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Abstract

We construct global weak solutions to the compressible Navier-Stokes equations with
density-dependent viscosity coefficients when the initial data is large, discontinuous,
and spherically symmetric. We focus on the case where those coefficients vanish on
vacuum. The solutions are obtained as limits of solutions in annular regions between
two balls, and the equations hold in the sense of distribution in the entire space-time
domain. In particular, we prove the existence of spherically symmetric solutions to
the Saint-Venant model for shallow water.

1 Introduction

The compressible Navier-Stokes equations with density-dependent viscosity coeffi-
cients can be written as

ρt + div(ρU) = 0, (1.1)

(ρU)t + div(ρU ⊗U) − div(h(ρ)D(U)) −∇(g(ρ)divU) + ∇P (ρ) = 0, (1.2)
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where t ∈ (0,+∞) is the time and x ∈ R
N , N = 2, 3 is the spatial coordinate,

while ρ(x, t),U(x, t) and P (ρ) = ργ(γ > 1) stand for the fluid density, velocity and
pressure, respectively. And

D(U) =
∇U +t ∇U

2

is the strain tensor and h(ρ), g(ρ) are the Lamé viscosity coefficients satisfying

h(ρ) > 0, h(ρ) +Ng(ρ) ≥ 0. (1.3)

In the last several decades, significant progress on the system (1.1)-(1.2) with a pos-
itive constant viscosity coefficients has been achieved by many authors. Concerning
the global existence and the large-time behavior of solutions for sufficiently small
data, the system (1.1)-(1.2) (as well as the full compressible Navier-Stokes equations
including the conservation law of energy) is well-understood in the sense that if the
data are small perturbations of an uniform non-vacuum state, then there exists a
(smooth or weak) solution which is time-asymptotically stable (see[22]-[24],[3]). The
situation, however, becomes more complex when the data are large, and a number
of important questions, for example the existence of global solutions in the case of
heat-conducting gases and the uniqueness of weak solutions, still remain open. The
first general result on weak solutions was obtained by Lions in [20], in which he used
the method of weak convergence to obtain global weak solutions provided that the
specific heat ratio γ is appropriately large, for example γ ≥ 3N/(N + 2), N = 2, 3.
Feireisl, Novotný and Petzeltová [7, 8] extended Lions’ existence result to the case
γ > N/2 (N = 2, 3). Jiang and Zhang [15, 16] showed the global existence of weak
solutions for any γ > 1 to the Cauchy problem with spherically symmetric data.
More recently, the global existence of axisymmetric and helically symmetric weak
solutions for any γ ≥ 1 was studied in [17, 28].

It is noted that in dealing with large amplitude solutions, one has to face the pos-
sible appearance of vacuum state in general. However, as observed in [11, 32, 21],
the compressible Navier-Stokes equations with constant viscosity coefficients be-
have singularly in the presence of vacuum. By some physical considerations, Liu,
Xin and Yang in [21] introduced the modified compressible Navier-Stokes equations
with density-dependent viscosity coefficients for isentropic fluids. In fact, as pre-
sented in [21], while deriving the compressible Navier-Stokes equations from the
Boltzmann equations by the Chapman-Enskog expansions, the viscosity depends on
the temperature, and correspondingly depends on the density for isentropic cases.
Meanwhile, in geophysical flows, many mathematical models correspond to (1.1)-
(1.2) (see [1, 2, 20]). In particular, the viscous Saint-Venant system for shallow water
is expressed exactly as (1.1)-(1.2) with N = 2, h(ρ) = ρ, g(ρ) = 0 and γ = 2. Shal-
low water equations are to describe vertically averaged flows in three-dimensional
shallow domains in term of the mean velocity U and the variation of the depth
ρ due to the free surface (see [20], [2]), which is widely used in geophysical flows.
Local smooth solutions or global smooth solutions for data close to equilibrium were
established in [29] and related topics have been extensively studied in [1], [2] and
references therein. Nevertheless, the global existence of weak solutions for large data
to the shallow water equations or more generally to the multi-dimensional compress-
ible Navier-Stokes equations (1.1)-(1.2) (N = 2, 3) is still open. This is mainly due



to the facts that for these more physical models new mathematical challenges are
encountered. First, the vacuum states may appear for the solutions of (1.1) and
(1.2) even if the initial data are far from the vacuum. Second, when dealing with
vanishing viscosity coefficients on vacuum, the velocity cannot even be defined when
the density vanishes and hence we will have no uniform estimates for the velocity.
Finally, the system (1.1)-(1.2) is highly degenerate at vacuum.

For one-dimensional compressible Navier-Stokes equations (1.1) and (1.2) with
h(ρ) = ρα, g(ρ) = 0(α ∈ (0, 1)), there are many literatures on the well-posedness
theory of the solutions (see[13],[14],[21],[26],[31], [33],[34],[35] and references therein).
In particular, initial-boundary-value problems for one-dimensional (1.1)-(1.2) with
h(ρ) = ρα(α > 1/2) and P = ργ(γ ≥ 1) was studied by Li, Li and Xin recently in
[19] and interesting phenomena of vacuum vanishing and blow-up of solutions were
found there. However, few results are available for multi-dimensional problems.
The first multi-dimensional result is due to Bresch, Desjardins and Lin [2], where
they showed the L1 stability of weak solutions for the Korteweg’s system (with the
Korteweg stress tensor kρ∇�ρ) and their result was later improved in [1] to include
the case of vanishing capillarity (k = 0), but with an additional quadratic friction
term rρ|U|U. An interesting new entropy estimate is established in [2] and [1] in a
priori way, which provides some high regularity for the density. Recently, Mellet and
Vasseur [25] proved the L1 stability of weak solutions of the system of (1.1)-(1.2)
based on the new entropy estimate, extending the corresponding L1 stability results
of [2] and [1] to the case r = k = 0. However, although L1 stability is considered
as one of the main steps to prove existence of weak solutions, the global existence
of weak solutions of Korteweg’s system (see [2]) and the compressible Navier-Stokes
equations with density-dependent viscosity (1.1)-(1.2) remains open in the multi-
dimensional cases. The key issue now is how to construct approximate solutions
satisfying the a priori estimates required in the L1 stability analysis, among which
the lower bound of the density should be crucial and addressed. It seems highly
non-trivial to do so due to the degeneracy of the viscosities near vacuum and the
additional entropy inequality to be hold in the construction of approximate solutions.

In our paper, we will construct a class of approximate solutions and furthermore
prove the global existence of weak solutions for spherically symmetric solutions of
the compressible Navier-Stokes equations with the viscosity coefficients depending
on the density. For simplicity of the presentation, in this paper we will only give
the proof of the global existence of the three-dimensional spherically symmetric
solutions of (1.1)-(1.2) with h(ρ) = ρ, g(ρ) = 0. Our result holds true for general
h(ρ) = ρα, g(ρ) = (α−1)ρα for some α > N−1

N
(N = 2, 3). More general h(ρ) and g(ρ)

satisfying g(ρ) = ρh′(ρ)−h(ρ) and other restrictions same as in [25] can be handled
in a similar way. It should be noted that the shallow water equations corresponding
to the case of N = 2, α = 1, γ = 2 in (1.1)-(1.2) are covered and therefore we obtain
the global spherically symmetric solutions of the shallow water equations.

It seems to be difficult to adapt the analysis in [7, 20] due to the degeneracy of
the viscosities near vacuum which may appear. Thus we construct the approximate
solutions by solving the approximate systems of (1.1)-(1.2) with hε(ρ) = h(ρ) +
ερβ, gε(ρ) = g(ρ) + ε(β − 1)ρβ for some fixed 0 < β < 1 (β = 3/4 for example)
instead of h(ρ), g(ρ) in (1.1)-(1.2). This is motivated by the approach of Jiang,
Xin, and Zhang [14], in which one-dimensional case is considered and h(ρ) can



be regarded as ρα, and g(ρ) = (α − 1)ρα for 0 < α < 1. However, compared
with the one-dimensional equations, there are some new difficulties encountered for
radial symmetric 3-dimensional N-S systems. In particular, the three-dimensional
spherically symmetric equations become singular at r = 0 and more new source
terms appear in both Eulerian and Lagrangian radial symmetric equations (see
(2.6)-(2.7) in Section 2 and (3.12) in Section 3 respectively), which lead to some
difficulties to obtain the lower bound of the density. Therefore we will use the radial
symmetric system only on the annular domain Ωε = Ω \ B̄ε(0), where Bε(0) is a
ball with radius ε and center 0, to exclude the singularity at the origin when we
construct approximate solutions, and rewrite the Lagrangian equation as a new form
(see (3.23) in section 3) which makes it possible to obtain the lower bounds of the
approximate solutions.

By the approach mentioned above, we can obtain a class of approximate solutions
with the required a priori uniform estimates such as energy estimates and entropy
estimates. However, it should be noted such approximate solutions are defined and
estimated on the annular domain Ωε = Ω \ B̄ε(0), and the L1-stability analysis as
in [25] can provide the convergence of the terms in the equations (1.1)-(1.2) for
the approximate solutions away from r = 0 (in particulars, the strong convergence
of

√
ρjUj locally in r > 0). Thus, to take the limit of the approximate solutions

to obtain weak solutions which are defined on the entire domain Ω, we need to
define the approximate solutions on Bε(0). Note that the usual zero extensions as
in [10, 12] are not suitable here since such extension would yield that ∇√

ρ belongs
to L∞(0, T ;L2

loc(Ω \ {0}) only so that it is difficult to make sense of the nonlinear
diffusion terms in the definition of weak solutions. An appropriate extension is
presented in this paper, one of whose advantages is that it preserves the uniform
L∞(0, T ;H1(Ω)) estimate of

√
ρε such that we can obtain the convergence of the

pressure term (ρε)γ and the diffusion terms which are difficult to handle due to the
density-dependent viscosity coefficients. Also, though it seems difficult to obtain
some uniform estimates for Uj separately because of the possible appearance of the
vacuum, an extra estimate for esssup0≤t≤T

∫
Ω
ρj |Uj |2+ηdx with some small η ∈ (0, 1),

which was observed by Mellet and Vasseur ([25], guarantees the convergence of the
nonlinear convection terms.

The plan of this paper is as follows. In Section 2 we give the main results of
this paper. In Section 3 we give the entropy estimates and the pointwise bounds of
the density, which are the starting point for the derivation of smooth approximate
solutions and their convergence. In Section 4, we construct approximate solutions
and take the limits to obtain the global existence of weak solutions of the original
system.

