). The desired estimates are stated in the following proposition.

Lemma 5.3. Assume that W ∈ K. If Ṽ (X) ∈ C1,1−δ0(Q̄+) ∩ C3,δ0(Q̄+ \ ∪2
i=1Γi) is a solution of

(5.6) with the boundary conditions (5.8)-(5.10), then for small ε > 0, there exists a constant C0 > 0
independent of M and ε such that

‖Ṽ ‖C1,1−δ0 ≤ C0ε

sup
X

Rk−2+δ0 |∇k
X Ṽ | ≤ C0ε, k = 2, 3

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=3

|dX,Y |1+2δ0
|∇kṼ (X) −∇kṼ (Y )|

|X − Y |δ0
≤ C0ε,

and

‖∂θṼ ‖C1,1−δ0 ≤ C0ε,

sup
X

Rδ0 |∇2
X∂θṼ | ≤ C0ε, k = 2, 3,

sup
X,Y ∈Q̄+\∪2

i=1Γi

∑
k=2

|dX,Y |2δ0
|∇2∂θṼ (X) −∇2∂θṼ (Y )|

|X − Y |δ0
≤ C0ε.
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Proof. Without loss of generality and for simplicity, we assume

a11 = −1 + O(Mε), a22 = −1 + O(Mε), a33 = −1 + O(Mε),

Otherwise, we can make a transformation X ′
1 = X1√

c2
+−q2

+
, X ′

2 = X2
c+

, X ′
3 = X3

c+
such that the coefficients of

the resulting equation satisfy the above requirements.
Denote by Σ1 = {X : X1 = 0, X2

2 + X2
3 < 1}, Σ2 = {X : 0 < X1 < 1, X2

2 + X2
3 = 1}, Σ3 = {X :

X1 = 1, X2
2 + X2

3 < 1}. Then ∂Q+ = ∪3
i=1Σi. Consider a subdomain Q1 of Q+ with the property that

∂Q1 ∩ ∂Q+ lies in the interior of ∂Q+. Then by the classical Schauder estimates on the second order
elliptic equation with the uniform oblique derivative boundary conditions (see [12] or [15]), there exists
a constant C(‖B̃ki‖C1,1−δ0 (Q̄1), ‖B̃3j‖C1,1−δ0(Q̄1))(k = 1, 2; i = 2, 3; j = 1, 2, 3) such that

‖Ṽ ‖C2,1−δ0 (Q̄1) ≤ C(‖B̃ki‖C1,1−δ0 (Q̄1), ‖B̃3j‖C1,1−δ0(Q̄1))(‖Ṽ ‖L∞(Q+) + ‖F0‖C1−δ0(Q+)

+
3∑

i=1

‖B̃i‖C1,1−δ0 (Q+)) (5.12)

Thus our main task is to estimate the derivatives of Ṽ near the circles Γ1 and Γ2. To this end, without
loss of generality we only consider the problem in a small neighborhood G(r0) = {X : |X − P0| < r0} of
P0 = (0, 1, 0).

We will use the cylindrical coordinates (3.14) and denote by Z1 = X1, Z2 = r and Z3 = θ. Then in
the domain G′(r0) = G(r0) ∩ {Z : Z1 ≥ 0, 1 − δ ≤ Z2 ≤ 1,−r0 ≤ Z3 ≤ r0}, the equation (5.6) and the
boundary conditions (5.8), (5.10) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i,j=1

Aij(Z)∂2
ZiZj

Ṽ +
3∑

i=1

Mi(Z)∂Zi Ṽ = F (Z),

∂Z1 Ṽ +
3∑

i=2

N1i(Z)∂Zi Ṽ = G1(Z) on Z1 = 0,

∂Z2 Ṽ + N21(Z)∂Z1 Ṽ + N23(Z)∂Z3 Ṽ = G2(Z) on Z2 = 1,

(5.13)

where
3∑

i,j=1

|Aij(Z) + δij | ≤ C(r0 + Mε),
3∑

i=1

|Mi(Z)| ≤ C(1 + Mε),
2∑

i=1

|Gi(Z)| + |F (Z)| ≤ Cε,

|N12(Z)| + |N13(Z)| + |N21(Z)| + |N23(Z)| ≤ CMε,

2∑
i=1

|∇k
ZGi(Z)| + |∇k

ZF (Z)| ≤ Cε

Rk−1+δ0
Z

, k = 1, 2,

|∇k
ZAij(Z)| +

∑
|∇k

ZNij(Z)| ≤ CMε

Rk−1+δ0
Z

, k = 1, 2,

sup
Z,Z′∈G′(r0)

