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Abstract

In this paper, we study the regularity of weak solutions and the blow-up criteria
of smooth solutions to the magneto-micropolar fluid equations in R

3. We obtain
the classical blow-up criteria for smooth solutions (u, ω, b), ie. u ∈ Lq(0, T ;Lp(R3))
for 2

q + 3
p ≤ 1 with 3 < p ≤ ∞, u ∈ C([0, T );L3(R3)) or ∇u ∈ Lq(0, T ;Lp) for

3
2 < p ≤ ∞ satisfying 2

q + 3
p ≤ 2. Moreover, our results indicate that the regularity

of weak solutions is dominated by the velocity u of fluid. In the end-point case
p = ∞, the blow-up criteria can be extended to more general spaces (u, ω, b) ∈
L2(0, T ; Ḃ0

∞,∞(R3)) or ∇(u, ω, b) ∈ L1(0, T ; Ḃ0
∞,∞(R3)).
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1 Introduction

This paper concerns about the regularity of weak solutions and blow-up criteria of smooth
solutions to the magneto-micropolar fluid equations in 3 dimensions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− (μ+ χ)Δu+ u · ∇u− b · ∇b+ ∇(p+ b2) − χ∇× ω = 0,

∂ω

∂t
− γΔω − κ∇divω + 2χω + u · ∇ω − χ∇× u = 0,

∂b

∂t
− νΔb+ u · ∇b− b · ∇u = 0,

divu = divb = 0
u(x, 0) = u0(x), ω(x, 0) = ω0(x), b(x, 0) = b0(x),

(1.1)

where u = (u1(x, t), u2(x, t), u3(x, t)) denotes the velocity of the fluid at a point x ∈ R
3,

t ∈ [0, T ), ω = (ω1(x, t), ω2(x, t), ω3(x, t)), b = (b1(x, t), b2(x, t), b3(x, t)) and p = p(x, t)
denote, respectively, the micro-rotational velocity, the magnetic field and the hydrostatic

1



pressure. u0, ω0 and b0 are the prescribed initial data for the velocity and angular velocity
and magnetic field with properties divu0 = 0 and divb0 = 0. μ is the kinematic viscosity,
χ is the vortex viscosity, κ and γ are spin viscosities, and 1

ν is the magnetic Reynold.
If the magnetic field b = 0, (1.1) reduces to the micropolar fluid system. Theory of
micropolar fluid was first proposed by Eringen [6] in 1966, which enable us to consider
some physical phenomena that cannot be treated by the classical Navier-Stokes equations
for the viscous incompressible fluid, for example, the motion of animal blood, liquid
crystals and dilute aqueous polymer solutions etc. The existences of weak solutions and
strong solution were treated by Galdi and Rionero [7] for weak solutions, Yamaguchi [20]
for strong solution. If, further, the vortex viscosity χ = 0, the velocity u does not depend
on the micro-rotation field ω, and the first equation reduces to the classical Navier-
Stokes equation which has been greatly analyzed, see, for example, the classical books by
Ladyzhenskaya [11], Lions [13] or Lemarié-Rieusset [12]. If we ignore the micro-rotation
of particles, it reduces to the viscous incompressible magneto-hydrodynamic equations,
which has also been studied extensively [18, 5, 2, 8, 4]. It is worthy to note that He and
Xin [8] proved the regularity criterion of weak solutions to the magneto-hydrodynamic
equations, which only need the velocity u or its gradient ∇u or the vorticity ∇×u satisfy
some conditions. This indicates that the velocity field u plays a more dominate role than
the magnetic field b does on the regularity of solutions to the magneto-hydrodynamic
equations.

The magneto-micropolar fluid system (1.1) was studied by Galdi and Rionero in [7].
Rojas-Medar [16] studied it and established the local in time existence and uniqueness of
strong solutions by the spectral Galerkin method, Ortega-Torres and Rojas-Medar [15]
proved global in time existence of strong solution for small initial data. Rojas-Medar
and Boldrini [17] proved the existence of weak solutions by the Galerkin method, and in
2D case, also proved the uniqueness of the weak solutions.

