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Abstract

In this paper, we study the theory of scattering in the energy space for the Klein-
Gordon equation with a cubic convolution in space dimension n ≥ 3. By means of
the strategy of frequency decomposition to distinguish the dispersive effects and the
flexibility of the Strichartz estimates for the Klein-Gordon equation, along with the
method of Morawetz-Strauss [18] and Ginibre-Velo [10], we prove the asymptotic
completeness for the radial nonnegative, nonincreasing potentials satisfying suitable
regularity properties at the origin and suitable decay properties at infinity. The
results cover in particular the case of the potential |x|−ν for 2 < ν < min(n, 4).

AMS Classification: Primary 35P25. Secondary 35B40, 35Q40, 81U99.
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1 Introduction

This paper is devoted to the theory of scattering for the Klein-Gordon equation with a
cubic convolution

ü − Δu + u + f(u) = 0, t ∈ R, x ∈ Rn, n ≥ 3 (1.1)

where f(u) = (V ∗|u|2)u. Here u is a complex valued function defined in space time Rn+1,
the dot denotes the time derivative, Δ is the Laplacian in Rn, V is a real valued radial
function defined in Rn, hereafter called the potential, and ∗ denotes the convolution
in Rn. For simplicity, we have taken the mass equal to 1 in the equation (1.1). It
is known that for the local nonlinearity (e.g. f(u) = |u|p−1u), the scattering theory
has been obtained, see [3], [4], [5], [6], [8], [19] and [21] for details. For the equation
(1.1) with the small data, Mochizuki [17] took use of the ideas of Strauss[23], [24] and
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Pecher [22], and shown that if n ≥ 3, 2 ≤ ν < min(n, 4), then the scattering operator
S : B(δ; H1 ×L2) −→ H1 ×L2 is well defined for some small δ > 0, where B(δ; H1 ×L2)
denote the set

{
(f, g) ∈ H1 ×L2, ‖(f, g)‖H1×L2 ≤ δ

}
. That is, the scattering operator S

is well defined in the low energy space. In this paper, we develop a complete theory of
scattering for the equation (1.1) in the energy space, which turns out to be the Sobolev
space H1 ×L2, under suitable assumptions on V , the results cover in particular the case
of the potential |x|−ν for 2 < ν < min(n, 4).

The scattering theory in the energy space for the Hartree equation

iu̇ = −Δu + (V ∗ |u|2)u

has been studied by many authors. For subcritical cases(see Remark 1.2), Ginibre and
Velo [10] derived the Morawetz inequality and extracted an useful estimate of the solu-
tion in Birman-Solomjak norm to obtain the asymptotic completeness. Nakanishi [20]
improved the results by a new Morawetz estimate which depending not on nonlinearity.
For critical cases, Miao, Xu and Zhao [14] took advantage of the local Morawetz estimate
to rule out the possibility of energy concentration and establish the scattering theory for
the radial data in dimension n ≥ 5. Please see [15] for the general data.

In this paper, we devote attention to study the Klein-Gordon equation (1.1) with same
potential V as the Hartree equation in [10]. But if we directly proceed with the approach
of Ginibre-Velo [10] in conjunction with the Strichartz estimates in [16], the asymptotic
completeness be only obtained for the potential |x|−ν with 2 < ν < min(n, 4 − 1

n),
which is not natural. The reason for this lies in that the dispersive estimates for the
Klein-Gordon equation is different from those of the Schrödinger equation; one can get
sufficient time decay rate by compensating the condition of the high regularity, which
conflicts with the solution belong to the energy space H1. The major innovation of
the paper is to conquer the difficulty by exploiting sufficiently the dispersive effects.
Indeed, the dispersive natures of high and low frequencies of the solution for the Klein-
Gordon equation are different; the solution on the low frequency behaves as that of
the nonrelativistic equation where the condition of regularity can be dropped by the
Bernstein inequality, while the high frequency part with bad dispersive effect can be
controlled by the energy of solution. Therefore we take advantage of the strategy of
frequency decomposition to gain the time decay estimates and establish the scattering
theory. It is valuable to mention that the high frequency decay depending only on
frequency not on time, thus we merely carry iteration on low frequency region, which is
also a key point in the proof of the time decay. A more detailed description is provided
in Section 4.

In all this paper, we assume that the potential V satisfies the following assumption,
which ensure the local existence of the energy solution.

(H1) V is a real radial function and V ∈ Lp1 + Lp2 for some p1, p2 satisfying

1 ∨ n

4
≤ p2 ≤ p1 ≤ ∞.
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Furthermore, to exploit the Morawetz estimate and demonstrate the theory of asymp-
totic completeness, we still need an additional assumption on V .

(H2) V is radial and nonincreasing, namely V (x) = v(r) where v is nonincreasing in
R+. Furthmore, for some α ≥ 2, v satisfies the following condition:

(Aα): There exists a > 0 and Aα > 0 such that

v(r1) − v(r2) ≥ Aα

α
(rα

2 − rα
1 ) for 0 < r1 < r2 ≤ a.

One easily verifies that as soon as V (x) ∈ Lp for some p < ∞, (H2) implies that V
is nonnegative and tends to zero at infinity.

Remark 1.1. Different with the Hartree equation[20], the assumption (Aα) is still needed
for the equation (1.1). In fact, it seems difficult to prove that the corresponding term

2Re
(
(V ∗ |u|2)u, m

)
= −(∇V ∗ |u|2, x

λ
|u|2) − (

V ∗ |u|2, |x|
2

λ3
|u|2) − (

V ∗ |u|2, t

λ

d

dt
|u|2),

is nonnegative or controlled by energy, where

D =
( − ∂t,∇

)
, λ = |(t, x)|, m =

(t, x)
λ

· Du +
(n − 1

2λ
+

t2 − |x|2
2λ3

)
u.

We believe that how to remove the condition (Aα) is still an interesting problem.

The main theorem of this paper is the following.

Theorem 1.1. Assume that V satisfies (H1) with 2 < n
p1

≤ n
p2

< min
(
n, 4

)
and (H2).

Then, the wave operators and the scattering operator for (1.1) are homeomorphisms in
H1 ×L2. Precisely, for any global solution u of (1.1) with (u(0), u̇(0)) ∈ H1 ×L2, there
exists a solution v of the free Klein-Gordon equation

v̈ − Δv + v = 0 (1.2)

with v(0) ∈ H1, v̇(0) ∈ L2 such that∥∥(
u(t), u̇(t)

) − (
v(t), v̇(t)

)∥∥
H1×L2 −→ 0, as t −→ ∞. (1.3)

Moreover, the corresponding (u(0), u̇(0)) −→ (v(0), v̇(0)) defines a homeomorphism in
H1 × L2.

Remark 1.2. If we take the special potential V (x) = |x|−ν , then the restriction on ν is
just 2 < ν < min(4, n). From the analysis of scaling sc = ν

2 − 1 = n
2p − 1 for V belonging

to the single exponent Lp, we know that the case of ν = 2 is corresponding to L2-critical
case; while if n ≥ 5, the case of ν = 4 is corresponding to H1-critical case.
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The paper is organized as follows. In Section 2, we deal with the Cauchy problem
at finite time for the equation (1.1). We prove the local wellposedness in H1 × L2 and
then prove the global wellposedness in H1 × L2 by deriving the conservation law of the
energy. In Section 3, we prove the existence of the wave operators. we solve the local
Cauchy problem in a neighborhood of of infinity in time to illustrate the existence and
some properties of asymptotic states for the solutions. Finally in Section 4, we prove the
main result of this paper, namely asymptotic completeness in H1 × L2. We derive the
finiteness of the propagation speed and the Morawetz-type estimates of the solution in
suitable norms. In conjunction with frequency decomposition we prove the time decay
of the arbitrary finite energy solutions, hence prove the asymptotic completeness.

We conclude this introduction by giving some notations which will be used freely
throughout this paper. We always assume the space dimension n ≥ 3 and let 2∗ = 2n

n−2
in this paper. For any r, 1 ≤ r ≤ ∞, we denote by ‖·‖r the norm in Lr = Lr(Rn) and by r′

the conjugate exponent defined by 1
r + 1

r′ = 1. For any s ∈ R, we denote by Hs ≡ Hs(Rn)
the usual Sobolev spaces. For s ∈ R and 1 ≤ r, m ≤ ∞, denote by Bs

r,m(Rn) the Besov
space defined as the space of distributions u such that {2js‖ϕj ∗ u‖r}∞j=0 ∈ �m, where ∗
stands for the convolution and {ϕj} is a dyadic decomposition on Rn, and by Ḃs

r,m(Rn)
the homogeneous Besov space defined as the space of distributions u modulo polynomials
such that {2js‖ψj ∗ u‖r}∞j=−∞ ∈ �m, where {ψj} is a dyadic decomposition on Rn\{0}.
For the detailed definitions of the above function spaces and the associated inequalities,
see [1]. We shall omit Rn from spaces and norms. For any interval I ∈ R and any
Banach space X we denote by C(I; X) the space of strongly continuous functions from
I to X and by Lq(I; X) the space of strongly measurable functions from I to X with
‖u(·); X‖ ∈ Lq(I). Given n, we define, for 2 ≤ r ≤ ∞,

δ(r) = n
(1

2
− 1

r

)
.

