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1 Introduction and Main Results

Mathematical theory of multidimensional compressible fluid flows give rise to many

outstanding challenging problems. There are a lot of experiments and numerical simulations

involved in this field. For the global potential subsonic flow, one of the most significant

progress was due to Bers[2], who showed that for two dimensional flow past a profile, if the

Mach number of the freestream is small enough, then the whole flow field will be subsonic

outside the profile; furthermore, as the freestream Mach number increases, the maximum of

flow speed will tend to the sound speed. Later on, Finn and Gilbarg[8] showed uniqueness

of subsonic flow past a profile by maximum principles and asymptotic behavior of flows at

far field. For the three dimensional flows, it was studied initially by Finn and Gilbarg[9],

and then by Dong[6], the final results are quite similar to the two dimensional case, that a

subsonic flow exists globally if the freestream Mach number is suitably small, moreover, the

maximum of the flow speed will tend to the sound speed if the freestream Mach number

increases to some critical value.

We note that Bers’ result does not apply to the flow with the critical freestream Mach

number. In fact, by the maximum principle, Gilbarg and Shiffman[10] asserts that the sonic

point should occur on the profile, which presupposed the existence of the smooth critical

flows. In this regards, Gilbarg and Shiffman[10] remarked in footnote 8: “The actual

existence of critical flows past finite profiles of bounded curvature has been proved by M.

Shiffman (unpublished)”. Bers also mentioned this unpublished result in [3]. However, so

far, there are no detailed and precise rigorous proof to refer to.

On the other hand, for flows through an infinitely long nozzle, so far it does not have

a complete theory as what had been obtained by Bers, et al, for flow past an obstacle. In

his famous survey, Bers[3] proposed the following problem, for the given nozzle, show that

there is a global subsonic flow through the nozzle for an appropriately given incoming mass

flux. Although it seems that this problem is quite similar to the airfoil problem physically,

however, it does not seem to be true mathematically. As Bers said in his book[3], “No
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proof, however, has yet been carried out along these lines”. One of the aims of this paper

is to give a positive answer to this problem. Moreover, we would like to show that there

exists a critical value such that a global uniform subsonic flow exists uniquely in a general

nozzle as long as the incoming mass flux is less than the critical value. More importantly,

we would like to investigate the properties of these uniform subsonic flows, in particular,

the dependence of the flow speed on the incoming mass flux, so that we can obtain a class of

subsonic-sonic flows corresponding to the critical incoming mass flux as the limits of uniform

subsonic flows associated with the incoming mass fluxes which increase to the critical value.

It should be noted there have been some studies related to subsonic flow problems

since 1980’s for nozzles of finite length, (see [7] and references therein), whose physical

significance, however, is not clear.

To describe the problem mathematically, let us consider two dimensional steady, isen-

tropic, compressible Euler equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ρu)x1 + (ρv)x2 = 0,

(ρu2)x1 + (ρuv)x2 + px1 = 0,

(ρuv)x1 + (ρv2)x2 + px2 = 0,

(1)

where ρ is the density, (u, v) is the velocity, and p = p(ρ) denotes the pressure. In general,

we assume that p′(ρ) > 0 for ρ > 0 and p′′(ρ) ≥ 0, where c(ρ) =
√
p′(ρ) is called sound

speed. The most important examples include polytropic gases and isothermal gases, for

polytropic gases, p = Aργ where A is a constant and γ is the adiabatic constant with γ > 1;

and for isothermal gases, p = c2ρ with constant sound speed c.

Suppose that the flow is also irrotational, i.e.

ux2 = vx1 . (2)

Then it is easy to deduce the following Bernoulli’s law[5],

q2

2
+ h =

q̂2

2
, (3)

where h = h(ρ) is the enthalpy satisfying h′(ρ) = c2(ρ)/ρ, q =
√
u2 + v2 is the flow speed,

and q̂ is a constant. With the aid of Bernoulli’s law (3), we would like to point out some
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useful and important facts for the flow[5]. First, ρ is a decreasing function of q, attains its

maximum at q = 0. Second, there is a critical speed qc such that q < c(subsonic) if and

only if q < qc. Finally, ρq is a nonnegative function of q, for q ≥ 0, which is increasing for

q ∈ (0, qc) and decreasing for q ≥ qc, and vanishes at q = 0. so ρq attains its maximum at

q = qc, therefore, that the flow is subsonic is equivalent to ρq < ρcqc and ρ > ρc.

Using the critical speed, one can introduce the nondimensionalized velocity, density and

pressure as

ũ =
u

qc
, ṽ =

v

qc
, ρ̃ =

ρ

ρc
, q̃ =

q

qc
and p̃(ρ̃) =

p(ρ̃ρc)
ρcq2c

.

With an abuse of notation, we will take ˜ away, and just regard ρ, u , v, q and p as the

nondimensionalized quantities. Then Euler equations (1) become
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ρu)x1 + (ρv)x2 = 0,

(ρu2)x1 + (ρuv)x2 + px1 = 0,

(ρuv)x1 + (ρv2)x2 + px2 = 0.

(4)

Note that the nondimensionalized pressure also satisfies that p′(ρ) > 0 for ρ > 0, p′(1) = 1,

and p′′(ρ) ≥ 0 for ρ ≥ 0. For example, one has p = ργ/γ for polytropic gases and p = ρ for

isothermal gases. At the same time, Bernoulli’s law (3) reduces to

q2

2
− 1

2
+

∫ ρ

1

p′(s)
s

ds = 0. (5)

By this Bernoulli’s law, one can represent ρ = ρ(q2) by the implicit function theorem. With

this nondimensionalization, it is easy to see that ρq ≤ 1 for q ≥ 0 and that subsonic flow

means q < 1 or ρ > 1. For example, for polytropic gases, (5) is nothing but

q2

2
+
ργ−1

γ − 1
=

γ + 1
2(γ − 1)

, (6)

which yields

ρ = ρ(q2) = (
γ + 1 − (γ − 1)q2

2
)

1
γ−1 ; (7)

in the case of isothermal gases, instead of (7), one has

ρ = ρ(q2) = exp(
1 − q2

2
). (8)

4



Based on the continuity equation, the stream function ψ can be introduced such that

ψx1 = −ρv, ψx2 = ρu. (9)

Obviously, |∇ψ| = ρq, therefore, ρ is a two-valued function of |∇ψ|2. Subsonic flow is

corresponding to the branch where ρ > 1 if |∇ψ|2 ∈ [0, 1). Set ρ = H(|∇ψ|2) such that

ρ > 1 if |∇ψ|2 ∈ [0, 1), therefore, H is a positive decreasing function defined on [0, 1], twice

differentiable on [0, 1), and satisfies H(1) = 1. For example, for polytropic gases, ρ can be

solved from the following equation,

ργ−1

γ − 1
+

|∇ψ|2
2ρ2

=
γ + 1

2(γ − 1)
. (10)

Now, the irrotationality (2) reduces to a single equation

div(
∇ψ

H(|∇ψ|2) ) = 0. (11)

For flows passing through a nozzle, when the nozzle walls are impermeable solid walls,

the boundary conditions are given by

(u, v) · −→n = 0, (12)

where −→n is the inner normal of the domain. By definition of stream function, (12) implies

that the nozzle walls are streamlines, that is, ψ =constant on each nozzle wall. Without

loss of generality, we assume ψ = 0 on one of the walls.

Let two nozzle walls be Si = {(x1, x2)|x2 = fi(x1),−∞ < x1 <∞}, (i = 1, 2). Suppose

that f2(x1) > f1(x1) for x1 ∈ (−∞,∞) satisfying the following conditions:

f1(x1) → 0, f2(x1) → 1, as x1 → −∞, (13)

f1(x1) → a, f2(x1) → b > a, as x1 → +∞, (14)

and

f ′i(x1), f ′′i (x1) → 0, as |x1| → ∞. (15)

Moreover, fi ∈ C2,α
loc (R) for some α > 0. So the domain of the flow is given by Ω =

{(x1, x2)|f1(x1) < x2 < f2(x1),−∞ < x1 < ∞}. Under above conditions on fi(i = 1, 2),
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it follows that Ω satisfies the uniform exterior sphere condition with some uniform radius

r > 0.

For the given nozzle satisfying all the above conditions, we have the following theorem

on the existence of uniform subsonic flows in the nozzle.

Theorem 1 (1). There exists a constant m̄ > 0 which depends only on S1 and S2 such

that if 0 ≤ m < m̄, then the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div( ∇ψ
H(|∇ψ|2)

) = 0, in Ω,

ψ = 0, on S1,

ψ = m, on S2,

(16)

has a unique global uniformly subsonic solution.

(2). Moreover, at the far fields, the flow approximates to uniform flows, i.e.