The purpose of this paper is to study the regularity of weak solutions and the break-
down criteria of smooth solution to the magneto-micropolar fluid system (1.1). The
classical blow-up criteria of smooth solution to Navier-Stokes equation also holds for the
magneto-micropolar fluid equations. As demonstrated in paper [8], we also prove that to
guarantee the regularity of weak solutions to (1.1), one only need impose conditions on
the velocity field of fluid. This also demonstrates that in the regularity of weak solutions
the micro-rotational velocity ω of particles and the magnetic field b play less important
role than the velocity u does, and the regularity of weak solutions to (1.1) is dominated
by the velocity u of fluid. In a more general case, i.e. Besov space Ḃ0∞,∞(R3), we need
all the velocity field u, micro-rotational velocity ω and magnetic field b to control the
blow-up of fluids. This indicates that, in the weaker topology, only use of velocity u is
not sufficient to guarantee the regularity of solutions.

For the convenient of following discussion, we introduce some function spaces
and notations. Let C∞

0, σ(R3) denote the set of all C∞ vector functions f(x) =
(f1(x), f2(x), f3(x)) with compact support such that divf(x) = 0. Lr

σ(R3) is the clo-
sure of C∞

0, σ(R3)-function with respect to the Lr-norm ‖ · ‖r for 1 ≤ r ≤ ∞. Hs
σ(R3)

denotes the closure of C∞
0, σ(R3) with respect to the Hs-norm ‖f‖Hs = ‖(1−Δ)

s
2 f‖2, for

s ≥ 0.
In the following arguments the letters C and Ci denote inessential constants which
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may vary from line to line, but do not depend on particular solutions or functions.
Now we state our main results.

Theorem 1.1. Let (u0, b0) ∈ H1
σ(R3) and w0 ∈ H1(R3). Assume that (u, b) ∈

C[0, T ;H1
σ(R3))∩C(0, T ;H2

σ(R3)) and ω ∈ C[0, T ;H1(R3))∩C(0, T ;H2(R3)) is a smooth
solution to equations (1.1). If (u, ω, b) satisfies

(1) u ∈ Lq(0, T ;Lp(R3)) for 2
q + 3

p ≤ 1 with 3 < p ≤ ∞.
(2) u ∈ C([0, T );L3(R3)).
Then the solution (u, ω, b) can be extended beyond t = T .

Theorem 1.2. Let (u0, b0) ∈ H1
σ(R3) and ω0 ∈ H1(R3). Suppose that (u, b) ∈

C[0, T ;H1
σ(R3))∩C(0, T ;H2

σ(R3)) and ω ∈ C[0, T ;H1(R3))∩C(0, T ;H2(R3)) is a smooth
solution to equations (1.1). If u satisfies

∫ T

0
‖∇u(t)‖q

pdx <∞, (1.2)

for 3
2 < p ≤ ∞ satisfying 2

q + 3
p ≤ 2. Then the solution (u, ω, b) can be extended to (0, T ′)

for some T ′ > T .

In the endpoint case p = ∞, we can extend the blow-up criteria to more general
space Ḃ0∞,∞(R3).

Theorem 1.3. Let (u0, b0) ∈ H1
σ(R3) and ω0 ∈ H1(R3). Suppose that (u, b) ∈

C[0, T ;H1
σ(R3))∩C(0, T ;H2

σ(R3)) and ω ∈ C[0, T ;H1(R3))∩C(0, T ;H2(R3)) is a smooth
solution to equations (1.1). If (u, ω, b) satisfies one of the conditions

∫ T

0
‖(u(t), ω(t), b(t))‖2

Ḃ0∞,∞
dt <∞, (1.3)

or
∫ T

0
‖∇(u(t), ω(t), b(t))‖Ḃ0∞,∞

dt <∞. (1.4)

then the solution (u, ω, b) can be extended beyond t = T .

We next consider the criteria on regularity of weak solutions to the magneto-
micropolar equations (1.1), thus we introduce the definition of a weak solution.

Definition 1.1. Let (u0(x), b0(x)) ∈ L2
σ(R3) and ω0(x) ∈ L2(R3). A measurable function

(u(x, t), ω(x, t), b(x, t)) is called a weak solution to the magneto-micropolar equations
(1.1) on (0, T ) if
(a)

(u(x, t), b(x, t)) ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;H1

σ(R3)),

and

ω ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3));

3



(b)
∫ T

0
{−(u, ∂τϕ) + (μ+ χ)(∇u,∇ϕ) + (u · ∇u, ϕ) − (b · ∇b, ϕ)} − χ(∇× ω,ϕ)dτ

= −(u0, ϕ(0)),

∫ T

0
{−(ω, ∂τφ) + γ(∇ω,∇φ) + κ(divω, divφ) + 2χ(ω, φ) + (u · ∇ω, φ) − χ(∇× u, φ)dτ

= −(ω0, φ(0)),

and ∫ T

0
{−(b, ∂τψ) + ν(∇b,∇ψ) + (u · ∇b, ψ) − (b · ∇u, ψ)} dτ = −(b0, ψ(0)).

for any (ϕ(x, t), ψ(x, t)) ∈ H1((0, T );H1
σ(R3) and φ(x, t) ∈ H1((0, T );H1(R3)with

ϕ(T ) = 0, φ(T ) = 0 and ψ(T ) = 0.