Sometimes abbreviate δ(r), δ(ri) to δ, δi separately. We denote by < ·, · > the scalar
product in L2. Finally for any real number a and b, we let a ∨ b = max(a, b), a ∧ b =
min(a, b), a+ = a ∨ 0 and a− = (−a)+.

2 The Cauchy problem at finite times

In this section, we consider the Cauchy problem for the equation (1.1){
ü − Δu + u + f(u) = 0,

u(0) = u0, u̇(0) = u1.
(2.1)

where
f(u) = (V ∗ |u|2)u. (2.2)

The form of the integral equation for the Cauchy Problem (2.1) can be read as

u(t) = K̇(t)u0 + K(t)u1 −
∫ t

0
K(t − s)f(u(s))ds, (2.3)
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or (
u(t)
u̇(t)

)
= V0(t)

(
u0(x)
u1(x)

)
−

∫ t

0
V0(t − s)

(
0

f(u(s))

)
ds, (2.4)

where K(t) denotes

K(t) =
sin(tω)

ω
, V0(t) =

(
K̇(t),K(t)
K̈(t), K̇(t)

)
, ω =

(
1 − Δ

)1/2
.

Let U(t) = eitω, then

K̇(t) =
U(t) + U(−t)

2
, K(t) =

U(t) − U(−t)
2iω

.

We first give the following dispersive estimates due to Brenner [5] and Ginibre, Velo
[8] for the operator U(t) = eitω. The proof is omitted.

Lemma 2.1. Let 2 ≤ r ≤ ∞ and 0 ≤ θ ≤ 1. Then∥∥eiωtu
∥∥

B
−(n+1+θ)( 1

2− 1
r )/2

r,2

≤ μ(t)
∥∥u

∥∥
B

(n+1+θ)( 1
2− 1

r )/2

r′,2
,

where
μ(t) = C min

(|t|−(n−1−θ)( 1
2
− 1

r
)+ , |t|−(n−1+θ)( 1

2
− 1

r
)
)
.

According to the above lemma, the abstract duality and interpolation argument [9],
[11] , it is well known that U(t) satisfies the following Strichartz estimates [16].

Lemma 2.2. Let 0 ≤ θi ≤ 1, ρi ∈ R, 2 ≤ qi, ri ≤ ∞, (θi, n, qi, ri) = (0, 3, 2,∞), i = 1, 2
satisfy following admissible conditions⎧⎪⎪⎨⎪⎪⎩

0 ≤ 2
qi

≤ min
{

(n − 1 + θi)
(1
2
− 1

ri

)
, 1

}
,

ρi + (n + θi)
(1

2
− 1

ri

)
− 1

qi
= 0;

and let A denote the set of all (qi, ri, θi, ρi) satisfying the above conditions.

1. For u ∈ L2, then ∥∥U(·)u∥∥
Lq1

(
R;B

ρ1
r1,2

) ≤ C‖u‖2; (2.5)

2. For I ⊆ R, then ∥∥U ∗ f
∥∥

Lq1

(
I;B

ρ1
r1,2

) ≤ C
∥∥f

∥∥
Lq′2

(
I;B

−ρ2
r′2,2

); (2.6)

3. For I = [0, T ) ⊂ R, then∥∥UR ∗ f
∥∥

Lq1

(
I;B

ρ1
r1,2

) ≤ C
∥∥f

∥∥
Lq′2

(
I;B

−ρ2
r′2,2

). (2.7)

where the subscript R stands for retarded.
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Remark 2.1. One easily checks that (2.6) and (2.7) hold for any (qi, ri, θi, ρi) ∈ A , i =
1, 2, thus the choices of exponents ( especially in θ) are very flexible which is significant
in the estimate of nonlinearity. In fact, for any (qi, ri, θi, ρi) ∈ A , i = 1, 2, we let

B := Lq1
(
I; Bρ1

r1,2

) ∩ Lq2
(
I; Bρ2

r2,2

)
,

then the dual space of B is

B∗ := Lq′1
(
I; B−ρ1

r′1,2

) ⊕ Lq′2
(
I; B−ρ2

r′2,2

)
.

It follows from (2.5) and the abstract TT ∗ method that∥∥U ∗ f
∥∥

Lq1

(
I;B

ρ1
r1,2

) ≤ ∥∥U ∗ f
∥∥

B
≤ C

∥∥f
∥∥

B∗ ≤ C
∥∥f

∥∥
Lq′2

(
I;B

−ρ2
r′2,2

).

The above lemma suggests that we study the Cauchy problem for the equation (2.3)
in spaces of the following type. Let I be an interval, σn = 1 if n ≥ 4 and σn < 1 can be
any constant close to 1 if n = 3. Fix ρ = −1

2 , we define Banach spaces X1
θ (I) and X1(I)

by

Xθ(I) =
{

u : u ∈ (C ∩ L∞)(
I, L2

) ∩ Lq
(
I,Bρ

r,2

)
,

0 ≤ 2
q
≤ (n − 1 + θ)(

1
2
− 1

r
) ≤ σn, ρ + (n + θ)(

1
2
− 1

r
) − 1

q
= 0

}
;

X1
θ (I) =

{
u : u, u̇ and ∇u ∈ Xθ(I)

}
;

X1(I) :=
⋂

0≤θ≤1

X1
θ (I) � X1

0 ∩ X1
1 .

(2.8)

For noncompact I, we define the space X1
loc(I) in a similar way as Lq

loc.

For future reference we state additional time integrability properties of functions in
X1(I) which are immediately obtained by means of Lemma 2.2 and Sobolev embedding
theorem.

Lemma 2.3. Let I be an interval, possibly unbounded. Let (q, r) satisfy

0 ≤ 2
q
≤ σn,

2
q
≤ δ(r) ≤ 1 +

1
q

Then ∥∥u
∥∥

Lq(I;Lr)
≤ C

∥∥u
∥∥

X1(I)
,

where C is independent of I.

We can now state the main result on the local Cauchy problem for the equation (1.1)
with H1 × L2 initial data.

Proposition 2.1. Let V satisfy (H1), and u0 ∈ H1, u1 ∈ L2. Then
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1. There exists a maximal interval (−T−, T+) with T± > 0 such that the equation
(2.3) has a unique solution u ∈ X1

loc(−T−, T+);

2. For any interval I containing 0, the equation (2.3) has at most one solution in
X1(I);

3. For −T− < T1 ≤ T2 < T+, the map (u0, u1) → (u, ut) is continuous from H1 × L2

to X1([T1, T2]);

4. Let in addition p2 > n
4 . Then if T+ < ∞ (resp. T− < ∞),

∥∥u̇
∥∥

2
+

∥∥u
∥∥

H1 → ∞
when t increases to T+ (resp. decreases to −T−).

Proof: We shall apply the Banach fixed point argument to prove this proposition
in the Banach space X1(I). The main technique point consists in proving that the
operator defined by the RHS of (2.3) is a contraction on suitable bounded sets of X1(I)
for I = [−T, T ] and T sufficiently small. From Lemma 2.2, by applying the fractional
Leibnitz rule and the Hölder and Young inequalities in space and followed by the Hölder
inequality in time, the key estimate consists in∥∥f(u)

∥∥
Lq′

(
I;B

1/2

r′,2
) ≤ ∥∥V

∥∥
p

∥∥u
∥∥

Lq
(
I;B

1/2
r,2

)∥∥u
∥∥2

Lk
(
I;Ls

)T ϑ, (2.9)

where we have assumed for simplicity that V ∈ Lp, and where the exponents satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n

p
= 2δ(r) + 2δ(s),

2
q

+
2
k

= 1 − ϑ,

0 ≤ ϑ ≤ 1

(2.10)

and the exponents (θ, q, r, k, s) possibly depending on p.

If n
p ≤ 2, (2.9) can be replaced by∥∥f(u)

∥∥
Lq′

(
I;B0

r′,2
) ≤ ∥∥V

∥∥
p

∥∥u
∥∥

Lq
(
I;B0

r,2

)∥∥u
∥∥2

Lk
(
I;Ls

)T ϑ, (2.11)

provided that one choose r = 2, δ(s) ≤ 1 and k = q = ∞. This implies that ϑ = 1.