∇ψ(x1, x2) →

⎧⎪⎨
⎪⎩

(0,m), x1 → −∞,

(0, m
b−a), x1 → +∞.

If the incoming mass flux is increased, then the following sharp result holds

Theorem 2 For the given nozzle, there exists a constant m̂ such that if 0 ≤ m < m̂, (16)

has a unique uniformly subsonic solution satisfying

M(m) = sup
(x1,x2)∈Ω

|∇ψ| < 1; (17)

moreover, M(m) ranges over [0, 1) as m varies in [0, m̂). Furthermore, if 0 < m < m̂, the

horizontal velocity is always positive in Ω̄, i.e.

∂x2ψ > 0, (18)

and, the deflection angle of the flow, θ = arctan −∂x1ψ
∂x2ψ

, satisfies

θ ≤ θ ≤ θ̄, (19)

where

θ = inf
x1

min{arctan f ′1(x1), arctan f ′2(x1)}, (20)

θ̄ = sup
x1

max{arctan f ′1(x1), arctan f ′2(x1)}. (21)
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Moreover, if 0 ≤ m1 < m2 < m̂, then

M(m1) < M(m2), (22)

therefore, as m ↑ m̂, M(m) ↑ 1.

In fact, as m ↑ m̂, the corresponding flow fields tend a limit which yields a subsonic-sonic

flow in the nozzle.

Theorem 3 Let {mn} be any monotone sequence such that mn → m̂. Denote by (un, vn)

the global uniformly subsonic flow corresponding to mn as guaranteed by Theorem 2. Then

there exists a subsequence, still labelled by {(un, vn)} associated with {mn} such that

un → u, vn → v, (23)

ρ(q2n)un → ρ(q2)u, ρ(q2n)vn → ρ(q2)v, (24)

where q2n = u2
n + v2

n, q
2 = u2 + v2, and ρ(q2) is the function defined by Bernoulli’s law (5),

all the above convergence are weak-∗ convergence in L∞(Ω). Hence (u, v) satisfies
⎧⎪⎨
⎪⎩

(ρ(q2)u)x1 + (ρ(q2)v)x2 = 0,

ux2 − vx1 = 0,
(25)

in the sense of distribution. Furthermore, the limit velocity (u, v) satisfies the boundary

condition (12), as the normal trace of the divergence field (ρ(q2)u, ρ(q2)v) on the boundary.

There are a few remarks in order.

Remark 1: Though it seems that the nozzle flow may be simpler than the airfoil flow.

Yet, there are some difficulties both physically and mathematically. Physically, a symmetric

nozzle can be regarded as two pieces of bumps, then all flow patterns appear in flow past a

profile may appear in flows through the nozzle. Mathematically, it is an exterior problem

for partial differential equations for flows past a profile. So one can use some techniques, for

example, Kelvin transformation, etc, to reduce the problem into a boundary value problem

in bounded domain, which seems essential for the estimates by Bers[2] and Dong[6], et al,
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for flows past an obstacle. However, it seems not easy to use Kelvin transformation to

transform the domain for nozzle flows into a bounded domain. Moreover, there is another

major difference between nozzle flow and and the flow past an obstacle that flow at far fields

may not be same, which does not occur for airfoil flows.

Remark 2: It is well-known that the existence of subsonic potential flows is equivalent

to the existence of quasiconformal mapping between the physical space (x1, x2) and the

space (ϕ,ψ), where ϕ is the velocity potential and ψ is the stream function for a given

flow, [3]. There are some important and general results for the existence of quasiconformal

mappings for the domain we considered here, see [12], [13]. The key assumption in [12],

[13] is the uniform ellipticity of the equation, however, for our problem, apriorily, we do not

have the uniform ellipticity. It can be seen that Theorem 1 will be obtained easily for a

more general class of nozzles if the uniform ellipticity is known a priorily.

Remark 3: Note also that in the formulation of the problem about subsonic flows past

a profile, it is required a priorily that the flow field is uniformly subsonic. However, for a

general nozzle, one can not require that the flow approximates to uniform flow at far fields

a priorily, otherwise, mathematically, the problem for elliptic equations is overdetermined.

To establish this uniform ellipticity, we exploit the relationship between the incoming mass

flux and the nozzle boundaries (see Lemma 5), and study the flow at far field by our key

estimate, Lemma 7, which is the main reason for the conditions (13)-(15) on the nozzle

boundaries. In other words, we give a sufficient condition to ensure the uniform ellipticity

mentioned in Remark 2.

Remark 4: The significance of Theorem 1 lies in that we can give an explicit form of

m̄ for a given nozzle, see Section 3. Moreover, it can be seen in Section 3 that m̄ does not

depend on the equation of states under our nondimensionalization. In Theorem 2, we assert

only the existence of m̂ for the given nozzle, but we don’t know how large it is. Of course,

m̄ can be regarded as a lower bound of m̂.

Remark 5: It is an open problem whether the maximum of flow speed for the whole flow

field is monotonously increasing with respect to the freestream Mach number for general
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profiles[2] and obstacles[6]. Here we obtain this property for general nozzles.

Remark 6: The estimate for deflection angle is very important for the limiting proce-

dure in Theorem 3. In fact, this is the one of crucial assumptions in Morawetz’s compensated

compactness framework[14].

Remark 7: In Theorem 3, although the strong convergence of the velocity fields is

not known, yet we can obtain some commutate relations of weak convergence with those

nonlinear functions which ensure the existence of weak solutions to (25) in the sense of

distribution.

Remark 8: All the above theorems hold true for general equation of states which

satisfies p′(ρ) > 0 for ρ > 0 and p′′(ρ) ≥ 0.

The rest of this paper is organized as follows: in Section 2, we will prove the existence

of solutions to the elliptic problem in the unbounded domain with a subsonic truncation.

In Section 3, we will use the Hölder gradient estimate for elliptic equations of two vari-

ables to show that the flow approximate to uniform flows at far fields, combining this with

some boundary gradient estimates, we can show that the flow is actually globally subsonic;

uniqueness will be proved subsequently by the maximum principle for uniformly subsonic

flow. In Section 4, we first use Bers’ idea[2] to show the existence of a critical incoming

mass flux. Next, with the help of a comparison principle, we prove the positivity of the

horizontal velocity. Then, the estimate for deflection angle becomes a direct consequence

of the maximum principle for the equation in the hodograph plane. At last, we will com-

bine the comparison principle and certain partial hodograph transformation to prove the

monotonicity of the maximum of flow speed with respect to the incoming mass flux. In the

last section, Section 5, Theorem 3 will be shown by the theory of compensated compactness

([14], [4]) based on Theorem 2. The appendix contains an elementary explicit construction

of truncated domains used in Section 2.
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2 Subsonic Truncated Problem

We now study the boundary value problem (16). Note that the function H = H(|∇ψ|2)
is defined only on [0, 1], and H ′(|∇ψ|2) goes to infinity as |∇ψ| → 1. Thus, the ellipticity

of the equation in (16) depends crucially on the upper bound for |∇ψ|. Hence, instead of

the problem (16), we first consider the following truncated problem. Define

H̃(s) =

⎧⎪⎨
⎪⎩

H(s), if 0 ≤ s < m̃2,

H(( m̃+1
2 )2), if s ≥ ( m̃+1

2 )2,
(26)

where m̃(< 1) is a positive constant to be determined, moreover, H̃ is a smooth decreasing

function. Finally, it will be shown that our solution satisfies |∇ψ| < m̃ if m < m̄ so that

the subsonic truncation can be taken away.

We first solve the problem
⎧⎪⎨
⎪⎩

div( ∇ψ
H̃(|∇ψ|2)) = 0, in Ω,

ψ = x2−f1(x1)
f2(x1)−f1(x1)m, on ∂Ω.

(27)

Note that the problem (27) is a boundary value problem for a uniformly elliptic equation

in an unbounded domain. Although the existence of this problem is a corollary of general

results in [13], we would like to present a sketch of the proof of the existence and give some

important estimates which will be used later.

To solve problem (27), we will truncate the domain first, and use a series of boundary

value problems in bounded domains to approximate the problem (27). Thus, consider first

the problem ⎧⎪⎨
⎪⎩

div( ∇ψ
H̃(|∇ψ|2)) = 0, in ΩL,

ψ = x2−f1(x1)
f2(x1)−f1(x1)m, on ∂ΩL,

(28)

where ΩL satisfies {(x1, x2)|(x1, x2) ∈ Ω,−L < x1 < L} ⊂ ΩL ⊂ {(x1, x2)|(x1, x2) ∈
Ω,−4L < x1 < 4L} for ∀L ∈ N. Furthermore, one may choose ΩL so that ΩL ∈ C2,α1(0 <

α1 ≤ α) satisfies the uniform exterior sphere condition with uniform radius r0, 0 < r0 < r,

sufficiently small for all L > L0 with some L0 sufficiently large. See the appendix for the

construction of ΩL.

