
ON THE CONJECTURE OF COURANT AND FRIEDRICHS

FOR THE TRANSONIC SHOCK IN A NOZZLE

Zhouping Xin

(Department of Mathematics and IMS, CUHK, Shatin, N.T., Hong Kong)

Wei Yan

(Department of Mathematics and IMS, CUHK, Shatin, N.T., Hong Kong)

Huicheng Yin

(Department of Mathematics and IMS, Nanjing University, Nanjing 210093, China)

(The Institute of Mathematical Sciences, CUHK, Shatin, N.T., Hong Kong)

Abstract

In the book [8] of Courant and Friedrichs, the following transonic phenomena in a nozzle is illustrated:
Given the appropriately large receiver pressure pr, if the upstream flow is still supersonic behind the throat
of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes and the
gas is compressed and slowed down to subsonic speed. The position and the strength of the shock front
are automatically adjusted so that the end pressure at the exit becomes pr. Motivated by this conjecture,
we will study the well-posedness problem on the transonic shock for the steady compressible Euler flow
through a two-dimensional slowly-varying nozzle when the pressure at the exit is appropriately given.
The transonic shock is a free boundary dividing two regions of C2 flow in the nozzle. The full Euler
system is nonlinear hyperbolic upstream where the flow is supersonic, and coupled hyperbolic-elliptic in
the downstream region Ω+ of the nozzle when the flow is subsonic. Based on the Bernoulli’s law, in Ω+

we can reformulate the 3×3 full Euler system into a weakly coupled second order elliptic equation on the
density ρ with the mixed boundary conditions, a 2×2 first order system on u2 with a value at a point and
an algebraic equation on (ρ, u1, u2) along the streamline. With respect to the reformulated problem, we
can show that the transonic shock solution is unique if it exists and satisfies some regularity assumptions.
Based on this uniqueness result, we derive that the conjecture of Courant-Friedrichs [8] on the transonic
shock in a very slowly-varying nozzle cannot hold for the C2 subsonic solution and the arbitrarily given
large pressure pr at the exit, namely, the transonic shock problem is ill-posed with respect to the general
given pressure at the exit for the slowly-varying nozzle. Finally, for the large curved nozzle walls, if
the diverging part of the nozzle walls are straight and the corresponding supersonic coming flow in the
diverging part is symmetric, then we can give an example to illustrate that the conjecture of Courant-
Friedrichs is right for the complete Euler equations. More precisely, there exist two constant pressures
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P1 and P2 with P1 < P2 which depend only on the incoming flow and the shape of the nozzle, such that
if the end pressure Pe ∈ (P1, P2), then the transonic shock exists, moreover the position and the strength
of the shock is uniquely determined by Pe.

Keywords: Steady Euler equation, supersonic flow, subsonic flow, transonic shock, nozzle, entropy.

Mathematical Subject Classification: 35L70, 35L65, 35L67, 76N15

§1. Introduction and the main results

In this paper we are concerned with the problem on the well-posedness of a transonic shock to the
steady compressible Euler flow through a 2-D slowly variable nozzle with an appropriate end pressure. In
[21-22], under the assumptions that the flow is isentropic and irrotational, we use the potential equation
to study the existence, uniqueness and well-posedness or ill-posedness of a transonic shock to the steady
flow through a general 2-D or 3-D slowly-varying nozzle. Especially, for the slowly-varying nozzle, we
establish that the transonic shock problem is ill-posed for the general given pressure at the exit for the
irrotational and isentropic steady flow. However, when the strength of the shock is large (for example,
if the flow is highly supersonic upstream and becomes subsonic across a shock, then the strength of the
shock is rather large), the flow behind the shock is not irrotational and isentropic, thus it is more plausible
to use the full Euler system to study the movement of the inviscid steady flow in the nozzle.

The compressible Euler system of steady flow in two dimensional spaces is⎧⎪⎨
⎪⎩

∂1(ρu1) + ∂2(ρu2) = 0
∂1(P + ρu2

1) + ∂2(ρu1u2) = 0
∂1(ρu1u2) + ∂2(P + ρu2

2) = 0
(1.1)

where u = (u1, u2), P and ρ represent the velocity, pressure and density respectively. Moreover, P = P (ρ)
is a smooth function of ρ and c2(ρ) = P ′(ρ) > 0 for ρ > 0. For the polytropic gas, P (ρ) = Aργ , here
A > 0 and 1 < γ < 3 are constants.

Suppose that there is a uniform supersonic flow (u1, u2) = (q0, 0) with constant density ρ0 > 0 which
comes from negative infinity, and the flow enters the 2 − D nozzle from the entrance. In most of the
paper, we assume that the two nozzle walls are of a small perturbation of two straight line segments
x2 = −1 and x2 = 1 with −1 ≤ x1 ≤ 1.

For simplicity, we assume that the walls of the nozzle are given by

x2 = f1(x1) and x2 = f2(x1) (1.2)

satisfying

| dk

dxk
1

(f1(x1) + 1)| ≤ ε and | dk

dxk
1

(f2(x1) − 1)| ≤ ε for − 1 ≤ x1 ≤ 1, k ≤ 4, k ∈ N ∪ {0} (1.3)

with ε > 0 suitably small.

Without loss of generality and for the convenience to write, we assume that

f1(−1) = f1(1) = −1, f2(−1) = f2(1) = 1; f
(k)
i (−1) = 0 for i = 1, 2; 1 ≤ k ≤ 4. (1.4)
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When the uniform supersonic flow with the velocity (q0, 0) enters the entry of the nozzle, then the
supersonic flow field (ρ−, u−

1 , u−
2 ) in the nozzle will be determined by the following quasilinear hyperbolic

system with the initial-boundary value conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂1(ρ−u−
1 ) + ∂2(ρ−u−

2 ) = 0
∂1(P (ρ−) + ρ−(u−

1 )2) + ∂2(ρ−u−
1 u−

2 ) = 0

∂1(ρ−u−
1 u−

2 ) + ∂2(P (ρ−) + ρ−(u−
2 )2) = 0,

ρ−|x1=−1 = ρ0

u−
1 |x1=−1 = q0,

u−
2 |x1=−1 = 0,

u−
2 = f ′

i(x1)u−
1 on x2 = fi(x1), i = 1, 2.

(1.5)

It follows from Lemma 2.1 in §2 that (1.5) has a C3 supersonic solution (ρ−(x), u−
1 (x), u−

2 (x)) in
the whole nozzle Ω = {(x1, x2) : −1 < x1 < 1, f1(x1) < x2 < f2(x1)}, moreover |∇α

x (ρ−(x) − ρ0)| +
|∇α

x (u−
1 (x) − q0)| + |∇α

xu−
2 (x)| ≤ Cε holds for |α| ≤ 3 and x ∈ Ω̄.

Let an appropriate large pressure P̃+(x2) = P (ρ̃+(x2)) be given at the exit of the nozzle. More
concretely, ρ̃+(x2) ∈ C2[f1(1), f2(1)] ∩ C3(f1(1), f2(1)) satisfies | dk

dxk
2
(ρ̃+(x2) − ρ+)| ≤ ε for 0 ≤ k ≤ 2,

here the constant ρ+ and the related constant velocity (q+, 0) satisfy the following relations

ρ0q0 = ρ+q+, ρ0q
2
0 + P (ρ0) = ρ+q2

+ + P (ρ+); ρ0 < ρ+ and q+ < c(ρ+). (1.6)

In fact, (1.6) follows from the Rankine-Hugoniot conditions and the physical entropy condition for the
system (1.1) when the transonic shock is straight and u2 ≡ 0.

In light of statements in the book of [8], one expects that there will appear a transonic shock Σ : x1 =
ξ(x2) in the nozzle. For the definiteness (as in [5-7]), we assume that the shock Σ goes through a fixed
point (x1

1, x
1
2) with x1

2 = f1(x1
1), i.e.,

ξ(x1
2) = x1

1. (1.7)

As indicated in [8](pages 372), it is a question of great importance to know under what circumstances
a steady flow involving shocks is uniquely determined by the boundary conditions and by the conditions
at the entrance, and when further conditions at the exit are appropriate.

Across the shock Σ, we denote the flow field by (ρ+(x), u+
1 (x), u+

2 (x)). Then the Rankine-Hugoniot
conditions on Σ become ⎧⎪⎨

⎪⎩
[ρu1] − ξ′(x2)[ρu2] = 0,

[P (ρ) + ρu2
1] − ξ′(x2)[ρu1u2] = 0,

[ρu1u2] − ξ′(x2)[P (ρ) + ρu2
2] = 0.

(1.8)

In addition, ρ+(x) should satisfy the physical entropy condition (see [8]):

ρ+(x) > ρ−(x) on x1 = ξ(x2). (1.9)

On the exit of the nozzle, one poses the following boundary condition

ρ+(x) = ρ̃+(x2) on x1 = 1. (1.10)
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Finally, since the velocity of the flow is tangent to the nozzle walls x2 = fi(x1)(i = 1, 2), then we have

u+
2 = f ′

i(x1)u+
1 on x2 = fi(x1). (1.11)

The first main result in this paper is on the uniqueness of the solution to the equation (1.1) with the
boundary conditions (1.7)-(1.11).

Theorem 1.1 (uniqueness) Under the assumptions (1.2) - (1.4) and (1.6), for small ε > 0, the
equation (1.1) with the boundary conditions (1.7) - (1.11) has no more than one pair of solutions
(ρ+(x), u+

1 (x), u+
2 (x); ξ(x2)) with the following regularities and estimates

(i). ξ(x2) ∈ C3[x1
2, x

2
2], here (xi

1, xi
2) with xi

2 = fi(xi
1)(i = 1, 2) stands for the intersection point of

x1 = ξ(x2) with x2 = fi(x1). Moreover

‖ξ(x2) − x1
1‖C3[x1

2,x2
2]
≤ Cε.

(ii). Denote by Ω+ = {(x1, x2) : ξ(x2) < x1 < 1, f1(x1) < x2 < f2(x1)}. Assume f ′′
i (xi

1) = 0 and
f ′

i(1) = f ′′
i (1) = ∂2ρ̃+(fi(1)) = 0, then (ρ+(x), u+

1 (x), u+
2 (x)) ∈ C2(Ω̄+) ∩ C3(Ω+) satisfies

‖ρ+(x) − ρ+‖C2(Ω̄+) + ‖u+
1 (x) − q+‖C2(Ω̄+) + ‖u+

2 (x)‖C2(Ω̄+) ≤ Cε.

Remark 1.1 f ′′
i (xi

1) = 0 means that the compatibility condition holds at the intersection point
(xi

1, fi(xi
1))(i = 1, 2) for the Rankine-Hugoniot conditions (1.8) and the fixed boundary conditions (1.11)

(see Lemma 3.3 for more details). f ′
i(1) = f ′′

i (1) = ∂2ρ̃+(fi(1)) = 0 imply the compatibility conditions
on the corner points Pi = (1, fi(1))(i = 1, 2). It follows from the proof of Theorem 1.1 and the regularity
theory of the second order elliptic equations with the cornered boundaries (one can see [2-3], [15-16], [20]
and so on) that the assumptions on the regularities of solution (ρ+(x), u+

1 (x), u+
2 (x); ξ(x2)) are plausible.

See §3 for more details. In addition, if the walls of the nozzle are composed by the straight lines, then it
is obvious that f ′′

i (xi
1) = 0 holds.

Remark 1.2 Our method in this paper can be used to treat the well-posedness or ill-posedness problems
on the transonic shock for the supersonic flow past a two-dimensional wedge for the full Euler systems
when the pressure condition is given at the downstream subsonic domain. This will be treated in a
forthcoming paper [23].

Remark 1.3 If the end pressure ρ̃+(x2) in (1.10) is given on a smooth curve x1 = g(x2) ∈ C3[f1(1), f2(1)]
with | dk

dxk
2
(g(x2) − 1)| ≤ ε, 0 ≤ k ≤ 3 for suitably small ε, moreover, x1 = g(x2) is perpendicular to

x2 = fi(x1) at the point (1, fi(1)) and the compatibility condition holds at (1, fi(1)) for ρ̃+(x2) and
boundary conditions (1.11), then the unique results as in Theorem 1.1 still holds by a similar analysis.