If 2 ≤ n
p ≤ 3, one can choose θ = 0, k = ∞, 0 ≤ δ(s) ≤ 1 and q = r = 2(n+1)

n−1 so that
0 < ϑ = 1 − 2

q < 1.

If n
p ≥ 3, one can choose θ = 0, q = r = 2(n+1)

n−1 , δ(s) = 1+ 1
k so that n

p = 4−ϑ which
yields ϑ ≥ 0 for n

p ≤ 4.

The H1-critical case p = n
4 yields ϑ = 0 and requires a slightly more refined treatment

than the subcritical case p > n
4 . For general V satisfying (H1), the contribution of the

components in Lp1 and Lp2 are treated separately. Therefore, we obtain the desired
results.
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It is well known that the equation (1.1) formally satisfies the conservation of the
energy

E(u)(t) =
1
2

∥∥u̇
∥∥2

2
+

1
2

∥∥∇u
∥∥2

2
+

1
2

∥∥u
∥∥2

2
+

1
4

∫
dxdy

∣∣u(t, x)
∣∣2V (x − y)

∣∣u(t, y)
∣∣2 = E(u)(0).

(2.12)

Actually it turns out that the X1 regularity of the solutions constructed in Proposi-
tion 2.1 is sufficient to ensure this conservation law.

Proposition 2.2. Let V satisfy (H1). Let I be an interval and let u ∈ X1(I) be a
solution of the equation (1.1). Then u satisfies

E(u)(t1) = E(u)(t2)

for all t1, t2 ∈ I.

Proof: Let ϕ ∈ C∞
0 be a smooth approximation of the Dirac distribution δ in

Rn. By an elementary computation which is allowed by the available regularity, we can
obtain

d

dt
E(ϕ ∗ u)(t) = Re < ϕ ∗ u̇, ϕ ∗ ü > + Re < ϕ ∗ ∇u̇, ϕ ∗ ∇u >

+ Re < ϕ ∗ u̇, ϕ ∗ u > + Re < ϕ ∗ u̇, f(ϕ ∗ u) >

=Re < ϕ ∗ u̇, ϕ ∗ ü − ϕ ∗ Δu + ϕ ∗ u + f(ϕ ∗ u) >

=Re < ϕ ∗ u̇, f(ϕ ∗ u) − ϕ ∗ f(u) >

Integrating over the time interval (t1, t2), we obtain

E(ϕ ∗ u)(t2) − E(ϕ ∗ u)(t1) = Re
∫ t2

t1

< ϕ ∗ u̇, f(ϕ ∗ u) − ϕ ∗ f(u) > (t) dt. (2.13)

We can let ϕ tend to δ, using the fact that convolution with ϕ tends strongly to the unit
operator in Lr for 1 ≤ r < ∞. The LHS of (2.13) tends to E

(
u(t2)

) − E
(
u(t1)

)
and the

RHS is shown to tend to zero by the Lebesgue dominated convergence theorem applied
to the time integration. For that purpose we need an estimate of the integrand which is
uniform in ϕ and integrable in time. That estimate essentially boils down to∣∣ < u̇, f(u) >

∣∣ ≤ C
∥∥V

∥∥
p

∥∥u̇
∥∥

B
−1/2
r,2

∥∥u
∥∥

B
1/2
r,2

∥∥u
∥∥2

s (2.14)

We choose the same values of r, s as in the proof of Proposition 2.1, so that the RHS of
(2.14) belongs to L∞ in time for n

p ≤ 2 and to L1 for n
p ≥ 2.

We now turn to the global Cauchy problem for the equation (1.1). For that purpose
we need to ensure that the conservation of the energy provides an a priori estimate of
the norm

∥∥u̇
∥∥

2
+

∥∥u
∥∥

H1 of the solution. This is the case if the potential V satisfies the
nonnegative assumption.

Together this inequality with the local well-posedness (Proposition 2.1) and the con-
servation of the energy (Proposition 2.2), we can now state the main result on the global
Cauchy problem for the equation (1.1)
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Proposition 2.3. Let V be nonnegative and satisfy (H1) with p2 > n
4 . Let (u0, u1) ∈

H1 × L2 and let u be a solution of the equation (2.3) constructed in Proposition 2.1.
Then T+ = T− = ∞ and u ∈ X1

loc(R) ∩ L∞(R,H1).

Note that the result is stated only for the H1 subcritical case p2 > n
4 .

3 Scattering Theory I: Existence of the wave operators

In this section we begin the study of the theory of scattering for the equation (1.1) by
addressing the first question, namely the existence of the wave operators. We restrict
our attention to positive time. We consider an asymptotic state (u0+, u1+) ∈ H1 × L2

and we look for a solution u of the equation (1.1) which is asymptotic to the solution(
v(t)
v̇(t)

)
= V0(t)

(
u0+

u1+

)
of the free equation. For that purpose, we introduce the solution ut0(t) of the equation
(1.1) satisfying the initial condition(

ut0(t0)
u̇t0(t0)

)
=

(
v(t0)
v̇(t0)

)
= V0(t0)

(
u0+

u1+

)
.

We then let t0 tend to ∞. In favorable circumstances, we expect ut0(t) to converge to a
solution u(t) of the equation (1.1) which is asymptotic to v(t). The previous procedure
is easily formulated in terms of integral equations. The Cauchy problem with initial data
(u(t0), u̇(t0)) at time t0 is equivalent to the equation

(
u(t)
u̇(t)

)
= V0(t − t0)

(
u(t0)
u̇(t0)

)
−

∫ t

t0

V0(t − s)
(

0
f(u(s))

)
ds. (3.1)

The solution (ut0(t), u̇t0(t)) with initial data V0(t0)
(
u0+

u1+

)
at time t0 should therefore

be a solution of the equation(
u(t)
u̇(t)

)
=V0(t − t0)V0(t0)

(
u0+

u1+

)
−

∫ t

t0

V0(t − s)
(

0
f(u(s))

)
ds

=V0(t)
(

u0+

u1+

)
−

∫ t

t0

V0(t − s)
(

0
f(u(s))

)
ds,

(3.2)

where we have used the trigonometric identity.

The limiting solution (u, u̇) is then expected to satisfy the equation(
u(t)
u̇(t)

)
= V0(t)

(
u0+

u1+

)
−

∫ t

+∞
V0(t − s)

(
0

f(u(s))

)
ds. (3.3)
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The problem of existence of the wave operators is therefore the Cauchy problem
with infinite initial time. We first solve it locally in a neighborhood of infinity by a
contraction method. We then extend the solutions thereby obtained to all times by
using the available results on the Cauchy problem at finite times. In order to solve the
local Cauchy problem at infinity, we need to use function spaces including some time
decay in their definition, so that at the very least the integral in (3.3) converges at
infinity. Furthermore the free solution V0(t)

(
u0+

u1+

)
should belong to those spaces. In view

of Lemma 2.2, natural candidates are the spaces X1(I) for some I = [T,∞), where the
time decay is expressed by the Lq integrability at infinity, and we shall therefore study
that problem in those spaces. We shall also need the fact that the time decay of u implies
sufficient time decay of f(u). This will show up through additional assumptions on V in
the form of an upper bound on p1, namely p1 ≤ n

2 .

We shall use freely the notation
(ũ(t)˜̇u(t)

)
= V0(−t)

(u(t)
u̇(t)

)
for u a suitably regular function

of space time. We also recall the notation R for R ∪ {±∞} and I for the closure of an
interval I in R equipped with the obvious topology.

We can now state the main result on the local Cauchy problem in a neighborhood of
infinity.

Proposition 3.1. Let V satisfy (H1) with p1 ≤ n
2 . Let (u0+, u1+) ∈ H1 × L2. Then

1. There exists T < ∞ such that for any t0 ∈ I where I ∈ [T,∞), the equation (3.2)
has a unique solution u in X1(I) .

2. For any T ′ > T , the solution u is strongly continuous from (u0+, u1+) ∈ H1 × L2

and t0 ∈ I ′ to X1(I ′), where I ′ = [T ′,∞).

Proof: The proof proceeds by a contraction argument in X1(I). The main technical
point consists in proving that the operator defined by the RHS of (3.2) is contraction in
suitable bounded sets of X1(I) for T sufficiently large. Let (q, r) is admissible pair, the
basic estimate is again∥∥f(u)

∥∥
Lq′

(
I;B

1/2

r′,2
) ≤ ∥∥V

∥∥
p

∥∥u
∥∥

Lq
(
I;B

1/2
r,2

)∥∥u
∥∥2

Lk
(
I;Ls

), (3.4)

where we have assumed for simplicity that V ∈ Lp, and where the exponents satisfy⎧⎪⎨⎪⎩
n

p
= 2δ(r) + 2δ(s),

2
q

+
2
k

= 1.
(3.5)

The fact that we use spaces where the time decay appears in the form of an Lq integrabil-
ity condition in time forces the condition ϑ = 0, so that we are in a critical situation, as
was the case for the local Cauchy problem at finite times in the H1 critical case p2 = n

4 .

