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Abstract
The vanishing viscosity limit is considered for the viscous lake equations with Navier

friction boundary conditions. We prove that the inviscid limit satisfies the inviscid lake
equations, and the results include flows generated by Lp initial vorticity with 1 < p ≤ ∞.

Key Words: viscous lake equations, inviscid limit, Navier boundary conditions

1 Introduction

The viscous lake equations can be written as{
∂tu+ u · ∇u− μb−1div(2bD(u) + bdivuI) + ∇p = f,

div(bu) = 0,
(1)

for (x, t) ∈ Ω×(0, T ) with Ω ⊂ R2, a bounded and smooth domain. Here, u(x, t) = (u1(x, t), u2(x, t))

stands for the two-dimensional velocity fields and D(u) = ∇u+∇ut

2 is the deformation tensor.

The positive number μ represents the eddy viscosity coefficient and the matrix I is the 2 × 2

identity one. Moreover, the bottom function b(x) is a given function, which is assumed to be in

C2(Ω̄) and non-degenerate, i.e. there exists two positive constants b1, b2 such that

0 < b1 ≤ b(x) ≤ b2, x ∈ Ω̄. (2)

For viscous lake equations (1), we impose the Navier boundary conditions as

u · n = 0, 2D(u)n · τ + αu · τ = 0, (x, t) ∈ ∂Ω × (0, T ), (3)

and initial data as

u(x, t) |t=0= u0, x ∈ Ω. (4)

In (3), n, τ means the unit normal vector and tangential vector respectively. α(x) is a nonnegative

bounded turbulent boundary drag coefficient defined on ∂Ω. Here we assume that α(x) ≥ κ(x),

where κ(x) is the curvature of ∂Ω.
∗ The research is partially supported by NSF of China (No.10431060), NSF of Beijing (No. 1042003) and key

project of NSFB-FBEC.
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The Navier boundary conditions, which were firstly used by Navier in 1827, say that there

is a stagnant layer of fluid close to the wall allowing a fluid to slip, and the slip velocity is

proportional to the shear stress. Such boundary conditions can be induced by effects of free

capillary boundaries [2] or a rough boundary [1], or a perforated boundary [9], and so on. A

special case of (3) with α(x) = κ(x) is called the free Navier boundary condition (see [14], [15]),

which is

u · n = 0, curlu = 0, on ∂Ω. (5)

Viscous lake equations (1) have been asymptotically derived by D. Levermore and B. Samartino

in [12], as the shallow water limit of the 3D Navier-Stokes equations with a rigid lid upper bound-

ary condition in a horizontal basin with bottom topography. Also, in [12], the authors obtained

the global existence and uniqueness of strong solution to the 2D viscous lake equations. Obvi-

ously, if b ≡ const, then (1) becomes the classical 2D incompressible Navier-Stokes equations.

Formally, when the viscosity coefficient μ = 0, the viscous lake equations becomes the inviscid

lake equations, which is {
∂tu+ u · ∇u+ ∇p = f,

div(bu) = 0,
(6)

for (x, t) ∈ Ω × (0, T ).

The investigation of vanishing viscosity limit of solutions of (1) is a big issue both in mathe-

matical study and physical applications, just as the case of the classical Navier-Stokes equations.

In particular, for the non-slip boundary conditions u = 0 on ∂Ω instead of Navier boundary

conditions (3), there will appear strong boundary layer in general. However, for Navier bound-

ary conditions (1), the corresponding convergence is possible. Some progresses have been made

for the Navier-Stokes equations with Navier boundary conditions recently. In [7] T. Clopeau,

A, Mikelić, and R. Robert proved the convergence from the 2D Navier Stokes equations to the

Euler equations as the viscosity tends to zero under the assumption that the initial vorticity

belongs to L∞(Ω) . M. C. Lopes Filho, H. J. Nussenzveig Lopes and G. Planas ([16]) improved

the results of [7] under the assumption that the initial vorticity belongs to Lp(Ω), p > 2. For the

3D Navier-Stokes equations, Yuelong Xiao and Zhouping Xin [17] established the convergence

of strong solution as the viscosity vanishes under the slip boundary condition,

u · n = 0, curlu · τ = 0, on ∂Ω,

The global existence of solutions to (6) has been studied by D. Levermore, M. Oliver and E.