In the reference [17], Rojas-Medar and Boldrini proved the global existence of weak
solutions to the equations (1.1) of the magneto-micropolar fluid motion by the Galerkin
method. The weak solutions also satisfy the energy inequality

‖(u, ω, b)‖2
2 + 2μ

∫ t

0
‖∇u‖2

2ds+ 2γ
∫ t

0
‖∇ω‖2

2ds+ 2ν
∫ t

0
‖∇b‖2

2ds (1.5)

+2κ
∫ t

0
‖divω‖2

2ds+ 2χ
∫ t

0
‖ω‖2

2ds ≤ ‖(u0, ω0, b0)‖2
2.

Theorem 1.4. Let (u0, ω0, b0) ∈ L2(R3) with divu0 = divb0 = 0. Assume that there
exists a weak solution (u, ω, b) satisfying energy inequality (1.5) of strong form. If one
of the following conditions hold:

(1) u ∈ Lq(0, T ;Lp(R3)) for 2
q + 3

p ≤ 1 with 3 < p ≤ ∞.
(2) u ∈ C([0, T );L3(R3)).
Then (u, ω, b) is a unique solution with the initial value (u0, ω0, b0). Moreover the

solution (u, ω, b) ∈ C∞((0, T ) × R
n) for some T > 0.

Theorem 1.5. Let (u0, ω0, b0) ∈ L2(R3) with divu0 = divb0 = 0. Assume that there
exists a weak solution (u, ω, b) satisfying the energy inequality (1.5) and

∫ T

0
‖∇u(t)‖q

pdx <∞, (1.6)

for 3
2 < p ≤ ∞ satisfying 2

q + 3
p ≤ 2. Then (u, ω, b) is a unique solution with the initial

value (u0, ω0, b0). Moreover the solution (u, ω, b) ∈ C∞((0, T ) × R
n) for some T > 0.

Theorem 1.6. Let (u0, ω0, b0) ∈ L2(R3) with divu0 = divb0 = 0. Assume that there
exists a weak solution (u, ω, b) satisfying the energy inequality (1.5). If (u, ω, b) satisfies
one of the conditions

∫ T

0
‖(u(t), ω(t), b(t))‖2

Ḃ0∞,∞
dt <∞,
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or ∫ T

0
‖∇(u(t), ω(t), b(t))‖Ḃ0∞,∞

dt <∞.

Then (u, ω, b) is a unique solution with the initial value (u0, ω0, b0). Moreover the solution
(u, ω, b) ∈ C∞((0, T ) × R

n) for some T > 0.

Remark 1.1. In the more general case we require that (u, ω, b) ∈ L2(0, T ; Ḃ0∞,∞(R3)) or
∇(u, ω, b) ∈ L1(0, T ; Ḃ0∞,∞(R3)) to guarantee the regularity of weak solutions, moreover
that ω is not divergence free brings some difficulty, see the proof of Theorem 1.3 in
section 3. We naturally ask QUESTION: in the case of Theorem 1.3, whether the blow-
up criterion (1.3) and (1.4) can be replaced by conditions only on the velocity field of
fluids?

The proofs of Theorem 1.4, 1.5 and 1.6 are standard. Let (u(x, t), ω(x, t), b(x, t)) be
a weak solution satisfying the strong energy inequality (1.5) for any 0 < t0 < t ≤ T .
Since (u(t0), b(t0)) ∈ H1

σ(R3) and ω(t0) ∈ H1(R3), it follows from the classical local
existence theorem of strong solution that there exist a time T ′ > t0 and a unique solution
(u′, b′) ∈ C((t0, T ′);H1

