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Abstract

The purpose of this work is to present recent mathematical results
about the shallow water model. We will also mention related open
problems of high mathematical interest.
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1 Introduction

The shallow water equations are the simplest form of equation of motion that
can be used to describe the horizontal structure of the atmosphere. They
describe the evolution of an incompressible fluid in response to gravitational
and rotational accelerations. The solutions of the shallow water equations
represent many types of motion, including Rossby waves and inertia-gravity
waves. The aim of this paper is to discuss several problems related to the
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general form of shallow water equations written as follows, on a two dimen-
sional domain Ω:

St ∂th + div(hu) = 0, (1)

St ∂t(hu) + div(hu ⊗ u) = −h
∇(h − b)

Fr2 − h
fu⊥

Ro

+
2

Re
div(hD(u)) +

2
Re

∇(hdivu) − 1
We

h∇Δh + D, (2)

where h ∈ R denotes the height of the free surface, u is the mean horizontal
velocity and f a function depending on the latitude y in order to describe
the variability of the Coriolis force. In addition, b is a given function and
describes the topography of the bottom level of the fluid, b > 0 on Ω and b
can vanish on ∂Ω; moreover, b ≤ h. In the second equation, ⊥ denotes the
direct rotation of angle π

2 , namely G⊥ = (−G2, G1) when G = (G1, G2). The
numbers St, Ro, Re, Fr and We respectively denote the Strouhal number, the
Rossby number, the Reynolds number, the Froude number and the Weber
number. Some damping terms D coming from friction may be added or
not. We will discuss this point in Section 3. Remark that in 1871, Saint–
Venant wrote in a note 1 a system which describes the flow of a river and
corresponds to the inviscid shallow water model written here.

Equations (6) and (7), respectively express the conservation of height,
momentum energy. System (6)–(7) is supplemented with initial conditions

h|t=0 = h0, (hu)|t=0 = q0, (3)

The functions h0, q0, are assumed to satisfy

h0 ≥ 0 a.e. on Ω, and
|q0|2
h0

= 0 a.e. on {x ∈ Ω /h0(x) = 0}. (4)

The formal derivation of such system from the Navier-Stokes equations with
free boundary may be found in [37]. Validity of such approximation will be
discussed in the last section.

2 Conservation of potential vorticity

The inviscid case. For the two-dimensional inviscid shallow water equations,
the vorticity ω is a scalar, defined as

ω = ∂xu2 − ∂yu1

1de Saint Venant, Théorie du mouvement non permanent des eaux, avec application
aux crues des rivières et è l’introduction des marées dans leur lit, C.R.Ac. Sc. Paris,
LXXIII, 1871, 147-154
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To derive an evolution equation for ω , we take the curl of the momentum
equation divided by h, and use the identity

curl
(
St ∂tu+u · ∇u+f

u⊥

Ro

)
= St ∂tω+u · ∇ω+

(
ω+

f

Ro

)
divu+u2

∂yf

Ro
.

We can eliminate the term involving divu, multiplying the vorticity equation
by h and the conservation of mass equation by ω + f/Ro and write the
difference of the two obtained identities. This yields

h (St ∂t + u · ∇)
(
ω +

f

Ro

)
−

(
ω +

f

Ro

)
(St ∂th + u · ∇h) = 0.

Therefore : (
St ∂t + u · ∇

)ωR

h
= 0, ωR := ω +

f

Ro
. (5)

The quantity ωR is called the relative vorticity. The equation means that
the ratio of ωR and the effective depth h is conserved along the particle
trajectories of the flow. This constraint is called the potential vorticity. It
provides a powerful constraint in large scale motions of the atmosphere. If
ω +f/Ro is constant initially, the only way that ω +f/Ro remains constant
at a latter time is if h itself is constant. In the general, the conservation of
potential vorticity tells us that if h increases then ω + f/Ro must increase,
and conversely, if h decreases, then ω + f/Ro must decrease.

The viscous case. If h is assumed to be constant equal to 1, D = 0 and
f(y) = βy with β a constant, a system on the relative vorticity ω + f and
stream function is easily written. It reads

St ∂t(ω + f) + u · ∇(ω + f) − 1
Re

Δ(ω + f) = 0, −ΔΨ = ω, u = ∇⊥Ψ.