Titi in [11] under the assumption that the initial vorticity belongs to Lp(Ω) with 2 ≤ p ≤ ∞.

The solutions in [11] were constructed as the inviscid limit of solutions of a system with an

artificial viscosity. And free Navier boundary conditions (5) were used in [11].

In this paper we intend to prove rigorously the convergence from viscous lake equations (1)

to inviscid lake equations (3) under Navier type boundary condition (3). More precisely, we

prove that the solutions of viscous lake equations (1), denoted by uμ will tend to the solutions of
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inviscid lake equations (3) as the viscosity μ→ 0, for both smooth initial data and non-smooth

initial data. Due to the appearance of the bottom function b(x) in the equations (1) and (6),

the weighted Sobolev spaces instead of the usual Sobolev spaces will be used. Since the vorticity

equations of viscous lake equations (1) becomes much complicated, a key step of our analysis is

to establish the Lp (1 < p ≤ ∞) estimates of the vorticity which makes it available to get the

convergence of the viscous lake equations (1) to the inviscid ones. Our results differ from the

ones of [11] in three respects. First, our solutions are obtained by taking limit of the solutions

of viscous lake equations (1) to inviscid equations (6) as the viscosity coefficient vanishes. The

second difference is that our boundary conditions are the general Navier boundary condition.

The third respect is that we improve the results of [11] to the case that the initial vorticity

belongs to Lp(Ω) with 1 < p ≤ 2, using free boundary condition (5).

The global existence and uniqueness of the inviscid lake equations with degenerate bottom

topography instead of non-degenerate one (2) are proved in [6] very recently. The study of the

convergence of the viscous lake equations to the inviscid lake equations with the generate bottom

topography will be very interesting and will be investigated in our subsequent work.

The paper is organized as follow. In section 2 we give some mathematical preliminaries and

the existence and uniqueness of (1). In section 3, we give two a priori estimates of (1) and the

corresponding vorticity equations. Moreover, the convergence and the existence of (6) is also

given. Finally, in section 4, we generalize the result to the case of non-smooth initial data.

2 Some mathematical preliminary and the solvability of (1)

For the mathematical setting of (1), we introduce the Sobolev spaces with weight b. For example,

we endowHm(Ω) form ∈ N with the scalar product (φ, θ)Hm =
∑

0≤|α|≤n

∫
Ω
Dαφ(x)Dαθ(x)b(x)dx.

The weighted integral over the domain is abbreviated by < · >, i.e.

< φ >=
∫

Ω
φ(x)b(x)dx.

The scalar product between u, v is denoted by (u, v)L2 =< uv > . We say that u is divergence

free if
∫

Ω
bu · ∇φdx = 0 for φ ∈ C∞. We introduce the space of infinitely differentiable and

compactly supported functions which satisfy our weighted incompressible condition

D = {u ∈ C∞
0 (Ω) : div(bu) = 0 in Ω}.

Moreover, we define the Hilbert spaces

H = {u : u ∈ L2(Ω), div(bu) = 0, u · n = 0, x ∈ Ω}
V = {u : u ∈ H1(Ω), div(bu) = 0, u · n = 0, x ∈ Ω}
W = {u : u ∈ H2(Ω) ∩ V, 2D(u)n · τ + αu · τ = 0 on ∂Ω}.

It is noted that the nondegeneracy of b guarantees that that the Sobolev norm with weight

function b(x) is equivalent to the standard Sobolev norm.
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The Navier friction condition can be formulated in terms of vorticity, which is stated as

Lemma 1 Suppose v ∈ H2(Ω)2, v · n = 0 on ∂Ω, then we have

D(v)n · τ − 1
2
curlv + κ(v · τ) = 0 on ∂Ω, (7)

where curlv = ∂1v2 − ∂2v1 and κ is the curvature of ∂Ω.