2 Notations and main results

Set h(ρ) = ρ and g(ρ) = 0 in (1.1)-(1.2). The isentropic compressible Navier-Stokes
equations become

ρt + div(ρU) = 0, (2.1)

(ρU)t + div(ρU ⊗ U) − div(ρD(U)) + ∇P (ρ) = 0 (2.2)



for t ∈ (0,+∞) and x ∈ R
3. Here ρ(x, t),U(x, t) and P (ρ) = ργ(γ > 1) are the same

as in (1.1)-(1.2). The initial and boundary conditions of (2.1)-(2.2) are imposed as:

(ρ, ρU)|t=0 = (ρ0,m0) (2.3)

m = ρU = 0 on ∂Ω, . (2.4)

We are concerned with the spherically symmetric solutions of the system (2.1)-(2.2)
in a ball Ω of radius R centered at the origin in R

3. To this end, we denote

|x| = r, ρ(x, t) = ρ(r, t),U(x, t) = u(r, t)
x

r
. (2.5)

And for simplicity, we will take D(U) = ∇U in (2.2), though the full strain tensor
could be considered without any additional difficulty. This leads to the following
system of equations for r > 0,

ρt + (ρu)r +
2ρu

r
= 0, (2.6)

(ρu)t + (ρu2 + ργ)r +
2ρu2

r
− (ρur)r − ρ(

2u

r
)r = 0, (2.7)

with the initial condition

(ρ, ρu)|t=0 = (ρ0, m0), (2.8)

and the boundary conditions

ρu(0, t) = 0, ρu(R, t) = 0. (2.9)

It is easy to get the following usual a priori energy estimate for smooth solutions
to (2.6), (2.7) and (2.9):

d

dt

∫ R

0

(
1

2
ρu2 +

1

γ − 1
ργ)r2dr +

∫ R

0

ρ(u2
rr

2 + 2u2)dr ≤ 0. (2.10)

However, the system (2.1)-(2.2) admits an additional a priori estimate, as observed
by Bresch, Desjardins and Lin [2], which reads in general case as follows

Lemma 2.1. (see [25]) Assume that h(ρ) and g(ρ) are two C2 functions such that

g(ρ) = ρh′(ρ) − h(ρ)

holds true. Then, the following inequality holds for smooth solutions of (1.1)-(1.2)
with ρ > 0:

d

dt

∫
Ω

(
1

2
ρ|U + ∇ϕ(ρ)|2 +

1

γ − 1
ργ)dx+

∫
Ω

∇ϕ(ρ) · ∇ργdx ≤ 0, (2.11)

with ϕ such that

ϕ′(ρ) =
h′(ρ)
ρ

.



In particular, for three-dimensional spherically symmetric equations (2.6)-(2.7),
one has

Lemma 2.2. If (ρ, u) is a smooth solutions to (2.6)-(2.9) with ρ > 0, then the
following inequality holds:

d

dt

∫ R

0

1

2
ρ|u+ (log ρ)r|2r2dr +

∫ R

0

4

γ
((ργ/2)rr)

2dr ≤ 0,

i.e.,

d

dt

∫ R

0

{1

2
ρu2 + ρru+ |(√ρ)r|2}r2dr +

∫ R

0

4

γ
((ργ/2)rr)

2dr ≤ 0. (2.12)

Proof. Although Lemma 2.2 is a special case of Lemma 2.1, for completeness, we
outline the proof here since it is very simple in the radial symmetric case. Multiply-

ing (2.6) by |(log ρ)r |2r2

2
on both sides gives

ρt
|(log ρ)r|2

2
r2 +

|(log ρ)r|2
2

(ρur2)r = 0. (2.13)

It follows from (2.6) that

ρ(
|(log ρ)r|2

2
)tr

2 + (
|(log ρ)r|2

2
)rρur

2

= −ρrurrr
2 − ρrur(log ρ)rr

2 − 2ρrurr + 2ρru. (2.14)

Summing over (2.13) and (2.14), integrating the resulting equation with respect to
r from 0 to R, one gets from (2.9) that

d

dt

∫ R

0

ρ|(log ρ)r|2
2

r2dr

=

∫ R

0

{2ρru− ρrurrr
2 − ρrur(log ρ)rr

2 − 2ρrurr}dr. (2.15)

Note that

d

dt

∫ R

0

(log ρ)rρur
2dr =

∫ R

0

(log ρ)r∂t(ρu)r
2dr +

∫ R

0

ρu∂t((log ρ)r)r
2dr,

=

∫ R

0

(log ρ)r∂t(ρu)r
2dr +

∫ R

0

(ρur2)r{(log ρ)ru+ ur +
2u

r
}dr, (2.16)

due to (2.6) and (2.9). While (2.7) gives

∫ R

0

(log ρ)r∂t(ρu)r
2dr = −

∫ R

0

4

γ
((ργ/2)rr)

2dr −
∫ R

0

(ρu2r2)r(log ρ)rdr

+

∫ R

0

{(ρur +
2ρu

r
)r(log ρ)rr

2 − 2ρrur(log ρ)r}dr. (2.17)



Putting (2.17) into (2.16) shows that

d

dt

∫ R

0

(log ρ)rρur
2dr +

∫ R

0

4

γ
((ργ/2)rr)

2dr =

∫ R

0

{ρu2
rr

2 + 4ρuurr +

4ρu2 + ρrurrr
2 + 2ρrurr − 2ρru+ (log ρ)rρrurr

2 + 2ρru
2r}dr (2.18)

It follows from (2.15) and (2.18) that

d

dt

∫ R

0

{(log ρ)rρu+
ρ|(log ρ)r|2

2
}r2dr +

∫ R

0

4

γ
((ργ/2)rr)

2dr

=

∫ R

0

{ρu2
rr

2 + 4ρuurr + 4ρu2 + 2ρru
2r}dr

=

∫ R

0

ρ(u2
rr

2 + 2u2)dr. (2.19)

Combing (2.19) with the energy inequality (2.10), one obtains the desired estimate
(2.12) and the lemma is proved.

Now, we give a definition of weak solutions to (2.1)-(2.4).

Definition 2.1. A pair (ρ,U) is said to be a weak solution to (2.1)-(2.2) provided
that

(1) ρ ≥ 0 a.e., and

ρ ∈ L∞(0, T ;L1(Ω) ∩ Lγ(Ω)) ∩ C([0,∞);W 1,∞(Ω)∗),
√
ρ ∈ L∞(0, T ;H1(Ω)),√

ρU ∈ L∞(0, T ;L2(Ω)),
√
ρ∇U ∈ L2(0, T ;W−1,1(Ω)),

where W 1,∞(Ω)∗ is the dual space of W 1,∞(Ω);
(2) For any t2 ≥ t1 ≥ 0 and any ψ ∈ C1(Ω̄ × [t1, t2]), the mass equation (2.1)

holds in the following sense:∫
Ω

ρψdx|t2t1 =

∫ t2

t1

∫
Ω

(ρψt + ρU · ∇ψ)dxdt; (2.20)

(3) For any ψ = (ψ1, ψ2, ψ3) ∈ C2(Ω̄ × [0, T ]) satisfying ψ(x, t) = 0 on ∂Ω and
ψ(x, T ) = 0, it holds that

∫
Ω

m0 · ψ(0, ·)dx+

∫ T

0

∫
Ω

[
√
ρ(
√
ρU) · ∂tψ +

√
ρU ⊗√

ρU : ∇ψ]dxdt

+

∫ T

0

∫
Ω

ργdivψdxdt− < ρ∇U,∇ψ >= 0, (2.21)

where the diffusion term makes sense as

< ρ∇U,∇ψ >= −
∫ T

0

∫
Ω

√
ρ(
√
ρU) · Δψdxdt

−2

∫ T

0

∫
Ω

(
√
ρU) · (∇√

ρ · ∇)ψdxdt. (2.22)



In this paper, we will construct global three-dimensional spherically symmetric
weak solutions of (2.1)-(2.2) with the initial-boundary conditions (2.3)-(2.4). The
initial data are assumed to satisfy

ρ0 ≥ 0 a.e. in Ω;m0 = 0 a.e. on {x ∈ Ω|ρ0(x) = 0}; (2.23)

ρ0 ∈W 1,4(Ω);∇√
ρ0 ∈ L2(Ω);m4

0 ∈ L1(Ω);
m2+η

0

ρ1+η
0

∈ L1(Ω), (2.24)

here η ∈ (0, 1) is some small constant. It follows from the assumptions of (2.24)
that

ρ0 ∈ L∞(Ω); ρ0U
2+η
0 ∈ L1(Ω); ρ0U

2
0 ∈ L1(Ω). (2.25)

The main results of this paper can be stated as

Theorem 2.1. For N = 3 and 1 < γ < 3, if the initial data have the form

ρ0 = ρ0(|x|),U0 = u0(|x|)x
r

and satisfy (2.23)-(2.24), then the initial-boundary-value problem (2.1)-(2.4) has a
global spherically symmetric weak solution

ρ = ρ(|x|, t),U = u(|x|, t)x
r

satisfying for all T > 0,

ρ(x, t) ∈ C([0, T ];L
3
2 (Ω)),

√
ρU ∈ L∞(0, T ;L2(Ω)), (2.26)

∫
Ω

ρ(x, t)dx =

∫
Ω

ρ0(x)dx. (2.27)

Moreover, it holds that

sup
t∈[0,T ]

∫
Ω

(
1

2
ρ|U|2 +

1

γ − 1
ργ)dx ≤ C, (2.28)

sup
t∈[0,T ]

∫
Ω

|∇√
ρ|2dx ≤ C, (2.29)

where C is a constant.

Remark 2.1. In fact, our analysis applies to slightly more general viscosity coeffi-
cients h(ρ) and g(ρ). For instance, our results hold true for the following situations:

1) h(ρ) = ρα and g(ρ) = (α − 1)ρα with α > N−1
N

, where the restriction of
α results from the Lamé viscosity coefficients relation (1.3) and the usual energy
estimates.

2) h(ρ) and g(ρ) satisfy the relation

g(ρ) = ρh′(ρ) − h(ρ)

and some additional restrictions presented in [25].



Remark 2.2. It can be checked easily that for N = 2, the conclusions in Theorem
2.1 hold true for any γ > 1. Consequently, we obtain existence of a global spher-
ically symmetric solution to the Saint-Venant model for shallow water, which is a
particular case of (2.1)-(2.2) with N = 2, h(ρ) = ρ, g(ρ) = 0 and γ = 2 (see [2, 20]).

Remark 2.3. It should be noted that the boundary condition (2.4) is appropriate
from the physical point of view since if the vacuum appears on the boundary the veloc-
ity itself is meaningless and the momentum can be controllable. On the other hand,
if no vacuum appears on the boundary, the boundary condition (2.4) is equivalent to
U(R, t) = 0.

To make sense of the boundary condition (2.4) for weak solutions in Theorem
2.1, we note that U = u(r)x

r
and ρu satisfies

∫ R

0

ρϕr2dr|t2t1 =

∫ t2

t1

∫ R

0

(ρϕt + ρuϕr)r
2drdt. (2.30)

for functions ϕ which are C1 on [0, R] × [t1, t2], see (4.31) in Proposition 4.5 in
section 4.

Actually, (2.30) holds for any ϕ which is Lipschitz continuous. In particular,
set ϕ(r, t) = ϕ1(t)ϕ2(r), where ϕ1(t) and ϕ2(r) are Lipschitz continuous functions
satisfying ϕ1(t) ≡ 1 in [t1, t2] and

ϕ2(r) =

{
1, x ∈ [0, R− δ]

1 − 1
δ
(r − (R− δ)), r ∈ [R− δ, R].

Substituting ϕ1(t) and ϕ2(r) into (2.30) gives

1

δ

∫ t2

t1

∫ R

R−δ

ρur2drdt =

∫ R

0

ρ(r, t2)ϕ(r, t2)r
2dr −

∫ R

0

ρ(r, t1)ϕ(r, t1)r
2dr

=

∫ R

0

ρ(r, t2)r
2dr −

∫ R

0

ρ(r, t1)r
2dr +

∫ R

R−δ

ρ(r, t2)(ϕ2(t2) − 1)r2dr

−
∫ R

R−δ

ρ(r, t1)(ϕ2(t1) − 1)r2dr.