Since Lp ⊂ Lp1 + Lp2 , (1 ≤ p2 ≤ p ≤ p1), it suffices to consider the two endpoint
cases n

p = 2 and n
p = min(4, n).

10



On the one hand, we can take θ = 1, δ(s) = 2
k and admissible pair q = r = 2(n+2)

n
(then δ(r) = n

n+2 , k = n + 2) such that

n

2p
= δ(r) + δ(s) =

n

n + 2
+

2
k

= 1.

On the other hand, for n ≥ 4, we can take θ = 0, δ(s) = 1 + 1
k and admissible pair

q = r = 2(n+1)
n−1 (then δ(r) = n

n+1 , k = n + 1) such that

n

2p
= δ(r) + δ(s) =

n

n + 1
+ 1 +

1
k

= 2.

For n = 3, we can take θ = 0, k = q = r = 4, and δ(r) = δ(s) = 3
4 such that n

2p = 3
2 .

The smallness condition which ensures the contraction takes the form∥∥K̇(t)u0+ + K(t)u1+

∥∥
Lq(I;B

1/2
r,2 )

≤ R0 (3.6)

for some absolute small constant R0. (3.6) can be ensured by Lemma 2.2. In particular
the time T of local resolution cannot be expressed in terms of the H1 × L2 norm of
(u0+, u1+) alone, as is typical of a critical situation.

The continuity in t0 up to and including infinity follows from an additional application
of the same estimates.

An immediate consequence of the estimates in the proof of Proposition 3.1 is the
existence of asymptotic states for solutions of the equation (1.1) in X1([T,∞)) for some
T . Furthermore the conservation law of the energy is easily extended to infinite time for
such solutions.

Proposition 3.2. Let V satisfy (H1) with p1 ≤ n
2 . Let T ∈ R, I = [T,∞) and let

u ∈ X1(I) be a solution of the equation (1.1). Then

1. (ũ, ˜̇u1) ∈ Cb

(
I,H1 × L2

)
. In particular the following limit exists(
ũ0(∞), ũ1(∞)

)
= lim

t→∞
(
ũ(t), ˜̇u(t)

)
as a strong limit in H1 × L2.

2. u satisfies the equation (3.3) with (u0+, u1+) =
(
ũ0(∞), ũ1(∞)

)
.

3. u satisfies the conservation law

E(u) =
1
2

∥∥ũ1(∞)
∥∥2

2
+

1
2

∥∥∇ũ0(∞)
∥∥2

2
+

1
2

∥∥ũ0(∞)
∥∥2

2
.
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Proof: Part (1) We estimate for T ≤ t1 ≤ t2∥∥ũ(t2) − ũ(t1)
∥∥

H1 +
∥∥˜̇u(t2) − ˜̇u(t1)

∥∥
L2

≤∥∥∫ t2

t1

K(t2 − s)f(u(s))ds
∥∥

H1

≤∥∥K ∗ f
∥∥

X1([t1,t2])

and it reduces to the estimate of term
∥∥f(u)

∥∥
Lq′

(
[t1,t2];B

1/2

r′,2
) with the same choice of

exponents as in the proof of Proposition 3.1.

Part (2) follows from Part (1) and from Proposition 3.1, especially part (2).

Part (3) From the conservation law at finite time and from Part (1), it follows that
the following limits exist

lim
t→∞F (u) =E(u) − 1

2
lim
t→∞

∥∥˜̇u∥∥2

2
− 1

2
lim
t→∞

∥∥∇̃u
∥∥2

2
− 1

2
lim
t→∞

∥∥ũ
∥∥2

2

=E(u) − 1
2

∥∥ũ1(∞)
∥∥2

2
− 1

2

∥∥∇ũ0(∞)
∥∥2

2
− 1

2

∥∥ũ0(∞)
∥∥2

2
,

(3.7)

where
F (u) =

1
4

∫
dxdy

∣∣u(t, x)
∣∣2V (x − y)

∣∣u(t, y)
∣∣2 ∈ C(

R
)
.

On the other hand, ∣∣F (u)
∣∣ ≤ C

∥∥V
∥∥

p

∥∥u
∥∥4

r
∈ L1

t (3.8)

by the Hölder and Young inequalities and by Lemma 2.3 with q = 4, 1
2 ≤ δ(r) ≤ 1 + 1

4
for n

p = 4δ(r). It then follows from (3.8) that the limit in (3.7) is zero.

The existence and the properties of the wave operators now follow from the previous
local result at infinity and from the global result of Section 2.

Proposition 3.3. Let V be nonnegative and satisfy (H1) with p1 ≤ n
2 and p2 > n

4 . Then

1. For any
(
u0+, u1+

) ∈ H1 × L2, the equation (3.3) has a unique solution u in
X1

loc(R)∩X1(R+), such that ũ(t) ∈ C(
R∪{+∞}; H1

)
. Furthermore u satisfies the

conservation law

E(u) =
1
2

∥∥u1+

∥∥2

2
+

1
2

∥∥∇u0+

∥∥2

2
+

1
2

∥∥u0+

∥∥2

2
,

for all t ∈ R.

2. The wave operator Ω+ : (u0+, u1+) → (u(0), u̇(0)) is well-defined in H1 × L2, and
is continuous and bounded in the H1 × L2 norm.

Proof: Part (1) follows immediately from Proposition 2.2, 2.3, 3.1 and 3.2. In
Part (2), boundedness of Ω+ follows from the conservation law of the energy, while the
continuity follows from the corresponding statements in Proposition 2.1 and 3.1.
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4 Scattering Theory II: Asymptotic completeness

In this section, we continue the study of the theory of scattering for the equation (1.1)
by addressing the second question, namely the asymptotic completeness holds in the
energy space H1 × L2 for radial and suitably repulsive potentials. In view of the result
of Section 3, especially Proposition 3.2, it will turn out that the crux of the argument
consists in showing that the global solutions of the equation (1.1) in X1

loc(R) constructed
in Proposition 2.3 actually belong to X1(R), namely exhibit the time decay properties
contained in the definition of that space. To this end we have to use the strategy of
frequency decomposition and the method in [18],[10] which base on two basic facts. The
first one is the finiteness of the propagation speed. The second fact follows from the
Morawetz-type estimate, which is closely related to the approximate dilation invariance
of the equation. Space time is split into an internal and an external region where |x| is
small or large respectively as compared with |t|. For radial repulsive potentials according
to the assumption (H2), the Morawetz-type estimate implies an a priori estimate for a
suitable norm of the internal part of u. One use that estimate in the internal and the
propagation estimate in the external region. Plugging those estimates into the integral
equation for the solution u, we prove successively that a suitable norm of u is small
in large intervals and tends to zero at infinity and that u belongs to X1(R) for some
θ ∈ [0, 1].

We continue to restrict our attention to positive time. We first state an elementary
property of H1 × L2 solutions of the free Klein-Gordon equation.

Lemma 4.1. Let (u0, u1) ∈ H1 × L2 and 2 < r ≤ 2∗. Then K̇(t)u0 + K(t)u1 tends to
zero in Lr norm when |t| → ∞.

Proof: It suffices to prove for f ∈ H1∥∥eitωf
∥∥

r
−→ 0, as |t| −→ ∞.

We approximate f in H1 norm by g ∈ B
(n+2)( 1

2
− 1

r
)

r′,2 ∩ H1. By Lemma 2.1 and the
unit property in H1, we estimate∥∥eitωf

∥∥
r
≤∥∥eitωg

∥∥
r
+ C

∥∥f − g
∥∥1−δ(r)

2

∥∥∇(f − g)
∥∥δ(r)

2

≤C|t|−δ(r)
∥∥g

∥∥
B

(n+2)( 1
2− 1

r )

r′,2
+ C

∥∥f − g
∥∥

H1 ,

from which we easily obtain the result as |t| −→ ∞.

We are now in a position to prove the finiteness of the propagation speed in the form
of local energy conservation. For any open ball Ω = B(x,R) of center x and radius R in
Rn, for any t ∈ R, we define Ω±(t) = B(x,R ± |t|), with the convention that B(x,R) is
empty if R ≤ 0. For any measurable set Ω ⊂ Rn, for any (u0, u1) ∈ H1 × L2, we define

E(u0, u1; Ω) =
1
2

∫
Ω

dx
(|u1|2 + |∇u0|2 + |u0|2

)
+

1
4

∫
Ω

dx

∫
dy

∣∣u0(x)
∣∣2V (x − y)

∣∣u0(y)
∣∣2.
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Lemma 4.2. Let V satisfy (H1). Let u be a finite energy solution of the equation (1.1).
Then for any open ball Ω ⊂ Rn, for any t ∈ R, the following inequalities hold:

E(u(t), u̇(t); Ω−(t)) ≤ E(u(0), u̇(0); Ω), (4.1)

and
E(u(t), u̇(t); Ωc

+(t)) ≤ E(u(0), u̇(0); Ωc), (4.2)

where the subscrip c denotes the complement in Rn.