Remark 1.4 The regularity assumptions on (ρ+, u+
1 , u+

2 ) in Theorem 1.1 can be replaced by

(ρ+(x), u+
1 (x), u+

2 (x)) ∈ H
−(2−δ1)
3−δ0

(Ω+, P1 ∪ P2 ∪ Q1 ∪ Q2)

satisfying
‖ρ+(x) − ρ+‖−(2−δ1)

3−δ0
+ ‖u+

1 (x) − q+‖−(2−δ1)
3−δ0

+ ‖u+
2 (x)‖−(2−δ1)

3−δ0
≤ Cε,

here H
−(2−δ1)
3−δ0

(Ω+, P1 ∪P2 ∪Q1 ∪Q2) is a weighted Sobolev space with Pi = (1, fi(1)), Qi = (xi
1, x

i
2) and

0 < δ1 < δ0 < 1, which is defined as follows:
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v ∈ H
−(2−δ1)
3−δ0

(Ω+, P1∪P2∪Q1∪Q2) means that ‖v‖−(2−δ1)
3−δ0

= sup
μ>0

μ1−(δ0−δ1)|v|C2,1−δ0 (Ωμ
+) < ∞ holds, here

|dx| = min{dist(x, P1), dist(x, P2), dist(x, Q1), dist(x, Q2)} for x ∈ Ω+, and Ωμ
+ = {x ∈ Ω+ : |dx| > μ}.

For more properties on this weighted Hölder space, one can see [5], [11-12], [20] and so on.

Remark 1.5 Theorem 1.1 also applies to the nonisentropic compressible Euler system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂1(ρu1) + ∂2(ρu2) = 0,

∂1(ρu2
1 + P ) + ∂2(ρu1u2) = 0,

∂1(ρu1u2) + ∂2(ρu2
2 + P ) = 0,

∂1((ρe + 1
2ρ|u|2 + P )u1) + ∂2((ρe + 1

2ρ|u|2 + P )u2) = 0

where u = (u1, u2) is the velocity, ρ the density, P the pressure, e the internal energy and S the specific
entropy. Moreover, the pressure function P = P (ρ, S) and the internal energy function e = e(ρ, S) are
smooth in their arguments. Furthermore, we assume that ∂ρP (ρ, S) > 0 and ∂Se(ρ, S) > 0 for ρ > 0.

In this case, the Bernoulli’s law takes the form

(u1∂1 + u2∂2)
(

1
2
|u|2 + e +

P

ρ

)
≡ 0.

Similar to the proof of Theorem 1.1, in the subsonic region, we can obtain a second order elliptic
equation on P , a 2 × 2 first order system on u2, a first order partial differential equation on S and an
algebraic equation 1

2 |u|2 + e + P
ρ ≡ C along the streamline. Thus, if the end pressure is given, as in

Theorem 1.1, we can get the uniqueness of a transonic shock solution in the regularity can similar to that
Theorem 1.1.

Based on Theorem 1.1, we can show the non-existence results for the transonic shock problem in a
2-D nozzle with two straight walls.

Theorem 1.2 (Ill-posedness) If the walls of the nozzle are straight, namely, f1(x1) ≡ −1 and f2(x1) ≡
1, then for the constant supersonic coming flow (ρ̃0, q̃0, 0) with (ρ̃0, q̃0) 
= (ρ0, q0) and the end pressure
ρ̃+(x2) = ρ+, the problem (1.1) with the boundary conditions (1.7)-(1.11) has no transonic shock solu-
tion (ρ+(x), u+

1 (x), u+
2 (x); ξ(x2)) such that (ρ+(x), u+

1 (x), u+
2 (x); ξ(x2)) has the following regularities and

estimates

(i). ξ(x2) ∈ C3[−1, 1], and
‖ξ(x2) − x1

1‖C3[−1,1] ≤ Cε.

(ii). (ρ+(x), u+
1 (x), u+

2 (x)) ∈ C2(Ω̄+) and satisfies

‖ρ+(x) − ρ+‖C2 + ‖u+
1 (x) − q+‖C2 + ‖u+

2 (x)‖C2 ≤ Cε.

Next, we turn to the nonexistence of solution to the transonic shock problem in the diverging part of
the nozzle with the general given pressure ρ̃+(x2) at the exit of the nozzle.

Suppose that the nozzle walls Γ1 and Γ2 are C5−regular for −1 ≤ x1 ≤ 1 and Γi consists of two
curves Π1

i and Π2
i , here Π1

1 and Π1
2 enclose the converging part of the nozzle, while Π2

1 and Π2
2 form

a two-dimensional angular section (i.e. the diverging part of the nozzle), whose vertex is (x0
1, 0) with
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x0
1 < 0 sufficiently small. More precisely, we assume that the equation of Π2

i is represented by x2 =
(−1)i(x1 − x0

1)tgα0, here tgα0 = 1
1−x0

1
(this condition guarantees that Π2

i is very near x2 = (−1)i in

− 1
2 ≤ x1 ≤ 1 for sufficiently small x0

1 < 0). Besides, the transonic shock is assumed to go through the
origin, and suppose that the supersonic coming flow is symmetric in − 1

4 ≤ x1 ≤ 0 (namely, the solution
(ρ−, u−

1 , u−
2 ) depends only on r =

√
(x1 − x0

1)2 + x2
2) and is of a small perturbation of the constant state

(ρ0, q0, 0). By the hyperbolicity, we can obtain a supersonic flow (ρ−, u−
1 , u−

2 ) in the global nozzle, which
is symmetric in − 1

4 ≤ x1 ≤ 1 and very close to (q0, 0, 0). Furthermore, we let the boundary condition
(1.10) be replaced by

ρ̃+(x2) = ρ+ on r = (1 − x0
1) secα0. (1.10’)

where the constant ρ+ is determined by (1.6).

Then based on Theorem 1.1 and Remark 1.3, we can show the following ill-posedness result.

Theorem 1.3 (Ill-posedness) If the nozzle walls consist of Γ1 and Γ2 as defined above, then the problem
(1.1) with the boundary conditions (1.7)-(1.9), (1.10’) and (1.11) is ill-posed. More precisely, one can find
the supersonic coming flows are of small perturbations of (ρ0, q0, 0) such that the problem (1.1) with the
boundary conditions (1.7)-(1.9), (1.10’) and (1.11) has no transonic shock solution (ρ+(x), u+

1 (x), u+
2 (x);

ξ(x2)) with the regularities and estimates as stated in Theorem 1.1.

We now comment on the proof of the main results. Some of the main difficulties are that (1.1) is
hyperbolic-elliptic in the subsonic domain and the shock curve is a free boundary. In order to prove
Theorem 1.1, first we take the transformations such that the nozzle walls are straighten and the free
boundary is fixed. Second, we apply the Bernoulli’s law and the characteristics method to reformulate
the 3 × 3 full Euler system into a weakly coupled second order elliptic equation on the density ρ+ with
the mixed boundary conditions, a 2 × 2 first order system on u+

1 or u+
2 with a value at a point and an

algebraic equation on (ρ+, u+
1 , u+

2 ) along the streamline. From this, we can obtain some a priori estimates
and obtain the uniqueness.

Finally we note that there have been many works on the transonic problem or subsonic flow in a
channel (see [1], [4-10], [13], [18-19] and the references therein ). In particular, we mention on several
recent works that are related to this paper. Chen-Feldman in [6] prove the existence and stability of a
steady transonic shock when the flow is in the channel Ω = (0, 1)n−1×(−1, 1) and the Dirichlet boundary
condition on the potential is posed at the end of the channel. However, as described in [8], it is more
physical to prescribe the pressure at the end than prescribe the value of the potential function. In [7],
the well-posedness of transonic shocks for the steady 2-D compressible Euler system in (−N1, N2)× (0, b)
with given exit pressure was treated. However, it seems that the proof of main results in [7] has a gap
(more precisely, the linearized system (5.16) in [7] is overdetermined for antisymmetric solutions, and so
has no solution satisfying the boundary conditions in [7] in general). Similar difficulties appear when
one treats the local transonic stability problems on the the supersonic flow past a wedge or the Mach
reflection when the related pressure boundary conditions are given. In fact, Theorem 1.2 in this paper is
contrary to the main results (i.e. Theorem 2.1) in [7], namely, we show the ill-posedness for the transonic
shock problem when the steady compressible Euler flow goes through a flat nozzle and the pressure at the
exit is arbitrarily given. In [21-22], for the steady potential equation and the slowly-varying nozzle walls,
we have shown that the conjecture of Courant and Friedrichs cannot be true for the arbitrarily given and
appropriately large pressure at the exit. However, for a class of curved nozzles, it has been shown for an
appropriate pressure at the exit, the transonic shock exits for the 2D isentropic compressible Euler flow
in [25].
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Our paper is organized as follows. In §2, we reformulate the problem (1.1) with the boundary conditions
(1.7)-(1.11). Subsequently we describe the main approaches to prove Theorem 1.1. In §3, first we reduce
the free boundary problem (1.1) to a fixed boundary problem of the Euler system, then by use of the
techniques in §2 we decompose the complete Euler equations and establish some a priori estimates on the
solution. From this, Theorem 1.1 can be shown directly. In §4, using the uniqueness result in Theorem
1.1 we complete the proof on the ill-posedness results in Theorem 1.2 and Theorem 1.3. Finally, we will
give several useful remarks in §5. In particular, for the large curved nozzle walls, if the diverging part
of the nozzle walls are straight and the corresponding supersonic coming flow in the diverging part is
symmetric, then we will give an example to show that the conjecture of Courant-Friedrichs is right for
the complete Euler equations.

In what follows, we will use the following convention in this paper:
O(Y ) means that there exists a generic constant C such that |O(Y )| ≤ CY , where C is independent of ε.

§2. The reformulation on problem (1.1) with (1.7)-(1.11)

In this section, we will reformulate the nonlinear problem (1.1) with (1.7)-(1.11) so that we can obtain
a second order elliptic equation on ρ+(x) and a 2 × 2 system on u+

1 or u+
2 . Before doing this, we first

give an estimate on (ρ−(x), u−
1 (x), u−

2 (x)) in system (1.5).

Lemma 2.1 Under the assumptions (1.2) - (1.4), the system (1.5) has a C3(Ω̄) solution (ρ−(x),
u−

1 (x), u−
2 (x)). Moreover, for small ε > 0, there exists a positive constant C independent of ε such

that
‖ρ−(x) − ρ0‖C3(Ω̄) + ‖u−

1 (x) − q0‖C3(Ω̄) + ‖u−
2 (x)‖C3(Ω̄) ≤ Cε.

Proof We note that the system (1.5) is strictly hyperbolic with respect to the x1−direction for the
supersonic flow u−

1 > c(ρ−).

Indeed, in this case, (1.5) has three distinct real eigenvalues

λ1 =
u−

1 u−
2 − c(ρ−)

√
(u−

1 )2 + (u−
2 )2 − c2(ρ−)

(u−
1 )2 − c2(ρ−)

, λ2 =
u−

2

u−
1

,

λ3 =
u−

1 u−
2 + c(ρ−)

√
(u−

1 )2 + (u−
2 )2 − c2(ρ−)

(u−
1 )2 − c2(ρ−)

.

Set
ρ̃(x) = ρ−(x) − ρ0, ũ1 = u−

1 − q0, ũ2 = u−
2 ,

then it follows from (1.5) that (ρ̃, ũ1, ũ2) satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂1

⎛
⎜⎝

ρ̃

ũ1

ũ2

⎞
⎟⎠+ A(ρ̃, ũ1, ũ2)∂2

⎛
⎜⎝

ρ̃

ũ1

ũ2

⎞
⎟⎠ = 0

ρ̃(−1, x2) = ũ1(−1, x2) = ũ2(−1, x2) = 0,

ũ2 − f ′
i(x1)ũ1 = q0f

′
i(x1) on x2 = fi(x1),

(2.1)
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where

A(ρ̃, ũ1, ũ2) =

⎛
⎜⎜⎝

(q0+ũ1)ũ2
(q0+ũ1)2−c2(ρ0+ρ̃) − (ρ0+ρ̃)ũ2

(q0+ũ1)2−c2(ρ0+ρ̃)
(ρ0+ρ̃)(q0+ũ1)

(q0+ũ1)2−c2(ρ0+ρ̃)

− c2(ρ0+ρ̃)ũ2
(ρ0+ρ̃)((q0+ũ1)2−c2(ρ0+ρ̃))

(q0+ũ1)ũ2
(q0+ũ1)2−c2(ρ0+ρ̃) − c2(ρ0+ρ̃)

(q0+ũ1)2−c2(ρ0+ρ̃)

c2(ρ0+ρ̃)
(ρ0+ρ̃)(q0+ũ1) 0 ũ2

q0+ũ1

⎞
⎟⎟⎠ .

