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1 Introduction

We consider the following incompressible Navier–Stokes equations with damping

term⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − μ�u + u · ∇u + α|u|β−1u + ∇p = 0, (x, t) ∈ R3 × (0, T ),

divu = 0, (x, t) ∈ R3 × [0, T ),

u |t=0= u0, x ∈ R3,

|u| → 0, as |x| → ∞.

(1.1)

The unknown functions here are u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and

p(x, t), which stand for the velocity fields and the pressure of the flow, respec-

tively. α|u|β−1u is a damping term with β ≥ 1, α > 0 two constants. The given
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functions u0 = u0(x) is the initial velocity. The constant μ > 0 represents the

viscosity coefficient of the flow.

Although many mathematical studies have been made for the well-posedness

of the 3-D classical incompressible Navier-Stokes equation (see [7],[9], [5] and

references therein), the uniqueness of weak solutions and the global existence

(on time) of strong solution remain completely open. Introducing the class

Ls(0, T ; Lq), Serrin showed that if u is a weak solution in such a class with

2/s + 3/q < 1, then u is smooth. Since Serrin’s criterion, many efforts have

been made to obtain a larger class of weak solution in which uniqueness and

regularity hold. Generally speaking, up to now, the obtained results show that

if the weak solutions u(x, t) of the classical Navier-Stokes equations belongs to

Ls(0, T ; Lq) with 2/s + 3/q ≤ 1 satisfying 2 ≤ s ≤ ∞, 3 ≤ q ≤ ∞, then the

weak solution is regular and unique(see [3],[2], [4], [6], [8], [1], [7] and references

therein). The class Ls(0, T ; Lq) is also called Serrin’s class.

In this paper, we consider the Cauchy problem (1.1) of the classical Navier-

Stokes equations with damping term |u|β−1u. The damping term is from the

resistance to the motion of the flow. It describes various physical situations such

as porous media flow and so on. Roughly speaking, the damping term will make

the solutions of the classical incompressible Navier-Stokes equations ”better”. In

this paper we intend to understand the influences of the damping term |u|β−1u

on the well-posedness of the classical incompressible Navier-Stokes equations.

The usual a priori energy estimates to the damped Navier-Stokes equations

leads directly to u ∈ Lβ+1(0, T ; Lβ+1(R3)). We will show that there exist global

weak solutions of (1.1) for any β ≥ 1 and there exists a global strong solution for

any β ≥ 7/2. However, the damping term causes new difficulties in the proof of

the uniqueness of the strong solution. We will prove that for any 7/2 ≤ β ≤ 5,

the global strong solution is unique. But it is still not available for the case β > 5.

Recalling the Serrin’s class to the classical Navier-Stokes equations, the solutions

of (1.1) will belong to Serrin’s class if and only if β ≥ 4. Therefore, our result

shows that the damped Navier-Stokes equations have special features of its own

especially in the aspect of regularity of the solutions.

We apply the Galerkin method to construct the approximate solutions and

make more delicate a prior estimates to proceed compactness arguments. We

are happy to find that new more a priori estimates guarantee that the obtained

solution u belongs to L∞(0, T ; W 1,2
0,σ (R3))∩L∞(0, T ; Lβ+1(R3))∩L2(0, T ; H2(R3))

for β ≥ 7
2

and the strong solution is unique when 7
2
≤ β ≤ 5.

Before ending this section, we introduce some notations of function space
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which will be used later.

The space Lp(R3), 1 ≤ p ≤ ∞, represents the usual Lebesgue spaces of scalar

functions as well as that of vector-valued functions with norm denoted by ‖ · ‖p .

Let C∞
0,σ(R3) denote the set of all C∞ real vector-valued functions u = (u1, u2, u3)

with compact support in R3 such that divu = 0. Then the function space Lp
σ(R3),

1 < p < ∞, is defined as the closure of C∞
0,σ(R3) in Lp(R3) endowed with norm

‖ · ‖p . We define W k,p(R3) the usual Sobolev space with the norm ‖ · ‖k,p and

W k,p
0,σ (Ω) is the closure of C∞

0,σ(Ω) with respect to ‖ · ‖k,p. When p = 2, we

denote W k,2(R3) by Hk(R3). Given a Banach space X with norm ‖ · ‖X , we

denote by Lp(0, T ; X), 1 ≤ p ≤ ∞, the set of function f(t) defined on (0, T ) with

values in X such that
∫ T

0
‖f(t)‖p

X dt < ∞. In this paper, we use C to express an

absolute constant which may change from line to line.