Proof: It suffices to prove the estimate for C2 solution by approximation.

Without loss of generality, we can assume that Ω = B(0, R) and that t is positive.
The formal proof of (4.1) proceeds as follows. Define

l(u) =
1
2
|u̇|2 +

1
2
|∇u|2 +

1
2
|u|2 +

1
4

∫
dy

∣∣u(t, x)
∣∣2V (x − y)

∣∣u(t, y)
∣∣2;

−→
M(u) = − Re

(
u̇∇u).

Then
l̇(u) + ∇ · −→M(u) = 0.

Integrating this equality over the region

Q(Ω, t) =
{
(t′, x′) ∈ Rn+1 : 0 ≤ t′ < t and x′ ∈ Ω−(t′)

}
,

Applying Gauss’s theorem and taking into account the fact that the vector (l,M) in
Rn+1 is time-like and outgoing on the side surface of Q(Ω, t), we obtain (4.1). For more
detail, please refer to [12] or [13].

The inequality (4.2) follows immediately from (4.1), from the conservation of the
energy and the reversibility in time of the equation.

For any function u of space time and for t ≥ 1, we define

u≷(t, x) = u(t, x)χ(|x| ≷ 2t), (4.3)

so that u = u< + u>. As a consequence of the above lemma, we have

Corollary 4.1. Let V satisfy (H1). Let u be a finite energy solution of the equation
(1.1). Then ∥∥u>(t)

∥∥
2
→ 0, as t → ∞.

Proof: In fact, It follows from Lemma 4.2 that for each t, we have∥∥u>(t)
∥∥2

2
=

∫
|x|≥2t

∣∣u(t, x)
∣∣2 dx ≤ E(u(t), u̇(t), Bc(0, 2t))

≤ E(u(0), u̇(0), Bc(0, t)),
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from which, the conservation of the energy and the Lebesgue dominated convergence
theorem we obtain the result.

The second main ingredient of the proof is the Morawetz inequality, which for the
equation (1.1) can be written as following

Proposition 4.1. Let V satisfy (H1). Let u be a finite energy solution of the equation
(1.1). Then for any s and t in R, s ≤ t, u satisfies the inequality

−
∫ t

s

∫
|u(τ, x)|2 x

|x| · (V ∗ ∇|u|2) dxdτ ≤ 4‖u̇‖L∞L2‖∇u‖L∞L2 . (4.4)

Proof: For the sake of completeness, we give a complete proof to the above
Morawetz estimate even if it is similar to the case of the Hartree equation. We first
need derive the corresponding result at the available level of regularity, we introduce the
same regularization as in the proof of energy conservation in Proposition 2.2, and we
then let ϕ tend to the Dirac distribution δ. Using the fact that uϕ = ϕ ∗ u ∈ C1

(
R,Hk

)
,

and let Muϕ = (h · ∇ + ∇·h
2 )uϕ, we obtain

Proof: Let Muϕ = h · ∇uϕ + 1
2(∇ · h)uϕ, we obtain

d

dt
Re < u̇ϕ,Muϕ >

= Re < üϕ,Muϕ > +Re < u̇ϕ,Mu̇ϕ >

= Re < Δuϕ,Muϕ > −Re < uϕ,Muϕ > +Re < ϕ ∗ f(u),Muϕ > +Re < u̇ϕ,Mu̇ϕ >

= Re < Δuϕ,Muϕ > −Re < uϕ,Muϕ > +Re < f(uϕ),Muϕ > +Re < u̇ϕ,Mu̇ϕ >

+ Re < ϕ ∗ f(u) − f(uϕ,Muϕ >

=: I1 + I2 + I3 + I4 + I5,

Let ρϕ = |uϕ|2 , we consider the first four terms, respectively.

I2 = Re
∫

uϕMuϕdx = Re
∫

uϕh · (∇ūϕ)dx +
1
2

∫
(∇ · h)|uϕ|2dx

=
1
2

∫ [
h · ∇|uϕ|2 + (∇ · h)|uϕ|2

]
dx =

1
2

∫ [
− (∇ · h)|uϕ|2 + (∇ · h)|uϕ|2

]
dx = 0

Arguing similarly in deriving I2, we have I4 = 0.

Making use of the following equalities

Re
∫

(h · ∇ūϕ)(V ∗ ρϕ)uϕdx =
1
2

∫
(h · ∇|uϕ|2)(V ∗ ρϕ)

= −1
2

∫
(∇ · h)(V ∗ ρϕ)ρϕdx − 1

2

∫
h · (V ∗ ∇ρϕ)ρϕdx,
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it follows that

I3 = −1
2

∫
ρϕh · (V ∗ ∇ρϕ)dx.

Now we are in position to consider I1. Since

Re
∫

Δuϕh · ∇ūϕdx = −Re
∫

∇uϕ · ∇(h · ∇ūϕ)dx

= −Re
∫

∂iuϕ · ∂i(hj · ∂j ūϕ)dx

= −Re
∫

∂iuϕ · ∂ihj · ∂j ūϕdx − Re
∫

∂iuϕ · hj · ∂i∂j ūϕ

= −Re
∫

∂iuϕ · ∂ihj · ∂j ūϕdx − 1
2

∫
hj · ∂j(|∇uϕ|2)

= −Re
∫

∂iuϕ · ∂ihj · ∂j ūϕdx +
1
2

∫
(∇ · h)|∇uϕ|2

and

Re
∫

Δuϕ
1
2
(∇ · h)ūϕdx = −1

2
Re

∫
∇uϕ(∇ · h)∇ūϕdx − 1

2
Re

∫
∇uϕ · ∇(∇ · h)ūϕdx

= −1
2

∫
(∇ · h)|∇uϕ|2dx − 1

4

∫
∇|uϕ|2∇(∇ · h)dx

= −1
2

∫
(∇ · h)|∇uϕ|2dx +

1
4

∫
|uϕ|2Δ(∇ · h)dx.

we derive that

I1 = −Re
∫

∂iuϕ · ∂ihj · ∂j ūϕdx +
1
4

∫
|uϕ|2Δ(∇ · h)dx.

We next choose a(x) =
(|x|2 + |σ|2)1/2 for some σ > 0, and verify by simple computation

h(x) = ∇a =
x(|x|2 + |σ|2)1/2

, hj(x) =
xj(|x|2 + |σ|2)1/2

.

Further,
∂ihj = ∇2

ija = a−1
(
δij − a−2xixj

)
is a positive matrix, and

Δ(∇ · h) = Δ2a = −(n − 1)(n − 3)a−3 − 6(n − 3)σ2a−5 − 15σ4a−7

is negative. Hence, we have by taking integration with respect to time t

Re < u̇ϕ,Muϕ >
∣∣t
s
≥ −1

2

∫ t

s

∫
ρϕh · (V ∗ ∇ρϕ)dxdτ +

∫ t

s
I5dτ (4.5)
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In addition, for I5 it boils down to∣∣ < h · ∇u, f(u) >
∣∣ ≤ C

∥∥h
∥∥
∞

∥∥V
∥∥

p

∥∥∇u
∥∥

2

∥∥u
∥∥3

s
, (4.6)

with δ(s) = n
3p ≤ 4

3 , so that the RHS of (4.6) belongs to L1
loc in time and I5 will converge

to 0 when ϕ to δ(x) by the Lebesgue dominated theorem and (4.6).

Now we take the harmless limit σ → 0 and ϕ to δ(x) by the Lebesgue dominated
theorem in (4.5) to obtain

−
∫ t

s

∫
|u(τ, x)|2 x

|x| · (V ∗ ∇|u|2) dxdτ ≤ 2Re < u̇, Mu > |ts.

This shows (4.4).

In the same way as in [10], the estimate of Proposition 4.1 will be used through its
following consequence. The assumption on V made so far are not stronger than those
made in Section 2. In order to proceed further, we need to exploit the fact the LHS of
(4.4) controls some suitable norm of u. For that purpose we need the repulsive condition
(H2) on V (see Introduction).

In order to exploit the Morawetz inequality (4.4), we shall need the following spaces.
Let σ > 0 and let Qi be the cube with edge σ centered at iσ where i ∈ Zn so that
Rn = ∪iQi. Let 1 ≤ r, m ≤ ∞. We define

lm(Lr) =
{
u ∈ Lr

loc :
∥∥u

∥∥
lm(Lr)

=
∥∥‖u‖Lr(Qi)

∥∥
lm

}
.