It follows from this and the conservation of mass (2.27) that

1

δ
|
∫ t2

t1

∫ R

R−δ

ρur2drdt| ≤ |
∫ R

R−δ

ρ(r, t2)(ϕ2(t2) − 1)r2dr −
∫ R

R−δ

ρ(r, t1)(ϕ2(t1) − 1)r2dr| → 0

as δ → 0. This implies that (ρu)(R, t) = 0 in the sense of trace.

3 Approximate Solutions and Their Estimates

The key point of the proof of Theorem 2.1 is to construct smooth approximate
solutions satisfying the a priori estimates required in the L1 stability analysis. The
crucial issue is to obtain lower and upper bounds of the density, as mentioned in the



introduction. To this end, we study the following system as an approximate system
of (2.1)-(2.2).

ρt + div(ρU) = 0, (3.1)

(ρU)t + div(ρU ⊗U) − div((ρ+ ερ
3
4 )∇U) + ∇(

ε

4
ρ

3
4 divU)

+∇P (ρ) = 0, (3.2)

where ε > 0 is a constant.
When ρ(x, t) = ρ(r, t),U(x, t) = u(r, t)x

r
, the system (3.1)-(3.2) becomes

ρt + (ρu)r +
2ρu

r
= 0, (3.3)

(ρu)t + (ρu2 + ργ)r +
2ρu2

r
+ (ρ+ ερ

3
4 )r

2u

r
= ((ρ+

3ε

4
ρ

3
4 )(ur +

2u

r
))r, (3.4)

for r > 0. We will first construct the smooth solution of (3.3)-(3.4) in the truncated
region 0 < ε < r < R with the following initial condition

(ρ, ρu)(r, 0) = (ρ0 + ε,m0),

and boundary conditions

u(r, t)|r=ε = 0, u(r, t)|r=R = 0. (3.5)

For the approximate solutions which will have lower bound of the density, the bound-
ary conditions of (3.5) is equivalent to ρu(r, t)|r=ε = 0, ρu(r, t)|r=R = 0.

We assume that the initial data are smooth and satisfy the bounds (2.23)-(2.24)
with constants independent of ε. As discussed in the introduction, we shall eventu-
ally take a sequence of inner radii εj tending to 0, and the dependence on j will be
suppressed if there would be no confusions.

In the following, we will state the energy and entropy estimates which have been
proved in the preceding section for these approximate solutions.

Lemma 3.1. Let (ρε, uε) be smooth solutions of (3.3)-(3.4) defined on [ε, R]× [0, T ]
with boundary conditions (3.5) such that ρε > 0. Then there exists a constant C
independent of ε such that

∫ R

ε

ρε(r, t)r2dr ≤ C, (3.6)∫ R

ε

(
1

2
ρε(uε)2 +

1

γ − 1
(ρε)γ)r2dr +

∫ T

0

∫ R

ε

(ρε +
ε

4
(ρε)

3
4 )((uε

r)
2r2 + (uε)2)drdt

≤ C, (3.7)∫ R

ε

1

2
ρε|uε + (log ρε)r +

3ε

4
(ρε)−

5
4ρε

r|2r2dr

+

∫ T

0

∫ R

ε

(γ(ρε)γ−2 +
3ε

4
γ(ρε)γ− 9

4 )|ρε
r|2r2drdt ≤ C. (3.8)



Remark 3.1. Notes that h(ρ) = ρ + ερ
3
4 and g(ρ) = − ε

4
ρ

3
4 satisfy the relation

g(ρ) = ρh′(ρ) − h(ρ). In general, one can choose to approximate the system (2.1)-
(2.2) by taking

hε(ρ) = ρ+ ερα, gε(h) = ε(α− 1)ρα

which satisfy

gε(ρ) = ρh′ε(ρ) − hε(ρ),

where N−1
N

< α < 1, N = 2, 3. We take α = 3
4

for 3-dimensional case here.

To make these a priori estimates valid globally, we need to give some detailed
estimates on the density. We start with the following pointwise bounds for ρε.

Lemma 3.2. Given ε > 0, there is an absolute constant C which is independent of
ε, such that

0 ≤ ρε(r, t) ≤ C

ε2
(3.9)

for ε ≤ r ≤ R and t ≥ 0.

Proof. To simplify the presentation, we drop the superscript ε.

Let r(t) denote a particle path by

dr(t)

dt
= u(r(t), t).

Then along the particle path, (3.3) can be solved to get

ρ(r(t), t)r2 = ρ0(r(0))r(0)2e−
� t
0

ur(r(s),s)ds,

which implies that ρ ≥ 0 provided that ρ0 ≥ 0.

It follows from (3.7) and (3.8) that

∫ R

ε

ρ2
r

ρ
r2dr ≤ C (3.10)

for some absolute constant C independent of ε.

Then, it follows from (3.6) and (3.8) that for ε ≤ r ≤ R,

ρ(r, t) ≤
∫ R

ε

ρ(r, t)dr +

∫ R

ε

|ρr(r, t)|dr

≤ 1

ε2

∫ R

ε

ρ(r, t)r2dr +
1

ε2

∫ R

ε

√
ρ
|ρr(r, t)|√

ρ
r2dr

≤ C

ε2
(3.11)

for all t ≥ 0. The proof of the lemma is finished.



To derive the a priori estimates about the velocity of the approximate solutions,
the crucial step is to obtain lower bounds of the density. To this end, we introduce
Lagrangian coordinates for the radial system (3.3)-(3.4) as follows. Let ε > 0 be
fixed and define

x(r, t) =

∫ r

ε

ρr2dr, τ = t

Set
∫ 1

ε
ρr2dr = 1 for any fixed ε > 0 without loss of generality. Then,

∂x

∂r
= ρr2,

∂x

∂t
= −ρur2,

∂τ

∂r
= 0,

∂τ

∂t
= 1.

Then the system (3.3)-(3.4) becomes{
ρτ + ρ2(r2u)x = 0,

r−2uτ + (ργ)x = [(ρ2 + 3ε
4
ρ

7
4 )(r2u)x]x − (ρ+ ερ

3
4 )x

2u
r
,

(3.12)

for τ > 0 and 0 ≤ x ≤ 1.
The corresponding initial data is

(ρ, ρu)(·, 0) = (ρ0 + ε,m0),

and the boundary conditions are

u(0, τ) = 0, u(1, τ) = 0. (3.13)

For this system, the following a priori estimates hold.

Lemma 3.3. For all τ ∈ [0, T ], it holds that∫ 1

0

(
u2(x, τ)

2
+
ργ−1(x, τ)

γ − 1
)dx+

∫ τ

0

∫ 1

0

(
2u2

r2
+ ρ2u2

xr
4)dxds

+(1 − λ

2
)

∫ τ

0

∫ 1

0

ε
u2

ρ
1
4 r2

dxds+ (
3

4
− 1

2λ
)

∫ τ

0

∫ 1

0

ερ
7
4u2

xr
4dxds

≤
∫ 1

0

(
u2

0

2
+

ργ−1
0

γ − 1
)dx , ∀λ ∈ (

2

3
, 2). (3.14)

0 ≤ ρ(x, τ) ≤ C(ε, T ), (3.15)

ε ≤ r(x, τ) ≤ R, (3.16)

∫ 1

0

u4dx+

∫ τ

0

∫ 1

0

(
4u4

r2
+ 6ρ2u2u2

xr
4 +

2εu4

ρ
1
4 r2

+ ερ
7
4u2u2

xr
4)dxds

≤
∫ 1

0

u4
0dx+ C(ε, T ). (3.17)

Proof. Multiplying (3.12)2 by r2u, using (3.12)1 and integration by parts, one gets

d

dτ

∫ 1

0

(
u2

2
+

ργ−1

γ − 1
)dx+

∫ 1

0

(ρ2 +
3

4
ερ

7
4 )((r2u)x)

2dx =

∫ 1

0

(ρ+ ερ
3
4 )(2u2r)xdx

= 4

∫ 1

0

(ρ+ ερ
3
4 )uuxrdx+ 2

∫ 1

0

(1 +
ε

ρ
1
4

)
u2

r2
dx. (3.18)



Since

((r2u)x)
2 = (

2u

ρr
+ r2ux)

2 = 4
u2

ρ2r2
+ 4

uuxr

ρ
+ u2

xr
4,

then from (3.18), one has

d

dτ

∫ 1

0

(
u2

2
+

ργ−1

γ − 1
)dx+

∫ 1

0

(
2u2

r2
+ ρ2u2

xr
4)dx+

∫ 1

0

{ε u2

ρ
1
4 r2

+
3

4
ερ

7
4u2

xr
4}dx

= ε

∫ 1

0

ρ
3
4uuxrdx ≤ λ

2

∫ 1

0

εu2

ρ
1
4 r2

dx+
1

2λ

∫ 1

0

ερ
7
4u2

xr
4dx, ∀λ ∈ (

2

3
, 2).

Thus (3.14) holds.
Next, (3.15) follows from Lemma 3.2 and (3.16) holds trivially.
Now, we prove (3.17). In fact, multiplying (3.12)2 by r2u3, using (3.12)1 and

integration by parts, we have

1

4

d

dτ

∫ 1

0

u4dx+

∫ 1

0

(ρ2 + ε
3

4
ρ

7
4 )((r2u)x)

2u2dx+ 2

∫ 1

0

(ρ2 + ε
3

4
ρ

7
4 )u2u2

xr
4

= −4

∫ 1

0

(ρ+ ε
3

4
ρ

3
4 )u3uxrdx+

∫ 1

0

ργ(u3r2)xdx+

∫ 1

0

(ρ+ ερ
3
4 )(2u4r)xdx.

Thus

1

4

d

dτ

∫ 1

0

u4dx+

∫ 1

0

(
2u4

r2
+ 3ρ2u2u2

xr
4)dx+

∫ 1

0

(
εu4

ρ
1
4 r2

+
9

4
ερ

7
4u2u2

xr
4)dx

= 2

∫ 1

0

ερ
3
4u3uxrdx+

∫ 1

0

(ργ−1 2u3

r
+ 3ργu2uxr

2)dx. (3.19)

Using Hölder and Young’s inequality and Lemma 3.2, one can estimate each term
of the right hand side of (3.19) as follows:

2ε

∫ 1

0

ρ
3
4u3uxrdx ≤ 1

2

∫ 1

0

εu4

ρ
1
4 r2

dx+ 2

∫ 1

0

ερ
7
4u2u2

xr
4dx;

2

∫ 1

0

ργ−1u
3

r
dx ≤ 2(

∫ 1

0

ρ4(γ−1)r2dx)
1
4 (

∫ 1

0

u4

r2
dx)

3
4 ≤ 1

2

∫ 1

0

u4

r2
dx+ C,

and

3

∫ 1

0

ργu2uxr
2dx ≤ 3(

∫ 1

0

ρ2γ−2u2dx)
1
2 (

∫ 1

0

ρ2u2u2
xr

4dx)
1
2

≤ 3

2

∫ 1

0

ρ2u2u2
xr

4dx+
3

2

∫ 1

0

ρ2γ−2u2dx

≤ 3

2

∫ 1

0

ρ2u2u2
xr

4dx+
3

2
(

∫ 1

0

ρ4γ−4r2dx)
1
2 (

∫ 1

0

u4

r2
dx)

1
2

≤ 3

2

∫ 1

0

ρ2u2u2
xr

4dx+
1

2

∫ 1

0

u4

r2
dx+ C.