The rest of the paper is organized as follows. In Section 2, we prove the global

weak solutions of (1.1) for any β ≥ 1. In Section 3, we prove global existence of

strong solution for any β ≥ 7
2

and existence and uniqueness of strong solution for
7
2
≤ β ≤ 5 for the Cauchy problem (1.1).

2 Existence of weak solutions

In this section, we prove the global existence of weak solutions for the problem

(1.1). The definition of weak solutions is given as usual way as follows.

Definition 1 The functions pair (u(x, t), p(x, t)) is called a weak solution of

the problem (1.1) if for any T > 0, the following conditions are satisfied:

1) u ∈ L∞(0, T ; L2
σ(R

3)) ∩ L2(0, T ; W 1,2
0,σ(R3)) ∩ Lβ+1(0, T ; Lβ+1(R3)),

2) For any Φ ∈ C∞
0,σ([0, T ] × R3) with Φ(·, T ) = 0, we have

−
∫ T

0
(u, Φt) dt + μ

∫ T

0

∫
R3

∇u : ∇Φ dxdt −
∫ T

0

∫
R3

(u · ∇)uΦ dxdt

+α
∫ T

0

∫
R3

|u|β−1uΦ dxdt = (u0, Φ0),
(2.1)

3) div u(x, t) = 0 for a.e. (x, t) ∈ R3 × [0, T ).

In (2.1), ∇u denotes matrix (∂iuj)3×3 and for two matrixes A = (aij) and

B = (bij), the matrix A : B = Σ3
i,j=1aijbij . Here ( , ) means the inner product in

L2(R3).

The following Lemma is a compactness result of which proof is referred to [9].

Lemma 2.1 Let X0, X be Hilbert spaces satisfying a compact imbedding
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X0 ↪→↪→ X. Let 0 < γ ≤ 1 and (vj)
∞
j=1 be a sequence in L2(R; X0) satisfying

sup
j

(
∫ ∞

−∞
‖vj‖2

X0
dt) < ∞, sup

j
(
∫ +∞

−∞
|τ |2γ‖v̂j‖2

X dτ) < ∞

where

v̂(τ) =
∫ +∞

−∞
v(t) exp−2πiτt dt

is the Fourier transformation of v(t) on the time variable. Then there exists a sub-

sequence of (vj)
∞
j=1 which converges strongly in L2(R; X) to some v ∈ L2(R; X).

Our main result of this section reads as

Theorem 1 Suppose that β ≥ 1 and u0 ∈ L2
σ(R3). Then for any given

T > 0, there exists a weak solution (u(x, t), p(x, t)) to the problem (1.1)

such that

u ∈ L∞(0, T ; L2
σ(R

3)) ∩ L2(0, T ; W 1,2
0,σ (R3)) ∩ Lβ+1(0, T ; Lβ+1(R3)).

Moreover,

sup
0≤t≤T

‖u‖2
L2 + 2μ

∫ T

0
‖∇u(t)‖2

L2 dt + 2α
∫ T

0
‖u(t)‖β+1

Lβ+1 dt ≤ ‖u0‖2
L2 (2.2)

Proof: We employ the Galerkin approximations to prove the theorem. The

approach is similar to that of ([9]) for the classical Navier-Stokes equations.

Since W 1,2
0,σ is separable and C∞

0,σ is dense in W 1,2
0,σ , there exists a sequence

ω1, ω2, · · · , ωm of elements of C∞
0,σ, which is free and total in W 1,2

0,σ . For each m we

define an approximate solution um as follows:

um = Σm
i=1gim(t)ωi(x)

and

(u
′
m(t), ωj) + μ(∇um(t),∇ωj) + (um(t) · ∇um(t), ωj)

+(α|um|β−1um(t), ωj) = 0,

t ∈ [0, T ], j = 1, 2, · · · , m.

(2.3)

and u0m → u0 in L2
σ, as m → ∞.

We have a priori estimates on the approximate solutions um as follows.