The assumption (1.4) implies that initial-boundary values in (2.1) satisfy the compatible conditions
up to 3−th order. Moreover, x2 = fi(x1) are the characteristics of (2.1) corresponding to the second
eigenvalue λ2. Furthermore, the matrix A(ρ̃, ũ1, ũ2) has three distinct real eigenvalues, so that the system
(2.1) is strictly hyperbolic. Hence by the characteristics method and the standard Picard iteration (for
example, see [14]), when ε > 0 is suitably small we know that (2.1) has a unique C3(Ω̄)−solution, and
there exists a constant C independent of ε such that

‖ρ̃‖C3(Ω̄) + ‖ũ1(x)‖C3(Ω̄) + ‖ũ2(x)‖C3(Ω̄) ≤ Cε.

Hence Lemma 2.1 is proved.

Now we start to reformulate the system (1.1) and its boundary conditions in the subsonic region Ω+.

First, due to the Bernoulli’s law, for any C1 solutions, the system (1.1) in Ω+ is equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂1(ρ+u+
1 ) + ∂2(ρ+u+

2 ) = 0,

(u+
1 ∂1 + u+

2 ∂2)
(

1
2
(u+

1 )2 +
1
2
(u+

2 )2 + h(ρ+)
)

= 0,

u+
1 ∂1u

+
2 + u+

2 ∂2u
+
2 +

c2(ρ+)
ρ+

∂2ρ
+ = 0,

(2.2)

here h(ρ+) is the enthalpy with h′(ρ+) = c2(ρ+)
ρ+ .

Next, we derive a second order equation on the density ρ+ from (2.2).

For simplicity, we set D = u+
1 ∂1 + u+

2 ∂2. Then it follows from the first equation in (2.2) that

D2ρ+ + ρ+D(∂1u
+
1 + ∂2u

+
2 ) − (Dρ+)2

ρ+
= 0.

This, together with the second equation and the third equation in (2.2), yields

D2ρ+ − ρ+

(
∂1(

c2(ρ+)
ρ+

∂1ρ
+) + ∂2(

c2(ρ+)
ρ+

∂2ρ
+)
)

− (Dρ+)2

ρ+
−
(

(∂1u
+
1 )2 + 2∂1u

+
2 ∂2u

+
1 + (∂2u

+
2 )2
)

ρ+ = 0,

which is equivalent to

∂1

(
((u+

1 )2 − c2(ρ+))∂1ρ
+ + u+

1 u+
2 ∂2ρ

+

)
+ ∂2

(
u+

1 u+
2 ∂1ρ

+ + ((u+
2 )2 − c2(ρ+))∂2ρ

+

)

+
c2(ρ+)

ρ+
((∂1ρ

+)2 + (∂2ρ
+)2) −

(
(∂1u

+
1 )2 + 2∂1u

+
2 ∂2u

+
1 + (∂2u

+
2 )2
)

ρ+ = 0. (2.3)
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Next, we reduce the boundary conditions (1.8) to obtain a Dirichlet boundary condition of ρ+ on the
shock Σ.

It follows from the third equation in (1.8) and the assumption (1.7) that{
ξ′(x2) = [ρu1u2]

[P (ρ)+ρu2
2]

,

ξ(x1
2) = x1

1.
(2.4)

Substituting (2.4) into the two other equations in (1.8) yields on Σ{
G1(ρ+, u+

1 , u+
2 ) ≡ [ρu1u2][ρu2] − [ρu1][P (ρ) + ρu2

2] = 0,

G2(ρ+, u+
1 , u+

2 ) ≡ [ρu1u2]2 − [P (ρ) + ρu2
1][P (ρ) + ρu2

2] = 0.
(2.5)

Due to the condition (1.6), (2.5) is equivalent to{
ρ+(u+

1 − q+) + q+(ρ+ − ρ+) = g1((u+
2 )2, u+

2 u−
2 , (u−

2 )2, ρ+ − ρ+, u+
1 − q+, ρ0 − ρ−, q0 − u−

1 ),

2ρ+q+(u+
1 − q+) + (q2

+ + c2(ρ+))(ρ+ − ρ+) = g2((u+
2 )2, u+

2 u−
2 , (u−

2 )2, ρ+ − ρ+, u+
1 − q+),

where

g1((u+
2 )2, u+

2 u−
2 , (u−

2 )2, ρ+ − ρ+, u+
1 − q+, ρ0 − ρ−, q0 − u−

1 ) =
[ρu1u2][ρu2] − [ρu1][ρu2

2]
[P (ρ)]

− (u+
1 − q+)(ρ+ − ρ+) − q0(ρ0 − ρ−) − ρ−(q0 − u−

1 ),

g2((u+
2 )2, u+

2 u−
2 , (u−

2 )2, ρ+ − ρ+, u+
1 − q+) =

[ρu1u2]2 − [P (ρ) + ρu2
1][ρu2

2]
[P (ρ)]

−
(

P (ρ+) − P (ρ+)

− c2(ρ+)(ρ+ − ρ+)
)
−
(

ρ+(u+
1 )2 − ρ+q2

+ − 2ρ+q+(u+
1 − q+) − q2

+(ρ+ − ρ+)
)

+ P (ρ−) + ρ−(u−
1 )2 − P (ρ0) − ρ0q

2
0 .

Thus, on Σ, it follows from the implicit function theorem and Lemma 2.1 that{
u+

1 − q+ = g̃1(x, u+
2 ),

ρ+ − ρ+ = g̃2(x, u+
2 ),

(2.6)

and

g̃1(x, u+
2 ) = O((u+

2 )2) + O(ε)O(u+
2 ) + O(ε), g̃2(x, u+

2 ) = O((u+
2 )2) + O(ε)O(u+

2 ) + O(ε)

for suitably small u+
2 and ε.

Next, we derive the boundary conditions of ρ+(x) on the fixed boundary x2 = fi(x1). It follows from
(1.11) that

∂1u
+
2 + f ′

i(x1)∂2u
+
2 = (∂1u

+
1 + f ′

i(x1)∂2u
+
1 )f ′

i(x1) + f ′′
i (x1)u+

1 on x2 = fi(x1), i = 1, 2.

This, together with the second equation and the third equation in (2.2), yields

∂nρ+ = −ρ+(u+
1 )2

c2(ρ+)
f ′′

i (x1) on x2 = fi(x1), (2.7)
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here ∂n represents the derivative along the outer normal direction n.

It follows from the analysis above that ρ+ in Ω+ can be determined by the following boundary value
problem of a second order equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂1

(
((u+

1 )2 − c2(ρ+))∂1ρ
+ + u+

1 u+
2 ∂2ρ

+

)
+ ∂2

(
u+

1 u+
2 ∂1ρ

+ + ((u+
2 )2 − c2(ρ+))∂2ρ

+

)

+ c2(ρ+)
ρ+ ((∂1ρ

+)2 + (∂2ρ
+)2) −

(
(∂1u

+
1 )2 + 2∂1u

+
2 ∂2u

+
1 + (∂2u

+
2 )2
)

ρ+ = 0,

ρ+ − ρ+ = g̃2(x, u+
2 ) on x1 = ξ(x2),

∂nρ+ + ρ+(u+
1 )2

c2(ρ+) f ′′
i (x1) = 0 on x2 = fi(x1),

ρ+ = ρ̃+(x2) on x1 = 1.

(2.8)

Next, we derive an algebraic relation on ρ+, u+
1 and u+

2 so that one can determine u+
1 in terms of ρ+

and u+
2 .

It follows from the second equation in (2.2) and the boundary conditions (1.11) and (2.6) that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u+
1 ∂1 + u+

2 ∂2)
(

1
2 (u+

1 )2 + 1
2 (u+

2 )2 + h(ρ+)
)

= 0,

u+
1 = q+ + g̃1(x, u+

2 ), ρ+ = ρ+ + g̃2(x, u+
2 ) on x1 = ξ(x2),

u+
2 = f ′

i(x1)u+
1 on x2 = fi(x1).

(2.9)

We define the curve x2 = x2(x1, β) as the characteristics starting from the point (ξ(β), β) for the first
order differential operator u+

1 ∂1 + u+
2 ∂2, that is, x2(x1, β) satisfies{

dx2(x1,β)
dx1

= (u+
2

u+
1

)(x1, x2(x1, β)),

x2(ξ(β), β) = β, β ∈ [x1
2, x

2
2].

(2.10)

Integrating the first order equation in (2.9) along the characteristics x2 = x2(x1, β) and noting that
x2 = fi(x1) is the characteristics of u+

1 ∂1 + u+
2 ∂2 starting from the point (xi

1, x
i
2), then we have in Ω+(

1
2
(u+

1 )2 +
1
2
(u+

2 )2 + h(ρ+)
)

(x1, x2(x1, β)) = g̃0(ξ(β), β, u+
2 (ξ(β), β)) (2.11)

with

g̃0(ξ(β), β, u+
2 (ξ(β), β))

=
1
2
(q+ + g̃1(ξ(β), β, u+

2 (ξ(β), β)))2 + h(ρ+ + g̃2(ξ(β), β, u+
2 (ξ(β), β)) +

1
2
(u+

2 )2(ξ(β), β).

It should be noted that u+
2 (ξ(β), β) is not estimated until now.

Finally, we derive a system governing u+
2 (x).

It follows from (2.10) that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d

dx1
(
∂x2

∂β
) = ∂2(

u+
2

u+
1

)(x1, x2(x1, β))
∂x2

∂β
,

∂x2

∂β
(ξ(β), β) = 1 − ξ′(β)(

u+
2

u+
1

)(ξ(β), β), β ∈ [x1
2, x

2
2].

(2.12)
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By (2.11), we obtain

(u+
1 ∂2u

+
1 + u+

2 ∂2u
+
2 +

c2(ρ+)
ρ+

∂2ρ
+

)
(x1, x2(x1, β))

∂x2

∂β
=

d

dβ
g̃0(ξ(β), β, u+

2 (ξ(β), β)) (2.13)

and (
u+

1 ∂1u
+
1 + u+

2 ∂1u
+
2 +

c2(ρ+)
ρ+

∂1ρ
+

)
(x1, x2(x1, β))

∂x2

∂β

= −
(

u+
1 ∂2u

+
1 + u+

2 ∂2u
+
2 +

c2(ρ+)
ρ+

∂2ρ
+

)
(x1, x2(x1, β))

dx2

dx1

∂x2

∂β

= − (
u+

2

u+
1

)(x1, x2(x1, β))
d

dβ
g̃0(ξ(β), β, u+

2 (ξ(β), β)). (2.14)

It follows from (2.12), (2.14), (2.4) and (2.6) that

(
u+

1 ∂1u
+
1 + u+

2 ∂1u
+
2 +

c2(ρ+)
ρ+

∂1ρ
+

)
(x1, x2(x1, β))

=O(u+
2 )
(

(O(u+
2 ) + O(ε))∂1u

+
2 + (O(u+

2 ) + O(ε))∂2u
+
2 + O(ε)O(u+

2 ) + O(ε)
)

(ξ(β), β).

In addition, one can rewrite the first equation and the third equation in (2.2) as

{
∂1u

+
1 + ∂2u

+
2 = − 1

ρ+ (u+
1 ∂1ρ

+ + u+
2 ∂2ρ

+),

u+
1 ∂1u

+
2 + u+

2 ∂2u
+
2 = − c2(ρ+)

ρ+ ∂2ρ
+.