Putting the above three estimates into (3.19) yields

1

4

d

dτ

∫ 1

0

u4dx+

∫ 1

0

(
u4

r2
+

3

2
ρ2u2u2

xr
4)dx+

∫ 1

0

(
εu4

2ρ
1
4 r2

+
1

4
ερ

7
4u2u2

xr
4)dx ≤ C,



i.e., ∫ 1

0

u4dx+

∫ τ

0

∫ 1

0

(
4u4

r2
+ 6ρ2u2u2

xr
4 +

2εu4

ρ
1
4 r2

+ ερ
7
4u2u2

xr
4)dxds

≤
∫ 1

0

u4
0dx+ C. (3.20)

This proves (3.17).

Remark 3.2. ∫ 1

0

u4
0dx =

∫ R

ε

m4
0

(ρ0 + ε)3
r2dr ≤ C(ε)‖m0‖L4(Ω).

The following estimate can be obtained by modifying the analysis in [14]:

Lemma 3.4. There is a positive constant C = C(‖ρ0‖W 1,4(Ω), ‖m0‖L4(Ω), ε, T ), such
that ∫ 1

0

((ρ
3
4 )x)

4(x, τ)dx ≤ C, ∀τ ∈ [0, T ]. (3.21)

Proof. We rewrite (3.12)1 in the form:

(ρ+ ερ
3
4 )xτ = −[(ρ2 +

3ε

4
ρ

7
4 )(r2u)x]x. (3.22)

Thus, substituting (3.22) into (3.12)2 yields

r2(ρ+ ερ
3
4 )xτ + (ρ+ ερ

3
4 )x2ur = −uτ − (ργ)xr

2.

Notes that

r3(x, τ) = ε3 + 3

∫ x

0

1

ρ(y, τ)
dy,

∂r

∂x
=

1

ρr2
,

and so

3r2 ∂r

∂τ
= 3

∫ x

0

(
1

ρ
)τ (y, t)dy

= 3

∫ x

0

(r2u)y(y, τ)dy = 3r2u(x, τ).

Thus
∂r

∂τ
= u.

So the above equality can be rewritten as

(r2(ρ+ ερ
3
4 )x)τ = −uτ − (ργ)xr

2. (3.23)

Integrating it over [0, t] shows

u(x, t) − u0(x) +

∫ t

0

(ργ)xr
2(x, s)ds

= r2
0(

4

3
ρ

1
4
0 + ε)∂x(ρ

3
4
0 ) − r2(

4

3
ρ

1
4 + ε)∂x(ρ

3
4 ). (3.24)



Multiplying (3.24) by (∂x(ρ
3
4 )r2)3 and integrate over [0, 1] with respect to x, one

gets

∫ 1

0

(
4

3
ρ

1
4 + ε)(∂x(ρ

3
4 )r2)4dx =

∫ 1

0

r2
0(

4

3
ρ

1
4
0 + ε)∂x(ρ

3
4
0 )(∂x(ρ

3
4 )r2)3dx

−
∫ 1

0

{u− u0 +

∫ t

0

(ργ)xr
2(x, s)ds}(∂x(ρ

3
4 )r2)3dx

≤ C(

∫ 1

0

(∂x(ρ
3
4 )r2)4dx)

3
4{‖u− u0‖L4 + ‖∂x(ρ

3
4
0 )‖L4

+(

∫ t

0

‖∂xρ
γ‖4

L4ds)
1
4}. (3.25)

Using Lemma 3.3, ε ≤ r, r0 ≤ R and Young’s inequality, one gets from (3.25) that
there is a positive constant C depending on ‖ρ0‖W 1,4[0,1], ‖u0‖L4[0,1], ε and T , such
that

ε

∫ 1

0

(∂x(ρ
3
4 )r2)4dx ≤ ε

2

∫ 1

0

(∂x(ρ
3
4 )r2)4dx+ C

∫ t

0

∫ 1

0

(∂xρ
γ)4dxds+ C, (3.26)

whence,

∫ 1

0

(∂x(ρ
3
4 ))4dx ≤ C + C

∫ t

0

max
[0,1]

(ρ4γ−3)

∫ 1

0

(∂x(ρ
3
4 ))4dxds. (3.27)

Applying Gronwall’s inequality to (3.27) and making use of Lemma 3.2, we obtain

∫ 1

0

(∂x(ρ
3
4 ))4dx ≤ C. (3.28)

This completes the proof.

Remark 3.3. ∫ 1

0

|∂xρ
3
4
0 |4dx =

3

4

∫ R

ε

|∂rρ0|4
(ρ0 + ε)4r8

r2dr

≤ C(ε)

∫ R

ε

|∂rρ0|4r2dr ≤ C(ε)‖ρ0‖W 1,4(Ω).

Now we can obtain the lower bound of the density.

Lemma 3.5. There is a positive constant

C = C(ε, T, ‖ρ0‖W 1,4(Ω), ‖m0‖L4(Ω)),

such that

ρ ≥ C, ∀x ∈ [0, 1], τ ∈ [0, T ]. (3.29)



Proof. Set v(x, τ) = 1
ρ(x,τ)

, and V (τ) = max[0,1]×[0,τ ] v(x, s). The equation (3.12)1

can be written as vτ = (ru)x, which implies that
∫ 1

0
v(x, τ)dx =

∫ 1

0
v(x, 0)dx ≤ C0,

thanks to the boundary conditions (3.13). Then it follows from Sobolev’s embedding
W 1,1([0, 1]) ↪→ L∞([0, 1]) that, for any 0 < β < 1,

vβ(x, τ) ≤
∫ 1

0

vβ(x, τ)dx+

∫ x

0

|∂xv
β|dx

≤ (

∫ 1

0

vdx)β + β

∫ x

0

vβ+ 3
4 | ρx

ρ
1
4

|dx

≤ C + Cβ(

∫ 1

0

(vβ+ 3
4 )

4
3dx)

3
4 (

∫ 1

0

((ρ
3
4 )x)

4dx)
1
4

≤ C + CβV β(

∫ 1

0

vdx)
3
4 (

∫ 1

0

((ρ
3
4 )x)

4dx)
1
4

≤ C + CβV β, (3.30)

Thus choosing β > 0 small enough, which may depend on ε and T , we obtain

V (T ) ≤ C,

where C = C(ε, T, ‖ρ0‖W 1,4(Ω), ‖m0‖L4(Ω)). The proof of the lemma is completed.

4 Proof of Theorem 2.1

In this section, we will prove Theorem 2.1 by completing the constructions of smooth,
approximate solutions, applying the a priori bounds of Section 2 and Section 3, and
taking appropriate limits.

4.1 The existence of the approximate solutions

Consider the following approximate system in Lagrangian coordinate

{
ρτ + ρ2(r2u)x = 0,

r−2uτ + (ργ)x = [(ρ2 + 3ε
4
ρ

7
4 )(r2u)x]x − (ρ+ ερ

3
4 )x

2u
r

(4.1)

for τ > 0, 0 ≤ x ≤ 1, with

(ρ, ρu)(·, 0) = (ρ0 + ε,m0),

and

u(0, τ) = 0, u(1, τ) = 0.

First we regularize the initial data as follows. Let Jδ be a standard mollifier
(in r) of width δ. Let (ρ0 + ε, u0) be the initial data in Eulerian coordinate, where
u0 = m0

ρ0+ε
.



(1) Extend ρ0 + ε continuously outside [ε, R] by taking ρ0(ε) + ε on [0, ε] and
ρ0(R) + ε on [R,∞), mollify with Jδ, restrict it to [ε, R], and then multiply by a
constant to normalize the total mass to be

M0 =

∫ R

0

(ρ0 + ε)r2dr.

The resulting density function is denoted by ρε,δ
0 (r).

(2) Redefine u0 to be zero on [0, ε+ 2δ] and [R − 2δ, R], then mollify it with Jδ

to get the smooth approximate initial velocity denoted by uε,δ
0 (r). Note that uε,δ

0 (r)
is identically zero on a neighborhood of r = ε and r = R.

The resulting data (ρε,δ
0 , uε,δ

0 ) then satisfy the hypotheses (2.23)-(2.24) with con-
stants which are independent of ε and δ. For any fixed ε > 0, we denote the cor-
responding initial data in Lagrangian coordinate by (ρδ

0, u
δ
0). Then ρδ

0 ∈ C1+β[0, 1]
and uδ

0 ∈ C2+β[0, 1] for any 0 < β < 1. Moreover,

ρδ
0 → ρ0 + ε in W 1,4([0, 1]), uδ

0 → u0 in L4([0, 1]) (4.2)

as δ → 0 and

uδ
0(0, τ) = uδ

0(1, τ) = 0.

Now, consider the initial boundary value problem (4.1) with the initial data
(ρ0 + ε, u0) replaced by (ρδ

0, u
δ
0). Note, however, that ε is fixed and positive at this

stage of the argument, so that there are no singularities in the equations, and the con-
struction of these approximate solutions is essentially an one dimensional problem.
For this problem one can apply the standard argument to obtain the existence of a
unique local solution (ρδ, uδ) with ρδ, ρδ

x, ρ
δ
τx, u

δ, uδ
x, u

δ
τ , u

δ
xx ∈ Cβ,β/2([0, 1] × [0, T ∗])

for some T ∗ > 0. It follows from Lemma 3.2-Lemma 3.5 and (4.2) that ρδ is bounded
from below and above, (uδ)2 and ρδ

x are bounded in L∞([0, T ];L2), and uδ
x is bounded

in L2([0, T ];L2) for any T > 0 because of ε < r < R. Furthermore, one can differen-
tiate the equations (4.1) and apply the energy method to derive bounds of high-order
derivatives of (ρδ, uδ). Then we can apply the Schauder theory for linear parabolic
equations to conclude that the Cβ,β/2([0, 1] × [0, T ])-norms of ρδ, ρδ

x, ρ
δ
τx, u

δ, uδ
x, u

δ
τ

and uδ
xx are bounded a priorly. Therefore, we can continue the local solution globally

in time and obtain that there exists a unique global solution (ρδ, uδ) of (4.1) with
the initial data (ρ0, u0) replaced by (ρδ

0, u
δ
0), such that for any T > 0,

ρδ, ρδ
x, ρ

δ
τx, u

δ, uδ
x, u

δ
τ , u

δ
xx ∈ Cβ,β/2([0, 1] × [0, T ])

for some 0 < β < 1, and ρδ > 0 on [0, 1] × [0, T ]. This can be done in a similar
way as in [14]. Thus the solutions which can be denoted as (ρε,δ, uε,δ), satisfies (4.1).
Transforming it into Euler coordinates again by

x =

∫ r

ε

ρ(r, τ)r2dr, τ = t,

we can obtain the solutions (ρε,δ(r, t), uε,δ(r, t)) to the approximate system (3.3)-
(3.4), and consequently Lemma 3.1 holds for these approximate solutions.