The proof of Lemma 1 is referred to [7] and we omit it here. It follows from Lemma 1 that

the Navier boundary conditions can be written as

ω = (2κ− α)b−1u · τ (x, t) ∈ ∂Ω × (0, T ).

A main difficulty in our approach is to deal with the vorticity equations which will become

complicated due to the presence of the bottom function b(x). Suppose that uμ is the smooth

solution of the viscous lake equations (1) with Navier boundary conditions (3) and the initial

data (4). We introduce the potential initial vorticity ω0 = b−1∇ × u0 and the time dependent

vorticity ωμ = b−1∇× uμ associated to the solution uμ. An evolution equation for the potential

vorticity is obtained by taking the curl on both sides of the equation (1). The nonlinear term

in (1) becomes

b−1∇× (u · ∇u) = (u · ∇)ω,

where the divergence free condition div(bu) = 0 has been used and ω = b−1∇× u . The viscous

term becomes more complicated, which is

b−1∇× (b−1div(2bD(u) + bdivuI))

= Δω + 3b−1
2∑

i=1
∂ib∂iω +G(u,∇u)

≡ Aω.

(8)

where G(u,∇u) is the linear combination of u and ∇u. Moreover, we have

‖G(u,∇u)‖Lp(Ω) ≤ C(‖u‖Lp(Ω) + ‖∇u‖Lp(Ω)), p > 1, (9)

The precise presentation and the properties of the term G(u,∇u) and the operator A will be

given in Appendix.

Using the divergence free condition div(bu) = 0, we introduce the stream function φ satisfying

uμ = b−1∇⊥φ,
ωμ = b−1∇× (b−1∇⊥φ),

= b−2Δφ− b−3∂ib∂iφ,

φ |∂Ω= 0,

(10)

where ∇⊥ = (∂2,−∂1). Then for each fixed time, the velocity uμ can be recovered from vorticity

by means of the Biot-Savart law, which is denoted by

uμ = KΩ(ωμ).
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The following lemma, which is proved in [10], is useful later.

Lemma 2 For b(x) ∈ C2(Ω̄) and every ω ∈ H−1(Ω), there exists a unique function u =

KΩω ∈ H. Moreover, K is continuous as a mapping among the spaces H−1(Ω) → H,L2(Ω) → V

and H1(Ω) → V ∩H2(Ω) and for some p0 > 1, satisfies the estimate

‖KΩ(ω)‖W 1,p ≤ Cp‖ω‖Lp ,

for all p ≥ p0, where the constant C depends only on p0,Ω.

Now the equations for the potential vorticity read as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tω
μ + uμ · ∇ωμ − μAωμ = b−1curlf, (x, t) ∈ Ω × (0, T ),

uμ = KΩω
μ, (x, t) ∈ Ω × (0, T ),

ωμ = (2κ− α)b−1uμ · τ (x, t) ∈ ∂Ω × (0, T ),

ωμ(·, 0) = ω0, x ∈ Ω,

(11)

where Aω is defined as in (8).

The global existence and uniqueness of the viscous lake equations (1) is stated as follows,

similar to the proof in [12],

Theorem 1 Let b(x), α, κ are defined as above. For u0 ∈W, f ∈ H1(0, T ;L2(Ω)), curlf ∈
L∞(0, T ;Lp(Ω)), ω0 = b−1curlu0 ∈ Lp(Ω), 2 < p ≤ ∞, there exists a unique solution uμ ∈
L∞(0, T ;H2), ∂tu

μ ∈ L2(0, T ;V ) ∩ C(0, T ;H), which satisfies the variational form of (1) , i.e.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt

∫
Ω
φuμbdx+ 2μ

∫
Ω
Duμ : Dφ bdx+ μ

∫
Ω
divuμdivφ bdx

+
∫

Ω
uμ · ∇uμ · φ bdx+ μ

∫
∂Ω
α(u · τ)(φ · τ)bdS =

∫
Ω
f · uμbdx.

uμ(x, t = 0) = u0,

(12)

for φ ∈ V. Moreover, ωμ = b−1curluμ is well-defined, and satisfies (11) in the distribution

sense with the properties ωμ ∈ C([0, T ];H1(Ω)). Finally, there exists a unique pressure field

p ∈ C([0, T ];H1(Ω)) such that (1) holds a.e. on Ω × (0, T ).