σ(R3)) and ω′ ∈ C((t0, T ′);H1(R3)) with (u′(t0), ω′(t0), b′(t0)) =
(u(t0), ω(t0), b(t0)). Since (u, ω, b) is a weak solution satisfying the energy inequality
(1.5), we conclude that (u′, ω′, b′) = (u, ω, b) on [t0, T ′). we assert that T ′ = T . If not,
let T ′ < T , without loss of generality, we may assume that T ′ is the maximal existent
time for (u′, ω′, b′). Since (u′(t), ω′(t), b′(t)) = (u(t), ω(t), b(t)) on [t0, T ′), one has that
(u′(t), ω′(t), b′(t)) satisfies the conditions of Theorem 1.4, 1.5 or 1.6 on [t0, T ′). By virtue
of Theorem 1.1, 1.2 and 1.3, it follows that (u′(t), ω′(t), b′(t)) can be extended to interval
(0, T1) for some T1 > T ′, which is contradictory to the maximality of T ′. Thus we prove
the Theorem 1.3 and 1.4.

2 Proofs of Theorem 1.1 and Theorem 1.2

In this section we prove the Theorems 1.1 and 1.2 by the most fundamental tools.
Proof of Theorem 1.1: We differentiate the equations (1.1) with respect to xi,

then multiply the resulting equations by ∂xiu, ∂xiω, ∂xib, respectively, integrate with
respect to x and sum them up, it follows that

1
2

d
dt

(‖(∂xiu, ∂xiω, ∂xib)‖2
2) +

3∑
j=1

(
(μ+ χ)‖∂2

xixj
u‖2

2 + γ‖∂2
xixj

ω‖2
2 + ν‖∂2

xixj
b‖2

2

)

+κ‖div∂xiω‖2
2 + 2χ‖∂xiω‖2

2 (2.1)
≤ |(∂xiu · ∇u, ∂xiu)| + |(∂xib · ∇b, ∂xiu)| + |(∂xiu · ∇b, ∂xib)|

+|(∂xib · ∇u, ∂xib)| + |(∂xiu · ∇ω, ∂xiω)| + 2χ|(∇× ∂xiu, ∂xiω)|
= I1 + I2 + I3 + I4 + I5 + I6,

where use has been made of the facts that

(∇× ∂xiu, ∂xiω) = (∇× ∂xiω, ∂xiu), (b · ∇∂xib, ∂xiu) + (b · ∇∂xiu, ∂xib) = 0
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and

(u · ∇∂xiu, ∂xiu) = (u · ∇∂xib, ∂xib) = 0,

where (·, ·) denotes the L2 inner product on R
3. For conciseness, the short notation

‖(A,B,C)‖2
2 = ‖A‖2

2 + ‖B‖2
2 + ‖C‖2

2.

has been used and will be used in the following part.
(1) We estimate the terms Ij , j = 1, 2, · · · , 6. First of all, by Hölder, Gagliardo-

Nirenberge and Young inequalities, one has

I1 ≤ |
∫

R3

∂xiu · ∇∂xiu · u(x)dx| + |
∫

R3

∂xi∂xiu · ∇u · u(x)dx| (2.2)

≤ C‖u‖p‖∇u‖ 2p
p−2

‖D2u‖2

≤ C‖u‖p‖∇u‖1−3/p
2 ‖D2u‖1+3/p

2

≤ χ

12
‖D2u‖2

2 + C‖u‖2p/(p−3)
p ‖∇u‖2

2.

Similarly, for I2 one can deduce

I2 ≤ |
∫

R3

∂xib · ∇∂xib · u(x)dx| + |
∫

R3

∂xi∂xib · ∇b · u(x)dx (2.3)

≤ ν

18
‖D2b‖2

2 +C‖u‖2p/(p−3)
p ‖∇b‖2

2.

In the same way, for I3, I4 and I5, we have

I3, I4 ≤ ν

18
‖D2b‖2

2 + C‖u‖2p/(p−3)
p ‖∇b‖2

2, (2.4)

and

I5 ≤ γ

6
‖D2ω‖2

2 + C‖u‖2p/(p−3)
p ‖∇ω‖2

2. (2.5)

Finally, we deal with the term I6. Applying Hölder and Young inequalities, one has

I6 ≤ χ

2
‖∇ × ∂xiu‖2

2 + 2χ‖∇ω‖2
2. (2.6)

Inserting the estimates (2.2)-(2.6) of I1 − I6 into the inequality (2.1) and summing
up i from 1 to 3 to arrive at

d
dt

(‖(∇u,∇ω,∇b)‖2
2) + (2μ+

1
2
χ)‖D2u‖2

2 + γ‖D2ω‖2
2 + ν‖D2b‖2

2 + 2κ‖∇divω‖2
2

≤ C‖u‖2p/(p−3)
p ‖(∇u,∇ω,∇b)‖2

2.