Lemma 2.2 Suppose that u0 ∈ L2
σ. Then for any given T > 0 and any

β ≥ 1, we have

sup0≤t≤T ‖um‖L2
σ

+ ‖um‖L2(0,T ;W 1,2
0,σ ) + ‖ um‖Lβ+1(0,T ;Lβ+1) ≤ C,
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where C is a constant independent of T and m.

Proof: Multiplying on both sides of (2.3) by gjm(t) and sum over j =

1, · · · , m, we have

1

2

d

dt
‖um‖2

L2 + μ‖∇um‖2
L2 + α‖um‖β+1

Lβ+1 ≤ 0

where we have used the fact that ((u · ∇)v, v) = 0 for u ∈ W 1,2
0,σ for v ∈ W 1,2.

Integrating over (0, T ) on time t, we obtain

sup
0≤t≤T

‖um‖2
L2(t) + 2μ

∫ T

0
‖∇um‖2

L2 dt + 2α
∫ T

0
‖um‖β+1

Lβ+1 dt ≤ ‖u0‖2
L2 (2.4)

(2.2) is obtained by (2.4). The proof of Lemma 2.2 is finished.

By a standard procedure, applying Lemma 2.2, we obtain the global exis-

tence of the approximate solutions um ∈ L∞(0, T ; L2
σ(R

3))∩L2(0, T ; W 1,2
0,σ (R3))∩

Lβ+1(0, T ; Lβ+1(R3)). Next, we will use Lemma 2.1 to prove the strong conver-

gence of um (or its subsequence) in L2 ∩ Lβ([0, T ] × R3). To this end, we denote

ũm the function from R into W 1,2
0,σ , which is equal to um on [0, T ] and to 0 on

the complement of this interval. Similarly, we prolong gim(t) to R by defining

g̃im(t) = 0 for t ∈ R\[0, T ]. The Fourier transform on time variable of ũm and

g̃im is denoted by ˆ̃um and ˆ̃gim respectively.

Note that the approximate solutions ũm satisfy

d

dt
(ũm, ωj) = μ(∇ũm(t),∇ωj) + (ũm(t) · ∇ũm(t), ωj)

+(α|ũm|β−1ũm(t), ωj)

≡ (f̃ , ωj) + (α|ũm|β−1ũm(t), ωj)

j = 1, 2, · · · , m.

(2.5)

where (f̃m, ωj) = μ(∇ũm(t),∇ωj) + (ũm(t) · ∇ũm(t), ωj).

Taking the Fourier transform about the time variable, (2.5) gives

2πiτ(ˆ̃um, ωj) = (ˆ̃fm, ωj) + α( ̂|ũm|β−1ũm(t), ωj)

+(u0m, ωj) − (um(T ), ωj)exp(−2πiTτ),
(2.6)

where
ˆ̃
fm denote the Fourier transforms of f̃m.

Multiply (2.6) by ˆ̃gjm(τ) and add the resulting equations for j = 1, · · · , m to

get:

2πiτ‖ˆ̃um(τ)‖2
2 = (ˆ̃fm(τ), ˆ̃um) + α( ̂|ũm|β−1ũm(τ), ˆ̃um)

+(u0m, ˆ̃um) − (um(T ), ˆ̃um)exp(−2πiTτ).
(2.7)
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For any v ∈ L2((0, T ); H1
0) ∩ Lβ+1(0, T ; Lβ+1), we have

(fm(t), v) = (∇um,∇v) + (um · ∇um, v)

≤ C(‖∇um‖2
2 + ‖∇um‖2)‖v‖H1.

It follows that for any given T > 0
∫ T

0
‖fm(t)‖H−1 dt ≤

∫ T

0
C(‖∇um(t)‖2

2 + ‖∇um(t)‖2) dt ≤ C,

and hence

sup
τ∈R

‖ˆ̃
fm(τ)‖H−1 ≤

∫ T

0
‖fm(t)‖H−1 dt ≤ C. (2.8)

Moreover, it follows from Lemma 2.2 that
∫ T

0
‖|um|β−1um‖β+1

β
dt ≤

∫ T

0
‖um‖β

β+1 dt ≤ C

which implies that

sup
τ∈R

‖ ̂|um|β−1u‖β+1
β

(τ) ≤ C. (2.9)

From Lemma 2.2, we have

‖um(0)‖ ≤ C, ‖um(T )‖ ≤ C. (2.10)

We deduce from (2.7)-(2.10) that

|τ |‖ˆ̃um(τ)(τ)‖2
2 ≤ C(‖ˆ̃um(τ)‖H1 + ‖ˆ̃um(τ)‖β+1).