(2.15)

Since u+
2 is expected to be small, then it follows from (2.14) and (2.15) that

⎧⎪⎨
⎪⎩

∂1u
+
2 = h1(ρ+, u+

1 , u+
2 , ∂1ρ

+, ∂2ρ
+),

∂2u
+
2 = h2(ρ+, u+

1 , u+
2 , ∂1ρ

+, ∂2ρ
+),

u+
2 (x1

1, x
1
2)) = m1

2,

(2.16)

here

h1(ρ+, u+
1 , u+

2 , ∂1ρ
+, ∂2ρ

+) =
u+

2 ((u+
1 )2 − c2(ρ+))∂1ρ

+ + u+
1 ((u+

2 )2 − c2(ρ+))∂2ρ
+

ρ+((u+
1 )2 + (u+

2 )2)

−
(u+

2 )2 d
dβ

(
g̃0(ξ(β(x)), β(x), u+

2 (ξ(β(x)), β(x)))
)

∂2β(x)

u+
1 ((u+

1 )2 + (u+
2 )2)

,

h2(ρ+, u+
1 , u+

2 , ∂1ρ
+, ∂2ρ

+) =
u+

1 (c2(ρ+) − (u+
1 )2)∂1ρ

+ − u+
2 ((u+

1 )2 + c2(ρ+))∂2ρ
+

ρ+((u+
1 )2 + (u+

2 )2)

+
u+

2
d

dβ

(
g̃0(ξ(β(x)), β(x), u+

2 (ξ(β(x)), β(x)))
)

∂2β(x)

(u+
1 )2 + (u+

2 )2
11



and β(x) denotes the inverse function of x2 = x2(x1, β). Additionally, the constant m1
2 is determined by

the boundary condition in (2.6) and the boundary condition (1.11), namely m1
2 satisfies{

m1
2 = u+

1 (x1
1, x

1
2)f ′

1(x1
1),

u+
1 (x1

1, x
1
2) = q+ + g̃1(m1

2).
(2.17)

The solvability of m1
2 in (2.17) will be shown in Lemma 3.2 in next section.

Obviously, hi = O(∂1ρ
+)+O(∂2ρ

+)+O(u+
2 )
(

(O(u+
2 )+O(ε))∂1u

+
2 +(O(u+

2 )+O(ε))∂2u
+
2 +O(ε)O(u+

2 )

+O(ε)
)

(β(x)). This implies that only ∇ρ+ has a more “important” impact on u+
2 .

In subsequent section, we will focus on studying the reformulated problems (2.4), (2.8)-(2.11) and
(2.16). For this end, we take a transformation to straighten the nozzle walls{

X1 = x1,

X2 = x2−f1(x1)
f2(x1)−f1(x1)

.
(2.18)

This transformation changes the boundaries x2 = f1(x1) and x2 = f2(x1) into X2 = 0 and X2 = 1
respectively. Under the transformation (2.18), the new equation for the shock Σ becomes X1 = ζ(X2).
Then a simple computation yields

ζ′(X2) =
(f2(X1) − f1(X1))ξ′(x2)

1 − ξ′(x2)(f ′
1(X1) + X2(f ′

2(X1) − f ′
1(X1)))

. (2.19)

For convenience, we still write (ρ(X), u1(X), u2(X)) instead of (ρ(x), u1(x), u2(x)) in the new trans-
formation (2.18). Then (2.4) becomes{

ζ′(X2) = (f2(X1)−f1(X1))[ρu1u2]
[P (ρ)+ρu2

2]−(f ′
1(X1)+X2(f ′

2(X1)−f ′
1(X1)))[ρu1u2]

,

ζ(0) = x1
1.

(2.20)

Correspondingly, (2.8) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1

(
((u+

1 )2 − c2(ρ+))D1ρ
+ + u+

1 u+
2 D2ρ

+

)
+ D2

(
u+

1 u+
2 D1ρ

+ + ((u+
2 )2 − c2(ρ+))D2ρ

+

)

+ c2(ρ+)
ρ+ ((D1ρ

+)2 + (D2ρ
+)2) −

(
(D1u

+
1 )2 + 2D1u

+
2 D2u

+
1 + (D2u

+
2 )2
)

ρ+ = 0,

ρ+ − ρ+ = g̃2(x, u+
2 ) on X1 = ζ(X2),

Di
nρ+ + ρ+(u+

1 )2

c2(ρ+) f ′′
i (X1) = 0 on X2 = i − 1, i = 1, 2;

ρ+ = ρ̃+(x2) on X1 = 1,

(2.21)

here x = (x1, x2) = (X1, f1(X1) + X2(f2(X1) − f1(X1))), D1 = ∂X1 − f ′
1(X1)+X2(f ′

2(X1)−f ′
1(X1))

f2(X1)−f1(X1)
∂X2 , D2 =

1
f2(X1)−f1(X1)∂X2 and D1

n = 1√
1+(f ′(X1))2

(f ′
1(X1)D1 − D2), D2

n = 1√
1+(f ′

2(X1))2
(D2 − f ′

2(X1)D1).

Additionally, the equation in (2.9) has the following form(
u+

1 ∂X1 +
1

f2 − f1
(u+

2 − (f ′
1 + X2(f ′

2 − f ′
1))u

+
1 )∂X2

)(
1
2
(u+

1 )2 +
1
2
(u+

2 )2 + h(ρ+)
)

= 0. (2.22)
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Define the curve X2 = X2(X1, β) as the characteristics starting from the point (ζ(β), β) for the
equation (2.22). Namely, X2(X1, β) satisfies⎧⎨

⎩
dX2(X1,β)

dX1
=
(

u+
2 −(f ′

1+X2(f ′
2−f ′

1))u+
1

(f2−f1)u+
1

)
(X1, X2(X1, β)),

X2(ζ(β), β) = β, β ∈ [0, 1].
(2.23)

Thus, it follows from (2.22) and (2.23) that(
1
2
(u+

1 )2 +
1
2
(u+

2 )2 + h(ρ+)
)

(X1, X2(X1, β)) = g̃0(x(β), u+
2 (ζ(β), β)) (2.24)

and

(u+
1 ∂X2u

+
1 + u+

2 ∂X2u
+
2 +

c2(ρ+)
ρ+

∂X2ρ
+

)
(X1, X2(X1, β))

∂X2

∂β
=

d

dβ

(
g̃0(x(β), u+

2 (ζ(β), β))
)

(2.25)

and

(u+
1 ∂X1u

+
1 + u+

2 ∂X1u
+
2 +

c2(ρ+)
ρ+

∂X1ρ
+

)
(X1, X2(X1, β))

∂X2

∂β

= −
(

u+
2 − (f ′

1 + X2(f ′
2 − f ′

1))u
+
1

(f2 − f1)u+
1

)
(X1, X2(X1, β))

d

dβ

(
g̃0(x(β), u+

2 (ζ(β), β))
)

(2.26)

with x(β) = (ζ(β), f1(ζ(β)) + β(f2(ζ(β)) − f1(ζ(β)))).

Finally, the first equation and the third equation in (2.2) becomes{
D1u

+
1 + D2u

+
2 = − 1

ρ+ (u+
1 D1ρ

+ + u+
2 D2ρ

+),

u+
1 D1u

+
2 + u+

2 D2u
+
2 = − c2(ρ+)

ρ+ D2ρ
+.

(2.27)

Combining (2.25), (2.26) with (2.27) yields⎧⎪⎨
⎪⎩

∂X1u
+
1 = H1(ρ+, u+

1 , u+
2 , ∂X1ρ

+, ∂X2ρ
+),

∂X2u
+
1 = H2(ρ+, u+

1 , u+
2 , ∂X1ρ

+, ∂X2ρ
+),

u+
1 (x1

1, 0) = m1
1.

(2.28)

and ⎧⎪⎨
⎪⎩

∂X1u
+
2 = H3(ρ+, u+

1 , u+
2 , ∂X1ρ

+, ∂X2ρ
+),

∂X2u
+
2 = H4(ρ+, u+

1 , u+
2 , ∂X1ρ

+, ∂X2ρ
+),

u+
2 (x1

1, 1) = m1
2.

(2.29)

here (m1
1, m

1
2) is determined by the relations m1

2 = f ′
1(x1

1)m1
1 and m1

1 − q+ = g̃1(x1
1, x

1
2, m

1
2), which

come from the boundary conditions (1.11) and (2.6). In addition, Hi = det(Ai)
det(A0)

for 1 ≤ i ≤ 4, here

A0 =

⎛
⎜⎜⎜⎝

0 u+
1 0 u+

2

u+
1 0 u+

2 0
1 − (f ′

1+X2(f
′
2−f ′

1))
f2−f1

0 1
f2−f1

0 0 u+
1

u+
2 −u+

1 (f ′
1+X2(f ′

2−f ′
1))

f2−f1

⎞
⎟⎟⎟⎠ with det(A0) =

q3
+

2
+ O(ε) + O(|u+

2 |) 
= 0 for
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small ε and |u+
2 | and Ai denotes the 4 × 4 matrix which is obtained through substituting the i−column

in A0 by the following vector L

L =
(

d

dβ

(
g̃0(x(β), u+

2 (ζ(β), β))
)

∂X2β − c2(ρ+)
ρ+

∂X2ρ
+,−

(
u+

2 − (f ′
1 + X2(f ′

2 − f ′
1))u

+
1

(f2 − f1)u+
1

)
d

dβ

(
g̃0(x(β),

u+
2 (ζ(β), β))

)
∂X2β − c2(ρ+)

ρ+
∂X1ρ

+,− 1
ρ+

(u+
1 D1ρ

+ + u+
2 D2ρ

+), −c2(ρ+)
ρ+

D2ρ
+

)T

,

where β = β(X) is an inverse function of X2 = X2(X1, β).

In order to show Theorem 1.1, one needs only to prove the uniqueness of solutions to the problem
(2.20)-(2.21), (2.23)-(2.24) and (2.28) or (2.29). This will be done in the next section.

§3. The proof of Theorem 1.1.

To prove the uniqueness of solutions in Theorem 1.1, it is convenient to change the domain Ω+ including
a free boundary Σ into a fixed domain Q+ = {y : 0 < y1 < 1, 0 < y2 < 1}. For this end, we take a
transformation as follows {

y1 = X1−ζ(X2)
1−ζ(X2)

,

y2 = X2.
(3.1)

For simplicity, in Q+, we still write (ρ+, u+
1 , u+

2 ) as the state of fluid on the right of the shock in the
new coordinates (y1, y2).

Noting that

∂X1 =
1

1 − ζ(y2)
∂y1 , ∂X2 =

(1 − y1)ζ′(y2)
ζ(y2) − 1

∂y1 + ∂y2 .

Then the equations (2.20)-(2.21) become

⎧⎨
⎩ ζ′(y2) =

(
f2(ζ(y2)+(1−ζ(y2))y1)−f1(ζ(y2)+(1−ζ(y2))y1)

)
[ρu1u2]

[P (ρ)+ρu2
2]−
(
f ′
1(ζ(y2)+(1−ζ(y2))y1)+y2(f ′

2(ζ(y2)+(1−ζ(y2))y1)−f ′
1(ζ(y2)+(1−ζ(y2))y1)

)
[ρu1u2]

,

ζ(0) = x1
1.

(3.2)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̃1

(
((u+

1 )2 − c2(ρ+))D̃1ρ
+ + u+

1 u+
2 D̃2ρ

+

)
+ D̃2

(
u+

1 u+
2 D̃1ρ

+ + ((u+
2 )2 − c2(ρ+))D̃2ρ

+

)

+ c2(ρ+)
ρ+ ((D̃1ρ

+)2 + (D̃2ρ
+)2) −

(
(D̃1u

+
1 )2 + 2D̃1u

+
2 D̃2u

+
1 + (D̃2u

+
2 )2
)

ρ+ = 0,

ρ+ − ρ+ = g̃2(x(y), u+
2 ) on y1 = 0,

D̃i
nρ+ + ρ+(u+

1 )2

c2(ρ+) f ′′
i (ζ(y2) + (1 − ζ(y2))y1) = 0 on y2 = i − 1, i = 1, 2;

ρ+ = ρ̃+(x2(y)) on y1 = 1

(3.3)
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with

x(y) =(x1(y), x2(y)),

x1(y) =ζ(y2) + y1(1 − ζ(y2)),

x2(y) =f1(ζ(y2) + y1(1 − ζ(y2))) + y2(f2 − f1)(ζ(y2) + y1(1 − ζ(y2))),

D̃1 =
1

1 − ζ(y2)

(
1 +

(1 − y1)ζ′(y2)(f ′
1(x1(y)) + y2(f ′

2 − f ′
1)(x1(y)))

(f2 − f1)(x1(y))

)
∂y1

− f ′
1(x1(y)) + y2(f ′

2 − f ′
1)(x1(y))

(f2 − f1)(x1(y))
∂y2 ,

D̃2 =
(1 − y1)ζ′(y2)

(ζ(y2) − 1)(f2 − f1)(x1(y))
∂y1 +

1
(f2 − f1)(x1(y))

∂y2 ,

D̃1
n =(1 + (f ′

1(x1(y)))2)−1/2 (f ′
1(x1(y))D̃1 − D̃2),

D̃2
n =(1 + (f ′

2(x1(y)))2)−1/2 (f ′
2(x1(y))D̃1).