4.2 The passage to limit

So far, (ρε,δ, uε,δ) are defined on ε ≤ r ≤ R. To take the limit passage as {εj, δj} → 0,
we extend ρεj ,δj (r, t), uεj,δj (r, t) to the whole domain Ω in the following way,

ρ̃εj ,δj =

{
ρεj ,δj (r, t), r ∈ [εj , R],

ρεj ,δj (εj, t), r ∈ [0, εj],
(4.3)

ũεj ,δj =

{
uεj ,δj(r, t), r ∈ [εj, R],

0, r ∈ [0, εj],
(4.4)

and still denote the so obtained approximate solutions {ρ̃εj ,δj , ũεj,δj} by {ρεj ,δj , uεj ,δj}.
Let ρεj ,δj(x, t) = ρεj ,δj (r, t),Uεj ,δj(x, t) = uεj,δj (r, t)x

r
. For simplicity, we write

(ρj ,Uj) instead of (ρεj ,δj ,Uεj ,δj) and denote Ωε = Ω\Bε(0) for ε > 0 and Ω 1
n

=

Ω\B 1
n
(0) for n ∈ N , where N is the set of the positive integers.

It then follows from Lemma 3.1 that

Lemma 4.1. Let (ρj ,Uj)(x, t) be the approximate solutions of (3.1)-(3.2) con-
structed above. Then there exists a constant C independent of ε such that

sup
t∈[0,T ]

∫
Ωεj

ρj(x, t)dx ≤ C, (4.5)

sup
t∈[0,T ]

∫
Ωεj

(
1

2
ρj |Uj|2 +

1

γ − 1
(ρj)γ)(x, t)dx+

∫ T

0

∫
Ωεj

ρj |∇Uj|2(x, t)dxdt

+
1

4

∫ T

0

∫
Ωεj

ε(ρj)
3
4 |∇Uj |2(x, t)dxdt ≤ C, (4.6)

sup
t∈[0,T ]

∫
Ωεj

1

2
ρj |Uj + ∇ log ρj +

3

4
ε(ρj)−

5
4∇ρj |2(x, t)dx

+

∫ T

0

∫
Ωεj

4

γ
|∇(ρj)

γ
2 |2(x, t)dxdt

+

∫ T

0

∫
Ωεj

48εγ

(4γ − 1)2
|∇(ρj)

4γ−1
8 |2(x, t)dxdt ≤ C. (4.7)

Moreover, the following uniform estimate hold

sup
t∈[0,T ]

‖
√
ρj‖H1(Ω) ≤ C, (4.8)

sup
t∈[0,T ]

∫
Ω

ρj |Uj|2dx ≤ C. (4.9)

Proof. (4.5)-(4.7) follow directly from Lemma 3.1 and (4.9) can be checked easily.
It suffices to prove (4.8).

First, it holds that

sup
t∈[0,T ]

‖∇
√
ρj‖L2(Ω) ≤ C, (4.10)



where C is a constant independent of ε. Indeed, for any φ ∈ C∞
0 (Ω), one has∫

Ω

√
ρj∂iφdx = [

∫
Ωεj

+

∫
Bεj (0)

]
√
ρj∂iφdx

= −[

∫
Ωεj

+

∫
Bεj (0)

]∂i

√
ρjφdx+

∫
∂Ωεj

√
ρjniφdS +

∫
∂Bεj (0)

√
ρjn̄iφdS,

where ni and n̄i are the unit outer normal vector of ∂Ωε and ∂Bε(0) respectively,
and i = 1, 2, 3. For any φ ∈ C∞

0 (Ω), in view of the extension (4.3), we have∫
Ω

√
ρj∂iφ = −[

∫
Ωεj

+

∫
Bεj (0)

]∂i

√
ρjφdx

= −
∫

Ωεj

∂i

√
ρjφdx,

which implies that for a.e. t ∈ [0, T ],

∂i

√
ρj(x, t) =

{
∂i

√
ρj , x ∈ Ωεj

,
0, x ∈ B̄εj

,

for i = 1, 2, 3. Consequently, (4.10) follows from (4.6) and (4.7).

Next, we verify that

sup
t∈[0,T ]

‖
√
ρj‖L2(Ω) ≤ C, (4.11)

where C is a constant independent of ε.
Thanks to the upper bound estimate of the density (3.9) and (4.5), there exists

an absolute constant C independent of ε and T such that

sup
t∈[0,T ]

∫ R

0

ρjr2dr ≤ sup
t∈[0,T ]

∫ εj

0

ρjr2dr + sup
t∈[0,T ]

∫ R

εj

ρjr2dr

≤ C

ε2
j

∫ εj

0

r2dr + C ≤ Cεj

3
+ C ≤ C

for all 0 < εj < R, which gives (4.11). Combining (4.10) with (4.11) shows (4.8).

Remark 4.1. Compared with the usual zero extensions in [10, 12], the extensions
(4.3) and (4.4) keep the L∞(0, T ;H1(Ω))-norm of

√
ρj, which is needed in the fol-

lowing convergence arguments.

Proposition 4.1. Let T > 0 be fixed. Then there are a sequence (εj, δj), and a
limiting function ρ(x, t) such that

ρj(x, t) → ρ(x, t), in C([0, T ], L3/2(Ω)). (4.12)

Moreover, ρ(x, t) = ρ(r, t) is a spherically symmetric function.



Proof. It follows from (4.8) that
√
ρj is bounded in L∞(0, T ;Lq(Ω)) for q ∈ [2, 6].

Thus ρj is bounded in L∞(0, T ;L3(Ω)), and therefore

ρjUj =
√
ρj

√
ρjUj

is bounded in L∞(0, T ;L3/2(Ω)) due to (4.9). The continuity equation thus yields
∂tρ

j bounded in L∞(0, T ;W−1,3/2(Ω)). Moreover, since ∇ρj = 2
√
ρj∇

√
ρj , we

also have that ∇ρj is bounded in L∞(0, T ;L3/2(Ω)), hence the compactness of ρj

in C([0, T ], L3/2(Ω)), i.e., (4.12) is obtained. Moreover, since ρj(x, t) = ρj(r, t)
is spherically symmetric, it is clear to get that ρ(x, t) = ρ(r, t) is a spherically
symmetric function.

Proposition 4.2. Suppose that 1 < γ < 3. Then (ρj)γ converges to ργ strongly in
L1((0, T );L1(Ω)).

Proof. This follows directly from the fact that ρj is bounded in L∞(0, T ;L3(Ω)) and
(4.12).

The following proposition will enable us to take the limit in the nonlinear con-
vection term.

Proposition 4.3. If 1 < γ < 3, and∫ R

0

ρ0|u0|2+ηr2dr ≤ C, (4.13)

then the following estimate is true

d

dt

∫ R

εj

ρj |uj|2+η

2 + η
r2dr +

∫ R

εj

(
3

4
ρj +

ε

8
(ρj)

3
4 )|uj|η(uj

r)
2r2dr

+

∫ R

εj

(
7

4
ρj +

3ε

8
(ρj)

3
4 )|uj|η+2dr ≤ C

for some small η ∈ (0, 1). That is∫
Ωεj

ρj |Uj |2+η

2 + η
dx ≤ C, (4.14)

where Ωεj
= Ω \Bεj

(0) and C is a constant independent of ε.

To prove Proposition 4.3, we need the following lemma.

Lemma 4.2. The pressure (ρj)γ is bounded in L
5
3 ((0, T );L

5
3 (Ωεj

)).

Proof. It follows from Lemma 4.1 that (ρj)γ/2 ∈ L2(0, T ;H1(Ωεj
)), and so, (ρj)γ ∈

L1(0, T ;L3(Ωεj
)). Since (ρj)γ is bounded in L∞(0, T ;L1(Ωεj

)) by (4.6), Hölder in-
equality gives

‖(ρj)γ‖L5/3((0,T )×Ωεj ) ≤ ‖(ρj)γ‖2/5

L∞(0,T ;L1(Ωεj ))‖(ρj)γ‖3/5

L1(0,T ;L3(Ωεj )) ≤ C,

where C is independent of εj. This finishes the proof of the lemma.



Now we can prove Proposition 4.3.
Proof of Proposition 4.3. Let η ∈ (0, 1) satisfy 0 < η < 1/2. Multiplying (3.4)

by r2uj|uj|η and integrating the resulting equation yield

∫ R

εj

ρj∂t
|uj|2+η

2 + η
r2dr +

∫ R

εj

ρjuj(
|uj|2+η

2 + η
)rr

2dr

+(1 + η)

∫ R

εj

(ρj +
3εj

4
(ρj)

3
4 )|uj|η(uj

r)
2r2dr

+

∫ R

εj

(2ρj + εj(ρ
j)

3
4 )|uj|η+2dr +

∫ R

εj

|uj|η uj |((ρj)γ)r| r2dr

≤ (εj +
ηεj

2
)

∫ R

εj

(ρj)
3
4 |uj|η+1|uj

r|rdr

≤ (
εj

2
+
ηεj

4
)[

∫ R

εj

(ρj)
3
4 |uj|η(uj

r)
2r2dr + (ρj)

3
4 |uj|η+2dr.

Since η < 1
2
, one deduces that

∫ R

εj

ρj∂t
|uj|2+η

2 + η
r2dr +

∫ R

εj

ρjuj(
|uj|2+η

2 + η
)rr

2dr +

∫ R

εj

(ρj +
εj

8
(ρj)

3
4 )|uj|η(uj

r)
2r2dr

+

∫ R

εj

(2ρj +
3εj

8
(ρj)

3
4 )|uj|η+2dr +

∫ R

εj

|uj|ηuj((ρj)γ)rr
2dr ≤ 0.

Moreover, multiplying (3.3) by r2|uj |η+2

2+η
and integrating by parts show that

∫ R

εj

|uj|2+η

2 + η
∂tρ

jr2dr −
∫ R

εj

ρjuj(
|uj|2+η

2 + η
)rr

2dr = 0.

Summing over the last two inequalities, we get

d

dt

∫ R

εj

ρj |uj|2+η

2 + η
r2dr +

∫ R

εj

(ρj +
εj

8
(ρj)

3
4 )|uj|η(uj

r)
2r2dr

+

∫ R

εj

(2ρj +
3εj

8
(ρj)

3
4 )|uj|η+2dr ≤ |

∫ R

εj

|uj|η uj |((ρj)γ)r| r2dr|. (4.15)

It remains to bound the right hand side of (4.15). It follows from Young’s inequality
that

|
∫ R

εj

|uj|η uj |((ρj)γ)r| r2dr| ≤ (1 + η)|
∫ R

εj

|uj|η|uj
r|(ρj)γr2dr| + 2

∫ R

εj

|uj|η+1(ρj)γrdr

≤ (1 + η)(

∫ R

εj

ρj |uj|η|uj
r|2r2dr)1/2(

∫ R

εj

(ρj)2γ−1|uj|ηr2dr)1/2 + 2

∫ R

εj

|uj|η+1(ρj)γrdr

≤ 1

4

∫ R

εj

ρj |uj|η|uj
r|2r2dr + C

∫ R

εj

(ρj)2γ−1|uj|ηr2dr + 2

∫ R

εj

|uj|η+1(ρj)γrdr. (4.16)



The last two terms in (4.16) can be estimated as follows:

∫ R

εj

(ρj)2γ−1|uj|ηr2dr ≤ (

∫ R

εj

((ρj)2γ−1− η
2 )

2
2−η r2dr)

2−η
2 (

∫ R

εj

ρj |uj|2r2dr)
η
2

≤ C

∫ R

εj

((ρj)2γ−1− η
2 )

2
2−η r2dr + C, (4.17)

and ∫ R

εj

|uj|η+1(ρj)γrdr ≤ (

∫ R

εj

(ρj)(γ− η+1
η+2

)(2+η)r2+ηdr)
1

2+η (

∫ R

εj

ρj |uj|2+ηdr)
1+η
2+η

≤ C(R)

∫ R

εj

(ρj)(γ− η+1
η+2

)(2+η)r2dr +
1

4

∫ R

εj

ρj|uj|2+ηdr. (4.18)

Then it follows from (4.15)-(4.18) that

d

dt

∫ R

εj

ρj |uj|2+η

2 + η
r2dr +

∫ R

εj

(
3

4
ρj +

εj

8
(ρj)

3
4 )|uj|η(uj

r)
2r2dr

+

∫ R

εj

(
7

4
ρj +

3εj

8
(ρj)

3
4 )|uj|η+2dr

≤ C

∫ R

εj

(ρj)(2γ−1− η
2
) 2
2−η r2dr + C(R)

∫ R

εj

(ρj)(γ− η+1
η+2

)(2+η) r2dr + C. (4.19)

Using Lemma 4.2, one can check easily that the right hand side of (4.19) is bounded
for small η under the condition

2γ − 1 <
5

3
γ,

which is satisfied if 1 < γ < 3. This gives Proposition 4.3.
It is noted that the initial data (4.13) will be satisfied if we assume (2.24).