10



The problem (28), a Dirichlet boundary value problem for a quasilinear elliptic equation,

can be solved by standard fixed point arguments. Indeed, applying Theorem 11.4 in [11],

one needs only to show that all C2,α1 solutions to the problem
⎧⎪⎨
⎪⎩

div( ∇ψ
H̃(|∇ψ|2)

) = 0, in ΩL,

ψ = σ x2−f1(x1)
f2(x1)−f1(x1)m, on ∂ΩL.

(29)

with σ ∈ [0, 1] satisfy

‖ψ‖C1,β(ΩL) ≤ C. (30)

for some fixed constants C and β ∈ (0, 1), which do not depend on σ and ψ.

To obtain the desired estimate (30), we proceed as that described in §11.3 in [11] to

divide the estimate into four steps. First, by the maximum principle, one has

0 ≤ ψ ≤ σm ≤ m. (31)

Moreover, the Berstein estimate holds for this equation, i.e.

max
ΩL

|∇ψ|2 ≤ max
∂ΩL

|∇ψ|2, (32)

by checking the conditions in Theorem 15.1 in [11]. Furthermore, due to Theorem 13.2 in

[11], one can obtain

[Dψ]β,ΩL
≤ C(|ψ|1;Ω), (33)

for some β ∈ (0, 1). Thus, if one can show the following boundary gradient estimate

max
∂ΩL

|∇ψ|2 ≤ C, (34)

then the desired estimate (30) follows. This, in turn, shows the existence of a solution to the

problem (28). In fact we have a stronger estimate for the boundary gradient in the following

lemma, which is important to obtain the existence of solutions in the case of general nozzles.

Lemma 4 There exists a constant C depending only on r0, m̃, and C2 norm of fi(i = 1, 2),

but not on L, such that (34) holds for all L.
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Proof: This lemma can be proved by a barrier argument. Decompose ψ = g(x1, x2) + φ,

with g = σ x2−f1(x1)
f2(x1)−f1(x1) . Then

Qφ = H̃(|∇(φ+ g)|2)Δ(φ+ g) − 2H̃ ′(|∇(φ+ g)|2)∂i(φ+ g)∂j(φ+ g)∂ij(φ+ g) = 0.

For x0 ∈ ∂ΩL, there exists y ∈ ΩL
c, such thatB(y, r1)∩ΩL = {x0} with some 0 < r1 ≤ r0

to be determined. Set d = |x−y|. We will construct a barrier function of the form w = h(d).

Then it follows that

Qw = H̃(|∇(w + g)|2)Δw − 2H̃ ′(|∇(w + g)|2)∂i(w + g)∂j(w + g)∂ijw

+H̃(|∇(w + g)|2)Δg − 2H̃ ′(|∇(w + g)|2)∂i(w + g)∂j(w + g)∂ijg

= I1 + I2.

Direct calculation yields

I1 =
(
H̃(|∇(w + g)|2) − 2H̃ ′(|∇(w + g)|2) |∇(w + g) · (x− y)|2

|x− y|2
)
(h′′(d) +

h′(d)
d

)

+4H̃ ′(|∇(w + g)|2) |∇(w + g) · (x− y)|2
|x− y|2

h′(d)
d

−2H̃ ′(|∇(w + g)|2)|∇(w + g)|2 h
′(d)
d

.

Note that H̃ ′ ≤ 0. So

I1 ≤ (
H̃(|∇(w + g)|2) − 2H̃ ′(|∇(w + g)|2) |∇(w + g) · (x− y)|2

|x− y|2
)
(h′′(d) +

h′(d)
d

)

−2H̃ ′(|∇(w + g)|2)|∇(w + g)|2 h
′(d)
d

,

provided

h′(d) ≥ 0. (35)

It follows from (26) and direct computations that

0 < C1 ≤ H̃(|∇(w + g)|2) − 2H̃ ′(|∇(w + g)|2) |∇(w+g)·(x−y)|2
|x−y|2 ≤ C2,

0 ≤ C3 ≤ −2H̃ ′(|∇(w + g)|2)|∇(w + g)|2 ≤ C4,

C5 < I2 = H̃(|∇(w + g)|2)Δg − 2H̃ ′(|∇(w + g)|2)∂i(w + g)∂j(w + g)∂ijg ≤ C6,
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for some uniform constants Ci(i = 1, · · · , 6), which depend only on m̃, and C2 norm of fj

(j = 1, 2), moreover, except for C3 and C5, all others are positive. Therefore,

Qw ≤ C1(h′′(d) +
h′(d)
d

) + C4
h′(d)
d

+ C6

≤ C1(h′′(d) + (1 +
C4

C1
)
h′(d)
d

+
C6

C1
)

= C1(h′′(d) + (1 + C7)
h′(d)
d

+ C8),

if

h′′(d) +
h′(d)
d

≤ 0, (36)

and (35) holds. Thus, set

h(d) = − C8

2(2 + C7)
d2 +

C9

C7
d−C7 +C10,

with constants C9 and C10 to be determined. Then Qw ≤ 0. Choose C10 such that

h(r1) = 0, i.e. C10 = C8
2(2+C7)r

2
1 − C9

C7
(r1)−C7 . Then clearly one can select C9 < 0 small

enough such that

h′(d) = −C9d
−C7−1 − C8

2 + C7
d > 0, for ∀d ∈ (r1, 2r1), (37)

and

h(2r1) = − C8

2(2 + C7)
(2r1)2 +

C9

C7
(2r1)−C7 +

C8

2(2 + C7)
r21 −

C9

C7
(r1)−C7 > 2m, (38)

hold simultaneously when r1 > 0 is sufficiently small. Clearly, (37) implies that (35) holds.

Since h(d) satisfies the differential equation

h′′(d) + (1 + C7)
h′(d)
d

+ C8 = 0,

it is trivial that h(d) satisfies (36) for h′(d) ≥ 0 and C7, C8 > 0.

Without loss of generality, one may assume that ΩL \B(y, 2r1) is connected, then w ≥ φ

on ∂N with N = B(y, 2r1) ∩ ΩL. It follows from the comparison principle that φ ≤ w in

N . Therefore,
∂φ

∂n
≤ h′(r1) = C,
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for some uniform positive constant C, which depends only on r1, m̃, and fj(j = 1, 2), where

n is the inner normal of ΩL at x0. Similarly, one can prove that

∂φ

∂n
≥ −C.

Hence,

|∇ψ| ≤ C

on the boundary, for some constant C which depends only on r0, m̃, and fj(j = 1, 2). �

For each L, the problem (28) has a solution, which is denoted by ψL. In addition, the

maximum principle, Lemma 4, and the Bernstein estimate imply that

|ψL|1;ΩL
≤ C, (39)

with C depending only on r0, m̃, and fj(j = 1, 2). Moreover, by the standard interior

Schauder estimate and Schauder estimate on a boundary portion[11], one has

|ψn|C2,α(ΩL) ≤ C, (40)

for any n > 2L+1, where the constant C may depend on L and the restriction of fi on Ω2L,

but not on n. Therefore, it follows from the Arzela-Ascoli lemma and a diagonal procedure

that there exists a subsequence {χΩnk
ψnk

}, where χΩnk
is the characteristic function of Ωnk

,

which converges to a function ψ in C2,δ(ΩL) for ∀L > 0 and ∀δ < α1. Obviously, ψ solves

the problem (27).

3 Subsonic Estimates

In this section, we will show that in fact the solution ψ to the problem (27) obtained

in Section 2, is a subsonic solution if m < m̄ . Moreover, |∇ψ| < m̃ if m < m̄, thus

the subsonic truncation can be taken away. Due to the Berstein estimate, |∇ψ|2 can only

attain its maximum on the boundaries, thus, we need only to estimate |∇ψ|2 on the solid

boundaries and at the far fields.
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First, let us estimate the gradient of ψ on the boundaries of the nozzle. Notice that the

solution attains its minimum and maximum on S1 and S2 repectively. Moreover, ψ = 0

on S1 and ψ = m on S2, both of them are constant. Thus it is the same as the boundary

gradient estimate for the homogeneous boundary value problems, since the equation in (27)

has no lower order terms.