When h is not constant, even when it does not depend on time, there
are no simple equation for ωR nor ωP , analogous to (5). The term

curl
( 1

h
(2νdiv(hD(u)) + ∇(2hdivu))

)

generates cross terms between derivatives of h and u. As a consequence,
even in the case where h = b(x) is a given function depending only on x, we
are not able to get global existence and uniqueness of a strong solution for
this viscous model if we allow b to vanish on the shore. The lack of equation
for the vorticity also induces problems in the proof of convergence from
the viscous case to the inviscid case when the Reynolds number tends to
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infinity. This is as an interesting open problem. Other interesting questions
are to analyze the domain of validity of viscous shallow-water equations in
bounded domain, and to determine the relevant boundary conditions when
h vanishes on the shore.

3 Leray solutions.

3.1 A new mathematical entropy.

We introduce in this section a new mathematical entropy that has been re-
cently discovered in [11] for more general compressible flows namely Korteweg
system. The domain Ω which is considered is either the periodic domain or
the whole space. In [11] the capillarity coefficient σ is taken equal to 0, more
precisely the Weber number is equal to ∞, and the considered system may
be written in the following form

∂tρ + div(ρu) = 0, (6)
∂t(ρu)+div(ρu ⊗ u) = −∇p(ρ)+div(2μ(ρ)D(u))+∇(λ(ρ)divu). (7)

The energy identity for such system reads

1
2

d

dt

∫
Ω
(ρ|u|2 + 2π(ρ)) +

∫
Ω

(
2μ(ρ)|D(u)|2 + λ(ρ)|divu|2

)
= 0,

where π denotes the internal energy per unit volume given by

π(ρ) = ρ

∫ ρ

ρ

p(s)
s2

ds

for some constant reference density ρ.

In [11], a new mathematical entropy has been discovered that helps to
get a great variety of mathematical results about compressible flows with
density dependent viscosities. Namely if λ(ρ) = 2(μ′(ρ)ρ − μ(ρ)), then the
following equality holds

1
2

d

dt

∫
Ω

(
ρ|u+2∇ϕ(ρ)|2 +2π(ρ)

)
+

∫
Ω

p′(ρ)μ′(ρ)
ρ

|∇ρ|2 +
∫

Ω
2μ(ρ)|A(u)|2 = 0

where A(u) = (∇u − t∇u)/2 and ρϕ′(ρ) = μ′(ρ). For the reader’s conve-
nience, we recall here the alternate proof given in [9].
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Proof of the new mathematical entropy identity. Using the mass
equation we know that for all smooth function ξ(·)

∂t∇ξ(ρ) + (u · ∇)∇ξ(ρ) +
∑

i

∇ui∂iξ(ρ) + ∇(ρξ′(ρ)divu) = 0.

Thus, using once more the mass equation, we see that v = ∇ξ(ρ) satisfies:

∂t(ρv) + div(ρu ⊗ v) + ρ
∑

i

∇ui∂iξ(ρ) + ρ∇(ρξ′(ρ)divu) = 0

which gives, using the momentum equation on u,

∂t(ρ(u + v)) + div(ρu ⊗ (u + v)) − div(2μ(ρ)D(u)) −∇(λ(ρ)divu)

+∇p(ρ) + ρ
∑

i

∇ui∂iξ(ρ) + ρ∇(ρξ′(ρ)divu) = 0

Next, we write the diffusion term as follows:

−div(2μ(ρ)D(u)) = −div(2μA(u)) − 2
∑

i

∇ui∂iμ − 2∇(μdivu) + 2divu∇μ

where A(u) = (∇u − t∇u)/2. Therefore, the equation for u + v reads

∂t(ρ(u + v))+div(ρu ⊗ (u + v))−2div(μ(ρ)A(u))−2μ′(ρ)
∑

i

∇ui∂iρ

−2∇(μ(ρ)divu)+2μ′(ρ)∇ρdivu+∇p(ρ)−∇(λ(ρ)divu)+ρξ′(ρ)
∑

i

∇ui∂iρ

+∇(ρ2ξ′(ρ)divu)−ρξ′(ρ)∇ρdivu = 0.