Additionally, it follows from the equation (2.22) that((
u+

1

1 − ζ(y2)
− (1 − y1)ζ′(y2)

(
u+

2 − (f ′
1(x1(y)) + y2(f ′

2 − f ′
1)(x1(y)))u+

1

)
(f2 − f1)(x1(y))(1 − ζ(y2))

)
∂y1

+
(

u+
2 − (f ′

1(x1(y)) + y2(f ′
2 − f ′

1)(x1(y))
)
u+

1

(f2 − f1)(x1(y))

)
∂y2

)(
1
2
(u+

1 )2 +
1
2
(u+

2 )2 + h(ρ+)
)

= 0.
(3.4)

The characteristics y2 = y2(y1, β) starting from the point (0, β) of (3.4) is defined as⎧⎨
⎩

dy2
dy1

=
(
u+
2 −(f ′

1+y2(f
′
2−f ′

1))u
+
1

)
(1−ζ(y2))

(f2−f1)u+
1 −(1−y1)ζ′(y2)

(
u+
2 −(f ′

1+y2(f ′
2−f ′

1))u+
1

) ,
y2(0, β) = β.

(3.5)

Thus it follows from (3.4) that(
1
2
(u+

1 )2 +
1
2
(u+

2 )2 + h(ρ+)
)

(y1, y2(y1, β)) = g̃0(ζ(β), f1(ζ(β)) + β(f2 − f1)(ζ(β)), u+
2 (0, β)).

Analogous to (2.29), we can obtain a system on u+
2 as follows⎧⎪⎨

⎪⎩
∂y1u

+
2 = H̃1(ρ+, u+

1 , u+
2 , ∂y1ρ

+, ∂y2ρ
+),

∂y2u
+
2 = H̃2(ρ+, u+

1 , u+
2 , ∂y1ρ

+, ∂y2ρ
+),

u+
2 (0, 0) = m1

2,

(3.6)

here H̃i = det(Ãi)

det(Ã0)
for i = 1, 2, the 4 × 4 matrix Ã0 = (l1, l2, l3, l4) is defined as

l1 =
(

0, u+
2 ,

(1 − y1)ζ′(y2)
(ζ(y2) − 1)(f2 − f1)

,
(f2 − f1 + (1 − y1)ζ′(y2)(f ′

1 + y2(f ′
2 − f ′

1)))u
+
1 − (1 − y1)ζ′(y2)u+

2

(1 − ζ(y2))(f2 − f1)

)T

,

l2 =
(

u+
2 , 0,

1
f2 − f1

,
u+

2 − (f ′
1 + y2(f ′

2 − f ′
1))u

+
1

f2 − f1

)T

,

l3 =
(

0, u+
1 ,

f2 − f1 + (1 − y1)ζ′(y2)(f ′
1 + y2(f ′

2 − f ′
1))

(1 − ζ(y2))(f2 − f1)
, 0
)T

l4 =
(

u+
1 , 0,−f ′

1 + y2(f ′
2 − f ′

1)
f2 − f1

, 0
)T
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and Ãi(i = 1, 2) denotes the 4 × 4 matrix which is obtained from Ã0 by replacing the i−row in Ã0 with
the vector l̃ = (l̃01, l̃02, l̃03, l̃04)T defined by

l̃01 =
d

dβ

(
g̃0(ζ(β), f1(ζ(β)) + β(f2 − f1)(ζ(β)), u+

2 (0, β))
)
∂2β(y) − c2(ρ+)

ρ+
∂2ρ

+,

l̃02 =
d

dβ

(
g̃0(ζ(β), f1(ζ(β)) + β(f2 − f1)(ζ(β)), u+

2 (0, β)
)
∂2β(y)

dy2(y1, β)
dy1

− c2(ρ+)
ρ+

∂1ρ
+,

l̃03 = − 1
ρ+

(u+
1 D̃1ρ

+ + u+
2 D̃2ρ

+),

l̃04 = −c2(ρ+)
ρ+

D̃2ρ
+,

where β = β(y1, y2) is an inverse function of y2 = y2(y1, β). The existence of m1
2 in (3.6) will follow from

Lemma 3.2 below.

To illustrate the validity of regularity to the solution in Theorem 1.1, we now give three lemmas to
ensure the compatibility relations of solutions at the cornered points formed by the shock curve and the
nozzle walls. We start with the property that the shock curve must be perpendicular to the nozzle walls:

Lemma 3.1 (Orthogonality) Under the assumptions on the regularities of solutions in Theorem 1.1,
we have

ξ′(xi
2) = −f ′

i(x
i
1), i = 1, 2.

Namely, the shock curve is perpendicular to the walls of the nozzle.

Proof Since u±
2 (xi

1, x
i
2) = f ′

i(x
i
1)u

±
1 (xi

1, x
i
2), it follows from the first equation in (1.8) that

[ρu1](xi
1, x

i
2)(1 − ξ′(xi

2)f
′
i(x

i
1)) = 0.

Thus
[ρu1](xi

1, x
i
2) = 0. (3.7)

(3.7) together with the second equation in (1.8), yields

[P (ρ)](xi
1, x

i
2) = −(ρ+u+

1 [u1])(xi
1, x

i
2)(1 − ξ′(xi

2)f
′
i(x

i
1)). (3.8)

In addition, the third equation in (1.8) gives

ξ′(xi
2)[P (ρ)](xi

1, x
i
2) = f ′

i(x
i
1)(ρ

+u+
1 [u1])(xi

1, x
i
2)(1 − ξ′(xi

2)f
′
i(x

i
1)). (3.9)

Noting that [P (ρ)](xi
1, x

i
2) 
= 0 and [u1](xi

1, x
i
2) 
= 0, one can obtain from (3.9) and (3.10) that

ξ′(xi
2) = −f ′

i(x
i
1).

Next, we show the solvability of m1
2 in (3.6).

Lemma 3.2 Under the boundary conditions (1.11) and (2.5), then in the small neighborhood of
(q+, 0, ρ+) there exists a unique solution (mi

1, m
i
2, m

i
3) = (u+

1 (xi
1, x

i
2), u

+
2 (xi

1, x
i
2), ρ

+(xi
1, x

i
2))(i = 1, 2)

such that (1.11) and (2.5) hold at the point (xi
1, x

i
2).
16



Proof It follows from the boundary conditions in (1.11) and (2.5) that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L1(mi
1, m

i
2, m

i
3) ≡ mi

2 − f ′
i(x

i
1)(mi

1 − q+) = q+f ′
i(x

i
1),

L2(mi
1, m

i
2, m

i
3) ≡ ρ+(mi

1 − q+) + q+(mi
3 − ρ+) + (mi

1 − q+)(mi
3 − ρ+) = (ρ−u−

1 )(xi
1, x

i
2) − ρ+q+,

L3(mi
1, m

i
2, m

i
3) ≡ (1 + (f ′

i(x
i
1))

2)(ρ−u−
1 )(xi

1, x
i
2)(m

i
1 − q+) + P (mi

3) − P (ρ+) = P (ρ−(xi
1, x

i
2))

−P (ρ0) − (1 + (f ′
i(x

i
1))

2)(ρ−u−
1 )(xi

1, x
i
2)(q+ − u−

1 (xi
1, x

i
2)) + ρ+q2

+ − ρ0q
2
0 ,

(3.10)
where we have used Lemma 3.1, (3.7), (1.6) and (3.8). If f ′

i(x
i
1) = 0, ρ−(xi

1, x
i
2) = ρ0, and u−

1 (xi
1, x

i
2) = q0,

then it follows from (1.6) that (m1, m2, m3) = (q+, 0, ρ+) is a solution of (3.10). Furthermore, for small
ε > 0 one has

(
∂(L1, L2, L3)

∂(mi
1 − q+, mi

2, m
i
3 − ρ+)

)∣∣∣∣
(mi

1,mi
2,mi

3)=(q+,0,ρ+)

= det

⎛
⎝ −f ′

i(x
i
1) 1 0

ρ+ 0 q+

(1 + (f ′
i(x

i
1))

2)(ρ−u−
1 )(xi

1, x
i
2) 0 c2(ρ+)

⎞
⎠

= −ρ+(c2(ρ+) − q2
+) + O(ε) 
= 0.

It follows from Lemma 2.1 and the implicit function theorem that Lemma 3.1 holds.

Therefore the proof on Lemma 3.2 is complete.

Finally, we turn to the compatibility conditions at the corners.

Lemma 3.3 (Compatibility) Let the regularity assumptions in Theorem 1.1 hold and f ′′
i (xi

1) = 0.
Then

∂τρ+(xi
1, x

i
2) = 0,

here ∂τ = ξ′(x2)∂1 + ∂2, which represents the directional derivative along the tangent direction of the
shock curve x1 = ξ(x2).

Remark 3.1 It follows from Lemma 3.2 that ∂τ |(xi
1,xi

2)
= ∂ni |(xi

1,xi
2)

holds, here ni represents the outer
normal of x2 = fi(x1). In addition, due to f ′′

i (xi
1) = 0 and (2.7), one has ∂niρ

+(xi
1, x

i
2) = 0. This,

together with Lemma 3.3, shows that the first order compatibility condition for ρ+ hold at the corner
point (xi

1, x
i
2).

Proof Taking ∂τ on two sides of the equations (2.5), and noting that [ρu1](xi
1, x

i
2) = [ρu2](xi

1, x
i
2) = 0

(see (3.7)), one obtains at the points (xi
1, x

i
2) that

{
[ρu1u2]∂τ [ρu2] − [P (ρ) + ρu2

2]∂τ [ρu1] = 0,

2[ρu1u2]∂τ [ρu1u2] − [P (ρ) + ρu2
2]∂τ [P (ρ) + ρu2

1] − [P (ρ) + ρu2
1]∂τ [P (ρ) + ρu2

2] = 0.

Lemma 3.1 yields

{
∂τ [ρu1](xi

1, x
i
2) + f ′

i(x
i
1)∂τ [ρu2](xi

1, x
i
2) = 0,

(f ′
i(x

i
1))2∂τ [P (ρ) + ρu2

2](xi
1, x

i
2) + 2f ′

i(x
i
1)∂τ [ρu1u2](xi

1, x
i
2) + ∂τ [P (ρ) + ρu2

1](xi
1, x

i
2) = 0.

(3.11)
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Thus it follows from a direct computation that at the point (xi
1, x

i
2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τu+
1 + f ′

i(x
i
1)∂τu+

2 = 1
ρ+ {∂τ (ρ−u−

1 ) + f ′
i(x

i
1)∂τ (ρ−u−

2 ) − (u+
1 + f ′

i(x
i
1)u

+
2 )∂τρ+},

∂τu+
1 + f ′

i(x
i
1)∂τu+

2 = 1
2ρ+(u+

1 +f ′
i(x

i
1)u

+
2 )

{
(f ′

i(x
i
1))2∂τ (P (ρ−) + ρ−(u−

2 )2) + 2f ′
i(x

i
1)∂τ (ρ−u−

1 u−
2 )

+∂τ (P (ρ−) + ρ−(u−
1 )2) −

(
(f ′

i(x
i
1))

2(c2(ρ+) + (u+
2 )2) + 2f ′

i(x
i
1)u

+
1 u+

2

+c2(ρ+) + (u+
1 )2
)

∂τρ+

}
.