∑
k=2

|dZ,Z′ |1+2δ0

( |∇kAij(Z) −∇kAij(Z ′)|
|Z − Z ′|δ0

+
|∇kMi(Z) −∇kMi(Z ′)|

|Z − Z ′|δ0

+
|∇kNij(Z) −∇kNij(Z ′)|

|Z − Z ′|δ0

)
≤ CMε
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with RZ =
√

Z2
1 + (Z2 − 1)2, dZ,Z′ = min(RZ , RZ′) and a generic constant C > 0 independent of M, ε

and r0.
Define a C∞ function χ(Z) as

χ(Z) =

{
1,

√|Z1|2 + |Z2 − 1|2 + |Z3|2 ≤ r0
2

0,
√|Z1|2 + |Z2 − 1|2 + |Z3|2 ≥ 2

3r0

Let Ṽ1(Z) = χ(Z)Ṽ . Then it follows from (5.13) that V1(Z) satisfies the following elliptic equation
and the boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i,j=1

Aij(Z)∂2
ZiZj

Ṽ1 +
3∑

i=1

Mi(Z)∂Zi Ṽ1 = F ′(Z),

∂Z1 Ṽ1 +
3∑

i=2

N1i(Z)∂Zi Ṽ1 = G′
1(Z) on Z1 = 0,

∂Z2 Ṽ1 + N21(Z)∂Z1 Ṽ1 + N23(Z)∂Z3 Ṽ1 = G′
2(Z) on Z2 = 1,

Ṽ1 = 0 on
√|Z1|2 + |Z2 − 1|2 + |Z3|2 = r0.

(5.14)

Combining with the Schauder interior estimate (5.12), one easily knows that F ′(Z) and G′
i(Z) have the

same properties as F (Z) and Gi(Z).
By use of (5.11) and Lemma 3.1 (3.4) in [14] (more concretely, we choose δ = 1 − δ0, α = 1 − δ0 in

(3.4) of [14]. Noting that the angle between Z1 = 0 and Z2 = 1 is π
2 , by a careful check on the proof

procedure in Lemma 3.1 of [14], then one can know that Lemma 3.1 still holds for this case, or one can
see the details in [24]), for small r0 and Mε we obtain

‖Ṽ1‖C1,1−δ0 + sup
Z∈G′(r0)

Rδ0
Z |∇2

Z Ṽ1(Z)| + sup
Z,Z′∈G′(r0)

∑
k=2

|dZ,Z′ | |∇
kṼ1(Z) −∇kṼ1(Z ′)|

|Z − Z ′|1−δ0
≤ C0ε, (5.15)

with C0 a uniform constant.
Next we improve the estimates on the tangential derivatives of Ṽ1.
Set U = ∂3Ṽ1. It follows from (5.14), (5.15) and the assumption on the tangent regularities of W (X)

that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i,j=1

Aij(Z)∂2
ZiZj

U +
3∑

i=1

Mi(Z)∂ZiU = F1(Z),

∂Z1U +
3∑

i=2

N1i(Z)∂ZiU = H1(Z) on Z1 = 0,

∂Z2U + N21(Z)∂Z1U + N23(Z)∂Z3U = H2(Z) on Z2 = 1,

U = 0 on
√|Z1|2 + |Z2 − 1|2 + |Z3|2 = r0,

(5.16)

here

‖F1(Z)‖C1−δ0 ≤ Cε, |∇F1(Z)| ≤ Cε

Rδ0
Z

,

‖H1(Z)‖C1−δ0 + ‖H2(Z)‖C1−δ0 ≤ Cε.
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By (5.15) and Lemma 3.1 in [14], we obtain