Let Ri(x1) be the largest radius of disks, whose closure intersects with Ω̄ only at xi =

(x1, fi(x1)). Suppose the center of the disk is the point y = (y1, y2), define di(x1) =

dist(y, Sj) − Ri(x1) if Ri(x1) < ∞; di(x1) = dist(xi, Sj), if Ri(x1) = ∞, where j �= i

(i, j = 1, 2). Define

D = inf
x1∈R

min
1≤i≤2

gi(x1), (41)

where gi(x1) is defined as follows

gi(x1) =

⎧⎪⎨
⎪⎩

Ri(x1) ln(1 + di(x1)
Ri(x1)), if Ri(x1) <∞,

di(x1), if Ri(x1) = ∞.
(42)

It follows from our assumptions on the boundaries that both fi(x1) and f ′′i (x1) tend to

zero as |x1| → ∞, and fi ∈ C2,α
loc (R), therefore, D > 0. Furthermore, clearly, from (42),

D ≤ min{1, b− a} because Ri → ∞ as |x1| → ∞.

Now we estimate the flow speed on the boundary.

Lemma 5 The solution ψ to (27) satisfies |∇ψ| ≤ m/D on ∂Ω.

Proof: The proof is again by a barrier argument. Let x0 ∈ S1. Without loss of generality,

assume that R = R1(x0) < ∞, and BR(y) ∩ S1 = {x0}. Set d = |x − y|, w = h(d) with

h′ ≥ 0. Then direct computation yields

Qw = H̃(|∇w|2)Δw − 2H̃ ′(|∇w|2)∂iw∂jw∂ijw

=
(
H̃(|h′(d)|2) − 2H̃ ′(|h′(d)|2)|h′(d)|2)(h′′(d) +

h′(d)
d

)
+ 2H̃ ′(|h′(d)|2)(h

′(d))3

d

≤ (h′′(d) + h′(d)
1
d
)
(
H̃(|h′(d)|2) − 2H̃ ′(|h′(d)|2)|h′(d)|2),

since H̃ ′ ≤ 0. Therefore, Qw ≤ 0 provided

h′′(d) + h′(d)
1
d
≤ 0. (43)
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It is equivalent to

(dh′(d))′ ≤ 0,

which is satisfied by the following class of functions:

h(d) = C1 ln
d

R
+ C2,

with constants C1 and C2 to be determined. Let C2 = 0. Then h(R) = 0. Moreover, choose

C1 so that h(d1 +R) = m, i.e.,

w = h(d) =
m

ln d1+R
R

ln
d

R
.

Now it is easy to see that in the domain N = Ω∩B(y, d1 +R), Qw ≤ 0, and w ≥ ψ on ∂N .

Thus by the comparison principle, w ≥ ψ in N , which yields,

∂ψ

∂n
|x0 ≤ h′(R) ≤ m/D,

where n is the inner normal direction of Ω. On the other hand, ψ is constant on S2,

moreover, it is the maximum of ψ on Ω, therefore, in a similar way as that on S1, one can

show
∂ψ

∂n
≥ −m/D.

Consequently, we have finished the proof of the lemma. �

To estimate the flow speed at the far fields, we first consider a special case in which

there exists a sufficient large number L0 such that

f1(x1) = 0, f2(x1) = 1, for x1 < −L0. (44)

Lemma 6 In addition to the conditions in Theorem 1, it is assumed that f1 and f2 satisfy

(44). Then there exists a μ, 0 < μ < 1, depending on m̃, such that the solution ψ to (27)

satisfies

|∇ψ − (0,m)| ≤ Cm

|x1|1+μ for x1 < −2L0, (45)

where C depends only on m̃.
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Proof: Set φ = ψ −mx2 and E = {(x1, x2)|(x1, x2) ∈ Ω, x1 < −L0}. Then, it is easy to

see that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aij(x1, x2)∂ijφ = 0, in E,

φ(x1, 0) = 0, x1 < −L0,

φ(x1, 1) = 0, x1 < −L0,

(46)

where

aij(x1, x2) = H̃(|∇ψ|2)δij − 2H̃ ′(|∇ψ|2)∂iψ∂jψ. (47)

In the case of the truncation we used, the elliptic equation in (46) has uniform elliptic ration

ν depending only on m̃ such that H̃(|∇ψ|2)

H̃(|∇ψ|2)−2H̃′(|∇ψ|2)|∇ψ|2 ≥ ν > 0.

For a fixed k, consider the domain El,k = {(x1, x2)|− l−k < x1 < −l+k, f1(x1) < x2 <

f2(x1)}, for l large enough to ensure −l + k < −L0. φ is extended as follows

φ̃(x1, x2) = −φ(x1,−x2), −1 < x2 < 0,

and then φ̃ is extended periodically with respect to x2 with period 2, i.e.,

φ̃(x1, x2) = φ(x1, x2 + 2n), if − 1 < x2 + 2n < 1 for some n ∈ Z.

It follows from above extensions that

∂iiφ̃(x1, x2) = −∂iiφ̃(x1,−x2), i = 1, 2; ∂12φ̃(x1, x2) = ∂12φ̃(x1,−x2), for − 1 < x2 < 0.

Therefore, one may extend aij as

ãii(x1, x2) = aii(x1,−x2), i = 1, 2; ã12(x1, x2) = −a12(x1,−x2) for − 1 < x2 < 0,

and then periodically as

ãij(x1, x2) = aij(x1, x2 + 2n), if − 1 < x2 + 2n < 1 for some n ∈ Z.

Then φ̃ ∈W 2,∞(Ẽ), and φ̃ is a strong solution of the equation

ãij∂ij φ̃ = 0, in Ẽ, (48)
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where Ẽ = {(x1, x2)|− l− k < x1 < −l+ k, x2 ∈ R}. With an abuse of notation, we remove

˜of ãij and φ̃ away, and regard the functions aij and φ as the above extensions defined in

Ẽ.

Before estimating the solution to the elliptic equation (48), we introduce the weighted

Hölder norms as in [11]. Let dx = dist(x, ∂Ẽ) and dx,y = min(dx, dy). Then

[φ]∗1,μ = sup
x,y∈Ẽ

d1+μ
x,y

|Dφ(x) −Du(y)|
|x− y|μ , and |f |(2)0 = sup

x∈Ẽ
d2
x|f(x)|. (49)

By Theorem 12.4 in [11], there exists a 0 < μ < 1, depending on ν, such that

[φ]∗1,μ ≤ C|φ|0, (50)

holds, where C depends only on ν. Although it is required in Theorem 12.4 in [11] that

u ∈ C2, as remarked in §12.1 in [11], Theorem 12.4 in [11] is also valid for u ∈W 2,∞. Note

that

d(x) = dist(x, ∂Ẽ) = min{|x1 − (−l − k)|, |x1 − (−l + k)|}. (51)

Therefore, the estimate (50) implies that

k1+μ |Dφ(−l, x2) −Dφ(−l, y2)|
|x2 − y2|μ ≤ Cm.

So,

|Dφ(−l, x2) −Dφ(−l, y2)| ≤ Cm

k1+μ
|x2 − y2|μ.

In particular,

|Dφ(−l, x2) −Dφ(−l, 0)| ≤ Cm

k1+μ
|x2|μ, for any x2 ∈ (0, 1).

On the other hand, thanks to the boundary conditions for φ, i.e., φ(x1, 0) = φ(x1, 1) = 0

for x1 < −L0, we get

0 =
∫ 1

0
∂2φ(−l, x2)dx2

=
∫ 1

0
∂2φ(−l, 0)dx2 +

∫ 1

0
(∂2φ(−l, x2) − ∂2φ(−l, 0))dx2

= ∂2φ(−l, 0) +
∫ 1

0
(∂2φ(−l, x2) − ∂2φ(−l, 0))dx2.
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Therefore,

|∂2φ(−l, 0)| ≤
∫ 1

0
|∂2φ(−l, x2) − ∂2φ(−l, 0)|dx2

≤ Cm

k1+μ
.

Hence,

|∂2φ(−l, x2)| ≤ 2
Cm

k1+μ
, |∂1φ(−l, x2)| ≤ Cm

k1+μ
, for x2 ∈ (0, 1). (52)

Therefore, choosing l > 2L0 and k = l/2, for x1 < −2L0, one obtains from (52) that

|∇φ(x1, x2)| ≤ Cm

|x1|1+μ , (53)

where C depends only on ν. Thus

|∇ψ − (0,m)| ≤ Cm

|x1|1+μ for x1 < −2L0,

with some positive constant C depending only on m̃. This finishes the proof of the lemma. �

Similarly, if two walls are straight near positive infinity, then

|∇(ψ − m

b− a
x2)| ≤ Cm

|x1|1+μ for x1 > 2L1 with some L1 > 0.