This equation can be simplified under the form

∂t(ρ(u + v)) + div(ρu ⊗ (u + v)) − 2div(μ(ρ)A(u)) + ∇p(ρ)

+∇((ρ2ξ′(ρ) − 2μ − λ)divu) + (ρξ′(ρ) − 2μ′(ρ))
∑

i

∇ui∂iρ

+(2μ′(ρ) − ρξ′(ρ))∇ρdivu = 0 (8)

If we choose ξ such that 2μ′(ρ) = ξ′(ρ)ρ, then λ = ξ′(ρ)ρ2 − 2μ and the last
three terms cancel, which implies:

∂t(ρ(u + v)) + div(ρu ⊗ (u + v)) − 2div(μ(ρ)A(u)) + ∇p(ρ) = 0.
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Multiplying this equation by (u + v) and the mass equation by |u + v|2/2
and adding we easily get the new mathematical entropy equality. We just
have to observe that ∫

Ω
div(μ(ρ)A(u)) · v = 0,

since v is a gradient. The term involving ∇p(ρ) gives
∫

Ω
∇p(ρ) · (u + v) =

∫
Ω

ρ∇π′(ρ) · u +
∫

Ω

p′(ρ)μ′(ρ)
ρ

|∇ρ|2

=
d

dt

∫
Ω

π(ρ) + +
∫

Ω

p′(ρ)μ′(ρ)
ρ

|∇ρ|2 (9)

where π(ρ) = ρ

∫ ρ

ρ
p(s)/s2ds with ρ a constant reference density.

We remark that the mathematical entropy estimate gives an extra infor-
mation on ρ, namely

μ′(ρ)∇ρ/
√

ρ ∈ L∞(0, T ;L2(Ω))

assuming μ′(ρ0)∇ρ0/
√

ρ
0
∈ L2(Ω) initially.

Such an information is crucial in the analysis of viscous compressible
flows with density dependent viscosities and it should help in various cases.
Recent applications have been given. For instance, in [38], A. Mellet and
A. Vasseur study the stability of isentropic compressible Navier-Stokes
equations with barotropic pressure law p(ρ) = aργ with γ > 1 in di-
mension d = 1, 2 and 3. The diffusive term is assumed under the form
−div(2μ(ρ)∇u) −∇(λ(ρ)divu).

An other interesting result concerns the full compressible Navier-Stokes
equations. Existence of global weak solutions has been obtained in [10]
assuming perfect gas law except close to vacuum where cold pressure is used
to get compactness on the temperature. This completes the result recently
obtained by E. Feireisl in [22] where the temperature satisfies an inequality
instead of an equality in the sense of distributions and where the assumptions
on the equation of state prevent from considering perfect polytropic gas laws
even away from vacuum. Note that the two above results do not involve the
same kind of viscosity laws. Something has therefore to be understood.

We remark that the relation between λ and μ

λ(ρ) = 2(μ′(ρ)ρ − μ(ρ)) (10)

6



and the conditions

μ(ρ) ≥ c, λ(ρ) + 2μ(ρ)/d ≥ 0

can not be fulfilled simultaneously. Indeed the viscosity μ has to vanish
in vacuum. In [27], D. Hoff and D. Serre prove that only viscosities
vanishing with the density may prevent failure of continuous dependence
on initial data for the Navier–Stokes equations of compressible flow. Our
relation (10) between λ and μ push to consider such degenerate viscosities.
We refer the reader to [38] for interesting mathematical comments on the
relation imposed between λ and μ.