Moreover, since we have extended uj to be zero outside [εj, R], it follows from (4.14)
that ∫

Ω

ρj |Uj |2+η

2 + η
dx ≤ C. (4.20)

Consequently, since∫
Ω

(ρj |Uj|2)1+ζdx ≤ (

∫
Ω

ρj |Uj|2+ηdx)
2+2ζ
2+η (

∫
Ω

(ρj)1+ (2+η)ζ
η−2ζ dx)

η−2ζ
2+η ,

and as ζ small enough, we deduce that

Corollary 4.1. If 1 < γ < 3, then
√
ρjUj is bounded in L∞(0, T ;L2+2ζ(Ω)) for

some small ζ > 0.

Thanks to Proposition 4.1, Proposition 4.3, Corollary 4.1, and Lemmas 4.4 and
4.6 in [25], we have



Proposition 4.4. 1) Up to a subsequence, the momentum mj = ρjUj converges
strongly in L1((0, T ) × Ω 1

n
) and L2(0, T ;L1+ζ(Ω 1

n
)) and almost everywhere to some

m(x, t), where n ∈ N is any positive integer.
2) The quantity

√
ρjUj converges strongly in L2((0, T ) × Ω 1

n
) to m√

ρ
(define to

be zero when m = 0) for any n ∈ N . In particular, we have m(x, t) = 0 a.e. on
{ρ(x, t) = 0} and there exists a function U(x, t) such that

m(x, t) = ρ(x, t)U(x, t).

Proof. This proposition can be proved exactly as in [25]. For completeness, we
sketch it here.

1) Since

ρjUj =
√
ρj

√
ρjUj,

where
√
ρj is bounded in L∞(0, T ;Lp(Ωεj

)) for p ∈ [2, 6], and
√
ρjUj is bounded

in L∞(0, T ;L2(Ωεj
)), we deduce that ρjUj is bounded in L∞(0, T ;Lq(Ωεj

)) for all
q ∈ [1, 3

2
]. Next, since

∂i(ρ
jUj

k) = ρj∂iU
j
k + Uj

k∂iρ
j

=
√
ρj

√
ρj∂iU

j
k + 2

√
ρjUj

k∂i

√
ρj ,

then it follows from Corollary 4.1 and the energy estimates that the second term on
the right hand side above is bounded in L∞(0, T ;L1+ζ(Ωεj

)) for some small ζ > 0,
while the first term is bounded in L2(0, T ;Lp(Ωεj

)) for all p ∈ [1, 3
2
]. This means

∇(ρjUj) ∈ L2(0, T ;L1+ζ(Ωεj
)).

In particular,
ρjUj ∈ L2(0, T ;W 1,1+ζ(Ωεj

)).

On the other hand, it follows from Corollary 4.1 and Lemma 4.2 that

div(
√
ρjUj ⊗

√
ρjUj) ∈ L∞(0, T ;W−1,1+ζ(Ωεj

))

∇(ρj)γ ∈ L
5
3 (0, T ;W−1,1+ζ(Ωεj

)).

Next we check that

∇((ρj + εj(ρ
j)

3
4 )∇Uj), ∇(εj(ρ

j)
3
4 divUj)

are uniformly bounded in L∞(0, T ;W−2, 3
2 (Ωεj

)). Indeed, note that

(ρj + εj(ρ
j)

3
4 )∇Uj = ∇((ρj + εj(ρ

j)
3
4 )Uj) − Uj∇(ρj + εj(ρ

j)
3
4 ), (4.21)

εj(ρ
j)

3
4 divUj = div(εj(ρ

j)
3
4 Uj) −Uj∇(εj(ρ

j)
3
4 ). (4.22)

The second term on the right hand side in (4.21) is

Uj∇(ρj + εj(ρ
j)

3
4 ) =

√
ρjUj(2∇

√
ρj) + εj∇((ρj)

3
4 ))Uj

which is uniformly bounded in L∞(0, T ;L1+ζ(Ωεj
)) thanks to Lemma 4.1 and Corol-

lary 4.1. The first term on the right hand side in (4.21) can be rewritten as

∇((ρj + εj(ρ
j)

3
4 )Uj) = ∇((

√
ρj + εj(ρ

j)
1
4 )

√
ρjUj)



which is uniformly bounded in L∞(0, T ;W−1, 3
2 (Ωεj

)) because
√
ρj and εj(ρ

j)
1
4 are

uniformly bounded in L∞(0, T ;L6(Ωεj
)) due to the entropy estimates in Lemma 4.1.

Similarly, one can show that εj(ρ
j)

3
4 divUj is uniformly bounded in L∞(0, T ;W−1, 3

2 (Ωεj
)).

Thus, noting that L1+ζ(Ωεj
) ↪→ W−1, 3

2 (Ωεj
), we obtain that

(ρj + εj(ρ
j)

3
4 )∇Uj , εj(ρ

j)
3
4 divUj

are uniformly bounded in L∞(0, T ;W−1, 3
2 (Ωεj

)) and hence that

∇((ρj + εj(ρ
j)

3
4 )∇Uj), ∇(εj(ρ

j)
3
4 divUj)

are uniformly bounded in L∞(0, T ;W−2, 3
2 (Ωεj

)). Moreover, it follows from (3.2) that

∂t(ρ
jUj) is uniformly bounded in L

5
3 (0, T ;W−2, 3

2 (Ωεj
)). (4.23)

In fact, since W 1,3
0 (Ωεj

) ↪→ L1+ 1
ζ (Ωεj

) for small ζ , therefore

L1+ζ(Ωεj
) ↪→ W−1, 3

2 (Ωεj
) ↪→ W−2, 3

2 (Ωεj
).

Thus (4.23), together with Aubin’s Lemma and the diagonal principle, yields the
compactness of mj = ρjUj in L2(0, T ;L1+ζ(Ω 1

n
)) for all n ∈ N .

2) From the proof of 1), if we define m2

ρ
to be zero when m = 0, we have m(x, t) =

0 a.e. in {ρ(x, t) = 0}. Since mj√
ρj

is uniformly bounded in L∞(0, T ;L2(Ωεj
)) and

hence in L∞(0, T ;L2(Ω 1
n
)) for any n ∈ N satisfying εj ≤ 1

n
, then by Fatou’s lemma,

we have ∫
Ω 1

n

m2

ρ
dx ≤ C.

Because
√
ρj |Uj| is uniformly bounded in L∞(0, T ;L2+2ζ(Ωεj

)) for small ζ > 0. It is

thus enough to prove the convergence of
√
ρj |Uj| in L1((0, T ) ×Ω 1

n
) for all n ∈ N .

To this end, we fix n ∈ N first and denote the set of vacuum by

F = {x ∈ Ω 1
n
|ρ(x, t) = 0}.

Notes that
√
ρjUj converges almost everywhere to m√

ρ
in the region F c. To control√

ρjUj on the vacuum set, one sets

Vj = {x ∈ Ω 1
n
|(ρj)

1
2+η |Uj| ≥ M}

for M > 0 and small η > 0 to be specified later. Consider

∫ T

0

∫
Ω 1

n

|
√
ρjUj − m√

ρ
|dxdt =

∫ T

0

∫
(Vj)c\F

|
√
ρjUj − m√

ρ
|dxdt

+

∫ T

0

∫
(Vj)c∩F

|
√
ρjUj − m√

ρ
|dxdt+

∫ T

0

∫
Vj

|
√
ρjUj − m√

ρ
|dxdt. (4.24)



For the first term, the L∞(0, T ;L2(Ωεj
)) bound and the fact that

√
ρjUj converges

almost everywhere to m√
ρ

in the region F c gives

∫ T

0

∫
(Vj)c\F

|
√
ρjUj − m√

ρ
|dxdt→ 0, as j → ∞.

Moreover, since
√
ρjUj is uniformly bounded in L∞(0, T ;L2+2ζ(Ωεj

)) and Tcheby-
chev’s inequality yields

|Vj| ≤ C

M2
,

and so ∫ T

0

∫
Vj

|
√
ρjUj − m√

ρ
|dxdt ≤

√
|Vj|(

∫
Ωj

(ρj |Uj|2 +
m2

ρ
)dx)

1
2 ≤ C

M
,

this means that the third term of (4.24) also goes to zero as M tends to ∞.

It remains to treat the second term on the right hand side of (4.24). Notes that,
on the region (Vj)c ∩ F , we have

|
√
ρjUj| ≤ M(ρj)

1
2
− 1

2+η → 0,

since ρj → 0 as j → ∞ and 1
2
− 1

2+η
> 0 for all small η > 0. So 1(Vj)c∩F |

√
ρjUj |

converges almost everywhere to zero. In particular, the L∞(0, T ;L2(Ωεj
)) bound of√

ρjUj gives ∫ T

0

∫
(Vj)c∩F

|
√
ρjUj |dxdt→ 0, as j → ∞.

Since we defined m√
ρ

to be zero on F , we also have

1(Vj)c∩F
m√
ρ
(x, t) = 0, a.e., ∀j,

hence we also can conclude that the second term of (4.24) goes to zero as j → ∞.

Combining all the arguments above, using the diagonal principle, we obtain√
ρj |Uj| converges to m√

ρ
in L1((0, T ) × Ω 1

n
) strongly for any n ∈ N . The lemma

follows.

It follows from Propositions 4.1 and 4.4 that

Corollary 4.2. Let mj(r, t) = ρjuj(r, t). Then

1) there exists a function m(r, t) such that m(x, t) = m(r, t)x
r

and mj(r, t) =

ρjuj(r, t) converges strongly in L2(0, T ;L1+ζ
loc ((0, R); r2dr)) and almost everywhere to

m(r, t);

2) there exists a function u(r, t) such that U(x, t) = u(r, t)x
r

and the quantity√
ρjuj converges strongly in L2((0, T );L2

loc((0, R); r2dr)) to m√
ρ

(define to be zero

when m = 0)



Proof. Since mj(x, t) = mj(r, t)x
r
, we have mj(r, t) = |mj(x, t)| converges almost

everywhere to m(r, t) = |m(x, t)| due to the fact that mj(x, t) converges almost
everywhere to m(x, t) by the first part of Proposition 4.4. Therefore m(x, t) =
m(r, t)x

r
. Moreover, noting that ρ(x, t) = ρ(r, t) by Proposition 4.1 and m(x, t) =

ρ(x, t)U(x, t) by Proposition 4.4, we obtain

m(r, t)
x

r
= ρ(r, t)U(x, t).