Gronwall inequality implies the a priori estimate

‖(∇u,∇ω,∇b)‖2
2 ≤ ‖(∇u0,∇ω0,∇b0)‖2

2 exp
{
C

∫ t

0
‖u(s)‖2p/(p−3)

p ds
}
. (2.7)
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The above estimates are also valid for p = ∞ provided we modify them accordingly.
Combining the a priori estimate (2.7) with the energy inequality (1.5) and by

standard arguments of continuation of local solutions, we conclude that the solutions
(u(x, t), ω(x, t), b(x, t)) can be extended beyond t = T provided that u ∈ Lq(0, T ;Lp(R3))
for 2

q + 3
p ≤ 1 with 3 < p ≤ ∞.

(2) In the case u ∈ C([0, T );L3(R3)), one can decompose u = u1 + u2 with
‖u1;C([0, T ];L3)‖ ≤ ε and ‖u2;L∞([0, T ) × R

3‖ ≤ C(ε, ‖u;C([0, T ];L3)‖) for any ε > 0.
First we estimate I1.

I1 ≤ C

∫
R3

|u||D2u||∇u|dx
≤ C‖u1‖3‖∇u‖6‖D2u‖2 + C‖u2‖∞‖∇u‖2‖D2u‖2

≤ Cε‖D2u‖2
2 +C‖u2‖2

∞‖∇u‖2
2

≤ χ

12
‖D2u‖2

2 + C‖u2‖2
∞‖∇u‖2

2.

Similarly, for I2 − I4, one has

I2, I3, I4 ≤ C

∫
R3

|u||D2b||∇b|dx
≤ C‖u1‖3‖∇b‖6‖D2b‖2 + C‖u2‖∞‖∇b‖2‖D2b‖2

≤ Cε‖D2b‖2
2 + C‖u2‖2

∞‖∇b‖2
2

≤ ν

18
‖D2b‖2

2 + C‖u2‖2
∞‖∇b‖2

2,

and

I5 ≤ γ

6
‖D2ω‖2

2 + C‖u2‖2
∞‖∇ω‖2

2.

Collecting the above estimates of I1 − I5 and the estimate (2.6) of I6 and summing up i
from 1 to 3, then applying Gronwall inequality, we have

‖(∇u,∇ω,∇b)‖2
2 + C1

∫ t

0
(‖(D2u,D2ω,D2b)‖2

2) + 2κ‖∇divω‖2
2ds (2.8)

≤ ‖(∇u0,∇ω0,∇b0)‖2
2 exp

{
C

∫ t

0
‖u2(s)‖2

∞ds
}
<∞.

We thus obtain the proof of Theorem 1.1.
Proof of Theorem 1.2: Similarly as in the proof of Theorem 1.1, we differen-

tiate the equations (1.1) with respect to xi then multiply the resulting equations by
∂xiu, ∂xiω, ∂xib, respectively, and sum them, it follows that

1
2

d
dt

(‖(∂xiu, ∂xiω, ∂xib)‖2
2) +

3∑
j=1

(
(μ+ χ)‖∂2

xixj
u‖2

2 + γ‖∂2
xixj

ω‖2
2 + ν‖∂2

xixj
b‖2

2

)

+κ‖div∂xiω‖2
2 + 2χ‖∂xiω‖2

2 (2.9)
≤ |(∂xiu · ∇u, ∂xiu)| + |(∂xib · ∇b, ∂xiu)| + |(∂xiu · ∇b, ∂xib)|

+|(∂xib · ∇u, ∂xib)| + |(∂xiu · ∇ω, ∂xiω)| + 2χ|(∇× ∂xiu, ∂xiω)|
= I1 + I2 + I3 + I4 + I5 + I6,
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This time we estimate Ij, j = 1, 2, · · · , 5 in another way. By means of Hölder,Gagliardo-
Nirenberg and Young inequalities one has

I1 ≤ ‖∇u‖p‖∇u‖2
2p/(p−1) (2.10)

≤ C‖∇u‖p‖∇u‖2−3/p
2 ‖D2u‖3/p

2

≤ χ

12
‖D2u‖2

2 + C‖∇u‖2p/(2p−3)
p ‖∇u‖2

2.