(3.12)
Since

u−
2 (xi

1, x
i
2) = f ′

i(x
i
1)u

−
1 (xi

1, x
i
2)), ∂τρ−(xi

1, x
i
2) = −

(
ρ−(u−

1 )2

c2(ρ−)

)
(xi

1, x
i
2)f

′′
i (xi

1) = 0,

u−
1 ∂τu−

1 + u−
2 ∂τu−

2 +
c2(ρ−)

ρ−
∂τρ− ≡ 0,

then

(∂τ (ρ−u−
1 )+ f ′

i(x
i
1)∂τ (ρ−u−

2 ))(xi
1, x

i
2) =

(
(1 + (f ′

i(x
i
1))

2)u−
1 (xi

1, x
i
2)− (

c2(ρ−)
u−

1

)(xi
1, x

i
2)
)

∂τρ−(xi
1, x

i
2) = 0

and (
(f ′

i(x
i
1))

2∂τ (P (ρ−) + ρ−(u−
2 )2) + 2f ′

i(x
i
1)∂τ (ρ−u−

1 u−
2 ) + ∂τ (P (ρ−) + ρ−(u−

1 )2)
)

(xi
1, x

i
2)

= (1 + (f ′
i(x

i
1))

2)
(

(u−
1 )2 + (u−

2 )2 − c2(ρ−)
)

(xi
1, x

i
2)∂τρ−(xi

1, x
i
2) = 0.

Substituting the above computations into (3.12) yields

(
(u+

1 )2 − c2(ρ+) + 2f ′
i(x

i
1)u

+
1 u+

2 + (f ′
i(x

i
1))

2((u+
2 )2 − c2(ρ+))

)
∂τρ+(xi

1, x
i
2) = 0.

Thus, for small ε, we arrive at ∂τρ+(xi
1, x

i
2) = 0, which shows Lemma 3.3.

Now we start to prove Theorem 1.1.

Suppose that the problem (3.2)-(3.6) has two solutions (ρ+,1, u+,1
1 , u+,1

2 ; ζ1(y2)) and (ρ+,2, u+,2
1 , u+,2

2 ;
ζ2(y2)) with the corresponding regularities in Theorem 1.1.

Set

W1(y) = u+,1
1 (y) − u+,2

1 (y), W2(y) = u+,1
2 (y) − u+,2

2 (y), W3(y) = ρ+,1
1 (y) − ρ+,2

1 (y)

and
Ξ(y2) = ζ1(y2) − ζ2(y2).
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By use of (3.2), Lemma 2.1 and the assumptions in Theorem 1.1, we obtain{
Ξ′(y2) = a0(y2)Ξ(y2) + a1(y2)W1(ζ1(y2), y2) + a2(y2)W2(ζ1(y2), y2) + a3(y2)W3(ζ1(y2), y2),
Ξ(0) = 0,

(3.13)
here a0(y2) ∈ C1[0, 1], ai(y2) ∈ C2[0, 1](1 ≤ i ≤ 3) satisfying

‖a0‖C1 + ‖a1‖C2 ≤ Cε, ‖a2‖C2 + ‖a3‖C2 ≤ C.

It follows from the Granwall’s inequality that

|Ξ(y2)| ≤ Cε‖W1‖L∞(Q+) + C(‖W2‖L∞(Q+) + ‖W3‖L∞(Q+)). (3.14)

Thus, using (3.13) again, we arrive at

‖Ξ(y2)‖C1[0,1] ≤ Cε‖W1‖L∞(Q+) + C(‖W2‖L∞(Q+) + ‖W3‖L∞(Q+))

and
‖Ξ(y2)‖C1,1−δ0 [0,1] ≤ Cε‖W1‖C1−δ0(Q+) + C(‖W2‖C1−δ0 (Q+) + ‖W3‖C1−δ0(Q+)), (3.15)

here 0 < δ0 < 1 is a fixed constant.

Next, we estimate W3 by making use of the equation (3.3), the estimate (3.15) on Ξ(y2), and the
assumptions in Theorem 1.1. Indeed, it follows from (3.3) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̃1
1

(
((u+,1

1 )2 − c2(ρ+,1))D̃1
1W3 + u+,1

1 u+,1
2 D̃1

2W3

)
+ D̃1

2

(
u+,1

1 u+,1
2 D̃1

1W3 + ((u+,1
2 )2

−c2(ρ+,1))D̃1
2W3

)
= F (ζ1(y2), ζ2(y2), ζ′1(y2), ζ′2(y2), ζ′′1 (y2), ζ′′2 (y2), ρ+,1,∇ρ+,1, ρ+,2,∇ρ+,2,

u+,1
1 ,∇u+,1

1 , u+,2
1 ,∇u+,2

1 , u+,1
2 ,∇u+,1

2 , u+,2
2 ,∇u+,2

2 ),

W3 = g̃2(x1(y), u+,1
2 ) − g̃2(x2(y), u+,2

2 ) on y1 = 0,

D̃1
ni

W3 = G(ζ1(y2), ζ2(y2), ζ′1(y2), ζ′2(y2), ρ+,1,∇ρ+,1, ρ+,2,∇ρ+,2) on y2 = i − 1, i = 1, 2,

W3 = ρ̃+(x1
2(y)) − ρ̃+(x2

2(y)) on y1 = 1,
(3.16)

here

xi(y) = (xi
1(y), xi

2(y)),

xi
1(y) = ζi(y2) + y1(1 − ζi(y2)),

xi
2(y) = f1(ζi(y2) + y1(1 − ζi(y2))) + y2(f2 − f1)(ζi(y2) + y1(1 − ζi(y2))),

D̃i
1 =

1
1 − ζi(y2)

(
1 +

(1 − y1)ζ′i(y2)(f ′
1(xi

1(y)) + y2(f ′
2 − f ′

1)(xi
1(y)))

(f2 − f1)(xi
1(y))

)
∂y1

− f ′
1(xi

1(y)) + y2(f ′
2 − f ′

1)(xi
1(y))

(f2 − f1)(xi
1(y))

∂y2 ,

D̃i
2 =

(1 − y1)ζ′i(y2)
(ζi(y2) − 1)(f2 − f1)(xi

1(y))
∂y1 +

1
(f2 − f1)(xi

1(y))
∂y2 ,

D̃i
n1

= (1 + (f ′
1(x

i
1(y)))2)−1/2 (f ′

2(x
i
1(y))D̃i

1 − D̃i
2),

D̃i
n2

= (1 + (f ′
2(x

i
1(y)))2)−1/2 (D̃i

2 − f ′
2(x

i
1(y))D̃i

1)
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and

F =
∑

k=1,2;j=1,2,3

∂yk
(bk

0j(y)Wj) +
∑

k=1,2

∂yk
(bk

04(y)Ξ′(y2)) +
∑

k=1,2;j=1,2,3

bk
1j(y)∂yk

Wj +
3∑

j=1

b2j(y)Wj

+ b31(y)Ξ(y2) + b32(y)Ξ′(y2),

G = c0(y)W3 + c1(y)W1 + c2(y)Ξ(y2) + c3(y)Ξ′(y2)

with bl
ij(y), bij , ck(y) ∈ C1(Q̄+) and ‖bl

ij(y)‖C1(Q̄+) + ‖bij(y)‖C1(Q̄+) + ‖ck(y)‖C1(Q̄+) ≤ Cε.

Due to Lemma 3.3, one can check easily the compatibility of W3 at the cornered points (0, 0) and
(0, 1) in (3.16). In addition, by the assumptions in Theorem 1.1, we have also the compatibility at (1, 0)
and (1.1) in (3.16). It thus follows from the regularity estimates on second order elliptic equations of
divergence form with cornered boundary and mixed boundary conditions (see [3], [15] and so on) that
the solution to (3.16) admits the following estimate:

‖W3‖C1,1−δ0 ≤ C

(
‖g̃2(x1(y), u+,1

2 ) − g̃2(x2(y), u+,2
2 )‖C1,1−δ0 + ‖ρ̃+(x1

2(y)) − ρ̃+(x2
2(y))‖C1,1−δ0

+ ‖G‖C1−δ0 +
∑

k=1,2;j=1,2,3

‖bk
0jWj‖C1−δ0 +

∑
k=1,2;j=1,2,3

‖bk
1j∂yk

Wj‖C1−δ0

+
∑

k=1,2

‖bk
04(y)Ξ′(y2)‖C1−δ0 +

∑
1≤j≤3

‖b2jWj‖C1−δ0 + ‖b31(y)Ξ(y2) + b32(y)Ξ′(y2)‖C1−δ0

)

≤ Cε(‖W1‖C1,1−δ0 + ‖W2‖C1,1−δ0 + ‖W3‖C1,1−δ0 + ‖Ξ(y2)‖C1,1−δ0 ). (3.17)

Substituting (3.15) into (3.17) yields

‖W3‖C1,1−δ0 ≤ Cε(‖W1‖C1,1−δ0 + ‖W2‖C1,1−δ0 ). (3.18)

Next, we treat W2 by using the equations (3.5) and (3.6).

Since the characteristics y2 = yi
2(y1, β)(i = 1, 2) starting from the point (0, β) satisfies

⎧⎪⎨
⎪⎩

dyi
2

dy1
=

(u+,i
2 − (f ′

1 + y2(f ′
2 − f ′

1))u
+,i
1 )(1 − ζi(y2))

(f2 − f1)u
+,i
1 − (1 − y1)ζ′i(y2)(u

+,i
2 − (f ′

1 + y2(f ′
2 − f ′

1))u
+,i
1 )

,

yi
2(0, β) = β,

(3.19)

then we obtain

‖y1
2(y1, β) − y2

2(y1, β)‖C1,1−δ0 [0,1;0,1] ≤ C(‖W1‖C1,1−δ0 + ‖W2‖C1,1−δ0 + ‖W3‖C1,1−δ0 + ‖Ξ(y2))‖C1,1−δ0 )

≤ C(‖W1‖C1,1−δ0 + ‖W2‖C1,1−δ0 + ‖W3‖C1,1−δ0 ). (3.20)

It follows from (3.6) that W2 satisfies
⎧⎪⎨
⎪⎩

∂y1W2 = H̄1(y),
∂y2W2 = H̄2(y),
W2(0, 0) = 0.

(3.21)
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A tedious but direct computation shows that H̄i(y) has such a form

H̄i(y) = di
1(y)∂y1W3 + di

2(y)∂y2W3 + di
3(y)W3 + di

4(y)W1 + di
5(y)W2 + di

6(y)(y1
2(y1, β) − y2

2(y1, β))

+ di
7(y)Ξ(y2) + di

8(y)Ξ′(y2) + di
9(y)∂β(y1

2(y1, β) − y2
2(y1, β)) + di

10(y)
(
∂2u

+,2
2 (0, β2(y))

− ∂2u
+,2
2 (0, β1(y))

)
,

here βi(y) is the inverse function of y2 = yi
2(y1, β), di

k(y) ∈ C1 for 1 ≤ k ≤ 10 and

2∑
k=1

‖di
k‖C1 ≤ C,

10∑
k=3

‖di
k‖C1 ≤ Cε.

Thus, taking into account of (3.20), one can obtain from (3.21) that

‖W2‖C1,1−δ0 ≤ C(‖H̄1‖C1−δ0 + ‖H̄2‖C1−δ0 ) ≤ C‖W3‖C1,1−δ0 + Cε(‖W1‖C1,1−δ0 + ‖W2‖C1,1−δ0 ).

For sufficiently small ε, one has

‖W2‖C1,1−δ0 ≤ C‖W3‖C1,1−δ0 + Cε‖W1‖C1,1−δ0 . (3.22)

Finally, we estimate W1.

By use of the equation (3.4) with (3.5) and the estimates (3.15), (3.20), we obtain

‖W1‖C1,1−δ0 ≤ C‖W3‖C1,1−δ0 + Cε
(‖W2‖C1,1−δ0 + ‖y1

2(y1, β) − y2
2(y1, β)‖C1,1−δ0

+ ‖β2(y) − β1(y)‖C1,1−δ0

)
≤ Cε

(‖W1‖C1,1−δ0 + ‖W2‖C1,1−δ0 ) + C‖W3‖C1,1−δ0 . (3.23)

Combining (3.18), (3.22) with (3.23) yields

‖W1‖C1,1−δ0 + ‖W2‖C1,1−δ0 + ‖W3‖C1,1−δ0 ≤ Cε(‖W1‖C1,1−δ0 + ‖W2‖C1,1−δ0 + ‖W3‖C1,1−δ0 ).