Next, we discuss the asymptotic behavior at far fields for general nozzles, we will show

that the flows tends to uniform flows at far fields as follows

Lemma 7 For any nozzle which satisfies the conditions in Theorem 1, the solution ψ to

(27) satisfies

|∇ψ − (0,m)| → 0 as x1 → −∞, (54)

|∇ψ − (0,
m

b− a
)| → 0 as x1 → ∞. (55)

Proof: If the two boundaries are not straight lines at infinity, we introduce the following

transformation, ⎧⎪⎨
⎪⎩

X1 = x1,

X2 = x2−f1(x1)
f2(x1)−f1(x1)

.
(56)
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Set ψ̄(X1,X2) = ψ(x1, x2), then

∂x1ψ = ∂X1ψ̄ + (∂X2ψ̄)g1, ∂x2ψ = (∂X2ψ̄)g2, (57)

with

g1 =
f ′1(x1)(x2 − f2(x1)) − f ′2(x1)(x2 − f1(x1))

(f2(x1) − f1(x1))2
, and g2 =

1
f2(x1) − f1(x1)

. (58)

Then ψ̄ satisfies

Aij(X1,X2)∂XiXj ψ̄ = f(X1,X2) (59)

and the boundary conditions ψ̄(X1, 0) = 0 and ψ̄(X1, 1) = m for all X1 ∈ R. Moreover,

Aij∂ij is a uniformly elliptic operator with two eigenvalues λ1 and λ2 satisfying 0 < λ <

λ1 < λ2 for some constant λ, moreover, λ1
λ2

≥ ν̄ > 0 for some constant ν̄. Direct calculation

shows that

f(X1,X2) = −
(
a11(∇ψ)

∂ψ̄

∂X2

∂2X2

∂x2
1

+ 2a12(∇ψ)
∂ψ̄

∂X2

∂2X2

∂x1∂x2

)
, (60)

where aij is defined by (47), and

∂2X2

∂x2
1

=
(f1(x1) − x2)f ′′2 (x1) + (x2 − f2(x1))f ′′1 (x1)

(f2 − f1)2

+
2(x2 − f1(x1))(f ′2(x1) − f ′1(x1))2

(f2 − f1)3
+

2f ′1(f ′2 − f ′1)
(f2 − f1)2

, (61)

∂2X2

∂x1∂x2
= − f ′2 − f ′1

(f2 − f1)2
. (62)

By (39), we have

|∇ψ|1;Ω ≤ C, (63)

with some positive constant C which depends only on m̃ and fi(i = 1, 2). Therefore, it

follows from (57), (58) and (63) that

|f(X1,X2)| → 0 uniformly with respect to X2 as |X1| → ∞, (64)

under our assumptions on fi(i = 1, 2).
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Set φ̄ = ψ̄ −mX2, then φ̄ satisfies⎧⎪⎨
⎪⎩

Aij(X1,X2)∂XiXj φ̄ = f(X1,X2), in {(X1,X2)|X2 ∈ (0, 1),X1 ∈ R},
φ̄(X1, 0) = 0, φ̄(X1, 1) = 0, X1 ∈ R.

(65)

The only difference between (46) and (65) is that equation in (65) has the source term

f(X1,X2). Thus, one may extend the coefficients Aij and the function φ̄ as before

Aii(X1,X2) = Aii(X1,−X2), i = 1, 2; A12(X1,X2) = −A12(X1,−X2), for − 1 < X2 < 0,

φ̄(X1,X2) = −φ̄(X1,−X2) for − 1 < X2 < 0,

and extend f as follows,

f(X1,X2) = −f(X1,−X2), −1 < X2 < 0.

Then all these functions can be extended periodically with period 2 with respect to X2,

that is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aij(X1,X2) = Aij(X1,X2 + 2n), i, j ∈ {1, 2},
φ̄(X1,X2) = φ̄(X1,X2 + 2n),

f(X1,X2) = f(X1,X2 + 2n).

if X2 + 2n ∈ (−1, 1) for some n ∈ Z.

Then φ̄ ∈W 2,∞(Ẽl,k), with Ẽl,k = {(X1,X2)| − l − k < X1 < −l+ k,X2 ∈ R}, such that

Aij(X1,X2)∂XiXj φ̄ = f(X1,X2) in Ẽl,k.

Using Theorem 12.4 in [11] in the case of W 2,∞ solutions again, one can conclude that

there exists 0 < μ < 1 depending on ν̄ such that

[φ̄]∗1,μ ≤ C(|φ̄|0 + | f
λ1

|(2)0 )

holds for some constant C depending only on ν̄. In particular, we have

|Dφ̄(−l,X2) −Dφ̄(−l, 0)| ≤ C(
m

k1+μ
+

C

k1+μ
sup

−l−k≤Z1≤−l+k
d2
Z |f(Z1, Z2)|)

≤ C(
m

k1+μ
+

C

k1+μ
sup

−l−k≤Z1≤−l+k
k2|f(Z1, Z2)|)

≤ C(
m

k1+μ
+ Ck1−μ sup

−l−k≤Z1≤−l+k
|f(Z1, Z2)|), for X2 ∈ (0, 1).
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Since f(X1,X2) tends to 0 as |X1| → ∞, then ∀ε > 0, there exists L0 such that

|f(X1,X2)| < ε, for |X1| > L0.

Now choosing k = 1
ε(1−μ)/2 , if l > L0 + k, then

|Dφ̄(−l,X2) −Dφ̄(−l, 0)| ≤ C(mε
1−μ2

2 + Cε
1+2μ−μ2

2 )

≤ Cε(1−μ
2)/2.

Therefore, as in the proof of Lemma 6, one has

|Dψ̄(X1,X2) − (0,m)| → 0, as X1 → −∞.

Then using the transformation (57), one gets

|Dψ(x1, x2) − (0,m)| → 0, as x1 → −∞.

Similarly, one can prove (55). This completes the proof of the lemma. �

Remark 8: It follows from Lemma 6 that if both nozzle walls are straight at far fields,

then we get not only the convergence to uniform flows at far fields, but also a convergence

rate, (45); however, for the general case, the rate of convergence is not clear.

Combining Lemma 5, Lemma 7 and the Bernstein estimate, we have

sup
Ω

|∇ψ| ≤ max{m
D
, m,

m

b− a
}.

Since D ≤ min{1, b− a}, therefore,

sup
Ω

|∇ψ| ≤ m

D
.

Thus, set m̄ = D. So that if m < m̄, then m/D < 1. We now choose m̃ = (mD + 1)/2, then

supΩ |∇ψ| ≤ m
D < m̃, so ψ solves (16). Hence we obtain the existence of a solution to (16).

Remark 9: If the nozzle walls change very slowly, then Ri(x1) → ∞, then D approxi-

mates to the smallest distance d between two nozzle walls. Therefore, m < D is equivalent

to m · 1 < 1 · d, this is nothing but a necessary and sufficient condition for global existence

of subsonic flows for quasi-one-dimensional nozzle.

Now let us prove the uniqueness of uniformly subsonic solutions.
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Lemma 8 The uniformly subsonic solution to (16) is unique.

Proof: Let two solutions ψ1 and ψ2 be both uniformly subsonic. Then there are two

positive constants c1 and c2 < 1 such that |∇ψ1| < c1, and |∇ψ2| < c2. It is easy to see

that Lemma 6 and Lemma 7 are both valid for uniformly subsonic flows, therefore, both

flows approximate to uniform flows at far fields. Thus ∇ψi → (0,m), as x1 → −∞ and

∇ψi → (0, m
b−a) as x1 → ∞(i = 1, 2). Let ψ = ψ2 − ψ1. Then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aij(∇ψ2)∂ijψ + (aij(∇ψ2) − aij(∇ψ1))∂ijψ1 = 0 in Ω

ψ = 0 on S1 ∪ S2

∇ψ → 0 as |x1| → +∞.

By the maximum principle, we have

ψ = 0.

This finishes the proof of the lemma. �

Remark 10: From the proof of Lemma 8, it is easy to see that uniqueness holds for

the flows which are subsonic in the whole domain, and only uniformly subsonic at far field.

However, so far, we have not been able to prove the uniqueness for subsonic solutions as

what had been obtained by Finn and Glibarg[8] for flow past a profile. For the flow past

a profile, the velocity potential satisfies an elliptic equation in an exterior domain. Finn

and Gilbarg[8] showed that, for the solution ϕ to an elliptic equation of two variables, if

the gradient Dϕ satisfies |Dϕ| = O
(
(ln r)1−δ

)
as r → ∞ with δ > 0, then Dϕ tends Hölder

continuously to a certain limit. Consequently, for the flow past a profile, the flow must be

uniformly subsonic if it is subsonic. However, for flows through the nozzle, it seems difficult

to show that the flow is actually uniformly subsonic if it is subsonic.

Collecting all the results obtained so far, we have finished the proof of Theorem 1.
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4 Properties of Subsonic Flows

In this section, we will prove Theorem 2. The main idea of the proof for the first part of

the theorem, existence of m̂, stems from that of Bers[2]. Positivity of the horizontal velocity

is proved by a comparison principle. We estimate the deflection angle in hodograph plane,

where the deflection angle satisfies an elliptic equation. For the last part of the theorem,

i.e., the monotonicity of the maximum of flow speed with respect to the incoming mass flux,

is a consequence of certain partial hodograph transformation and a comparison principle

for elliptic equations.