Proof. The key point of the proof is the global existence of the solutions uμ of (1).

Just as in [12], the proof is divided into the following steps:

Step1. Weak solutions for elliptic Stokes problem;

Step 2. Regularity for the elliptic Stokes problem;

Step 3. Galerkin approximations.

In the proof in [12], there is a little gap on the regularity for the elliptic Stokes problem and

hence we only give the proof of Step 1, 2 to make it clear. The leftover is completely similar to

[12] and we omit it here. We write uμ, ωμ by u, ω respectively for simplicity.

Step 1. Weak solutions for elliptic Stokes problem
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Consider the elliptic problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−b−1div[2bD(u) + bdivuI] + ∇p = f, x ∈ Ω

div(bu) = 0, x ∈ Ω

u · n = 0, x ∈ ∂Ω

2D(u)n · τ + αu · τ = 0, x ∈ ∂Ω,

(13)

where α ≥ κ, f ∈ L2(Ω). We intend to prove that there exists a unique u ∈ V satisfying (13) in

weak sense. To this end, we define the bound bilinear operator E by

(Eu, v) = 2
∫

Ω
Du : Dvbdx+

∫
Ω
divudivvbdx +

∫
∂Ω
αu · vbds,

for u, v ∈ V, and we prove the coercivity of E as follows.

(Eu, u) = 2
∫

Ω
Du : Dubdx+

∫
Ω
(divu)2 bdx+

∫
∂Ω
α|u|2bds

≥ b1(2
∫

Ω
Du : Dudx+ ‖divu‖2

L2 +
∫

∂Ω
α|u|2ds)

≥ b1

∫
Ω
[2(∂xu1)2 + 2(∂yu2)2 + (∂xu2 + ∂yu1)2]dx+ b1‖divu‖2

L2 + b1

∫
∂Ω
α|u|2ds

≥ b1

∫
Ω
[(∂xu1 − ∂yu2)2 + (∂xu2 + ∂yu1)2]dx+ b1‖divu‖2

L2 + b1

∫
∂Ω
α|u|2ds

≥ b1‖∇u‖2
L2 + b1‖divu‖2

L2 + b1

∫
∂Ω

(α− κ)|u|2ds

≥ O(1)‖u‖H1 .

In above estimates, we have used the identity in [12] for u ∈ C∞(Ω), satisfying u · n = 0,

2
∫

Ω
[∂xu1∂yu2 − ∂yu1∂xu2]dx

=
∫

Ω
div(u1∂yu2 − u2∂yu1, u2∂xu1 − u1∂xu2)dx

=
∫

∂Ω
(u1τ · ∇u2 − u2τ · ∇u1)ds

= −
∫

∂Ω
(τ · ∇u · n)u · τds =

∫
∂Ω
κ|u|2ds.

Applying Lax-Milgram theorem, we obtain that there exists a unique u ∈ V which is weak

solution of (13).

Step 2. Regularity for the elliptic Stokes problem

Due to the Navier friction boundary condition, we cannot use the standard elliptic theory

directly. Given u ∈ V , the weak solution of (13), we solve the following system{ −Δψ + 3∂ib∂iψ + βψ = −G(u,∇u) + βω + b−1curlf ≡ g(x) x ∈ Ω,

ψ = (2κ − α)b−1u · τ ≡ h(x) x ∈ ∂Ω.
(14)
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Note that g(x) ∈ H−1(Ω), h(x) ∈ H
1
2 (∂Ω). We have that there exists a unique solution ψ ∈

H1(Ω) of (14) for β > 0, which is large enough.