Similarly, for I2 − I5 one has

I2, I3, I4 ≤ ν

18
‖D2b‖2

2 + C‖∇u‖2p/(2p−3)
p ‖∇b‖2

2, (2.11)

and

I5 ≤ γ

6
‖D2ω‖2

2 + C‖∇u‖2p/(2p−3)
p ‖∇ω‖2

2. (2.12)

Inserting the estimates (2.10)-(2.12) and (2.6) into (2.9) and summing up i from 1 to 3
to arrive at

d
dt

(‖(∇u,∇ω,∇b)‖2
2) + (2μ+

1
2
χ)‖D2u‖2

2 + γ‖D2ω‖2
2 + ν‖D2b‖2

2 + 2κ‖∇divω‖2
2

≤ C‖∇u‖2p/(2p−3)
p ‖(∇u,∇ω,∇b)‖2

2.

We get the a priori estimate

‖(∇u,∇ω,∇b)‖2
2 + C1

∫ t

0
(‖(D2u,D2ω,D2b)‖2

2 + 2κ‖∇divω‖2
2)ds (2.13)

≤ ‖(∇u0,∇ω0,∇b0)‖2
2 exp

{
C

∫ t

0
‖∇u‖2p/(2p−3)

p ds
}
,

by Gronwall inequality.
The above proof is also valid for p = ∞ provided we modify it accordingly. Combining

the a priori estimate (2.13) with the energy inequality (1.5) and by standard arguments
of continuation of local solutions, we conclude that the solutions (u(x, t), ω(x, t), b(x, t))
can be extended to (0, T ′) for some T ′ > T , provided that u satisfies

∫ T
0 ‖∇u(t)‖q

pdx <∞
for 3

2 < p ≤ ∞ with 2
q + 3

p ≤ 2. We thus complete the proof of Theorem 1.2.

3 Proofs of Theorem 1.3

In this section we use two different methods to prove the blow-up criteria of smooth solu-
tions for conditions (1.3) and (1.4), respectively. To condition (1.3) the Littlewood-Paley
decomposition and Bony’s para-product decomposition have been used; To condition
(1.4) we use the estimate obtained in Theorem 1.2 and a logarithmic Sobolev inequality
to give a simple proof. To do this we first introduce the Littlewood-Paley decomposition
and Bony’s para-product decomposition.
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Choose a nonnegative radial function χ(ξ) ∈ C∞
0 (Rn) such that 0 ≤ χ(ξ) ≤ 1 and

χ(ξ) =

⎧⎪⎨
⎪⎩

1, for |ξ| ≤ 3
4
,

0, for |ξ| > 4
3
,

and let ϕ̂(ξ) = χ(ξ/2) − χ(ξ), χj(ξ) = χ( ξ
2j ) and ϕ̂j(ξ) = ϕ̂( ξ

2j ) for j ∈ Z. Write

h(x) = F−1χ(ξ), hj(x) = 2njh(2jx);
ϕj(x) = 2njϕ(2jx),

where f̂(ξ) and F−1f(ξ) denote the Fourier transform and inverse transform, respec-
tively. Define the Littlewood-Paley projection operators Sj and 	j, respectively, as

Sju(x) = hj ∗ u(x), for j ∈ Z,

	ju(x) = ϕj ∗ u(x) = Sj+1u(x) − Sju(x), for j ∈ Z.

Formally 	j is a frequency projection to the annulus |ξ| ∼ 2j , while Sj is a frequency
projection to the ball |ξ| � 2j for j ∈ Z. For any u(x) ∈ L2(Rn) we have the Littlewood-
Paley decomposition

u(x) = h ∗ u(x) +
∑
j≥0

ϕj ∗ u(x)

u(x) =
∞∑

j=−∞
ϕ ∗ u(x),

where the series is convergent in the sense of L2 norm. Clearly,

suppχ(ξ) ∩ suppϕ̂j(ξ) = ∅ for j ≥ 1,
suppϕ̂j(ξ) ∩ suppϕ̂j′(ξ) = ∅, for |j − j′| ≥ 2.