The spaces lm(Lr) do not depend on σ, and different values of σ yield equivalent
norms. The previous spaces have been introduced by Birman and Solomjak [2]. They
allow for an independent characterization of local regularity and of decay at infinity
in terms of integrability properties. The Hölder and Young inequalities hold in those
spaces, with the exponents m and r treated independently.

Proposition 4.2. Let V satisfy (H1) with n
4 < p2 ≤ p1 < ∞ and (H2). Let u ∈ X1

loc(R)
be a finite energy solution of the equation (1.1). Then, for any t1, t2 ∈ R with 1 ≤ t1 ≤ t2,
the following estimate holds∫ t2

t1

1
2t + a

∥∥u<(t)
∥∥α+4

lα+4(L2)
dt ≤ C

E1+α
2

Aα
, (4.7)

where u< is defined by (4.3) and C depends only on n, α and a.

Proof: We only need to note that the definition of u<(t) and replacing ‖u‖2 by
‖u̇‖2. From this, the proof is the same as that of the corresponding result for the Hartree
equation (see Proposition 4.2 in [10]).

The basic estimate (4.7) is not convenient for the direct application to the integral
equation, now we give a more usable consequence.
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Corollary 4.2. Let V satisfy (H1) with n
4 < p2 ≤ p1 < ∞ and (H2). Let u ∈ X1

loc(R)
be a finite energy solution of the equation (1.1). Then for any t1 ≥ 1, any ε > 0 and any
l ≥ a, there exists t2 ≥ t1 + l such that∫ t2

t2−l

∥∥u<(t)
∥∥α+4

lα+4(L2)
dt ≤ ε.

We can find such a t2 satisfying

t2 ≤ e
(2+a)Ml

ε (t1 + l + 1) − 1, (4.8)

where M is the RHS of (4.7), namely

M = C
E1+ α

2

Aα
.

Proof: The proof is the same as that of Lemma 4.4 in [10]. Let N be a positive
integer. From (4.7) we obtain

M ≥
N∑

j=1

Kj

2(t1 + jl) + a
,

where

Kj =
∫ t1+jl

t1+(j−1)l

∥∥u<(t)
∥∥α+4

lα+4(L2)
dt.

If Kj ≥ ε for 1 ≤ j ≤ N , then

M ≥ε

N∑
j=1

1
2(t1 + jl) + a

≥ε

l

∫ t1+(N+1)l

t1+l

1
2t + a

dt

≥ ε

(2 + a)l
log

t1 + (N + 1)l + 1
t1 + l + 1

,

which is an upper bound on N , namely

t1 + (N + 1)l ≤ e
(2+a)Ml

ε (t1 + l + 1) − 1.

For the first N not satisfying that estimate, there is a j with Kj ≤ ε and we can take
t2 = t1 + jl for that j. That t2 is easily seen to satisfy (4.8).

We turn to exploit the estimates of Corollary 4.1 and Corollary 4.2 together with
the integral equation for u to prove that for 2 < r < 2∗, the Lr norm of u is small in
large intervals. The idea of the proof partially follows the version given in [7] for the
NLS equation, in [8] for the NLKS and NLS equations, in [10] for the Hartree equation.
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Now we devote attention to deal with the difficulty which is related with the dispersive
estimates for the Klein-Gordon equation. It is well known that the dispersive estimates
play an crucial role in the proof of time decay property, besides the Morawetz inequality
and the finite propagation speed. Comparing with the Schrödinger or wave equation, the
dispersive Lp−Lq estimates for the Klein-Gordon equation are more complicated, which
turn out to be mixture of the dispersive properties of the relativistic and non-relativistic
equations. We can exploit the high and low frequency decomposition to distinguish those
to derive desired results.

Firstly, let us fix a real-valued radially symmetric bump function ϕ(ξ) ∈ C∞
0 (Rn)

adapted to the ball {ξ ∈ Rn : |ξ| ≤ 2} which equals 1 on the ball {ξ ∈ Rn : |ξ| ≤ 1}.
For each N > 1, we define the Fourier multiplier

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ), P̂>Nf(ξ) := (1 − ϕ(ξ/N))f̂(ξ).

The projection operators P≤N , P>N can commute with the groups K(t), K̇(t). Then,
Lemma 2.1 can be restated as follows.

Lemma 4.3. Let n
n+2 ≤ δ(r) ≤ n

2 . Then we have the following estimates

(1) Dispersive estimates in low frequency∥∥K(t)P≤Nf
∥∥

r
≤ Cμ(t)N s

∥∥f
∥∥

r′ , t > 0, (4.9)

where
μ(t) = min

(|t|−(n−2)( 1
2
− 1

r
), |t|−δ(r)

)
, s = (n + 2)(

1
2
− 1

r
) − 1 ≥ 0;

(2) Dispersive estimates in high frequency∥∥K(t)P>Nf
∥∥

r
≤ Ct−(n−1)( 1

2
− 1

r
)
∥∥P>Nf

∥∥
W (n+1)( 1

2− 1
r )−1,r′ , t > 1. (4.10)

Remark 4.1. Recall K(t) = U(t)−U(−t)
2iω , one easily verifies that Lemma 4.3 is just a direct

consequence of the Bernstein inequality and Lemma 2.1 with θ = 1, 0. The condition
n

n+2 ≤ δ(r) ensures the order of derivative s ≥ 0. This lemma reflects the fact that
for long time the solution of the Klein-Gordon equation disperses as the Schrödinger
equation in low frequency (non-relativistic) regions and disperses as the wave equation
in high frequency (relativistic) regions, and for short time it has better time decay than
the Schrödinger equation in low frequency regions.

For the sake of convenience, we define

f≷(u) :=
(
V ∗ |u≷|2

)
u, u

≷
2 (t) := −

∫ t

t−l2

K(t − s)f≷(u(s))ds,

where u≷ is the same as (4.3). One easily shows that

|f(u)| ≤ 2
(|f>(u)| + |f<(u)|).

For convenient reference, we need one useful nonlinear estimate due to Ginibre and Velo
(cf (4.59) in [10]), the proof is omitted here.
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Lemma 4.4. [10] Let V satisfy (H1) with 2 < n
p1

≤ n
p2

< min
(
n, 4) and (H2), there

exist r with n
n+1 ≤ δ(r) < 1 such that the internal estimate

‖f<u(t)‖r′ ≤ M‖u<(t)‖m/β
lm(L2)

, m = α + 4 (4.11)

holds for some β with [1 − (n − 2)(1
2 − 1

r )]β > 1 and for all t ≥ 1.

Proposition 4.3. Let V satisfy (H1) with 1 < n
p1

≤ n
p2

< min
(
n, 4) and (H2). Let

u ∈ X1
loc(R) be a finite energy solution of the equation (1.1). Let 2 < r < 2∗, then for

any ε > 0, and any l1 > 0, there exists t2 ≥ l1 such that∥∥u
∥∥

L∞
(
[t2−l1,t2],Lr

) < ε. (4.12)

Proof: Since u ∈ L∞(R,H1), it is sufficient to derive the result for one value of r
with 2 < r < 2∗, δ(r) sufficiently close to 1. The result for general r will then follow by
interpolation with uniform boundedness in H1.

For further reference, we note that for any s1, s2, t ∈ R,

N (s1, s2, t) :=
∫ s2

s1

K(t − s)f(u(s))ds

=K̇(t − s2)u(s2) + K(t − s2)u̇(s2) − K̇(t − s1)u(s1) − K(t − s1)u̇(s1),

so that ∥∥N (s1, s2, t)
∥∥

H1 ≤ 2
(∥∥u

∥∥
H1 + ‖u̇‖2

) ≤ 2
√

E. (4.13)

Decay of the high frequency part.

Since ∥∥ < ξ > ̂P>Nu(t)(ξ)
∥∥

L2 = ‖P>Nu(t)‖H1 ≤ ‖u(t)‖H1 ≤
√

E,

we have ∥∥P>Nu(t)‖L2 ≤
√

EN−1.

By interpolation, one has for each ε > 0, there exists N0 sufficiently large such that

‖P>N0u(t)‖Lr ≤ ‖P>N0u(t)‖1−δ
L2 ‖P>N0u(t)‖δ

L2∗ ≤ C
√

EN δ−1
0 < ε/4. (4.14)

for some 0 ≤ δ = δ(r) < 1 and all t > 0.

Decay of the low frequency part.

For technical reasons, we also introduce an r1 with δ(r1) > 1, which will have to
satisfy various compatible conditions.