Then it follows from the standard elliptic theory that φ̄ ∈ H3(Ω) is the unique solution of{
b2Δφ̄+ b−3∂ib∂iφ̄ = ψ, x ∈ Ω

φ̄ = 0, x ∈ ∂Ω.

Set ū = b−1∇⊥φ̄. Then ū ∈ H2(Ω). Moreover, it concludes that (ū, p) satisfies the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−b−1div[2bD(ū) + bdivūI] + βū+ ∇p = bcurl−1[G(ū,∇ū) −G(u,∇u)] + βu+ f, x ∈ Ω

div(bū) = 0, x ∈ Ω

ū · n = 0, x ∈ ∂Ω

2D(ū)n · τ + 2κū · τ = (2κ − α)u · τ, x ∈ ∂Ω.
(15)

We remark that ū satisfies the above system (15) but not the original one (13), which is ignored

in (13). Applying similar approach in (13), we obtain that there exists a unique weak solution

of (15) under the assumption that β is sufficient large. It is noted that u ∈ V is a weak solution

of (13) and hence u is also a weak solution of (15). On the other hand, ū ∈ H2(Ω) is also the

weak solution of (15). Thus u = ū ∈ V ∩H2(Ω) due to the uniqueness of (15).

Then for uμ ∈ L∞(0, T ;H2(Ω)), we know that ωμ = φ ∈ L∞(0, T ;H1(Ω)) and satisfies

(??)a9) in the distribution sense.

3 Estimates and convergence for smooth initial data

In this section, we first obtain the estimates for the solutions of the viscous equations (1) under

assumptions of smooth enough initial data, which is presented in Theorem 1. Our result reads

Theorem 2 Under assumptions of Theorem 1, we have

‖uμ‖L∞((0,T );L2(Ω)) +
√
μ‖uμ‖L2((0,T );V ) ≤ O(1)(‖u0‖L2(Ω) + ‖f‖L∞(0,T ;L2(Ω))). (16)

‖ωμ‖L∞((0,T );Lp(Ω)) ≤ O(1)(‖ω0‖Lp(Ω) + ‖u0‖L2(Ω) + ‖f‖L∞(0,T ;L2(Ω)) + ‖curlf‖L∞(0,T ;Lp(Ω))),

(17)

where uμ, ωμ are same as in Theorem 1 and O(1) are the positive constants depending on Ω, b, T

and the bound of κ and α.

Proof Multiplying the first equation of (1) by uμ and integrating by parts, we have

d

dt
‖uμ‖2

L2(Ω) + μ‖Duμ‖2
L2(Ω) + μ

∫
Ω
(α− κ)|uμ|2bds ≤ ‖f‖L2(Ω)‖uμ‖L2(Ω),

which yields

‖uμ‖L∞((0,T );L2(Ω)) + μ‖uμ‖L2((0,T );V ) ≤ ‖u0‖L2(Ω) + ‖f‖L∞(0,T ;L2(Ω)).

The estimate (16) is proved.
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Now we prove (17). Let K = ‖(2κ − α)uμ · τ‖L∞(∂Ω×(0,T )). Consider the Dirichlet problem

for the linear parabolic equations as follows⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω̃t + uμ · ∇ω̃ − μ(Δω̃ + 3b−1∂ib∂iω̃ +G(uμ,∇uμ)) = b−1curlf, x ∈ Ω,

ω̃(t = 0, ·) = |ω0|, x ∈ Ω,

ω̃(t, x) = K, x ∈ ∂Ω,

(18)

where uμ ∈ C([0, T ];H2(Ω)) is given by Theorem 1 and G(uμ,∇uμ) are same as in (8) satisfying

(9).