Therefore there exists a spherically function u(r, t) such that m(r, t) = ρu(r, t).

The rest parts of the Corollary follow directly from Proposition 4.4 and the proof
of the corollary is finished.

Now we show that (ρ,U) obtained in Proposition 4.1-4.4 satisfy the weak form
of the mass equation (2.1), i.e., (2.20) holds.

Proposition 4.5. Let (ρ,U) be the limit described as in Proposition 4.1-4.4. Then
the weak form of the mass equation, (2.20), holds for C1 test function ψ : Ω̄ ×
[t1, t2] → R. Moreover, ρ ∈ C([0,∞);W 1,∞(Ω)∗), where W 1,∞(Ω)∗ is the dual space
of W 1,∞(Ω).

Proof. We first derive the weak form of the one-dimensional equation (2.6). Let
ϕ(r, t) be a C1 function on [0, R] × [t1, t2]. Then

∫ R

εj

ρjϕr2dr|t2t1 =

∫ t2

t1

∫ R

εj

(ρjϕt + ρjujϕr)r
2drdt. (4.25)

That is ∫ R

0

ρjϕr2dr|t2t1 −
∫ t2

t1

∫ R

0

(ρjϕt + ρjujϕr)r
2drdt

=

∫ εj

0

ρjϕr2dr|t2t1 −
∫ t2

t1

∫ εj

0

ρjϕtr
2drdt, (4.26)

because of the extension (4.3)-(4.4). Then Proposition 4.1 shows

∫ R

0

ρjϕr2dr →
∫ R

0

ρϕr2dr (4.27)

and ∫ t2

t1

∫ R

0

ρjϕtr
2drdt→

∫ t2

t1

∫ R

0

ρϕtr
2drdt, (4.28)

as j → ∞.

It follows from (4.8) that
√
ρj is bounded in L∞(0, T ;Lq(Ω)) for q ∈ [2, 6]. Thus

we get that
√
ρj (or its subsequence) converges strongly in L2(0, T ;L2(Ω)) to

√
ρ

due to Proposition 4.1. Moreover, Corollary 4.1 yields that
√
ρjuj is bounded in



L∞(0, T ;L2+2ζ(Ω)) and Corollary 4.2 yields that
√
ρjuj converges almost everywhere

to
√
ρu. Thus

√
ρjuj converges strongly to

√
ρu in L2(0, T ;L2(Ω)). Hence,∫ t2

t1

∫ R

0

ρjujϕrr
2drdt =

∫ t2

t1

∫ R

0

√
ρj(

√
ρjuj)ϕrr

2drdt→
∫ t2

t1

∫ R

0

√
ρ(
√
ρu)ϕrr

2drdt =

∫ t2

t1

∫ R

0

ρuϕrr
2drdt, (4.29)

as j → ∞.
By (4.27)-(4.29), it is clear that the terms on the left hand side of the equation

(4.26) converge respectively to the corresponding ones without superscript j. It
remains to prove that the terms on the right hand side of (4.26) vanish as j → ∞.

For the first term on the right hand side of (4.26), it follows from the proof of
Proposition 4.1 that

| max
t∈[0,T ]

∫ εj

0

ρjϕr2dr| ≤ C max
t∈[0,T ]

(

∫ R

0

(ρj)
3
2 r2dr)

2
3 (εj)

1
3

≤ C(εj)
1
3 → 0 (4.30)

as j → ∞.
The second term on the right hand side of (4.26) can be treated similarly. There-

fore, taking limit j → ∞ in (4.26), we obtain that, for functions ϕ which are C1 on
[0, R] × [t1, t2], ∫ R

0

ρϕr2dr|t2t1 =

∫ t2

t1

∫ R

0

(ρϕt + ρuϕr)r
2drdt. (4.31)

Now let ψ : Ω̄ × [t1, t2] → R be any C1 function. Define

ϕ(r, t) :=

∫
S

ψ(ry, t)dSy,

where the integral is over the unit sphere S = S2 in R
3. Equation (4.31) then holds

for ϕ, and it is easy to get that, for t = t1 or t2,∫ R

0

ρ(r, t)ϕ(r, t)r2dr =

∫
Ω

ρ(x, t)ψ(x, t)dx.

We note that the second term on the right hand side of (4.31) may be rewritten as∫ t2

t1

∫ R

0

ρ(r, t)u(r, t)ϕr(r, t)r
2drdt =

∫ t2

t1

∫ R

0

ρ(r, t)u(r, t)∇ψ(ry, t) · yr2dSydrdt

=

∫ t2

t1

∫
Ω

ρ(r, t)u(r, t)
x

r
∇ψ(x, t)dxdt =

∫ t2

t1

∫
Ω

ρ(x, t)U(x, t)∇ψ(x, t)dxdt.

The first term on the right hand side of (4.31) is treated in a similar way. This
establishes the weak form of the mass equation, that is∫

Ω

ρψ(x, ·)dx|t2t1 =

∫ t2

t1

∫
Ω

{ρψt + ρ(x, t)U · ∇ψ}(x, t)dxdt



for C1 functions ψ : Ω̄ × [t1, t2] → R.
Now we prove that ρ ∈ C([0,∞);W 1,∞(Ω)∗). If φ is a C1 function of x, then by

the continuity equation, we have

|
∫

Ω

ρφdx|t2t1 | = |
∫ t2

t1

∫
Ω

ρ(x, t)U · ∇φdxdt|

≤ ‖∇φ‖L∞

∫ t2

t1

(

∫
Ω

ρdx)1/2(

∫
Ω

ρ|U|2dx)1/2dt

≤ C(T )‖∇φ‖L∞|t2 − t1|.
A straightforward argument enables us to extend this to functions φ ∈W 1,∞(Ω), so
that

‖ρ(·, t2) − ρ(·, t1)‖W 1,∞(Ω)∗ ≤ C(T )|t2 − t1|,
for t1, t2 ∈ [0, T ]. The proof of the proposition is complete.

Finally, we prove that (ρ,U) satisfies the weak form of the momentum equation,
(2.21), in the sequel.

Proposition 4.6. The weak form of the momentum equation, (2.21), holds as stated
in Definition 2.1.

Proof. Let φ be a C2-function on [0, R] × [0, T ] with φ(0, t) = φ(R, t) = 0 for all
t ∈ [0, T ]. Then it follows from (3.4) that∫ R

εj

ρj
0u

j
0φ(r, 0)r2dr +

∫ T

0

∫ R

εj

(ρjujφt + ρj(uj)2φr + (ρj)γ(φr +
2φ

r
))r2drdt

−
∫ T

0

∫ R

εj

ρj(uj
rφr +

2ujφ

r2
)r2drdt =

∫ T

0

∫ R

εj

3

4
εj(ρ

j)
3
4 (uj

r +
2uj

r
)(φr +

2

r
φ)r2drdt

−
∫ T

0

∫ R

εj

εj(ρ
j)

3
4 (

2uj
rφ

r
+

2ujφr

r
+

2

r2
ujφ)r2drdt+ εj

b. (4.32)

where

εj
b =

∫ T

0

{[ρj +
3

4
εj(ρ

j)
3
4uj

r](εj, t)ε
2
jφ(εj, t) − ε2

j(ρ
j)γ(εj, t)φ(εj, t)}dt. (4.33)

We claim that

lim
εj→0+

εj
b = 0. (4.34)

To check this, we drop the subscript j for convenience. First, we show that

lim
ε→0+

ε2

∫ T

0

ργ(ε, t)φ(ε, t)dt = 0. (4.35)

Indeed, note that∣∣∣∣ε2

∫ T

0

ργ(ε, t)φ(ε, t)dt

∣∣∣∣ ≤ max
0≤t≤T

|φ(ε, t)|
∫ T

0

ε2ργ(ε, t)dt

≤ max
0≤t≤T

|φ(ε, t)|
[∫ T

0

∫ R

ε

ργ(r, t)r2drdt+

∫ T

0

∫ R

ε

|∂r(ρ
γ)(r, t)|r2drdt

]
.



Since ∫ T

0

∫ R

ε

ργ(r, t)r2drdt ≤ C0,

and ∫ T

0

∫ R

ε

|∂r(ρ
γ)|r2drdt = 2

∫ T

0

∫ R

ε

|ργ
2 ||∂r(ρ

γ
2 )|r2drdt

≤
∫ T

0

∫ R

ε

ργr2drdt+

∫ T

0

∫ R

ε

|∂r(ρ
γ
2 )|2r2drdt ≤ C0

due to (4.6) and (4.7), so (4.36) follows from the fact that lim
ε→0+

max
0≤t≤T

|φ(ε, t)| = 0

since φ(0, t) ≡ 0 and φ ∈ C2. Next, we show that

lim
ε→0+

∫ T

0

(ρur)(ε, t)φ(ε, t)ε2dt = 0. (4.36)

Thanks to (3.3) and the boundary condition that u(ε, t) = 0, one has

ρt(ε, t) + ρ(ε, t)∂ru(ε, t) = 0.

Thus,

lim
ε→0+

∫ T

0

(ρur)(ε, t)φ(ε, t)ε2dt = lim
ε→0+

(
−ε2

∫ T

0

∂tρ(ε, t)φ(ε, t)dt

)

= lim
ε→0+

[
ε2ρ0(ε)φ(ε, 0) + ε2

∫ T

0

ρ(ε, t)∂tφ(ε, t)dt

]
= lim

ε→0+

[
ε2

∫ T

0

ρ(ε, t)∂tφ(ε, t)dt

]
.

On the other hand, it is easy to get

ε2

∣∣∣∣
∫ T

0

ρ(ε, t)∂tφ(ε, t)dt

∣∣∣∣ ≤ ε2− 2
γ

(
ε2

∫ T

0

ργ(ε, t)dt

) 1
γ

||∂tφ(ε, ·)||
L

γ
γ−1

≤ C0 ε
2− 2

γ → 0 as ε → 0+.

Hence (4.37) holds. Similarly, one can show that

lim
ε→0+

3

4
ε

∫ T

0

ε2
(
ρ

3
4ur

)
(ε, t)φ(ε, t) = 0. (4.37)

Indeed, it follows from (3.3) and u(ε, t) = 0 that

3

4

∫ T

0

ε3
(
ρ

3
4ur

)
(ε, t)φ(ε, t)dt = ε3ρ

3
4
0 (ε)φ(ε, 0) +

∫ T

0

ε3ρ
3
4 (ε, t)∂tφ(ε, t)dt.

Since

ε3

∣∣∣∣
∫ T

0

ρ
3
4 (ε, t)∂tφ(ε, t)dt

∣∣∣∣ ≤ ε3( 2γ−1
2γ

)

(
ε2

∫ T

0

ργ(ε, t)dt

) 3
4γ

||∂tφ(ε, ·)||
L

4γ
4γ−3

,

so (4.38) follows. Now (4.35) is a consequence of (4.36) - (4.38).