Let {ri}∞i=1 be a strictly increasing sequence satisfying limi→∞ ri = 1. For ∀t > 0, we

first solve the problem ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div( ∇ψ
Hn(|∇ψ|2)

) = 0, in Ω,

ψ = 0, on S1,

ψ = t, on S2,

(66)

where

Hn(s) =

⎧⎪⎨
⎪⎩

H(s), if 0 ≤ s ≤ r2n,

H(( rn+1
2 )2), if s > ( rn+1

2 )2,

is a smooth decreasing function and satisfies Hn(s)−2H ′
n(s)s < Γn with some Γn > 0, for all

s ≥ 0. Denote the solution to the problem (66) by ψn(·; t), and set Mn(t) = supΩ |∇ψn(·; t)|.
Then clearly,

Mn(t) ≥ t.

Moreover, we have the following lemma,

Lemma 9 Mn(t) is a continuous function of t.

Assume that the lemma holds first. Then there exists the largest Rn > 0 such that

Mn(t) < rn, ∀t ∈ (0, Rn),

and, furthermore, there exists the smallest Sn ∈ (0, Rn) such that

Mn(t) > rn−1, ∀t ∈ (Sn, Rn).
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Moreover, obviously, Rn+1 ≥ Rn. Set

m̂ = lim
n→∞Rn.

Then it is clear that ∀m < m̂, there exists Rn such that m < Rn, thus M(m) = Mn(m) <

rn < 1. Moreover, ∀M ∈ (0, 1), there exists n, such that M ∈ (0, rn), therefore, there is

m ∈ (0, Rn) by Lemma 9, such that M(m) = Mn(m) = M . This finishes the proof for the

first part of Theorem 2.

It remains to prove Lemma 9.

Proof of the Lemma 9: Let tj → t. Without loss of generality, we assume that

supj≥1 tj < T .

In a same way as what we have done in Section 2, it is easy to see that the solution,

ψn(·; tj), to the problem (66) satisfies the estimates

|ψn(·; tj)|1;Ω ≤ C(T ) (67)

and

|ψn(·; tj)|C2,α(ΩL) ≤ C(T,L). (68)

Thanks to the estimates (67) and (68), there exists a subsequence of {ψn(·; tj)} by Arzela-

Ascoli lemma and a diagonal procedure such that

ψn(·; tkj
) → Ψ(·) in C2,β(ΩL) as tkj

→ t,

for each L and 0 < β < α. Clearly, Ψ solves the boundary value problem
⎧⎪⎨
⎪⎩

div( ∇Ψ
Hn(|∇Ψ|2)) = 0, in Ω,

Ψ = x2−f1(x1)
f2(x1)−f1(x1)

t, on ∂Ω.

Moreover,

|Ψ|1;Ω ≤ C(T )

by (67). Therefore, the flow associated with Ψ approximates to uniform flows at far fields

by Lemma 6 and Lemma 7. On the other hand, as in Section 2, there exists a ψn(·; t) which
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solves ⎧⎪⎨
⎪⎩

div( ∇ψ
Hn(|∇ψ|2)

) = 0, in Ω,

ψ = x2−f1(x1)
f2(x1)−f1(x1)

t, on ∂Ω,

and ψn(·; t) approximates to uniform flows at far fields by Lemma 6 and Lemma 7. It follows

from the proof of lemma 8 that

Ψ(·) = ψn(·; t).

Using the uniqueness lemma again, we have

ψn(·; tj) → ψn(·; t) in C2,β(ΩL) for ∀L.

Therefore,

Mn(tj) →Mn(t).

This completes the proof of the Lemma.

Now let us show that the horizontal velocity is always positive, which is important for

the subsequent applications.

Lemma 10 Suppose 0 < m < m̂, then the solution ψ to (16) satisfies ψx2 > 0 in Ω̄.

Proof: We rewrite the equation in (16) as

H(|∇ψ|2)Δψ − 2H ′(|∇ψ|2)∂iψ∂jψ∂ijψ = 0.

It follows that the function w = ∂2ψ satisfies the equation

āij∂ijw + b̄i∂iw = 0, (69)

where

āij = H(|∇ψ|2)δij − 2H ′(|∇ψ|2)∂iψ∂jψ,

b̄i = 2H ′(|∇ψ|2)Δψ∂iψ − 4H ′(|∇ψ|2)∂jψ∂ijψ − 4H ′′(|∇ψ|2)∂lψ∂jψ∂ljψ∂iψ.

So the equation for w satisfies the maximum principle. Note that along S1, ψ = 0, so,

∂1ψ(x1, f1(x1)) + ∂2ψ(x1, f1(x1))f ′1(x1) = 0.
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Therefore, the inner normal derivative satisfies

∂ψ

∂n
(x1, f1(x1)) = ∂2ψ(1 + (f ′1)

2).

On the other hand, ψ attains its minimum of at S1, by the Hopf lemma, one has ∂ψ
∂n > 0.

Thus ∂2ψ > 0 on S1. Similarly, one can prove that ∂2ψ > 0 on S2. Therefore, ∂2ψ > 0

on the solid boundaries. Since the flow approximates the uniform flows at the far fields,

thus ∂2ψ tends to some uniform positive constants at the far fields, hence ∂2ψ > 0 by the

maximum principle for equation (69). �

With the help of the positivity of the horizontal velocity, we can obtain an estimate for

the deflection angle of the flow.

Lemma 11 If 0 < m < m̂, then for any uniformly subsonic solution ψ to (16), the estimate

θ ≤ θ ≤ θ̄, (70)

holds for the deflection angle of the fluid, θ = arctan −∂x1ψ
∂x2ψ

, where θ and θ̄ are given in (20)

and (21) respectively.

Proof: To prove the lemma, we first introduce the hodograph transformation. For a smooth

solution to the equation

div(
∇ψ

H(|∇ψ|2) ) = 0,

denote

u =
∂x2ψ

H(|∇ψ|2) , v = − ∂x1ψ

H(|∇ψ|2) , and ρ = H(|∇ψ|2).

Then, the velocity potential can be defined as

ϕ(x1, x2) =
∫ (x1,x2)

(0,f1(0))
udx1 + vdx2.

It follows from equation (16) that ϕ is well-defined in Ω, and ϕx1 = u, ϕx2 = v. Moreover,

the Jocabian

J = det
∂(ϕ,ψ)
∂(x1, x2)

=
|∇ψ|2

H(|∇ψ|2) > 0, (71)
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by Lemma 10. Thus by the inverse function theorem, one can represent (x1, x2) in terms of

(ϕ,ψ) as ⎧⎪⎨
⎪⎩

x1 = h1(ϕ,ψ),

x2 = h2(ϕ,ψ).
(72)

Although the representation (72) is usually valid only locally under the condition (71), we

would like to show this representation holds globally in the case of uniformly subsonic flows.

Suppose that there exist x = (x1, x2) and y = (y1, y2) such that ϕ(x1, x2) = ϕ(y1, y2) and

ψ(x1, x2) = ψ(y1, y2). Then it follows that x and y are on the same streamline. Define the

streamline as follows ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dz1
ds = u(z1, z2),

dz2
ds = v(z1, z2),

z1(0) = x1, z2(0) = x2.

Then there exists s0 such that z1(s0) = y1 and z2(s0) = y2. Without loss of generality, we

assume that s0 ≥ 0. By the definition of ϕ, one has

ϕ(y1, y2) = ϕ(x1, x2) +
∫ s0

0
(u2(z(s)) + v2(z(s)))ds.

Therefore, ϕ(y1, y2) = ϕ(x1, x2) holds if and only if s0 = 0 because of positivity of u. Thus

the map (x1, x2) �→ (ϕ,ψ) is a globally one-to-one map. Therefore, the representation (72)

is valid globally.

Using the polar coordinates, u = q cos θ, v = q sin θ, after direct calculations, one has

ux2 − vx1 = −q2θϕ + ρqqψ,

(ρu)x1 + (ρv)x2 =
d

dq
(ρq)qqϕ + ρ2q2θψ.

With the help of Bernoulli’s law (5), one obtains

qψ =
q

ρ
θϕ, qϕ =

ρq

M2 − 1
θψ.

where M2 = q2/c2 is Mach number. Thus the deflection angle θ satisfies the equation

(
q

ρ
θϕ)ϕ + (

ρq

1 −M2
θψ)ψ = 0. (73)
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Note that the flow is subsonic, which implies M2 < 1, therefore, the equation (73) is elliptic.

Now the domain Ω becomes Ω̃ = {(ϕ,ψ)|0 < ψ < m,ϕ ∈ R}, and the boundary conditions

in (16) become

θ = arctan f ′1(x1), ψ = 0; θ = arctan f ′2(x1), ψ = m.