For any γ fixed 0 < γ < 1
4
, we observe that

|τ |2γ ≤ C
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R.

Thus
∫ +∞

−∞
|τ |2γ‖ˆ̃um(τ)‖2

2 dτ ≤ C
∫ +∞

−∞
1 + |τ |

1 + |τ |1−2γ
‖ˆ̃um(τ)‖2

2 dτ

≤ C
∫ +∞

−∞
‖ˆ̃um(τ)‖2

2 dτ + C
∫ +∞

−∞
‖ˆ̃um(τ)‖H1

1 + |τ |1−2γ
dτ

+C
∫ +∞

−∞
‖ˆ̃um(τ)‖β+1

1 + |τ |1−2γ
dτ.

(2.11)

Thanks to the Parseval equality and Lemma 2.2, the first integral on the right

hand side of (2.11) is bounded uniformly on m.

By the Schwarz inequality, the Parseval equality and Lemma 2.2, we have

∫ +∞

−∞
‖ˆ̃um(τ)‖H1

1 + |τ |1−2γ
dτ ≤ (

∫ +∞

−∞
dτ

(1 + |τ |1−2γ)2
dτ)

1
2 (

∫ T

0
‖um(t)‖2

H1 dt)
1
2 ≤ C (2.12)
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for 0 < γ < 1
4
.

Similarly, we have

∫ +∞

−∞
‖ˆ̃u(τ)‖β+1

1 + |τ |1−2γ
dτ ≤ (

∫ +∞

−∞
dτ

(1 + |τ |1−2γ)
β+1

β

)
β

β+1 (
∫ +∞

−∞
‖ˆ̃um(τ)‖β+1

β+1(τ) dτ)
1

β+1

≤ C
∫ +∞

−∞
‖ũm(τ)‖

β+1
β

β+1(τ) dτ)
β

β+1

≤ CT
β−1

(β+1) (
∫ T

0
‖um‖β+1

β+1(t) dt)
1
β

(2.13)

It follows from (2.11) that

∫ +∞

−∞
|τ |2γ‖ˆ̃um(τ)‖2

2 dτ ≤ C (2.14)

Taking X0 = W 1,2
0,σ , X = L2 in Lemma 2.1, in view of Lemma 2.2 and (2.14),

we obtain that there exists a subsequence of um, still denoted by itself, such that

um → u strongly in L2(0, T ; L2) and ∇um ⇀ ∇u weakly in L2(0, T ; L2). Noting

that
∫ T

0

∫
R3

|u|β+1 dxdt ≤ C, we obtain that um → u strongly in Lp(0, T ; Lp) for

2 ≤ p < β + 1. These convergences guarantee that u(x, t) is a weak solution of

(1.1). The details is referred to [9] and we omit it here.

The proof of Theorem 1 is proved.

3 Existence and uniqueness of strong solution

We call the function pair (u(x, t), p(x, t)) the strong solution of the problem (1.1)

if it is a weak solution of (1.1) satisfying that

u ∈ L∞(0, T ; W 1,2
0,σ(R3)) ∩ L2(0, T ; H2(R3)) ∩ L∞(0, T ; Lβ+1(R3)).

We remark that as what has done in the classical Navier-Stikes equations, if

(u(x, t), p(x, t)) is a strong solution of (1.1), then the pressure function p(x, t) can

be determined uniquely from the velocity field u(x, t).

As a preliminary, we recall the known Gagliardo-Nirenberg inequality as fol-

lows.

Lemma 3.1 (Gagliardo-Nirenberg inequality) Assume that q and r sat-

isfy 1 ≤ q, r ≤ ∞, and j, m are arbitrary integers satisfying 0 ≤ j < m. Assume

u ∈ C∞
0 (Rn) , then

‖Dju‖Lp ≤ C‖Dmu‖a
Lr‖u‖1−a

Lq , (3.1)
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where 1
p

= j
n

+ a(1
r
− m

n
) + (1− a)1

q
, j

m
≤ a ≤ 1, and the constant C only depends

on n, m, j, q, r, a. If m − j − n
r

is a nonnegative integers, the above inequality

holds for j
m

≤ a < 1.