Remark on the viscous shallow water equations. We stress that, in the equa-
tion written at the beginning of the paper, the viscous term does not satisfy
the conditions imposed above. Indeed, we have μ = ρ but λ 
≡ 0. As a
consequence, the usual viscous shallow water equations are far from being
solved for weak solutions except in 1D where −2div(hD(u))− 2∇(hdivu) =
−4∂x(h∂xu)
Equations with capillarity. Capillarity can be taken into account, as it is
observed in [11], introducing a term of the form −ρ∇(G′(ρ)ΔG(ρ))/We at
the right hand side of the momentum equation. It turns out that it suffices
to choose a viscosity equal to μ(ρ) = G(ρ). This gives the mathematical
entropy

1
2

d

dt

∫
Ω

(
ρ|u + 2∇ϕ(ρ)|2 + 2π(ρ) +

1
We

|∇μ(ρ)|2
)

+
∫

Ω

p′(ρ)μ′(ρ)
ρ

|∇ρ|2

+
1

We
σ

∫
Ω

μ′(ρ)|Δμ(ρ)|2 +
∫

Ω
2μ(ρ)|A(u)|2 = 0 (11)

where A(u) = (∇u − t∇u)/2 and ρϕ′(ρ) = μ′(ρ). Applications of such
mathematical entropy will be provided in [14], to approximations of hydro-
dynamics. It may also be used to construct suitably smooth sequences of
approximate solutions to non capillary models corresponding to the limit of
infinite Weber number.
The temperature dependent case. For the full compressible Navier-Stokes
equation, the mathematical energy equality reads

d

dt

∫
Ω
(
1
2
ρ|u|2 + π(ρ)) +

∫
Ω

2μ(ρ)|D(u)|2 +
∫

Ω
λ(ρ)|divu|2 = −

∫
Ω
∇p · u,

and the new mathematical entropy equality reads

d

dt

∫
Ω
(
1
2
ρ|u + v|2 + π(ρ)) +

∫
Ω

2μ(ρ)|A(u)|2 = −
∫

Ω
∇p · (u + v)
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where A(u) = (∇u − t∇u)/2. To close the estimate, it is sufficient to prove
that the extra terms

∫
Ω ∇p ·u and

∫
Ω ∇p ·(u+v) can be controlled by the left

hand side. This has been done in [10], in which the global existence of weak
solutions is proved for the full compressible Navier–Stokes equations with
perfect polytropic pressure laws modified by a cold pressure component (at
zero temperature) to control density close to vacuum. The proof uses the
new mathematical entropy to control the density far from vacuum.

3.2 Weak solutions with drag terms.

When drag terms such as D = r0u+ r1h|u|u are present in the Saint Venant
model, with diffusion term equal to −2div(hD(u)), the existence of global
weak solution is proved in [12] without capillarity term (r1 > 0 and r0 > 0).
The authors mention that in 1D, r1 may be taken equal to 0.

Of course such drag terms is helpful from a mathematical view point
since it gives the extra information we need on u to prove stability results.
Anyway, we will see in the last section that the derivation of the shallow
water equations is far from being understood. We will give an example where
drag forces appear from the underlying 3D incompressible free boundary
Navier–Stokes equations with Dirichlet conditions at the bottom and an
example where no drag terms appear when other boundary conditions are
considered, namely no slip conditions.

3.3 Dropping drag terms

A. Mellet and A. Vasseur, in [38], show how to ignore the drag terms for
the shallow water equations without capillary terms assuming the diffusive
term under the form −div(h∇u). This is useful for the mathematical analy-
sis. Indeed, controlling ∇√

ρ implies further information on u assuming this
regularity initially. More precisely, multiplying the momentum equation by
|u|δu with δ small enough and assuming that

√
ρ

0
u0 ∈ L2+δ(Ω), one proves

that
√

ρu ∈ L∞(0, T ;L2+δ(Ω)) using the estimates given by the new math-
ematical entropy. This new piece of information is sufficient to pass to the
limit in the nonlinear term without the help of drag terms. Note that such
technic hold for general μ and λ satisfying the relation needed for the new
mathematical entropy.

Important remark. Note that the new mathematical entropy has been used
to get stability results for approximate solutions for various models: com-
pressible barotropic Navier–Stokes equations, compressible Navier-Stokes
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equations with thermal conductivity, Korteweg equations...... In [12], [10]
for instance, the authors claim that such approximate solutions may be built
to get global existence of weak solutions, i.e. to built actual sequences of
suitably smooth approximate solutions. The details will be given in [8] for
readers convenience.