Thus, for small ε we arrive at
W1 = W2 = W3 = 0.

It follows from (3.15) that
Ξ(y2) = 0.

Therefore, we can obtain ρ+,1(y) = ρ+,2(y), u+,1
1 (y) = u+,2

1 (y), u+,1
2 (y) = u+,2

2 (y) and ζ1(y2) = ζ2(y2)
immediately. This leads to the proof of Theorem 1.1.
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§4. The proofs of Theorem 1.2 and Theorem 1.3

Based on Theorem 1.1, in this section we show the ill-posedness results in Theorem 1.2 and Theorem
1.3. We begin with the proof of Theorem 1.2.

Proof of Theorem 1.2 The proof will be divided into two steps.

Step 1. (ρ+, u+
1 ) and u+

2 can be extended into a C2-smooth functions for x2 ∈ [−3, 3], which are
symmetric and anti-symmetric with respect to x2 = ±1 respectively, while can be extended
into a C3-smooth symmetric function on [−3, 3].

Indeed, for any C1 solution (ρ+, u+
1 , u+

2 ), the system (1.1) can be rewritten as
⎧⎪⎪⎨
⎪⎪⎩

∂1(ρ+u+
1 ) + ∂2(ρ+u+

2 ) = 0,

u+
1 ∂1u

+
1 + u+

2 ∂2u
+
1 + c2(ρ+)

ρ+ ∂1ρ
+ = 0,

u+
1 ∂1u

+
2 + u+

2 ∂2u
+
2 + c2(ρ+)

ρ+ ∂2ρ
+ = 0.

(4.1)

Since (ρ+(x1, ·), u+
1 (x1, ·), u+

2 (x1, ·)) ∈ C2[−1, 1], it then follows from the boundary conditions u+
2 (x1,

±1) = 0 and the third equation in (4.1) that

∂2ρ
+(x1,±1) = 0. (4.2)

By u±
2 (x1,±1) = 0 and the third equality in (1.8), one can get

ξ′(±1) = 0. (4.3)

Differentiating the first equality in (1.8) implies

∂1[ρu1](ξ(x2), x2)ξ′(x2)+∂2[ρu1](ξ(x2), x2)−ξ′′(x2)[ρu2](ξ(x2), x2)−ξ′(x2)∂2[ρu2](ξ(x2), x2) = 0. (4.4)

Substituting (4.3) and u±
2 (x1,±1) = 0 into (4.4) yields

∂2[ρu1](ξ(±1),±1) = 0. (4.5)

This, together with (4.2), shows
∂2u

+
1 (ξ(±1),±1) = 0. (4.6)

Furthermore, the second equation in (4.1) yields

u+
1 (x1,±1)∂1(∂2u

+
1 (x1,±1)) + (∂1u

+
1 + ∂2u

+
2 )(x1,±1)∂2u

+
1 (x1,±1) = 0. (4.7)

It follows from (4.7) and (4.6) that
∂2u

+
1 (x1,±1) = 0. (4.8)

Noting that
∂1∂2(ρ+u+

1 ) + ∂2
2ρ+u+

2 + 2∂2ρ
+∂2u

+
2 + ρ+∂2

2u+
2 = 0,

one obtains from (4.2), (4.8) and u+
2 (x1,±1) = 0 that

∂2
2u+

2 (x1,±1) = 0. (4.9)
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Next we show ξ(3)(±1) = 0.

By the third equality in (1.8) we obtain

∂2
2

(
[ρu1u2](ξ(x2), x2)

)
− ξ(3)(x2)[P (ρ) + ρu2

2](ξ(x2), x2) − 2ξ′′(x2)∂2

(
[P (ρ) + ρu2

2](ξ(x2), x2)
)

− ξ′(x2)∂2
2

(
[P (ρ) + ρu2

2](ξ(x2), x2)
)

= 0. (4.10)

We can conclude from (4.2), (4.3), (4.8), (4.9) and (4.10) that

ξ(3)(±1) = 0. (4.11)

Set

Ξ(x2) =

⎧⎪⎨
⎪⎩

ξ(2 − x2), x2 ∈ [1, 3];
ξ(x2), x2 ∈ [−1, 1];
ξ(−x2 − 2), x2 ∈ [−3,−1]

and

U±
1 (x1, x2) =

⎧⎪⎨
⎪⎩

u±
1 (x1, 2 − x2), x2 ∈ [1, 3];

u±
1 (x1, x2), x2 ∈ [−1, 1];

u±
1 (x1,−x2 − 2), x2 ∈ [−3,−1]

and

U±
2 (x1, x2) =

⎧⎪⎨
⎪⎩

−u±
2 (x1, 2 − x2), x2 ∈ [1, 3];

u±
2 (x1, x2), x2 ∈ [−1, 1];

−u±
2 (x1,−x2 − 2), x2 ∈ [−3,−1]

and

U±
3 (x1, x2) =

⎧⎪⎨
⎪⎩

ρ±(x1, 2 − x2), x2 ∈ [1, 3];
ρ±(x1, x2), x2 ∈ [−1, 1];
ρ±(x1,−x2 − 2), x2 ∈ [−3,−1]

Then it follows from (4.2), (4.3), (4.8) and (4.9) that (U±
1 , U±

2 , U±
3 ) ∈ C2 and Ξ(x2)) ∈ C3 is a transonic

solution to (1.1) in the domain [−1, 1;−3, 3]. Moreover, the shock goes through the point (x1
1,−1).

Step 2. It holds that ξ(x2) = u+
2 (x1, x2) ≡ 0, and u+

1 (x), ρ+(x) are independent of x2.

Based on a similar idea as in Step 1 and the uniqueness result in Theorem 1.1, it can be checked easily

(I)1. (u+
1 (x), ρ+(x), ξ(x2)) is symmetric and u+

2 (x) is anti-symmetrical with respect to x2 = 0 respec-
tively (where x2 = 0 and x2 = −1 are regarded as the fixed walls of the nozzle).

(I)2. (u+
1 (x), ρ+(x), ξ(x2)) is symmetric and u+

2 (x) is anti-symmetrical with respect to x2 = 0,± 1
2

respectively (where we regard x2 = − 1
2 and x2 = −1 as the fixed walls of the nozzle).

More generally, for any m ≥ 2 and m ∈ N, one can show that

(I)m. (u+
1 (x), ρ+(x), ξ(x2)) is symmetric and u+

2 (x) is anti-symmetrical with respect to x2 = ± k
2m for

k = 0, 1, ..., 2m − 1 (where x2 = −(1 − 1
2m ) and x2 = −1 are regarded as the fixed walls of the nozzle).
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Thus due to the density of ± k
2m (k = 0, 1, ..., 2m − 1) in [−1, 1], one can conclude that

u+
2 (x) ≡ 0, ξ(x2) ≡ 0 and u+

1 (x), ρ+(x) are independent of x2.

We now can complete the proof of Theorem 1.2.

Based on Step 2, it follows from the system (4.1) that

ρ+(x1)u+
1 (x1) ≡ C1, P (ρ+(x1)) + ρ+(x1)(u+

1 (x1))2 ≡ C2.

In terms of the Rankine-Hugoniot conditions (1.8) we obtain

ρ+(x1)u+
1 (x1) ≡ ρ̃0q̃0, P (ρ+(x1)) + ρ+(x1)(u+

1 (x1))2 ≡ P (ρ̃0) + ρ̃0q̃
2
0 . (4.12)

Since (ρ̃0, q̃0) 
= (ρ0, q0), then combining with the entropy condition (1.9) yields ρ+(x1) 
= ρ+. This is
contradictory with the boundary condition (1.10). Therefore, we complete the proof on Theorem 1.2.

Next, we turn to the proof of Theorem 1.3.

Proof of Theorem 1.3 Introducing the polar coordinates

x1 − x0
1 = r cos θ, x2 − x0

2 = r sin θ.

Assume that u+
1 (x) = U+(r, θ) cos θ, u+

2 (x) = U+(r, θ) sin θ and ρ+(x) = ρ+(r, θ), and the shock is
denoted by r = ζ(θ), then (1.1) can be rewritten as

{
∂r(ρ+U+) + ρ+U+

r = 0,

U+∂rU
+ + c2(ρ+)

ρ+ ∂rρ
+ = 0.

(4.13)

Analogous to the proof in Theorem 1.2, under the assumptions in Theorem 1.3, if the supersonic flow
is symmetric in x1 ≥ − 1

4 , then one can show that

U+(r, θ) and ρ+(r, θ) are independent of θ, and ζ(θ) = r0

with r0 = (x1
1 − x0

1) secα0.

If the supersonic coming flow is (ρ0, q0 cos θ, q0 sin θ) in r ∈ [(− 1
4 − x0

1) secα0, r0], then the conditions
(1.8) imply that

ρ+(r0) = ρ+, U+(r0) = q+. (4.14)

Furthermore, we derive from (4.13) that

∂r

(
U+

ρ+

)
=

(
− U+c2(ρ+)

r(c2(ρ+)−(U+)2)

ρ+(U+)2

r(c2(ρ+)−(U+)2)

)
(4.15)

Hence the end density ρ+(r)|r=(1−x0
1) sec α0

is completely determined by (4.14) and (4.15). Thus,
Theorem 1.3 is proved.
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Remark. 4.1. From (4.15), we know that the boundary condition on ρ+ at the exit r = 1 should
satisfy

(c2(ρ+) − (U+)2)∂rρ
+ − (U+)2

r
ρ+ = 0. (4.16)

Noting that c2(ρ+)− (U+)2 > 0 holds for the subsonic flow, thus the boundary condition (4.16) is not
an appropriate one for the second order elliptic equation (2.8). In addition, it is obvious from (4.16) that
the transonic problem (1.1) is also ill-posed when the pressure is arbitrarily given at the exit.

§5. Further Results

In this final section, we will generalize some of the results discussed in the previous sections. The first
main result is that the ill-posedness of Theorem 1.2 can be generalized to the non-isentropic flows, and
the second result is that the Courant-Friedrich conjecture holds true for some special nozzle flows.

First, we claim that for nonisentropic Euler system, the transonic shock problem as formulated in §1 is
still ill-posed when the pressure at the exit is arbitrarily given. Indeed, we consider the steady full Euler
system: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂1(ρu1) + ∂2(ρu2) = 0,

∂1(ρu2
1 + P ) + ∂2(ρu1u2) = 0,

∂1(ρu1u2) + ∂2(ρu2
2 + P ) = 0,

∂1((ρe + 1
2ρ|u|2 + P )u1) + ∂2((ρe + 1

2ρ|u|2 + P )u2) = 0,

(5.1)

which is equivalent to ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂1(ρu1) + ∂2(ρu2) = 0,

u1∂1u1 + u2∂2u1 + ∂1P
ρ = 0,

u1∂1u2 + u2∂2u2 + ∂2P
ρ = 0,

u1∂1S + u2∂2S = 0,

(5.2)

for any C1-smooth solution (ρ, u1, u2, S), where S is the specific entropy. Then we have the following
generalization of Theorem 1.2:

Theorem 5.1 (Ill-Posedness) Assume that the walls of the nozzle are flat, i.e., f1(x1) = (−1)i,
(i = 1, 2), and the constant supersonic incoming flow (ρ̃0, q̃0, 0, S0) and the end pressure ρ̃+(x2) = ρ+

satisfy (ρ̃0, q̃0, S0) 
= (ρ0, q0, S0), where (ρ0, q0, 0, S0) and (ρ+, q+, 0, S+) form a normal transonic shock
for (5.1). Then the problem (5.1) with boundary conditions (1.7) - (1.11) has no transonic shock solution
(ρ(x), u1(x), u2(x), S(x); ξ(x2)) such that

(ρ+(x), u+
1 (x), u+

2 (x), S+(x); ξ(x2)) ≡ (ρ, u1(x), u2(x), S(x); ξ(x2))|Ω̄+ ,

where Ω+ = Ω ∩ {x1 > ξ(x2)}, has the following properties:

(i). ξ(x2) ∈ C3[−1, 1], moreover, ‖ξ(x2) − x1
1‖C3[−1,1] ≤ Cε.