Since at far fields, the flow approximates to uniform flows whose vertical components of the

velocity fields tend to zero, therefore,

θ ∼ 0 when |ϕ| is sufficiently large.

Thus by the maximum principle, we have

θ ≤ θ ≤ θ̄.

This finishes the proof of the lemma �

With all these properties of subsonic flows at hand, we are ready to prove the monotonic-

ity of the maximum of the flow speed with respect to the incoming mass flux.

Lemma 12 Let 0 < m1 < m2 < m̂. Suppose that ψi are solutions to (16) associated with

the incoming mass flux mi(i = 1, 2). Then

|∇ψ1(x)| < |∇ψ2(x)|, ∀x ∈ ∂Ω. (74)

Proof: Let ψ be the solution to (16). Then set⎧⎪⎨
⎪⎩

Y1 = x1,

Y2 = ψ(x1, x2).
(75)

By Lemma 10, ψx2 > 0, one may conclude that the transformation (x1, x2) �→ (Y1, Y2) by

(75) is invertible so that one can represent x2 as a function of Y1 and Y2. Set x2 = Φ(Y1, Y2).

Then ∂Y2Φ > 0 and Φ satisfies the following problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bij(∇Φ)∂ijΦ = 0,

Φ = f1(Y1), on Y2 = 0,

Φ = f2(Y1), on Y2 = m,
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where

B11 =
H(

1+Φ2
Y1

Φ2
Y2

) − 2H ′(
1+Φ2

Y1

Φ2
Y2

)
Φ2

Y1

Φ2
Y2

H(
1+Φ2

Y1

Φ2
Y2

) − 2H ′(
1+Φ2

Y1

Φ2
Y2

)
1+Φ2

Y1

Φ2
Y2

Φ2
Y2
, B12 = B21 = −ΦY1ΦY2, B22 = 1 + Φ2

Y1
.

Moreover,
∂Φ
∂Y1

= − ∂ψ

∂x1

/ ∂ψ

∂x2
,

∂Φ
∂Y2

= 1
/ ∂ψ

∂x2
. (76)

Define Φi as the transformation corresponding to ψi(i = 1, 2). Then for l = 1, 2,
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bij(∇Φl)∂ijΦl = 0, in Gl,

Φl = f1(Y1), on Y2 = 0,

Φl = f2(Y1), on Y2 = ml,

where Gl = {(Y1, Y2)|Y2 ∈ (0,ml), Y1 ∈ R}. Since ∂Y2Φ2 > 0, Φ2(Y1,m1) < Φ2(Y1,m2).

Furthermore, since the flows approximate to uniform flows at far fields, therefore, it follows

from (76) that, for any ε sufficiently small satisfying 0 < ε < min{m2−m1
2m1m2

, (b−a)(m2−m1)
2m1m2

},
there exists a positive number L0 sufficiently large, such that if Y1 < −L0,

Φ1(Y1, Y2) = f1(Y1) +
∫ Y2

0

∂Φ1

∂Y2
(Y1, t)dt ≥ f1(Y1) + (

1
m1

− ε)Y2,

and

Φ2(Y1, Y2) = f1(Y1) +
∫ Y2

0

∂Φ2

∂Y2
(Y1, t)dt ≤ f1(Y1) + (

1
m2

+ ε)Y2,

Similarly, for Y1 ≥ L0, it holds that

Φ1(Y1, Y2) = f1(Y1) +
∫ Y2

0

∂Φ1

∂Y2
(Y1, t)dt ≥ f1(Y1) + (

b− a

m1
− ε)Y2, (77)

Φ2(Y1, Y2) = f1(Y1) +
∫ Y2

0

∂Φ2

∂Y2
(Y1, t)dt ≤ f1(Y1) + (

b− a

m2
+ ε)Y2. (78)

Thus in the domain G1,L = {(Y1, Y2)|Y2 ∈ (0,m1), |Y1| < L}, when L ≥ L0 is large

enough, the function Φ̄ = Φ2 − Φ1 satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bij(∇Φ2)∂ijΦ̄ + (Bij(∇Φ2) −Bij(∇Φ1))∂ijΦ1 = 0, in G1L,

Φ̄ = 0, Y2 = 0, |Y1| < L,

Φ̄ < 0, Y2 = m1, |Y1| < L,

Φ̄ < 0, |Y1| = L, Y2 ∈ (0,m1).
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Therefore, Φ̄ attains its maximum on Y2 = 0, thus it follows from the Hopf Lemma that

∂Φ̄
∂n

< 0,

where n is the inner normal, i.e. ∂Φ2
∂n < ∂Φ1

∂n . Note that Φi (i = 1, 2), attain their minimum

at Y2 = 0. Thus
∂Φ1

∂n
>
∂Φ2

∂n
> 0.

Note that |∇ψ|2 = 1+|∂1Φ|2
|∂2Φ|2 by (76), therefore

|∇ψ1(x1, f1(x1))|2 =
1 + |∂1Φ1|2
|∂2Φ1|2 (Y1, 0) =

1 + |f ′1(Y1)|2
|∂2Φ1|2(Y1, 0)

<
1 + |f ′1(Y1)|2
|∂2Φ2|2(Y1, 0)

=
1 + |∂1Φ2|2
|∂2Φ2|2 (Y1, 0) = |∇ψ2(x1, f1(x1))|2.

It is the same to prove that (74) holds on S2 by studying ψi − mi instead of ψi. This

completes the proof of the Lemma. �

Since the flow approximates to uniform flows at far fields, therefore, the flow tends to

its supermum only on the solid boundaries, this is the consequence of the Berstein estimate

of the governing equation in (16) for potential flows. Thus if m1 < m2, by Lemma 12, one

has that

M(m1) < M(m2).

Therefore, as m ↑ m̂, M(m) ↑ 1. This finishes the proof of Theorem 2.

5 Subsonic-Sonic Flows

In this section, we will employ the theory of compensated compactness developed by

Morawetz[14] (see also [4]) to obtain a global subsonic-sonic flow. It will be shown that the

existence of a weak solution for subsonic-sonic flow is a direct consequence of the properties

obtained in Section 4 and a compensated compactness framework.

Let a sequence of functions wε(x1, x2) = (qε, θε)(x1, x2) be defined in an open set Ω ⊂ R
2,

and satisfy the following conditions (C):
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(C.1) 0 ≤ qε(x1, x2) ≤ 1 a.e. in Ω.

(C.2) |θε(x1, x2)| ≤ θ̂ < π
2 , for some constant θ̂ independent of ε.

(C.3) ∂x1η±(wε)+∂x2Λ±(wε) are confined in a compact set in H−1
loc (Ω) for the momentum

entropy-entropy flux pair

(η+,Λ+) = (ρq2 cos2 θ + p(ρ), ρq2 sin θ cos θ), (η−,Λ−) = (ρq2 sin θ cos θ, ρq2 sin2 θ + p(ρ)),

where p = p(ρ), and ρ = ρ(q2) is determined by Bernoulli’s law (5). For example, for

polytropic gases, p = ργ

γ , and ρ = ρ(q2) is determined by (7).

Remark 11: (C.2) appeared as an assumption in Morawetz’s theory[14], while (C.1)

and (C.3) are conditions in [4]. Here we will use (q, θ) instead of (u, v) which was used in

[4].

By the Young measure representation theorem and the div-curl lemma [15][16], under

the conditions (C), one has the following identity

〈ν(w), η+(w)Λ−(w) − η−(w)Λ+(w)〉

= 〈ν(w), η+(w)〉〈ν(w),Λ−(w)〉 − 〈ν(w), η−(w)〉〈ν(w),Λ+(w)〉, (79)

where ν = ν(x1,x2)(w) is the associated Young measure for the sequence wε(x1, x2) =

(qε, θε)(x1, x2). The main point for the compensated compactness framework is to ob-

tain commutation of certain nonlinear compositions and the weak-∗ limits by studying the

properties of the Young measures.

First of all, let us prove the following compensated compactness framework which is

based on some observations in[4].

Theorem 13 Let a sequence of function wε(x1, x2) = (qε, θε)(x1, x2) satisfy the Conditions

(C). Then there exists a subsequence {wεk} of {wε} and w(x1, x2) = (q, θ)(x1, x2) such that

(qεk , θεk) → (q, θ), (80)

qεk cos θεk → q cos θ, qεk sin θεk → q sin θ, (81)

ρ((qεk)2)qεk cos θεk → ρ(q2)q cos θ, ρ((qεk)2)qεk sin θεk → ρ(q2)q sin θ, (82)
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where all the convergence in (80)-(82) are weak-∗ convergence in L∞(Ω), and w = (q, θ)

satisfies

0 ≤ q(x1, x2) ≤ 1,

|θ(x1, x2)| ≤ θ̂.