4 Strong solutions.

There are several results about the local existence of strong solutions for the
shallow water equations written as follows

∂th + div(hu) = 0, (12)
∂t(hu) + div(hu ⊗ u) − νdiv(h∇u) + h∇h = 0. (13)

Following the energy method of A. Matsumura and T. Nishida, it is
natural to show the global (in time) existence of classical solutions to the
dissipative shallow water equations on a different domain. The external
force field and the initial data being assumed to be small in a suitable
space. Such result has been proved in [30], [17]. In [45], a global existence
and uniqueness theorem of strong solutions for the initial-value problem for
the viscous shallow water equations is established for small initial data and
no forcing. Polynomial L2 and decay rates are established and the solution
is shown to be classical for t > 0.

More recently, in [47], is studied the Cauchy problem for viscous shallow
water equations. The authors work in the Sobolev spaces of index s >
2 to obtain local solutions for any initial data, and global solutions for
small initial data. The proof is based on Littlewood-Paley decomposition of
solutions. The result reads

Theorem 4.1 Let s > 0, u0, h0 − h0 ∈ Hs+2(R2), ‖h0 − h0‖Hs+2  h0.
Then there exists a positive time T , a unique solution (u, h) of Cauchy prob-
lem (12)–(13) such that

u, h − h0 ∈ L∞(0, T ;H2+s(R2)), ∇u ∈ L2(0, T ;H2+s(R2)).

Furthermore, there exists a constant c such that if ‖h0 − h0‖Hs+2(R2) +
‖u0‖Hs+2(R2) ≤ c then we can choose T = +∞.

Nothing has been done so far, using for instance the new mathematical
entropy, to obtain better results such as local existence of strong solution
with initial data including vacuum. Remark that such a situation is impor-
tant from a physical point of view: the dam break situation.
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5 Other viscous terms in the literature.

In [34], different diffusive terms are proposed, namely −2νdiv(hD(u)), or
−νhΔu or else −νΔ(hu). The reader is referred to [3] for the study of
such diffusive terms in the low Reynolds approximation. Let us give some
comments around the last two propositions.

Diffusive term equal to −νhΔ.
It is shown by P. Gent in [23], that this form, which is frequently used for

the viscous adiabatic shallow-water equations, is energetically inconsistent
compared to the primitive equations. An energetically consistent form of
the shallow-water equations is then given and justified in terms of isopycnal
coordinates. This energetical form is exactly the form considered in the
present paper. Examples are given of the energetically inconsistent shallow-
water equations used in low-order dynamical systems and simplified coupled
models of tropical airsea interaction and the E1 Nino-Southern Oscillation
phenomena.

From a mathematical point of view, this inconsistency can be easily
identified. Let us multiply, formally, the momentum equation by u/h. We
get

d

dt

∫
Ω
|u|2 + ν

∫
Ω
|∇u|2 +

1
2

∫
Ω

u · ∇|u|2 +
∫

Ω
u · ∇h = 0.

The last term may be written
∫

Ω
u · ∇h = −

∫
Ω

log hdiv(hu) =
∫

Ω
log h∂th =

d

dt

∫
Ω
(h log h − h).

The third term may be estimated as follows

∣∣∫
Ω
|u|2divu

∣∣ ≤ ‖u‖2
L4(Ω)‖u‖H1(Ω) ≤ c‖u‖2

H1(Ω)‖u‖L2(Ω).

Thus if we want to get dissipation, we have look at solutions such that

‖u‖L2(Ω) < ν/c,

that means sufficiently small velocity solutions. Such an analysis has been
performed in [43], looking at solutions of the above system such that u
bounded in L2(0, T ;H1(Ω)), h ∈ L∞(0, T ;L1(Ω)), h log h ∈ L∞(0, T ;L1(Ω)).
The mathematical difficulty is to prove the convergence of sequences of
approximate solutions (ρnun)n∈N in the stability proof. For this, the au-
thor uses strongly the fact that hn and hn log hn are uniformly bounded in
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L∞(0, T ;L1(Ω)). Using Dunford-Pettis theorem and Trudinger-Moser in-
equality, he can conclude by a compactness argument.