Our main results of this section is stated as

Theorem 2 Suppose that β ≥ 7
2

and u0 ∈ W 1,2
0,σ ∩ Lβ+1, Then there

exists a strong solution (u(x, t), p(x, t)) to the problem (1.1) satisfying

u ∈ L∞(0, T ; W 1,2
0,σ(R3)) ∩ L∞(0, T ; Lβ+1(R3)) ∩ L2(0, T ; H2(R3)),

∇u|u|β−1
2 ∈ L2(0, T ; L2(R3)); ut ∈ L2(0, T ; L2(R3)).

Moreover when 7
2
≤ β ≤ 5, the strong solution is unique.

Proof: The existence of strong solution is based on the following a priori

estimates.

Lemma 3.2 Suppose that ((u(x, t), p(x, t))) is a smooth

solution of the problem (1.1). Then for any β ≥ 7
2
, we have

sup0≤t≤T (‖∇u‖2
2 + ‖u‖β+1

β+1) + ‖ut‖2,2;T
+ ‖Δu‖2,2;T + ‖|∇u||u|β−1

2 ‖2,2;T

+
α(β − 1)

2

∫
R3

|u|β−3|∇|u|2|2 dx ≤ C.
(3.2)

Proof of Lemma 3.2: Multiply the first equation of (1.1) by ut, −Δu and

integrate the resulting equation on R3 respectively to obtain

μ

2

d

dt

∫
R3

|∇u|2 dx +
α

β + 1

d

dt

∫
R3

|u|β+1 dx +
∫

R3
|ut|2 dx

= −
∫

R3
utu · ∇u dx,

(3.3)

1

2

d

dt

∫
R3

|∇u|2 dx + μ
∫

R3
|Δu|2 dx + α

∫
R3

|u|β−1|∇u|2 dx

+
α(β − 1)

4

∫
R3

|u|β−3|∇|u|2|2 dx =
∫

R3
(u · ∇u)Δu dx.

(3.4)

Adding (3.3),(3.4) and using Hölder inequality, Young inequality yield

μ + 1

2

d

dt

∫
R3

|∇u|2 dx +
α

β + 1

d

dt

∫
R3

|u|β+1 dx +
3μ

4

∫
R3

|Δu|2 dx

+
1

2

∫
R3

|ut|2 dx + α
∫

R3
|u|β−1|∇u|2 dx

+
α(β − 1)

4

∫
R3

|u|β−3|∇|u|2|2 dx ≤ C
∫

R3
|u · ∇u|2 dx ≡ J.

(3.5)

The estimates of J are divided into the following two cases.
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Case I: Using Gagliardo-Nirenberg inequality (3.1), we have

‖∇u‖ 2(β+1)
β−1

≤ C‖�u‖a
2‖u‖1−a

β+1 (3.6)

where β satisfies
1

2
≤ a =

11 − β

β + 7
≤ 1, (3.7)

that is,

2 ≤ β ≤ 5. (3.8)

Using Hölder inequality, (3.6) and Young inequality, we have

J ≤ C‖u‖2
β+1‖∇u‖2

2(β+1)
β−1

≤ C‖u‖2
β+1‖�u‖

2(11−β)
β+7

2 ‖u‖
4(β−2)

β+7

β+1

≤ C‖�u‖
2(11−β)

β+7

2 ‖u‖
6(β+1)

β+7

β+1

≤ μ
4
‖�u‖2

2 + C‖u‖
3(β+1)

β−2

β+1 .

(3.9)

If 3(β+1)
β−2

≥ β + 1, that is, 2 < β ≤ 5, it directly follows that

J ≤ μ

4
‖�u‖2

2 + C‖u‖β+1
β+1‖u‖

4β−β2+5
β−2

β+1 (3.10)

In (3.10) we demand that
⎧⎪⎪⎨
⎪⎪⎩

4β − β2 + 5 ≥ 0 ⇒ −1 ≤ β ≤ 5,

4β − β2 + 5 ≤ (β − 2)(β + 1) ⇒ β ≥ 7
2

.
(3.11)

Combing (3.8) with (3.11), we obtain the restrictions of β:

7

2
≤ β ≤ 5. (3.12)

Substituting (3.10) into (3.5), we have

(μ + 1) sup0≤t≤T ‖∇u(t)‖2
2 + 2α

β+1
sup0≤t≤T ‖u(t)‖β+1

β+1 + μ‖Δu‖2
2,2;T

+‖ut‖2
2,2;T + 2αβ‖|u|β−1

2 |∇u|‖2
2,2;T +

α(β − 1)

2

∫
R3

|u|β−3|∇|u|2|2 dx

≤ C exp(‖u‖
4β−β2+5

β−2

β+1,β+1;TT
2β−7
β−2 ) × (‖∇u0‖2

2 + ‖u0‖β+1
β+1),

(3.13)

where β satisfies (3.12).