Next, we recall the definition of Besov spaces. Let s ∈ R and 1 ≤ p, q ≤ ∞, the Besov
space Bs

p,q(Rn), abbreviated as Bs
p,q, is defined by

Bs
p,q = {f(x) ∈ S(Rn); ‖f‖Bs

p,q
<∞},

where

‖f‖Bs
p,q

= (‖h ∗ f‖q
p +

∑
j≥0

2jsq‖ϕj ∗ f‖q
p)

1/q

is the Besov norm. The homogeneous Besov space Ḃs
p,q is defined by the dyadic decom-

position as

Ḃs
p,q = {f(x) ∈ Z ′(Rn); ‖f‖Ḃs

p,q
<∞},
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where

‖f‖Ḃs
p,q

= (
∞∑

j=−∞
2jsq‖ϕj ∗ f‖q

p)
1/q

is the homogeneous Besov norm, and Z ′(Rn) denotes the dual space of Z(Rn) = {f(x) ∈
S(Rn); Dαf̂(0) = 0, for anyα ∈ N

n multi-index} and can be identified by the quotient
space S ′/P with the polynomial functional set P. In particular, if p = q = 2 and s = m
is positive integer, Ḃs

2,2(R
n) and Bs

2,2(R
n) are equivalent to the Sobolev spaces Ḣm(Rn)

and Hm(Rn). For details, please refer to [1], [14] and [19].
For convenience, we recall the definition of Bony’s para-product formula which gives

the decomposition of the product f · g of two functions f(x) and g(x).

Definition 3.1. The para-product of two functions f and g is defined by

Tgf =
∑

i≤j−2

	ig	jf =
∑
j∈Z

Sj−1g	jf.

The remainder of the para-product is defined by

R(f, g) =
∑

|i−j|≤1

	ig	jf.

Then Bony’s para-product formula reads

f · g = Tgf + Tfg +R(f, g). (3.1)

Below we recall the Bernstein’s lemma that will be used in proofs of our results.

Proposition 3.1. (Bernstein’s inequality)
(a) Let g(x) ∈ Lp(Rn)

⋂
Lp1(Rn), and suppĝ ⊂ {|ξ| ≤ r}. Then there exists a

constant C such that

‖g‖p1 ≤ Cr
n( 1

p
− 1

p1
)‖g‖p,

for 1 ≤ p ≤ p1 ≤ ∞.
(b) Assume that f(x) ∈ Lp(Rn) for 1 ≤ p ≤ ∞ and suppf̂ ⊂ {2j−1 ≤ |ξ| ≤ 2j+1} for

j ∈ Z, there exists a constant Ck so that the following inequality holds:

C−1
k 2jk‖f‖p ≤ ‖Dkf‖p ≤ Ck2jk‖f‖p. (3.2)

The proof is an immediate consequence of Young’s inequality, please refer to [3] for
details.

Proof of Theorem 1.3 First of all, we prove the theorem under condition (1.4).
Similarly as in the proof of Theorem 1.2, we differentiate the equations (1.1) with respect
to xi and xj then multiply the resulting equations by ∂2

iju, ∂
2
ijω, ∂

2
ijb, respectively, and
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sum them up, it follows that

1
2

d
dt

(‖(∂2
iju, ∂

2
ijω, ∂

2
ijb)‖2

2) +
3∑

k=1

(
(μ+ χ)‖∂3

ijku‖2
2 + γ‖∂3

ijkω‖2
2 + ν‖∂3

ijkb‖2
2

)

+κ‖div∂2
ijω‖2

2 + 2χ‖∂2
ijω‖2

2

≤ |(∂2
iju · ∇u, ∂2

iju)| + 2|(∂iu · ∂ju, ∂
2
iju)| + · · · + |(∂2

iju · ∇ω, ∂2
ijω)|

+2|(∂iu · ∂jω, ∂
2
ijω)| + 2χ|(∇× ∂2

iju, ∂
2
ijω)|,

where ∂if , ∂2
ijf and ∂3

ijkf are short forms of ∂xif , ∂2
xixj

f and ∂3
xixjxk

f .
Arguing similarly as the deriving of estimate (2.13) and noting the energy inequality

(1.5), it is not difficult to deduce that

‖(u, ω, b)‖2
H2 + C1

∫ t

t0

(‖(u, ω, b)‖2
Ḣ3 + 2κ‖divω‖2

Ḣ2)ds

≤ ‖(u(t0), ω(t0), b(t0))‖2
H2 exp

{ ∫ t

t0)
‖(u(s), ω(s), b(s)‖∞)ds

}
.