Now, for any ψ = (ψ1, ψ2, ψ3) ∈ C2(Ω̄ × [0, T ]) satisfying ψ(x, t) = 0 for all
x ∈ ∂Ω and ψ(x, T ) = 0, we set

φ(r, t) =

∫
S

ψ(ry, t) · y dSy (4.38)

with S = S2 the unit sphere n R
3, and transform the terms of (4.33) into integrals

in Cartesian coordinates. The treatments of the first two integrals on the left hand
side of (4.33) are similar to those in the proof of Proposition 4.5. The next integral
can be taken care of by direction calculations. Indeed, note that

(r2φ)r = ∂r

∫
|x|≤r

divψ(x, t)dx = r2

∫
S

(ψi)xi
(ry, t)dSy.

Thus,

−
∫ T

0

∫ R

εj

ρj

(
uj

rφr +
2ujφ

r2

)
r2drdt

= −
∫ T

0

∫ R

εj

{
ρj

[(
uj

r

)
r

rφr +
uj

r
r−2(r2φ)r

]}
r2drdt

= −
∫ T

0

∫ R

εj

ρj

{(
uj

r

)
r

r

(∫
S

yiyk(ψ
i)xk

(ry, t)dSy

)
+
uj

r

(∫
S

divψ(ry, t)dSy

)}
r2drdt

= −
∫ T

0

∫
Ωεj

ρj

{(
uj

r

)
r

xixk

r
+
uj

r
δik

}
ψi

xk
dxdt

= −
∫ T

0

∫
Ωεj

ρj ∂

∂xk

(
uj

r
xi

)
(ψi)xk

dxdt

= −
∫ T

0

∫
Ωεj

ρj∇(Uj)i : ∇ψidxdt.

Similarly, one has∫ T

0

∫ R

εj

3

4
εj(ρ

j)
3
4

(
uj

r +
2uj

r

) (
φr +

2

r
φ

)
r2drdt =

∫ T

0

∫
Ωεj

1

4
εj(ρ

j)
3
4 div Uj divψdxdt,

and

−
∫ T

0

∫ R

εj

εj(ρ
j)

3
4

(
2
uj

rφ

r
+ 2

ujφr

r
+

2

r2
ujφ

)
r2drdt = −

∫ T

0

∫
Ωεj

εj(ρ
j)

3
4∇Uj : ∇ψdxdt

Thus, we have shown that∫
Ωεj

ρj
0U

j
0 · ψ(0, x)dx+

∫ T

0

∫
Ωεj

{√
ρj(

√
ρjUj) · ∂tψ +

√
ρjUj ⊗

√
ρjUj : ∇ψ

}
dxdt

+

∫ T

0

∫
Ωεj

(ρj)γdivψdxdt−
∫ T

0

∫
Ωεj

ρj∇Uj : ∇ψdxdt

=
1

4
εj

∫ T

0

∫
Ωεj

(ρj)
3
4 divUj divψdxdt− εj

∫ T

0

∫
Ωεj

(ρj)
3
4∇Uj : ∇ψdxdt+ εj

b.



It follows from this and (4.4) that

∫
Ω

ρj
0U

j
0 · ψ(0, ·)dx+

∫ T

0

∫
Ω

{√
ρj(

√
ρjUj) · ∂tψ +

√
ρjUj ⊗

√
ρjUj : ∇ψ

}
dxdt

+

∫ T

0

∫
Ω

(ρj)γdivψdxdt−
∫ T

0

∫
Ω

ρj∇Uj : ∇ψdxdt

=

∫ T

0

∫
Bεj

(ρj)γdivψdxdt+
εj

4

∫ T

0

∫
Ωεj

(ρj)
3
4 divUj divψdxdt

−εj

∫ T

0

∫
Ωεj

(ρj)
3
4∇Uj : ∇ψdxdt+ εj

b. (4.39)

We proceed to show that each term on the left hand side of (4.40) converges to
corresponding term in (2.21) and each term on the right hand side of (4.40) vanishes
as j → ∞.

First, the convergence of the term ρjUjφt can be established just as what has
been done for the term ρjujφr in the proof of Proposition 4.5.

Next,

|
∫ T

0

∫
Ω

[
√
ρjUj ⊗

√
ρjUj −√

ρU ⊗√
ρU] : ∇ψdxdt|

≤ ‖∇ψ‖L∞

∫ T

0

∫
B 1

n

(|
√
ρjUj |2 +

√
ρ|U|2)dxdt

+|
∫ T

0

∫
Ω 1

n

[
√
ρjUj ⊗

√
ρjUj − (

√
ρU ⊗√

ρU) : ∇ψ]dxdt|, (4.40)

for all n ∈ N .
By virtue of Proposition 4.3, one has

∫ T

0

∫
B 1

n

|
√
ρjUj |2dxdt ≤ (

∫ T

0

∫
B 1

n

ρjdxdt)
η

2+η (

∫ T

0

∫
B 1

n

ρj |Uj|2+ηdxdt)
2

2+η

≤ C(

∫ T

0

∫
B 1

n

ρjdxdt)
η

2+η .

As proved in Proposition 4.5, the following convergence holds

∫ T

0

∫
B 1

n

ρjdxdt ≤ C(T )(

∫ T

0

∫
B 1

n

(ρj)3dxdt)
1
3 |B 1

n
| 23

≤ C(T )|B 1
n
| 23 → 0 (4.41)

as n→ ∞, where (4.8) has been used. Consequently, it holds that

∫ T

0

∫
B 1

n

|
√
ρjUj |2dxdt→ 0,



uniformly on j, as n→ ∞. Also,∫ T

0

∫
B 1

n

|√ρU|2dxdt ≤ lim inf
j→∞

∫ T

0

∫
B 1

n

|
√
ρjUj |2dxdt→ 0,

as n→ ∞. It follows from (4.36) and Proposition 4.4 that∫ T

0

∫
Ω

√
ρjUj ⊗

√
ρjUj : ∇ψdxdt→

∫ T

0

∫
Ω

√
ρU ⊗√

ρU : ∇ψdxdt, (4.42)

as j → ∞. For the pressure term, Proposition 4.2 implies that∫ T

0

∫
Ω

(ρj)γ divψ dxdt→
∫ T

0

∫
Ω

ργ divψ dxdt, j → ∞. (4.43)

Concerning the diffusion terms on the left hand side of (4.39), it follows from
(4.4) and integration by parts that∫ T

0

∫
Ω

ρj∇Uj : ∇ψdxdt = −
∫ T

0

∫
Ω

√
ρj(

√
ρjUj) · Δψdxdt

−2

∫ T

0

∫
Ω

(
√
ρjUj) · (∇

√
ρj · ∇)ψdxdt. (4.44)

Using Proposition 4.2- Proposition 4.4, one can prove the convergence for the
first term on the right hand side of (4.44) as follows,∫ T

0

∫
Ω

√
ρj(

√
ρjUj)Δφdxdt→

∫ T

0

∫
Ω

√
ρ(
√
ρU)Δφdxdt, (4.45)

as j → ∞, in a similar way as in the proof of (4.29).
Due to Lemma 4.1, it holds that

‖∇
√
ρj‖L∞(0,T ;L2(Ω)) ≤ C,

and hence there exists a function g ∈ L(0, T ;L2(Ω)) such that

∇
√
ρj ⇀ g weakly in L2(0, T ;L2(Ω)).

Meanwhile, by Proposition 4.1, up to a subsequence,
√
ρj converges almost every-

where to
√
ρ. Combining the fact that

√
ρj is uniformly bounded in L∞(0, T ;L6(Ω),

one has √
ρj ⇀

√
ρ weakly in L2(0, T ;L2(Ω)),

and hence g =
√
ρ. Consequently, it yields

∇
√
ρj ⇀ ∇√

ρ weakly in L2(0, T ;L2(Ω)).

Due to Proposition 4.3 and Proposition 4.4, we finally obtain

−2

∫ T

0

∫
Ω

(
√
ρjUj) · (∇

√
ρj · ∇)ψdxdt→

−2

∫ T

0

∫
Ω

(
√
ρU) · (∇√

ρ · ∇)ψdxdt, (4.46)



similar to the proof of (4.42). Substituting (4.45) and (4.46) into (4.44) yields∫ T

0

∫
Ω

ρj∇Uj : ∇ψdxdt→< ρ∇U,∇ψ >

≡ −
∫ T

0

∫
Ω

√
ρ(
√
ρU) · Δψdxdt− 2

∫ T

0

∫
Ω

(
√
ρU) · (∇√

ρ · ∇)ψdxdt. (4.47)

Up to now, we have proved that the terms on the left hand side of (4.39) converge
to corresponding ones in (2.21) as j → ∞. In the following, we prove that each term
on the right hand side of (4.39) vanishes as j → ∞.

First, since
√
ρj is uniformly bounded in L∞(0, T ;L6(Ω)) due to (4.8), it holds

that

|
∫ T

0

∫
Bεj

(ρj)γdivψdxdt| ≤ C(

∫ T

0

∫
Bεj

(ρj)3dxdt)
γ
3 |Bεj

| 3−γ
3 ≤ C|Bεj

| 3−γ
3 (4.48)

for 1 < γ < 3, which tends to zero as εj → 0.
Next, with the help of Lemma 4.1 again, one has

|εj

4

∫ T

0

∫
Ωεj

(ρj)
3
4 divUjdivψdxdt|

≤ C
√
εj(εj

∫ T

0

∫
Ωεj

(ρj)
3
4 |∇Uj|2dxdt) 1

2 (

∫ T

0

∫
Ωεj

(ρj)
3
4dxdt)

1
2

≤ C
√
εj. (4.49)

Finally, the integral εj

∫ T

0

∫
Ωj

(ρj)
3
4∇Uj : ∇ψdxdt admits same bound as in (4.49).

It follows from this, (4.34), and (4.48)-(4.49) that each term on the right hand
side of (4.39) converges to 0 as j → ∞.

Taking the limit j → ∞ in (4.39), we finish the proof of the proposition.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. The weak forms of the mass conservation and momen-
tum equations follow from Proposition 4.5 and 4.6 respectively. The first part in
the definition of the weak solutions (see Definition 2.1) follows from Lemma 3.2,
Lemma 4.1, Proposition 4.5, and the proof of (4.47) in Proposition 4.6 which shows
that ρj∇Uj ⇀ ρ∇U in the sense of distribution and ρ∇U ∈ L2(0, T ;W−1,1(Ω)).

Moreover, ρ ∈ C([0, T ];L
3
2 (Ω)) and the equation of mass conservation (2.27) are ob-

tained by Propositions 4.1 and 4.5. The energy estimate (2.28) and entropy estimate
(2.29) are due to Lemma 4.1. Finally, the radial symmetry of the weak solutions is
a consequence of Corollary 4.2. The proof of Theorem 2.1 is thus finished.

References

[1] D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D vis-
cous shallow water equations and convergence to the quasi-geostrophic model,
Comm. Math. Phys., 238(1-2) (2003) 211-223.



[2] D. Bresch, B. Desjardins, Chi-Kun Lin, On some compressible fluid models:
Korteweg, lubrication, and shallow water systems, Comm. Partial Differential
Equations, 28(3-4)( 2003) 843-868.

[3] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes
equations, Invent. Math. 141(2000), 579-614.

[4] B. Ducomet, E. Feireisl, H. Petzeltová and I. Straškraba, Existence globale pour
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