Case II: Using Gagliardo-Nirenberg inequality, we have

‖∇u‖ 2(β+1)
β−1

≤ C‖�u‖a
2‖u‖1−a

2 (3.14)
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1

2
≤ a =

β + 4

2(β + 1)
≤ 1, (3.15)

that is,

β ≥ 2. (3.16)

Using Hölder inequality, (3.14) and Young inequality, we obtain

J ≤ C‖u‖2
β+1‖∇u‖2

2(β+1)
β−1

≤ C‖u‖2
β+1‖�u‖

β+4
β+1

2 ‖u‖
β−2
β+1

2

≤ μ
4
‖�u‖2

2 + C‖u‖
4(β+1)

β−2

β+1 ‖u‖2
2.

(3.17)

If 4(β+1)
β−2

≤ β + 1, that is,

β ≥ 6 (3.18)

Substituting (3.17) into (3.5), we have

(μ + 1) sup0≤t≤T ‖∇u(t)‖2
2 + 2α

β+1
sup0≤t≤T ‖u(t)‖β+1

β+1 + μ‖Δu‖2
2,2;T

+‖ut‖2
2,2;T + 2αβ‖|u|β−1

2 |∇u|‖2
2,2;T +

α(β − 1)

2

∫
R3

|u|β−3|∇|u|2|2 dx

≤ C(‖u‖2
2,∞;T‖u‖

4(β+1)
β−2

β+1,β+1;TT
β−6
β−2 ) + (‖∇u0‖2

2 + ‖u0‖β+1
β+1),

(3.19)

where β satisfies (3.18).

If 4(β+1)
β−2

≥ β + 1, that is,

β ≤ 6 (3.20)

It directly follows that

J ≤ μ

4
‖�u‖2

2 + C‖u‖β+1
β+1‖u‖

5β−β2+6
β−2

β+1 ‖u‖2
2 (3.21)

In (3.21) we demand that
⎧⎪⎪⎨
⎪⎪⎩

5β − β2 + 6 ≥ 0 ⇒ −1 ≤ β ≤ 6,

5β − β2 + 6 ≤ (β − 2)(β + 1) ⇒ β ≥ 4.
(3.22)

Combing (3.20) and (3.22), we obtain

4 ≤ β ≤ 6. (3.23)
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Substituting (3.17) into (3.5), we have

(μ + 1) sup0≤t≤T ‖∇u(t)‖2
2 + 2α

β+1
sup0≤t≤T ‖u(t)‖β+1

β+1 + μ‖Δu‖2
2,2;T

+‖ut‖2
2,2;T + 2αβ‖|u|β−1

2 |∇u|‖2
2,2;T +

α(β − 1)

2

∫
R3

|u|β−3|∇|u|2|2 dx

≤ C exp(‖u‖2
2,∞;T‖u‖

(β+1)(6−β)
β−2

β+1,β+1;TT
2β−8
β−2 ) × (‖∇u0‖2

2 + ‖u0‖β+1
β+1)

(3.24)

where β satisfies (3.23).

Combing (3.5), (3.13),(3.19) and (3.24), we obtain that, for any β ≥ 7
2

,

sup0≤t≤T (‖∇u‖2
2 + ‖u‖β+1

β+1) + ‖ut‖2,2;T
+ ‖Δu‖2,2;T + ‖|∇u||u|β−1

2 ‖2,2;T

+
α(β − 1)

2

∫
R3

|u|β−3|∇|u|2|2 dx ≤ C.
(3.25)

The proof of Lemma 3.2 is proved.