Remark that using this diffusive term, several papers have been devoted
to the low Reynolds approximation namely the following system

∂th + div(hu) = 0, ∂tu − Δu + ∇hα = f,

with α ≥ 1. The most recent one, see [33], deals with blow up phenomena,
if the initial density contains vacuum, using an uniform bounds with respect
to time of the L∞ norm on the density. It would be interesting to under-
stand what happens without simplification by h in the momentum equation
allowing the height to vanish. Remark that such simplification has been also
done in [36] to study high rotating and low Froude number limit of inviscid
shallow water equations.

Diffusive term equal to −νΔ(hu). Using such diffusion term also gives en-
ergetical inconsistency. Only results about the existence of global weak
solutions for small data have been obtained.

6 The quasi-geostrophic model.

The well-known quasigeostrophic system for zero Rossby and Froude num-
ber flows has been used extensively in oceanography and meteorology for
modelling and forecasting mid-latitude oceanic and atmospheric circula-
tion. Deriving this system requires a (singular) perturbation expansion.
The quasigeostrophic equation expresses conservation of the zero-order po-
tential vorticity of the flow. In 2D, that means neglecting the stratification,
such a model can be derived from the shallow water equations. We just have
to choose Fr = Ro = O(ε) and b = 1 + εηb with ηb = O(1) and let ε go to 0.
It yields the following two dimensional system

St ∂tu + div(u ⊗ (u + ηb)) = −D −∇p +
1

Re
Δu − St∂tΔ−1u, (14)

divu = 0, (15)

We also note the presence of the new term ∂tΔ−1u coming from the free
surface, which cannot be derived from the standard rotating Navier–Stokes
equations in a fixed domain. To the knowledge of the authors, there exists
only one mathematical paper concerning the derivation of such models from
the viscous Shallow water equations. It concerns global weak solutions, see
[12].
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7 The lake equations.

The so-called lake equations arise as the shallow water limit of the rigid
lid equations - three dimensional Euler or Navier–Stokes equations with
a rigid lid upper boundary condition - in a horizontal basin with bottom
topography. It could also be seen as a low Froude approximation of the
shallow water equation assuming b = O(1). Neglecting the Coriolis force, it
gives

St ∂t(bu) + div(bu ⊗ u)

= −b∇p +
2

Re
div(bD(u)) +

2
Re

∇(bdivu), (16)

div(bu) = 0, (17)

7.1 The viscous case.

This model has been formally derived and studied by D. Levermore and
B. Samartino, see [32]. In this paper, assuming that the depth b is positive
and smooth up to the boundary of Ω, they prove that the system is globally
well posed. Note that such model has been used to simulate the currents in
Lake Erie. Concerning the boundary conditions, they consider the no-slip
boundary conditions

u · n = 0, τ · ((∇u + t∇u)n) = −βu · τ.

where n and τ are the outward unit normal and unit tangent to the bound-
ary. They assume β ≥ κ where κ is the curvature of the boundary.

7.2 The inviscid case.

Let us assume formally that Re → ∞ to model an inviscid flow and consider
a two-dimensional bounded domain Ω. We get the following system

St ∂t(bu) + div(bu ⊗ u) + b∇p = 0, (18)
div(bu) = 0, u · n|∂Ω = 0. (19)

That means a generalization of the standard two dimensional incompressible
Euler equation obtained if b ≡ 1.

A strictly positive bottom function. Yudovich’s method may be applied
using the fact that the relative vorticity ω/b is transported by the flow.
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More precisely, the inviscid lake equation may be written using a stream-
relative vorticity formulation under the following form

St ∂t

(ω

b

)
+ u · ∇(ω

b

)
= 0, (20)

−div(∇Ψ/b) = ω, ω = curl, Ψ|∂Ω = 0. (21)

Assuming b ≥ c > 0 smooth enough, Lp regularity on the stream function
Ψ remains true, that is

‖Ψ|W 2,p(Ω) ≤ Cp‖ω‖Lp(Ω)

where C does not depend on p. Such elliptic estimates with non-degenerate
coefficients comes from [1]-[2]. This result allows D. Levermore, M. Oliver,
E. Titi, in [31], to conclude to global existence and uniqueness of strong so-
lutions.