‖U‖C1,1−δ0 + sup
Z∈G′(r0)

Rδ0
Z |∇2

ZU(Z)| + sup
Z,Z′∈G′(r0)

∑
k=2

|dZ,Z′ | |∇
kU(Z) −∇kU(Z ′)|
|Z − Z ′|1−δ0

≤ Cε. (5.17)

¿From [8], it is easy to derive from (5.17) that

sup
Z,Z′∈G′(r0)

∑
k=2

|dZ,Z′ |2δ0
|∇kU(Z) −∇kU(Z ′)|

|Z − Z ′|δ0
≤ Cε. (5.18)

Additionally, in light of (5.17) and the equation (5.13) one has

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2∑
i,j=1

Aij(Z)∂2
ZiZj

Ṽ1 +
2∑

i=1

Mi(Z)∂Zi Ṽ1 = F2(Z),

∂Z1 Ṽ1 + N12(Z)∂Z2 Ṽ1 = Q1(Z) on Z1 = 0,

∂Z2 Ṽ1 + N21(Z)∂Z1 Ṽ1 = Q2(Z) on Z2 = 1,

Ṽ1 = 0 on
√|Z1|2 + |Z2 − 1|2 + |Z3|2 = r0

with

2∑
i=1

‖Qi(Z)‖C1−δ0 + ‖F2(Z)‖C1−δ0 ≤ Cε,

2∑
i=1

|∇ZQi(Z)| + |∇ZF2(Z)| ≤ Cε

Rδ0
Z

,

sup
Z,Z′∈G′(r0)

|dZ,Z′ |2δ0

( |∇F2(Z) −∇F2(Z ′)|
|Z − Z ′|δ0

+
2∑

i=1

|∇Qi(Z) −∇Qi(Z ′)|
|Z − Z ′|δ0

)
≤ Cε.

Analogous to the treatment on 2-D problem in [24], we get

‖Ṽ1(Z1, Z2, ·)‖C1,1−δ0 +
3∑

k=2

sup
Z∈G′(r0)

Rk−2+δ0
Z |∇k

Z1,Z2
Ṽ1(Z1, Z2, ·)|

+ sup
(Z1,Z2,Z3),(Z′

1,Z′
2,Z3)∈G′(r0)

∑
k=3

|dZ,Z′ |1+2δ0
|∇kṼ1(Z1, Z2, ·) −∇kṼ1(Z ′

1, Z
′
2, ·)|

|(Z1 − Z ′
1, Z2 − Z ′

2)|δ0
≤ Cε.

(5.19)

Combining (5.15), (5.18) with (5.19) shows that Lemma 5.3 holds.
Based on (5.11) and Lemma 5.3, and by the continuity method as given in [9] (see also [23] or Lemma

2.3 in [14]), the linear equation (5.6) with the boundary conditions (5.8)-(5.10) is solvable in the space
K. Furthermore, (5.11) and Lemma 5.3 imply that we can choose the constant C0 as the constant M in
K. Hence the mapping J which is defined in (5.5) maps from K into K. Moreover we have

Lemma 5.4. J is a continuous mapping from K → K.

Proof. To prove Lemma 5.4, we need to verify the assertion:
47



If Wl(X), W0(X) ∈ K and Wl(X) → W0(X) in K as l → ∞, then the corresponding solutions Vl(X) →
V0(X) in B. (5.20)

At first, it follows from Lemma 5.3 that {Vl(X)}∞l=1 and V0(X) are uniformly bounded in K. To prove
(5.20), we need only to show that ‖Vl(X) − V0(X)‖C(Q̄+) → 0 and ‖∂θ(Vl(X) − V0(X))‖C(Q̄+) → 0 by
the interpolation inequality on the weighted Holder space (see [8]).