By the hypothesis, we have the properties: uμ ∈ C([0, T ];H2(Ω)), ω0 ∈ Lp(Ω), curlf ∈
L∞(0, T ;Lp(Ω)), p > 2. It follows from the standard parabolic theory that the problem (18) has

a unique weak solution ω̃ ∈ L2(0, T ;H1(Ω)). Setting ω̄ = ωμ − ω̃ (or −ωμ − ω̃). Then ω̄ satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω̄t + uμ · ∇ω̄ − μ(Δω̄ + 3b−1∂ib∂iω̄) = 0 x ∈ Ω,

ω̄(t = 0, x) = ω0 − |ω0| x ∈ Ω,

ω̄(t, x) = (2κ− α)uμ · τ −K x ∈ ∂Ω.

(19)

According to the comparison theorem of the parabolic equations, we obtain

|ωμ| ≤ ω̃, a.e. in Ω × [0, T ). (20)

Thus, we only need to prove (17) with ωμ replaced by ω̃. To this end, we set ω̂ = ω̃ − K.

Then we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω̂t + uμ · ∇ω̂ − μ(Δω̂ + 3b−1∂ib∂iω̂) = μG(uμ,∇uμ) + b−1curlf, x ∈ Ω,

ω̂(t = 0, x) = |ω0| −K, x ∈ Ω,

ω̂(t, x) = 0, x ∈ ∂Ω.

(21)

Multiplying |ω̂|p−2ω̂ to the first equation of (21) and integrating with respect to x, we have

d

dt
‖ω̂‖p

Lp + (p− 1)μ
∫

Ω
(|∇ω̂||ω̂ p−2

2 |)2dx− 3μ
∫

Ω
∂ib∂iω̂|ω̂|p−2ω̂dx

= μ

∫
Ω
G(uμ,∇uμ)|ω̂|p−2ω̂bdx+

∫
Ω
b−1curlf · |ω̂|p−2 · ω̂bdx+ μ

∫
Ω
|ω̂|p−2∇ω̂ · ω̂ · ∇bdx

≤ μc1‖ω̂‖p
Lp + c2‖curlf‖Lp(Ω)‖ω̂‖p−1

Lp(Ω) +
p

2
μ

∫
Ω
(|∇ω̂||ω̂ p−2

2 |)2dx

Applying Lemma 2 and Hölder inequality, and the fact

−3μ
∫

Ω
∂ib∂iω̂|ω̂|p−2ω̂dx = 3μ

∫
Ω

Δb|ω̂|pdx,

we get

d

dt
‖ω̂‖p

Lp + (p− 1)μ
∫

Ω
(|∇ω̂||ω̂ p−2

2 |)2dx ≤ c3μp‖ω̂‖p
Lp + c4‖curlf‖Lp(Ω)‖ω̂‖p−1

Lp(Ω)
.
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It follows that

‖ω̂‖L∞(0,T ;Lp(Ω)) ≤ c5e
μT (‖ω0‖Lp(Ω) + ‖curlf‖Lp(Ω)) ≤ O(1)(‖ω0‖Lp(Ω) + ‖curlf‖Lp(Ω)).

(22)

The last step is due to the fact that μ is small positive constant and will tend to zero. Obviously,

c1, · · · , c5, O(1) are positive constants independent of μ, p. Thus, combining (20) with (22), we

have that ‖ωμ‖L∞(0,T ;Lp(Ω)) ≤ O(1)(‖ω0‖Lp(Ω) + ‖curlf‖Lp(Ω)) +K.

Next we need to estimate K. Since

‖uμ · τ‖L∞(∂Ω×(0,T )) ≤ O(1)‖uμ‖θ
L∞(0,T ;L2(Ω)‖uμ‖1−θ

L∞(0,T ;W 1,p(Ω))

≤ O(1)‖uμ‖θ
L∞(0,T ;L2(Ω))‖ωμ‖1−θ

L∞(0,T ;Lp(Ω)),

where θ =
p− 2
2p − 2

, p > 2, then we have

K ≤ ε‖ωμ‖L∞(0,T ;Lp(Ω)) + Cε‖uμ‖L∞(0,T ;L2(Ω)).