Now we proceed to prove the uniqueness of the strong solutions of Theorem

2. Assume that under the same initial data, there exist two strong solutions

(u, p),(ū, p) of the equations of (1.1) satisfying

−
∫ T

0
(u, Φt) dt + μ

∫ T

0

∫
R3

∇u : ∇Φ dxdt −
∫ T

0

∫
R3

(u · ∇)uΦ dxdt

+α
∫ T

0

∫
R3

|u|β−1uΦ dxdt = (u0, Φ0),
(3.26)

−
∫ T

0
(ū, Φt) dt + μ

∫ T

0

∫
R3

∇ū : ∇Φ dxdt −
∫ T

0

∫
R3

(ū · ∇)ūΦ dxdt

+α
∫ T

0

∫
R3

|ū|β−1ūΦ dxdt = (ū0, Φ0)
(3.27)

for Φ ∈ C∞
0,σ([0, T ] ×R3) with Φ(·, T ) = 0 and by the density argument ([7]) and

([9]) hold actually for Φ ∈ L2(0, T ; H1).

Subtracting (3.26) from (3.27) and taking Φ = u−ū in the resulting equations,

we obtain

1

2

d

dt
‖u − ū‖2

2 + μ‖∇(u − ū)‖2
2 + α‖|u|β−1

2 |u − ū|‖2
2

≤
∫

R3
|u − ū|2|∇ū| dx + α

∫
R3

|u − ū||ū|||u|β−1 − |ū|β−1| dx

≡ I1 + I2.

(3.28)

where we have used the fact that ((u · ∇)v, v) = 0, u ∈ W 1,2
0,σ , v ∈ W 1,2.



12

Applying Hölder and Sobolev inequalities to yield

I1 ≤ ‖u − ū‖2
4‖∇ū‖2

≤ C(‖∇(u − ū)‖
3
4
2 ‖u − ū‖

1
4
2 )2‖∇u‖2

≤ C‖∇(u − ū)‖
3
2
2 ‖u − ū‖

1
2
2 ‖∇ū‖2

≤ ε‖∇(u − ū)‖2
2 + C‖u − ū‖2

2‖∇ū‖4
2,

(3.29)

and

I2 ≤ α
∫

R3
|u − ū||ū|||u|β−1 − |ū|β−1| dx

≤ C(β − 1)
∫

R3
|u − ū|||u|β−2 + |ū|β−2||u − ū||ū| dx

≤ C‖u − ū‖2
4‖ū‖6‖|u|β−2 + |ū|β−2‖3

≤ C(‖∇(u − ū)‖
3
4
2 ‖u − ū‖

1
4
2 )2‖ū‖6‖|u| + |ū|‖β−2

3(β−2)

≤ C‖∇(u − ū)‖
3
2
2 ‖u − ū‖

1
2
2 ‖ū‖6‖|u|+ |ū|‖β−2

3(β−2)

≤ ε‖∇(u − ū)‖2
2 + C‖u − ū‖2

2‖ū‖4
6‖|u| + |ū|‖4(β−2)

3(β−2).

(3.30)

In the second inequality of I2, we used the fact that

|xp − yp| ≤ Cp(|x|p−1 + |y|p−1)|x − y|
for any x, y ≥ 0, where C is an absolute constant.

Substituting the estimates of I1, I2 into inequality (3.28), choosing ε = μ
4
, we

obtain
d

dt
‖u − ū‖2

L2 + μ‖∇(u − ū)‖2
L2 + 2α‖|u|β−1

2 |u − ū|‖2
2

≤ C‖u − ū‖2
L2(‖∇ū‖4

2 + ‖ū‖4
6[‖u‖4(β−2)

3(β−2) + ‖ū‖4(β−2)
3(β−2)].

(3.31)

Note that
∫ T

0
‖|u|‖4(β−2)

3(β−2) ≤
∫ T

0
‖u‖

4(β2+β)
β+7

β+1 ‖�u‖
8(2β−7)

β+7

2 ≤ sup
0≤t≤T

‖u‖
4(β2+β)

β+7

β+1 ‖Δu‖
8(2β−7)

β+7

2,2;T T
35−7β
β+7 ,

(3.32)

and similar estimate hold true for ū instead of u in (3.32). In (3.32), we have a

restriction of β as 0 ≤ 8(2β−7)
β+7

≤ 2, that is,

7

2
≤ β ≤ 5. (3.33)

Substituting (3.32) into (3.31) and applying the Gronwall inequality, we obtain

that u = ū for a.e. (x, t) ∈ R3 × [0, T ] under (3.33). This completes the proof of

Theorem 2.
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