(ii). (ρ+, u+
1 , u+

2 , S+)(x) ∈ C2(Ω̄+) and satisfies

‖ρ+ − ρ+‖C2 + ‖u+
1 − q+‖C2 + ‖u+

2 ‖C2 + ‖S+ − S+‖C2 ≤ Cε.
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Sketch of Proof First, in an analogous way as in the proof of Theorem 1.1, one can establish a similar
uniqueness result with the corresponding regularity assumptions (see Remark 1.5). Then, based on the
uniqueness result, the ill-posedness in Theorem 5.1 can be proved in the same way as for Theorem 1.2
provided one can show that

∂2ρ
+(x1,±1) = ∂2u

+
1 (x1,±1) = ∂2S

+(x1,±1) = ∂2
2u+

2 (x1,±1) = ξ(3)(±1) = 0 (5.3)

in order to ensure the required regularity of extended solutions.

We now prove (5.3). On the shock x1 = ξ(x2), the Rankine-Hugoniot conditions are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ρu1] − ξ′(x2)[ρu2] = 0,

[P (ρ, S) + ρu2
1] − ξ′(x2)[ρu1u2] = 0,

[ρu1u2] − ξ′(x2)[P (ρ, S) + ρu2
2] = 0,

[(ρe(ρ, S) + 1
2ρ(u2

1 + u2
2) + P (ρ, S))u1] − ξ′(x2)[(ρe(ρ, S) + 1

2ρ(u2
1 + u2

2) + P (ρ, S))u2] = 0.

(5.4)

As in Lemma 3.2, we can derive
ξ′(±1) = 0. (5.5)

Analogous to (3.11), it follows from (5.5) and u+
2 (x1,±1) = 0 that⎧⎪⎨

⎪⎩
∂2[ρu1](ξ(±1),±1) = 0,

∂2[P (ρ, S) + ρu2
1](ξ(±1),±1) = 0,

∂2[(ρe(ρ, S) + 1
2ρ(u2

1 + u2
2) + P (ρ, S))u1](ξ(±1),±1) = 0

(5.6)

This implies at the points (ξ(±1),±1) that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ+∂2u
+
1 + u+

1 ∂2ρ
+ = 0,

2ρ+u+
1 ∂2u

+
1 + (c2(ρ+, S+) + (u+

1 )2)∂2ρ
+ + ∂SP (ρ+, S+)∂2S

+ = 0,(
ρ+e(ρ+, S+) + 3

2ρ+(u+
1 )2 + P (ρ+, S+)

)
∂2u

+
1 + u+

1

(
e(ρ+, S+) + ρ+∂ρe(ρ+, S+) + 1

2 (u+
1 )2

+∂ρP (ρ+, S+)
)

∂2ρ
+ + u+

1

(
ρ+∂Se(ρ+, S+) + ∂SP (ρ+, S+)

)
∂2S

+ = 0.

(5.7)

For the polytropic gas, the determinant of the coefficient matrix of (5.7) equals to

(ρ+)2u+
1 ∂Se(ρ+, S+)(c2(ρ+) − (u+

1 )2) 
= 0,

so (5.7) yields:
∂2u

+
1 (ξ(±1),±1) = ∂2ρ

+(ξ(±1),±1) = ∂2S
+(ξ(±1),±1) = 0. (5.8)

Next, we prove that ∂2ρ
+(x1,±1) = ∂2u

+
1 (x1,±1) = ∂2S

+(x1,±1) = ∂2
2u+

2 (x1,±1) = ξ(3)(±1) = 0
hold.

Due to u+
2 (x1,±1) = 0 and the fourth equation in (5.2), we get

∂1S
+(x1,±1) = 0.
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This leads to
S+(x1,±1) ≡ S+(ξ(±1),±1). (5.9)

Furthermore, it follows from the fourth equation in (5.2) and (5.9) that

u+
1 (x1,±1)∂1(∂2S

+(x1,±1)) + ∂2u
+
2 (x1,±1)∂2S

+(x1,±1) = 0. (5.10)

This, together with (5.8), shows
∂2S

+(x1,±1) ≡ 0. (5.11)

Note that the third equation in (5.2) yields:

(
c2(ρ+, S+)

ρ+

)
(x1,±1)∂2ρ

+(x1,±1) +
(

∂SP (ρ+, S+)
ρ+

)
(x1,±1)∂2S

+(x1,±1) = 0. (5.12)

As a consequence of (5.11) and (5.12), one gets

∂2ρ
+(x1,±1) ≡ 0. (5.13)

Now making use of (5.9), (5.11) and (5.13), and proceeding in the same way as in the proof of Theorem
1.2, we can arrive at

∂2u
+
1 (x1,±1) = ∂2

2u+
1 (x1,±1) = ξ(3)(±1) = 0.

Consequently, the proof of Theorem 5.1 is considered as completed.

Finally, we would like to emphasize that despite the ill-posedness results in Theorem 1.2 - 1.3 and
Theorem 5.1, yet there are large class of nozzles and flows such that the Courant-Friedrich’s conjecture
for transonic shock phenomena in nozzles holds true. Indeed, we consider a two-dimensional nozzle whose
divergent part is symmetric for r ≡√x2

1 + x2
2 ∈ (r1, r2) for some positive constants r1 < r2. Furthermore,

we assume that the supersonic incoming is symmetric in r near r = r1, i.e.,

(ρ−, u−
1 , u−

2 , S−)(x1, x2) = (ρ0(r), U0(r) cos θ, U0(r) sin θ, S0) for r ≥ r1, (5.14)

where (r, θ) is the plan coordinates in IR2, and S0 is constant.
For definiteness, we assume that the flow is polytropic. Then we have the following well-posedness

result:

Theorem 5.2 There exist two positive constants P1 and P2 with P1 < P2, which are determined by
the incoming flow and the nozzle, such that if the constant end pressure Pe satisfies Pe ∈ (P1, P2), then
the full Euler system (5.1) has a unique symmetric (i.e. depending only on r) solution. Moreover, the
strength and location of the transonic shock is determined uniquely by the end pressure Pe.

Proof Across the shock r = r0, r1 ≤ r0 ≤ r2, the specific entropy S may change. However, we
are looking for smooth solution before and after the shock, so the entropies S− and S+ are constants
respectively. Then, due to the symmetry properties, the full Euler system is equivalent to the following
equations: ⎧⎪⎨

⎪⎩
d

dr
(rρ±U±) = 0,

d

dr

(
1
2
(U±)2 + h(ρ±, S±)

)
= 0.

(5.15)
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The Rankine-Hugoniot conditions across the shock at r = r0 are

⎧⎪⎪⎨
⎪⎪⎩

[ρU ] = 0,

[ρU2 + P ] = 0,[
ρ

(
1
2
U2 + e

)
U + PU

]
= 0.

(5.16)

It follows from (5.15) and (5.16) that

rρ+(r)U+(r) ≡ m0 for r ≥ r0, and rρ−(r)U−(r) ≡ m0 for r ≤ r0 (5.17)

with m0 = r1ρ
−(r1)U−(r1).

In addition, we derive from (5.15) that

⎧⎪⎪⎨
⎪⎪⎩

(c2(ρ+) − m2
0

r2(ρ+(r))2
)
dρ+(r)

dr
=

m2
0

r3ρ+(r)
for r ≥ r0,

(c2(ρ−) − m2
0

r2(ρ−(r))2
)
dρ−(r)

dr
=

m2
0

r3ρ−(r)
for r ≤ r0.

(5.18)

and ⎧⎪⎪⎨
⎪⎪⎩

dU±

dr
=

m0c
2(ρ±)

r2ρ±((U±)2 − c2(ρ±))
,

d((U±)2 − c2(ρ±))
dr

=

(
2∂ρP (ρ±, S±) + ρ±∂2

ρP (ρ±, S±)
)
(U±)2

r((U±)2 − c2(ρ±))
.

(5.19)

For the polytropic gas, 2∂ρP (ρ±, S±) + ρ±∂2
ρP (ρ±, S±) > 0 (see [8]).

Thus, for the subsonic flow in r ≥ r0 it holds that dρ+(r)
dr > 0 and dU+

dr < 0. This implies that ρ+(r)
is an increasing function and U+(r) is a decreasing function for r ≥ r0. Similarly, ρ−(r) is an decreasing
function and U−(r) is an increasing function for r ≤ r0. Moreover, it follows from a direct computation
that (5.16) has a unique subsonic state (ρ+(r0), U+(r0), S+(r0)) for r = r0. From these properties, one
can derive that the supersonic flow and the subsonic flow exist uniquely in [r1, r0] and [r0, r2] respectively,
in particular, S+(r) ≡ S+(r0) holds for r ≥ r0.

To show Theorem 5.2, we only need to show that for Pe in an appropriate range, there exists a unique
r0 ∈ [r1, r2] so that the end pressure of the subsonic state (ρ+, U+, S+) is Pe.

In fact, it follows from (5.15) and (5.16) that

{
rρ+(r)U+(r) ≡ m0,
1
2 (U+(r))2 + h(ρ+(r), S+(r0)) ≡ B,

(5.20)

with h(ρ, S) = e(ρ, S) + P (ρ,S)
ρ .

In particular, {
r2ρ

+(r2)U+(r2) ≡ m0,
1
2 (U+(r2))2 + h(ρ+(r2), S+(r0)) ≡ B,

(5.21)

Now we derive a relation between the shock position r0 and the end pressure P+(r2).
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Below we should keep in mind that ρ+(r0), U+(r0), S+(r0), r0, ρ
+(r2) and U+(r2) will be a smooth

function of P+(r2).

Due to the second law of thermodynamics de = TdS − Pd( 1
ρ) (here T is the absolute temperature),

we derive from the first and the second equations in (5.20) that
{

d(ρ+(r0)U+(r0)) = −ρ+(r0)U+(r0)dr0
r0

,

ρ+(r0)U+(r0)dU+(r0) = −ρ+(r0)T +(r0)dS+(r0) − dP+(r2).
(5.22)

In addition, it follows from the second equation in (5.16) and (5.22) that

[ρU2](r0)
dr0

r0
= −ρ+(r0)T +(r0)dS+(r0). (5.23)

By the second equation in (5.21) and the state equations of polytropic gas we have

dS+(r0) =
((U+(r2))2 − c2(ρ+(r2)))

c2(ρ+(r2))
(

ρ+(r2)T +(r2) − (U+(r2))2(∂Sρ+)(r2)
)dP+(r2). (5.24)

Thus it follows from (5.23) and (5.24) that

[ρU2](r0)
dr0

r0
=

ρ+(r0)T +(r0)(c2(r2) − (U+(r2))2)
c2(r2)

(
ρ+(r2)T +(r2) − (U+(r2))2(∂Sρ+)(r2)

)dP+(r2) (5.25)

with ρ+(r2) = ρ(P (r2), S+(r0)).

Since ρ+(r2)T +(r2) − (U+(r2))2∂Sρ+(r2) > ρ+(r2)T +(r2) − c2(r2)(∂Sρ+)(r2) = ρ+(r2)T +(r2) +
(∂SP+)(r2) > 0 for the polytropic gas, and [ρU2](r0) < 0 holds due to [ρU2 +P ](r0) = 0 and [P ](r0) > 0,
then we conclude that r0 is a strictly decreasing function of the end pressure P+(r2). When r0 = r1 or
r0 = r2, it follows from (5.16), (5.18), (5.19) and the analysis above that we can obtain two different
pressures P1 and P2 with P1 < P2 (P1 and P2 correspond to the end pressures for r0 = r2 and r0 = r1 re-
spectively). Therefore, by the monotonicity and continuity of r0 with respect to the end pressure P+(r2),
one can obtain the unique symmetric transonic shock for P+(r2) ∈ (P1, P2). Namely, Theorem 5.2 is
proved.

Remark The uniqueness of the transonic shock in Theorem 5.2 in two space dimensions will be given
in our forthcoming paper [24].
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