We take ε small enough to obtain that

‖ωμ‖L∞(0,T ;Lp(Ω)) ≤ O(1)(‖ω0‖Lp(Ω) + ‖curlf‖Lp(Ω)) + ‖uμ‖L∞(0,T ;L2(Ω))).

Using the obtained estimate (16), we have

‖ωμ‖L∞(0,T ;Lp(Ω)) ≤ O(1)(‖ω0‖Lp(Ω) + ‖u0‖L2(Ω) + ‖f‖L∞(0,T ;L2(Ω)) + ‖curlf‖L∞(0,T ;Lp(Ω))),

which is (17) for p <∞. It also holds for p = ∞ due to O(1) independent of p. Then the proof

is finished.

Based on the estimates of Theorem 2, we have the following convergence result.

Theorem 3 Under assumptions of Theorem 1, we have that there exists a subsequence

of {uμ} denoted by uμk such that

uμk −→ u

strongly in C([0, T ];L2(Ω)) as k −→ ∞. The limit function u is the weak solution to the inviscid

lake equations (6), which is,∫
Ω
uφbdx+

∫ T

0

∫
Ω
u(u · ∇)φbdxdt =

∫
Ω
u0φ(·, 0)bdx +

∫ T

0

∫
Ω
f · ubdxdt. (23)

for any test functions φ ∈ C([0, T );V ), which is divergence free and tangent to the boundary.

Remark 1. When p = ∞, the weak solution of the inviscid lake equations (6) is unique,

similar to Yudovich’s theorem to the 2D Euler equations.

Remark 2. When 1 < p ≤ 2, using the free Navier boundary condition (5), we can obtain

the similar estimates as (16), (17) and the results of Theorem 3 hold in this case.

Proof We note that the following estimates hold for uμ

‖uμ‖L∞(0,T ;W 1,p(Ω)) ≤ O(1).
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and

‖∂tu
μ‖L2(0,T ;H−1(Ω)) ≤ O(1).

Where O(1) > 0 depends only on the initial velocity u0 ,the initial vorticity ω0 and f , inde-

pendent of viscosity μ. Then we can extract a subsequence uμk which converges strongly in

C([0, T ];L2(Ω)), and weakly in L2((0, T );H1(Ω)). Obviously, the convergence is sufficient to

pass to the limit in each term of (12) and guarantee that the limit function u satisfies the 2D

incompressible inviscid lake equation in weak sense. This completes the proof.

4 The case of non-smooth data

In this section, we intend to relax the initial conditions of Theorem 3 to non-smooth initial data.

To this aim, we firstly approximate the initial data as follows (see [16]).

Lemma 3 Let ω = b−1curlu ∈ Lp(Ω), 1 < p ≤ +∞. Then there exists a sequence

ωn = b−1curlun ∈ H1(Ω) ∩ L∞(Ω) satisfy

ωn −→ ω in Lp(Ω).

Using Lemma 3, we can obtain the following theorem similar to Theorem 3.

Theorem 4 Let u0 ∈ V and ω0 = b−1curlu0 ∈ Lp(Ω), f ∈ H1(0, T ;L2(Ω)), curlf ∈
L∞(0, T ;Lp(Ω)), 2 < p ≤ ∞, then there exists a unique solution uμ ∈ C(0, T ;H), ∂tu ∈
L2(0, T ;V ′), ωμ ∈ L∞(0, T ;Lp(Ω)) for the weak solution of (1). Moreover, uμ, ωμ satisfy the

estimates (16) and (17).

Our main result of this section reads as

Theorem 5 Let u0 ∈ V, ω0 ∈ Lp(Ω), f ∈ H1(0, T ;L2(Ω)), curlf ∈ L∞(0, T ;Lp(Ω)), 2 <

p ≤ ∞. Let uμ, ωμ be the corresponding solution of (1) and (11) presented in Lemma 4. Then

we have

uμ −→ u in Lq(0, T ;Wα,q′(Ω)),

where 1 < q < ∞, 1
q′ <

1
p − 1−α

2 , α ∈ (0, 1). Moreover, u is the weak solution to the 2D

incompressible inviscid lake system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ u · ∇u+ ∇p = 0, in Ω × (0, T )

div(bu) = 0, in Ω × (0, T )

ω = b−1curlu, in Ω × (0, T )

u · τ = 0, on ∂Ω × (0, T )

u(t = 0, ·) = u0 in Ω.