A degenerate bottom function. This is the case when b vanishes on the
boundary (the shore). Suppose that ϕ is a function equivalent to the distance
to the boundary, that is ϕ ∈ C∞(Ω), Ω = {ϕ > 0} and ∇ϕ 
= 0 on ∂Ω.
Assuming that b = ϕa where a > 0 and the problem on the stream function
may be written under the form

−ϕΔΨ + a∇ϕ · ∇Ψ = ϕa+1ω in Ω, Ψ|∂Ω = 0 (22)

The case a = 1, that is b = ϕ, is physically the most natural. This equation
belongs to a well known class of degenerate elliptic equations (see [25, 5]).

In [15], the authors prove that, for such degenerate equation, the Lp reg-
ularity estimate remains true. The analysis is based on Schauder’s estimates
solutions of (22) and on a careful analysis of the associated Green function
which depends on the degenerate function b.

Using such estimate, the authors are able to follow the lines of the proof
given by Yudovitch to get the existence and uniqueness of a global strong
solution. Moreover as a corollary, they prove that the boundary condition
u · n|∂Ω = 0 holds on the velocity.

Remark. To the authors’ knowledge, there exists only one paper dealing
with the derivation of the lake equations from the Euler equations, locally
in time, see [42].

Remark. It would be very interesting to investigate the influence of b on
properties which are known for the two–dimensional Euler equations, see
[4].
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An interesting open problem: Open sea boundary conditions. Let us men-
tion here an open problem which have received a lot of attention from ap-
plied mathematicians, especially A. Kazhikhov. Consider the Euler equa-
tions, or more generally the inviscid lake equations, formulated in a two-
dimensional bounded domain. When the boundary is of inflow type, all the
velocity components are prescribed. Along an impervious boundary, flux
vanishes everywhere. This is known as a slip condition. Along a boundary
of outflow type, the flux normal to the boundary surface is prescribed for
all points of the boundary.

A local existence and uniqueness theorem is proved in a class of smooth
solutions by A. Kazhikhov in [28]. A global existence theorem is also
proved under the assumption that the flow is almost uniform and initial data
are small. But the question of global existence and uniqueness in the spirit
of V. Yudovitch’s results remains open, see [48]. In this paper, the author
shows how the boundary conditions can be augmented in this more general
case to obtain a properly posed problem. Under the additional condition
curl v|S− = π(x, t), where π(x, t) is—modulo some necessary restrictions—
arbitrary, the author shows the existence, in the two-dimensional case, of
a unique solution for all time. The method is constructive, being based on
successive approximations, and it brings out clearly the physical basis for the
additional condition. To understand it in a better way, open sea boundary
conditions could be helpful for shallow-water equations for instance with an
application to strait of Gibraltar modelling.

8 Multi-level models.

We now give an example where it could be important to write multi-level
shallow water equations: it concerns the modelling of the dynamics of wa-
ter in the Alboran sea and the strait of Gibraltar. In this sea, two layers
of water can be distinguished: the surface Atlantic water penetrating into
the Mediterranean through the strait of Gibraltar and the deeper, denser
Mediterranean water flowing into the Atlantic. This observation shows that,
if we want to use two dimensional models to simulate such phenomena, we
have to consider at least two layers models. The model which is usually used
to study this phenomena considers sea water as composed of two immiscible
layers of different densities. In this model, waves appear not only at the
surface but also at the interface. It is assumed that for the phenomena un-
der consideration, the wavelength is sufficiently large to make accurate the
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shallow water approximation in each layer. Therefore the resulting equa-
tions form a coupled system of shallow water equations. Concerning viscous
bi-layer shallow water equations, to the authors knowledge, only papers with
the diffusion −hΔu in each layer has been studied, that is the energetically
inconsistent one, see [40]. Nothing has been done with the structure studied
in the mono-layer case in [12]-[38]. We also note that there are very few
mathematical studies concerning the propagation of waves in multi-levels
geophysical models.