Now ε be given as above, and fix N0. Now we deal with the low frequency regions .
For each l1, we introduce l2 ≥ 1, t1 > 0 and t2 ≥ t1 + l where l = l1 + l2, to be chosen
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later; l2 and t1 will have to be sufficiently large, depending on ε but not on l1 for given
u. We split the integral equation for P≤N0u(t) with t ∈ [t2 − l1, t2] as follows

P≤N0
u(t) =K̇(t)P≤N0

u(0) + K(t)P≤N0
u̇(0)

−
( ∫ t−l2

0
+

∫ t

t−l2

)
K(t − s)P≤N0

f(u(s))ds

=: u(0)(t) + u1(t) + u2(t).

We estimate the various terms in Lr successively. In all proof, M denotes various con-
stants, depending only on r, r1 and E(u), possibly varying from one estimate to the
next.

Estimate of u(0)(t)

It follows from Lemma 4.1 that∥∥K̇(t)u0 + K(t)u1

∥∥
Lr → 0

when t → ∞, so that for t > t2 − l1 ≥ t1 + l2 > l2∥∥u(0)(t)
∥∥

Lr ≤ ∥∥K̇(t)u0 + K(t)u1

∥∥
Lr <

ε

4
, (4.15)

for l2 sufficiently large depending on ε.

Estimate of u1(t) We estimate by the Hölder inequality

∥∥u1

∥∥
r
≤ ∥∥u1

∥∥1− δ
δ1

2

∥∥u1

∥∥ δ
δ1
r1

, (4.16)

where δ = δ(r), δ1 = δ(r1). The L2 norm of u1 is estimated by (4.13). Let CN0,r1 :=

CN
(n+2)( 1

2
− 1

r1
)−1

0 , the Lr1 norm is estimated by the use of Lemma 4.3 as

∥∥u1(t)
∥∥

r1
≤CN0,r1

∫ t−l2

0
(t − s)−δ(r1)

∥∥f(u(s))
∥∥

r′1
ds

≤CN0,r1

l
1−δ(r1)
2

δ(r1) − 1

∥∥f(u)
∥∥

L∞
(

R,Lr′1
)

≤CN0,r1M
l
1−δ(r1)
2

δ(r1) − 1
.

(4.17)

Here we used the fact ∥∥f(u)
∥∥

L∞
(

R,Lr′1
) ≤ M (4.18)

Indeed, by Hölder and Young’s inequalities, one has∥∥f(u)
∥∥

Lr′1 ≤ ‖V ‖p‖u‖3
Lr2 ≤ ‖V ‖p‖u‖3

H1

with δ(r1) + 3δ(r2) = n
p . Thus for any 1 < n

p < ∞, we can take admissible r1, r2 such
that 0 ≤ δ(r2) ≤ 1 < δ(r1).
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Furthermore, by (4.16), (4.17), we can ensure that for l2 < t2 − l1 ≤ t ≤ t2∥∥u1

∥∥
r
≤ CN0,r1Ml

δ
δ1

(1−δ(r1))

2 <
ε

4
(4.19)

for l2 sufficiently large depending on ε. We now choose l2 = l2(ε) so as to ensure both
(4.15) and (4.19).

Fix l2, we now turn to the estimate of u2(t). Here we need to consider the contribu-
tions of internal and external regions separately.

Contribution of the external region of u2

By the similar computation as in (4.17), note that better dispersive effect in short
time we have∥∥u>

2 (t)
∥∥

r
≤CN

(n+2)( 1
2
− 1

r
)−1

0

{∫ t−1

t−l2

(t − s)−δ(r) +
∫ t

t−1
(t − s)−(n−2)( 1

2
− 1

r
)
}∥∥f>(u(s))

∥∥
Lr′ ds

≤CN0,l2,r

∥∥f>(u(s))
∥∥

L∞
(
[t−l2,t],Lr′

).

holds for n
n+2 ≤ δ(r) < 1, where CN0,l2,r is a finite constant depending on N0, l2, r since

(n − 2)(1
2 − 1

r ) < 1.

By the Hölder and Young inequalities again, we get∥∥f>(u(s))
∥∥

Lr′ ≤ ‖V ‖p‖u‖r2‖u>‖2
r3

≤ ‖V ‖p‖u‖r2‖u>‖σ
2‖u‖2−σ

2∗ , (4.20)

where δ(r) + δ(r2) + 2δ(r3) = n
p .

For each p with 1 < n
p < 4, we can take suitable r, r2, r3 such that n

n+2 ≤ δ(r) ≤
1, 0 ≤ δ(r2) ≤ 1, 0 ≤ δ(r3) < 1 and 0 < σ ≤ 2.

By the finiteness of the propagation speed, that is, Corollary 4.1, we can ensure that
the contribution of the external region to

∥∥u2(t)
∥∥

r
satisfies

∥∥u>
2 (t)

∥∥
r
≤CN0,l2,rM

∥∥u>

∥∥σ

L∞([t2−l,t2],L2)
<

ε

4
, (4.21)

for all t ∈ [t2−l1, t2] by taking t1 sufficiently large depending on ε, since we have imposed
t2 ≥ t1 + l = t1 + l1 + l2. We now choose t1 = t1(ε) such that (4.21) holds.

Contribution of the internal region of u2

By (4.9), Hölder inequality and (4.11), we get

∥∥u<
2 (t)

∥∥
r
≤CN0,r

( ∫ t−1

t−l2

(t − s)−δ(r) +
∫ t

t−1
(t − s)−(n−2)( 1

2
− 1

r
)
)∥∥f<(u(s))

∥∥
Lr′ ds

≤CN0,l2,rM

( ∫ t

t−l2

∥∥u<(s)
∥∥m

lm(L2)
ds

)1/β

,

where CN0,l2,r is a finite constant since (n − 2)(1
2 − 1

r )β′ < 1.
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For l2, t1 given above, applying Corollary 4.2 to conclude that there exists t2 ≥
t1 + l = t1 + l1 + l2 such that the contribution of the external region to

∥∥u2(t)
∥∥

r
satisfies

∥∥u<
2 (t)

∥∥
r
≤CN0,l2,rM

( ∫ t2

t2−l

∥∥u<(s)
∥∥m

lm(L2)
ds

) 1
β

<
ε

4
, (4.22)

for all t ∈ [t2 − l1, t2].

Collecting (4.15), (4.19), (4.21) and (4.22) yields (4.12).

Indeed, the arguments above have showed the more delicate consequence.

Corollary 4.3. Under the conditions in Proposition 4.3, then for any ρ > 0 and any
ε > 0 there exists Nε > 1 sufficient large such that∥∥P>Nεu(t)

∥∥
Lr < MN δ−1

ε =: ερ, t > 0 (4.23)

and for any l1 > 0 there exists t2 ≥ l1 such that∥∥P≤Nεu
∥∥

L∞
(
[t2−l1,t2],Lr

) < ε (4.24)

hold for 2 < r < 2∗.

We observe an useful fact that the estimates on the high frequency holds uniformly
in t > 0, hence the iteration scheme will only be carried on the low frequency part which
is key ingredient of the following proof.

Proposition 4.4. Let V satisfy (H1) with 2 < n
p1

≤ n
p2

< min(4, n) and (H2). Let
u ∈ X1

loc(R) be a finite energy solution of the equation (1.1). Let 2 < r < 2∗. Then∥∥u(t)
∥∥

Lr tends to zero when t → ∞.

Proof: As (4.23) and (4.24) hold, it suffices to show that for given ε and Nε above,
and for some l1 sufficiently large (depending on u, ε and Nε), then there exists t2 > l1
such that ∥∥P≤Nεu

∥∥
L∞

(
[t2−l1, ∞),Lr

) < ε. (4.25)

Here we use the bootstrap argument.

Since (4.24) holds and the map t �→ ‖u(t)‖Lr is continuous, we can assume that there
exists t0 with t2 ≤ t0 < ∞ such that

‖P≤Nεu(t)‖
L∞

(
[t2−l1,t0),Lr

) < ε, (4.26)

and

‖P≤Nεu(t0)‖Lr = ε. (4.27)
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We write the integral equation for P≤Nεu(t0) as follows

P≤Nεu(t0) ={K̇(t0)P≤Nεu(0) + K(t0)P≤Nεut(0)}

− ( ∫ t0−l1

0
+

∫ t0−1

t0−l1

+
∫ t0

t0−1

)
K(t0 − s)P≤Nεf(u(s))ds

=: u(0) + u1 + u2 + u3.

In the same way as in Proposition 4.3, we can ensure that∥∥u(0)
∥∥

Lr <
ε

4
, (4.28)

and ∥∥u1

∥∥
r
≤ MCNε l

δ
δ1

(1−δ1)

1 <
ε

4
, (4.29)

for t0 ≥ t2 > l1, l1 sufficiently large depending on u, ε and Nε.