Proof From Lemma 4, we know that there exist the solutions uμ, ωμ of (1) such that

uμ ∈ C(0, T ;H) ∩ L2(0, T ;H1(Ω))
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω
φuμbdx+ 2μ

∫ T

0

∫
Ω
Duμ : Dφbdx+ μ

∫ T

0

∫
Ω
divuμdivφbdx

+
∫ T

0

∫
Ω
uμ · ∇uμ · φbdx+ μ

∫ T

0

∫
∂Ω
α(u · τ)(φ · τ)bdS

=
∫

Ω
u0φ(0, ·)bdx +

∫ T

0

∫
Ω
f · uμbdx,

uμ = KΩ(ωμ),

(24)

for every test function φ ∈ C([0, T );V ). From the proof of Theorem 2, we know that it is also

true for non-smooth data. Then we know that

uμ ∈ L∞(0, T ;L2(Ω)) ∩ L∞(0, T ;W 1,p(Ω)),

ωμ ∈ L∞(0, T ;Lp(Ω)).

Then we can take a subsequence, denoted by uμk , such that

uμk ⇀ u in w ∗ −L∞(0, T ;W 1,p(Ω)) ∩ L∞(0, T ;L2(Ω)),

ωμk ⇀ ω, in w ∗ −L∞(0, T ;Lp(Ω)),

as k −→ ∞.

And

uμk −→ u, in Lq(0, T ;Wα,q′(Ω)) as k −→ ∞,

where 1 < q <∞, 1
q′ ≤ 1

p − 1−α
2 , α ∈ (0, 1).

Then the limit functions u satisfies the weak form of the inviscid lake equations, that is,∫
Ω
φubdx+

∫ T

0

∫
Ω
u · ∇u · φbdx =

∫
Ω
u0φ(0, ·)bdx +

∫ T

0

∫
Ω
f · ubdx,

u = KΩ(ω),

This completes the proof.

5 Appendix

Here we give the explicit form of Aω, appearring in (8), where ω = b−1curlu is the potential

vorticity of the velocity u.

Using the divergence free condition div(bu) = 0, we obtain that

b−1div(2bD(u) + bdivuI)

= b−1
2∑

i=1
∂i(b∂iuj + b∂jui + bdivuδij)

= b−1
2∑

i=1
(∂i(∂i(buj) − ∂ibuj + ∂j(bui) − ∂jbui)) + ∂j(bdivu)

= Δu+ b−1∇b · ∇u− b−1u · ∇(∇b) + ∇(divu),
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then we have
b−1∇× (b−1div(2bD(u) + bdivuI))

= b−1∇× (Δu+ b−1∇b · ∇u− b−1u · ∇(∇b) + ∇(divu))

= Δω + 3b−1∂ib∂iω +G(u,∇u)
≡ Aω,

where
G(u,∇u) = b−1Δbω + b−1∇× (∇logb · ∇u) − b−1∇× (b−1u · ∇(∇b))

= b−1Δbω +
2∑

i=1
(∂2

1ilogb∂iu2 − ∂2
2ilogb∂iu1

−ui(∂1b
−1∂2

i2b− ∂2b
−1∂2

i1b) − b−1(∂1ui∂
2
i2b− ∂2ui∂

2
i1b).

It is noted that G(u,∇u) is the linear combination of u,∇u, satisfying

‖G(u,∇u)‖Lp(Ω) ≤ C(‖u‖Lp(Ω) + ‖∇u‖Lp(Ω)), p > 1,

where C depending on the bound norm of b,∇b,Dijb.
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