Proof: It is easy to check that the identity (79) is equivalent to

〈ν(w1) ⊗ ν(w2), I(w1, w2)〉 = 0, (83)

where

I(w1, w2) = (η+(w1)− η+(w2))(Λ−(w1)−Λ−(w2))− (η−(w1)− η−(w2))(Λ+(w1)−Λ+(w2)).

By direct calculations as in [4], one has

I(w1, w2) = −ρ1ρ2q
2
1q

2
2 sin2(θ2 − θ1) + (p1 − p2)2 + (p1 − p2)(ρ1q

2
1 − ρ2q

2
2).

It follows from Bernoulli’s law (5) that

(p1 − p2)2 + (p1 − p2)(ρ1q
2
1 − ρ2q

2
2) = (p(ρ1) − p(ρ2))(J(ρ1) − J(ρ2)),

where

J(s) = p(s) + s− 2s
∫ s

1

p′(t)
t
dt.

It is easy to calculate that J ′′(s) < 0, and J ′(1) = 0. Therefore, J ′(s) < 0 if s ∈ (1, ρmax).

Since p is an increasing function of ρ, thus (p(ρ1)−p(ρ2))(J(ρ1)−J(ρ2)) ≤ 0, for ρ1, ρ2 ≥ 1.

So, I(w1, w2) ≤ 0 and, moreover,

I(w1, w2) = 0 if and only if q1 = q2 = 0, or q1 = q2 �= 0, θ1 = θ2. (84)

Now we have the following claim:

Claim: suppν ⊂ {(0, θ)|θ ∈ [−θ̂, θ̂]} or ν is a Dirac measure supported on some point

(q, θ) with q �= 0.

Proof of the claim: Trivially, one has suppν ⊂ E1 ∪E2, where E1 = {(0, θ)|θ ∈ [−θ̂, θ̂]},
and E2 = {(q, θ)|0 < q ≤ 1, θ ∈ [−θ̂, θ̂]}. If both ν(E1) and ν(E2) are not equal to zero,
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then (ν ⊗ ν)(E1 × E2) �= 0, which contradicts with (83) and (84). Therefore, the support

of ν is included in either E1 or E2. If ν(E1) = 0, suppose ν is not a Dirac measure, then

there exists E3 ⊂ E2 such that ν(E3) > 0 and ν(E2 \E3) > 0, therefore,

(ν ⊗ ν)(E3 × (E2 \E3)) > 0.

This also contradicts to (83) and (84). Thus ν is a Dirac measure. This finishes the proof

of the claim.

Since {wε} is uniformly bounded, without loss of generality, one assumes that {wεk}
satisfies

(qεk , θεk) → (q, θ), weak − ∗ in L∞(Ω).

On the other hand, it follows from the Young measure representation theorem that

wεk = (qεk , θεk) →
∫

(q, θ)dνx((q, θ)) =

⎧⎪⎨
⎪⎩

(q0, θ0) if suppνx = {(q0, θ0)} ⊂ E2,

(0, θ) if suppνx ⊂ E1.

Therefore

ρ((qεk)2)qεk cos θεk(x) →
∫
ρ(q2)q cos θdνx((q, θ))

=

⎧⎪⎨
⎪⎩

ρ(q20)q0 cos θ0 if suppνx = {(q0, θ0)}
0 if suppνx ⊂ E1

= ρ(q2)q cos θ.

Similarly, we can obtain the convergence (82). Hence the proof of the theorem is completed.

�

Remark 12: Theorem 13 holds for general equation of states, p′(ρ) > 0 for ρ > 0 and

p′′(ρ) ≥ 0, without assuming that the gas is polytropic or isothermal.

As an application of this compensated compactness framework and the properties for

uniform subsonic flows, we can take limit for m ↑ m̂ in Theorem 2.
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For the sequence mε ↑ m̂, let {ψε(x1, x2)} be solutions associated with mε given in

Theorem 2. Define

qε(x1, x2) =
|∇ψε(x1, x2)|

H(|∇ψε(x1, x2)|2) , and θε(x1, x2) = arctan
−∂x1ψ

ε(x1, x2)
∂x2ψ

ε(x1, x2)
.

By Lemma 10, both of them are well-defined. Moreover, when mε < m̂, the flow is subsonic,

so qε < 1. It follows from (70) and the conditions (13)-(15) that θ ≤ θε ≤ θ̄ and θ > −π
2

and θ̄ < π
2 . Thus, there exists a constant 0 < θ̂ < π

2 such that wε = (qε, θε) satisfies (C.1)

and (C.2). With the help of Bernoulli’s law and smoothness of the solutions {ψε}, it is easy

to conclude that

∂x1η±(wε) + ∂x2Λ±(wε) = 0,

and thus compact in H−1
loc (Ω). Since the equation in (16) is equivalent to

⎧⎪⎨
⎪⎩

∂x1(ρ((q
ε)2)qε cos θε) + ∂x2(ρ((q

ε)2)qε sin θε) = 0

∂x1(q
ε sin θε) − ∂x2(q

ε cos θε) = 0

Applying Theorem 13, we obtain that (25) is satisfied in the sense of distribution with

u = q cos θ and v = q sin θ.

The fact that the boundary condition (12) is satisfied for (u, v) in the sense of distribution

is standard by multiplying the system by a test function and applying divergence theorem

and the fact that the sequence of subsonic solutions does satisfy the boundary condition

(12), which implies (u, v) satisfies the boundary condition (12) actually as the normal trace

of divergence measure field (ρu, ρv) on the boundary in the sense of Anzellotti[1]. So we

finish the proof of Theorem 3.

Further characterizations of the subsonic-sonic flow we obtained are left for future.
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Appendix

In this appendix, the truncated domain ΩL in Section 2 is constructed explicitly. It

follows from (13)-(15) that there exists L0 > 0 sufficiently large such that

f1(x1) < 1
16 and f2(x1) > 15

16 for x1 < −L0,

f1(x1) < b+15a
16 and f2(x1) > 15b+a

16 for x1 > L0,

and

|f ′1(x1)| < C, |f ′2(x1)| < C for any x1 ∈ R.

with some positive constant C > 1. We concentrate on constructing ΩL in the half plane

{(x1, x2)|x1 ≤ 0}. The construction in the half plane {(x1, x2)|x1 ≥ 0} is the same. Define

f l1,L(x1) =

⎧⎪⎨
⎪⎩

f1(x1), x1 > −3L
2 ,

f1(x1) + 16C
η3

(x1 + 3L
2 )4, x1 ≤ −3L

2 ,

and

f l2,L(x1) =

⎧⎪⎨
⎪⎩

f2(x1), x1 > −3L
2 ,

f2(x1) − 16C
η3 (x1 + 3L

2 )4, x1 ≤ −3L
2 .

where η > 0 is a constant to be determined. Then direct calculations show that

(f l1,L)′(x1) < −C and (f l2,L)′(x1) > C for x1 ≤ −3L
2

− η

2
.

By choosing η = 1
256C , it follows that

f l1,L(x1) ≤ 1
8

and f l2,L(x1) ≥ 7
8

for − 3L
2

− η ≤ x1 ≤ −3L
2
.

Let x1 = gli,L(x2) be the inverse functions of x2 = f li,L(x1) with x1 ≤ −3L
2 − η

2 (i = 1, 2).

Choose smooth nonnegative functions x1 = ζ1(x2), x1 = ζ2(x2) and x1 = ζ(x2) satisfying

ζ1(x2) =

⎧⎪⎨
⎪⎩

0, if x2 >
3
8 ,

1, if x2 <
1
4 ,

ζ2(x2) =

⎧⎪⎨
⎪⎩

1, if x2 >
3
4 ,

0, if x2 <
5
8 ,
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and

ζ(x2) =

⎧⎪⎨
⎪⎩

0, if x2 >
7
8 or x2 <

1
8 ,

1, if 1
4 < x2 <

3
4 .

Now, define

g(x2) = ζ1(x2)gl1,L(x2) + ζ1(x2)gl1,L(x2) − 15L
8
ζ(x2)

Then ∂ΩL ∩ {(x1, x2)|x1 ≤ 0} = {(x1, f
l
1,L(x1))| − 3L

2 − η
2 < x1 ≤ 0} ∪ {(x1, f

l
2,L(x1))| −

3L
2 − η

2 < x1 ≤ 0} ∪ {(g(x2), x2)|f l1,L(−3L
2 − η

2 ) ≤ x2 ≤ f l2,L(−3L
2 − η

2 )}. Similarly, one

can construct the domain ΩL in the half plane {(x1, x2)|x1 ≥ 0}. Thus the construction of

truncated domain ΩL is completed.
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