Set V̄l = Vl(X) − V0(X), then it satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i,j=1

aij(X1, Wl,∇XWl)∂2
XiXj

V̄l +
3∑

i=1

F i
l (X)∂Xi(Wl − W0) + F 0

l (X)(Wl − W0) = 0,

∂X1 V̄l +
3∑

i=2

B̃1i(X, Wl,∇XWl)∂Xi V̄l +
3∑

i=2

B1
li(X)∂Xi(Wl − W0) + B0

l1(X)(Wl − W0) = 0,

on X1 = 0

∂X1 V̄l +
3∑

i=2

B̃2i(X, Wl,∇XWl)∂Xi V̄l +
3∑

i=2

B2
li(X)∂Xi(Wl − W0) + B0

l2(X)(Wl − W0) = 0,

on X1 = 1,
3∑

i=1

B̃3i(X, Wl,∇XWl)∂Xi V̄l +
3∑

i=1

B3
li(X)∂Xi(Wl − W0) + B0

l3(X)(Wl − W0) = 0,

on X2
2 + X2

3 = 1,

(5.21)

where

F i
l (X) =

3∑
j=1

∂2
XiXj

V0

∫ 1

0

(∂Wiaij)(X1, θWl + (1 − θ)W0, θ∇Wl + (1 − θ)∇W0)dθ

+
∫ 1

0

(∂WiF0)(X, θWl + (1 − θ)W0, θ∇Wl + (1 − θ)∇W0)dθ, i = 0, 1, 2, 3,

Bi
lj(X) = ∂Xj V0

∫ 1

0

(∂WiB̃ij)(X, θWl + (1 − θ)W0, θ∇Wl + (1 − θ)∇W0)dθ

+
∫ 1

0

(∂Wi B̃j)(X, θWl + (1 − θ)W0, θ∇Wl + (1 − θ)∇W0)dθ,

here we use the notations (W0, W1, W2, W3) = (W (X), ∂X1W, ∂X2W, ∂X3W ) for convenience.
¿From the expressions of F i

l (X) and Bi
lj(X), one has the following estimates

|F i
l (X)| ≤ CMε

Rδ0

|∇XF i
l (X)| ≤ CMε

R1+δ0

λ

2
< B0

l3(X) < 2Λ,

|Bi
lj(X)| ≤ CMε, (i, j) 
= (0, 3),

|∇XBi
lj(X)| ≤ CMε

Rδ0
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By the Aleksandrov’s maximal principle (see [13]), we arrive at

‖Vl(X) − V0(X)‖C(Q̄+) ≤ C‖Wl − W0‖C1,1−δ0(Q̄+)

Namely,
‖Vl(X) − V0(X)‖C(Q̄+) → 0 as l → ∞.

In a similar way, one can derive

‖∂θ(Vl(X) − V0(X))‖C(Q̄+) → 0 as l → ∞.

Hence, the proof on Lemma 5.4 is completed.

Proof for Theorem 5.1.
It follows from Lemma 5.3 and Lemma 5.4 that the mapping J satisfies the all requirements of Theorem

5.2. By the choice of J , the existence of solution in Theorem 5.1 follows. The similar argument as the
proof of Lemma 5.4 shows the uniqueness in Theorem 5.1. Finally, we give the proof on Theorem 1.3.

Proof of Theorem 1.3.
(i) in Theorem 1.3 follows from Lemma 2.1 directly.
By the regularity and uniqueness of V (X) in Theorem 5.1, we conclude that the inverse transformation

(2.2) has the following properties:

x1(X), x2(X), x3(X) ∈ C1,1−δ0(Q̄+) ∩ C3,δ0(Q+)

Since the shock Σ: x1 = ξ(x2, x3) corresponds to X1 = 0 in Q̄+, then ξ(x2, x3) ∈ C1,1−δ0(S̄)∩C3,δ0 (S),
where S represents the open projection set of Σ onto the (x2, x3)−plane. Besides, it is easy to verify the
other conclusions, (ii), (iii) and (iv) in Theorem 1.3, by the properties of V (X) in Theorem 5.1. Thus
the proof of Theorem 1.3 is completed.
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