By the interpolation, one has

∥∥u2

∥∥
r
≤∥∥u2

∥∥1− δ
δ1

2

∥∥u2

∥∥ δ
δ1
r1

. (4.30)

For n
n+1 < δ(r) < 1 and δ1 > 1, by the similar argument as driving (4.17), we estimate

∥∥u2

∥∥
r
≤CN

(n+2)( 1
2
− 1

r1
)−1

ε

δ(r1) − 1

∥∥f(u(s))
∥∥

L∞
(
[t0−l1,t0],Lr′1

),

∥∥u3

∥∥
r
≤CN

(n+2)( 1
2
− 1

r
)−1

ε

1 − δ(r)

∥∥f(u(s))
∥∥

L∞
(
[t0−l1,t0],Lr′

).

Here, we need the following inequalities

‖f(u)‖δ/δ1
r1

′ ≤M
∥∥u

∥∥1+ν

Lr , (4.31)

‖f(u)‖r′ ≤M
∥∥u

∥∥1+ν

Lr (4.32)

valid for some ν > 0, which is the same as in [10], so we sketch the proof.

In fact, we can take 2 < 2δ1 < n
p < 4δ < 4 and δ, δ1 both close to 1 such that

‖f(u)‖r′
(1)

≤ ‖V ‖p‖u‖3
r2

≤ ‖V ‖p‖u‖3(1−δ2/δ)
2 ‖u‖3δ2/δ

r ,

where δ(1) + 3δ2 = n
p . Hence

max
{‖f(u)‖δ/δ1

r1
′ , ‖f(u)‖r′

} ≤ M‖u‖1+ν ,

where 1 + ν = 3δ2/δ(1) =
(

n
p − δ(1)

)
/δ(1) > 1 since n

p > 2δ(1).
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Then applying (4.31), (4.32) and Proposition 4.3 to conclude that for ν > 0 we can
take ρ > 0 small enough depending only on r, r1, n such that∥∥u2

∥∥
r
+

∥∥u3

∥∥
r
≤MN

(n+2)( 1
2
− 1

r 1
)−1

ε

∥∥u
∥∥1+ν

L∞
(
[t0−l1,t0],Lr

)
≤MN

(n+2)( 1
2
− 1

r 1
)−1

ε ε1+ν

≤Mερ(δ−1)−1((n+2)( 1
2
− 1

r 1
)−1)ε1+ν

<
ε

2
,

(4.33)

holds for sufficient small ε depending only on ‖u‖H1 .

Collecting (4.28) − (4.33), we have

ε = ‖P≤Nεu(t0)‖Lr

≤ ‖u(0)‖Lr + ‖u1‖Lr + ‖u2‖Lr + ‖u3‖Lr

< ε.

This is a contradiction. That is to say∥∥P≤Nεu
∥∥

L∞
(
[t2−l1,∞),Lr

) ≤ ε. (4.34)

Combining (4.23) with (4.34), one gets

‖u‖L∞[t2−l1,∞),Lr) ≤ 2ερ.

Since ε is arbitrarily small, it yields the desired result.

We can now state the global space-time integrability of the solution.

Proposition 4.5. Assume that V satisfies (H1) with 2 < n
p1

≤ n
p2

< min(n, 4) and (H2).
Let u ∈ X1

loc(R) be a finite energy solution of the equation (1.1). Then u ∈ X1(R).

Proof: We give the proof in the special case where V ∈ Lp. The general case of V
satisfying (H1) with p2 < p1 can be treated by a straightforward extension of the proof
based on Lemma 2.2. Let (q, r) be the admissible pair satisfying⎧⎪⎪⎨⎪⎪⎩

2
q
≤ (n − 1 + θ)(

1
2
− 1

r
),

(n + θ)(
1
2
− 1

r
) − 1

q
=

1
2
.

(4.35)

Let 0 < t1 < t2, the key estimate consists in again∥∥f(u)
∥∥

Lq′
(
[t1,t2],B

1/2

r′,2
) ≤ ∥∥V

∥∥
p

∥∥u
∥∥

Lq
(
[t1,t2],B

1/2
r,2

)∥∥u
∥∥2

Lk
(
[t1,t2],Ls

) (4.36)
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with ⎧⎪⎨⎪⎩
1
k

+
1
q

=
1
2
,

2δ(s) + 2δ(r) =
n

p
.

(4.37)

By interpolation and Lemma 2.3, let c < k < ∞ we have∥∥u
∥∥

Lk
(
[t1,t2],Ls

) ≤ ∥∥u
∥∥1−λ

Lc
(
[t1,t2],Lb

)∥∥u
∥∥λ

L∞
(
[t1,t2],La

)
≤ C

∥∥u
∥∥1−λ

X1
(
[t1,t2]

)∥∥u
∥∥λ

L∞
(
[t1,t2],La

)
with ⎧⎨⎩

1
k

=
1 − λ

c
,

δ(s) = (1 − λ)δ(b) + λδ(a).
(4.38)

and 2
c ≤ δ(b) ≤ 1 + 1

c .

Similar as the arguments of Proposition 3.1, we only consider the two endpoint cases.

On the one hand, one can choose θ = 1, δ(b) = 2
c and q = r = c = 2(n+2)

n (then
δ(r) = n

n+2 , k = n + 2, λ = n−2
n ) such that

n

2p
= (1 − λ)δ(b) + δ(r) + λδ(a)

= (1 − λ)
2
c

+ δ(r) + λδ(a)

=
2
k

+ δ(r) + λδ(a)

= 1 + λδ(a) > 1

closes to 1 if δ(a) > 0 closes to 0.

On the other hand, for n ≥ 4, one can choose θ = 0, δ(b) = 1 + 1
c and q = r = c =

2(n+1)
n−1 (then δ(r) = n

n+1 , k = n + 1, λ = n−3
n−1) such that

n

2p
= (1 − λ)(1 +

1
c
) + δ(r) + λδ(a)

= (1 − λ) +
1
k

+ δ(r) + λδ(a)

= 2 − λ + λδ(a) < 2

closes to 2 if δ(a) < 1 closes to 1; For n = 3, one can choose q = r = c = b = a = 2(4+θ)
2+θ

(then δ(a) = δ(b) = δ(r) = 3
4+θ , k = 4 + θ, λ = θ

2+θ ) such that

n

2p
= (1 − λ)δ(b) + δ(r) + λδ(a) =

6
4 + θ

<
3
2
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closes to 3
2 if θ > 0 closes to 0.

Therefore, applying the estimates to the integral equation for u with initial time t1,
we get that for any 2 < n

p < min(4, n), there exist θ ∈ [0, 1] and δ(a) ∈ (0, 1) such that

y :=‖u‖X1([t1,t2])

≤C
∥∥u0

∥∥
H1 + C

∥∥u1

∥∥
L2 + C

∥∥f(u)
∥∥

Lq′
(
[t1,t2],B

1/2

r′,2
)

≤M + C
∥∥V

∥∥
p

∥∥u
∥∥3−2λ

X1
(
[t1,t2]

)∥∥u
∥∥2λ

L∞
(
[t1,t2],La

)
≤M + C

∥∥V
∥∥

p

∥∥u
∥∥2λ

L∞
(
[t1,t2],La

)y3−2λ.

(4.39)

By Proposition 4.4,
∥∥u

∥∥
L∞

(
[t1,t2],La

) can be made arbitrarily small by taking t1 suf-

ficiently large, uniformly with respect to t2. Furthermore for fixed t1, y is a continuous
function of t2, starting from zero for t2 = t1. It then follows from (4.39) that for t1
sufficiently large, y is bounded uniformly in t2, namely that u ∈ X1

(
[t1,∞)

)
. Plugging

that result again into the integral equation yields that u ∈ X1(R+). The same argument
holds for negative times.

As a direct consequence of the global space-time integrability, one easy derives the
scattering result as following:

Theorem 4.1. Assume that V satisfies (H1) with 2 < n
p1

≤ n
p2

< min
(
4, n

)
and (H2).

Then there exist homeomorphisms Ω± on H1 × L2 with the following property. For any
(ϕ, ψ) ∈ H1 × L2, let v be the solution to{

�v + v = 0,

(v(0), v̇(0)) = (ϕ, ψ),

and let u± be the global solution to{
�u± + u± + (V ∗ |u±|2)u± = 0,

(u±(0), u̇±(0)) = Ω±(ϕ, ψ).

Then we have
lim

t→±∞
∥∥(v(t), v̇(t)) − (u±(t), u̇±(t))

∥∥
H1×L2 = 0.

Moreover, this property uniquely determines Ω±. Thus the scattering operator S =
Ω−1

+ Ω− is also a homeomorphism on H1 × L2.

This completes the proof of Theorem 1.1.
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