Shallow water flow with non-constant density. Shallow water equations tak-
ing into account non-constant density of the material are subject to inves-
tigation. There exists only few results in this direction. They may be seen
as perturbations of the known results for the standard shallow water equa-
tions. Let us for instance comment on the model studied recently in [26].
This model reads

∂t(ρh) + ∂x(ρhu) − 0, (23)
∂t(ρhu) + ∂x(ρhu2 + 1

2β(x)ρh2) = ρhg. (24)

where ρ = hα, α ≥ 0 being a constant, β = β(x) and g = g(v, x) are given
functions. Here h stands for height, ρ for density and v for velocity, and the
whole models an avalanche down an inclined slope.

Moreover, the author considers the following particular choices for β and
g: β(x) = k cos(γ(x)), g(v, x) = sin(γ(x)) − sign(v) cos(γ(x)) tan(δF (x)),
where δF and γ are given functions. Here sign is the sign function, with
sign(0) = [−1, 1]. After a change of unknown, this system can be rewritten
in the form

∂

∂t
u +

∂

∂x
F (u) ∈ G̃(u, x),

with essentially the same structure as the system of isentropic gas dynamics
in one dimension of space (see for instance [35]), except for the fact that
there is an inclusion instead of an equality. A precise (natural) definition of
entropy solutions of such systems and a long-time existence theorem of such
solutions, under the assumption that the initial height is bounded below by a
positive constant, which corresponds to avoiding vacuum may be performed
using well-known tools, without additional difficulties.

To propose and study better shallow water models taking into account
the density variability of the material could be an interesting research area.
Remark. Using the mathematical entropy estimate, perhaps it could be
possible to find a physical viscous and capillary approximation for the 1D
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Euler equation replacing the viscous mathematical approximation used in
[35], namely

∂tρ + ∂x(ρu) = ε∂2
xρ, (25)

∂t(ρu) + ∂x(ρu2) + ∇xp(ρ) = ε∂2
x(ρu). (26)

9 Derivation of shallow water equations.

Recently D. Coutand, S. Shkoller, see [20]–[21], have written two papers
dedicated to the free surface incompressible Euler and Navier-Stokes equa-
tions with or without surface tension. We also mention two recent papers
dedicated to the formal derivation of viscous shallow water equations from
the Navier-Stokes equations with free surface, see [24] for 1D shallow water
equations and see [37] for 2D shallow water equations.

It would be interesting to prove mathematically such formal derivations.
We make here a few remarks concerning the hypothesis which have been
used to derive formally these viscous shallow water equations with damping
terms.
First hypothesis. The viscosity is of order ε, meaning that the viscosity is
of the same order than the depth, and the asymptotic analysis is performed
at order 1.
Second hypothesis. The boundary condition at the bottom for the Navier-
Stokes equations is taken using wall laws. Namely the boundary conditions
are of the form (σn)tang = r0u on the bottom with u·n = 0. These boundary
conditions can lead to a drag term. (there is no such drag term if r0 = 0).

Dirichlet boundary condition. Suppose that one starts with standard Dirich-
let boundary conditions instead of a wall law which by itself is a modelled
view of boundary layers near to the bottom. Then we get a linear drag term
due to the parabolic profile of the velocity, see [46] and the quadratic term
∂x(hu2) is replaced by 6∂x(hu2)/5.

To conclude, we stress that the rigorous derivation of applicable shal-
low water equations is far from being understood and a deep mathematical
analysis is needed in this direction. Let us mention for the reader conve-
nience some recent works made in that direction by [6], [7] in order to try
to propose some generalization of shallow water equations which take into
account order one variation in the slope of the bottom. We also mention
recent works by J.-P. Vila, see [46], where a precise asymptotic is performed
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in the description of the velocity profile. Looking at the asymptotic with
adherence condition on the bottom and free surface conditions on the sur-
face, he proves that depending on the Ansatz for the horizontal velocity and
for the viscosity coefficient, we can formally get various asymptotic inviscid
models at the main order.
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