Applying a logarithmic Sobolev inequality (See [21] or [10])

‖f(x)‖∞ ≤ C(1 + ‖f‖Ḃ0∞,∞
log(e + ‖f‖W s,p)),

for any s > n
p , where n is the space dimension and C is a constant independent of f(x)

to arrive at

‖(u, ω, b)‖2
H2 ≤ ‖(u(t0), ω(t0), b(t0))‖2

H2

exp
{∫ t

t0

C(1 + ‖(u, ω, b)(s)‖Ḃ0∞,∞
log(e + ‖(u, ω, b)(s)‖2

H2 ))ds
}
,

for some t0 > 0. Write Z(t) = log(e + ‖(u, ω, b)(s)‖2
H2), applying Gronwall inequality,

we have

Z(t) ≤ Z(t0) exp
{ ∫ t

t0

C(1 + ‖(u, ω, b)(s)‖Ḃ0∞,∞
)ds

}
<∞. (3.3)

Next we apply the Littlewood-Paley projection operator 	j (j ∈ Z) on both sides
of equations (1.1), multiply the resulting equations by 22j	ju, 22j	jω and 22j	jb,
respectively, then integrate them on R

3, it follows that

1
2

d
dt

22j‖	j(u, ω, b)‖2
2 + 22j

3∑
i=1

((μ+ χ)‖	j∂iu‖2
2 + γ‖	j∂iω‖2

2 + ν‖	j∂ib‖2
2)

+κ22j‖	jdivω‖2
2 + 2χ22j‖	jω‖2

2 (3.4)

≤ 22j

∫
R3

(|	j(u · ∇u) · 	ju| + |	j(b · ∇b) · 	ju| + |	j(u · ∇b) · 	jb|
+|	j(b · ∇u) · 	jb| + |	j(u · ∇ω) · 	jω| + 2χ|∇ ×	ju · 	jω|)dx

= I1 + I2 + · · · + I6.
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We estimate Ij (j = 1, · · · 6) in the following by means of Bony’s para-product decom-
position (3.1). It can be handled by the same method for Ij (j = 1, · · · 4), so we only
give an estimate for I3. Applying the para-product decomposition (3.1) to I3 one has

∑
j∈Z

∫
R3

22j	j(u · ∇b) · 	jbdx

=
∑
j∈Z

∫
R3

( j+5∑
k=j−3

22j	j(	ku · ∇Sk−1b) · 	jb+
j+5∑

k=j−3

22j	j(	kb · ∇Sk−1u) · 	jb

+
∑

k≥j−4

k+1∑
l=k−1

22j	j(	ku · ∇	lb) · 	jb

)
dx

= A1 +A2 +A3.

Here use has been made of the fact that Sk−1u·∇	jb = ∇·(Sk−1⊗	kb) = 	kb·∇Sk−1u,
because of the divergence free property of magnetic b. For A1, applying Hölder inequality,
Bernstein inequality (3.2) and discrete Young inequality one has

A1 =
∑
j∈Z

∫
R3

5∑
l=−3

22j	j(
∑

k≤l+j−1

	l+ju · ∇	kb) · 	jbdx

≤
∑
j∈Z

5∑
l=−3

22j‖	l+ju‖2

∑
k≤l+j−1

2k‖	kb‖∞‖	jb‖2

≤
5∑

l=−3

∑
j∈Z

2j‖	ju‖2

∑
k≤j−1

‖	kb‖∞22(j−l)‖	j−lb‖22k−j

≤ C‖u‖Ḃ1
2,2
‖b‖Ḃ0∞,∞

‖b‖Ḃ2
2,2
.

By means of the Young inequality with ε it follows

A1 ≤ γ

48
‖b‖2

Ḣ2 +C‖b‖2
Ḃ0∞,∞

‖u‖2
Ḣ1 . (3.5)

Arguing similarly as deriving A1, for A2 one also has

A2 ≤ γ

48
‖b‖2

Ḣ2 +C‖u‖2
Ḃ0∞,∞

‖b‖2
Ḣ1 . (3.6)

For A3, applying Hölder inequality, Bernstein inequality (3.2) and discrete Young in-
equality, it can be deduced that

A3 =
∑
j∈Z

∑
k≥j−4

1∑
m=−1

22j	j(	ku · ∇	k+mb) · 	jb

≤
1∑

m=−1

∑
j∈Z

∑
k≥j−4

‖	ku‖∞22(k+m)‖	k+mb‖22j‖	jb‖22j−k2−m

≤ C‖u‖Ḃ0∞,∞
‖b‖Ḣ2‖b‖Ḣ1 .
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According to the Young inequality with ε it follows

A3 ≤ γ

48
‖b‖2

Ḣ2 +C‖u‖2
Ḃ0∞,∞

‖b‖2
Ḣ1 . (3.7)

Collecting the estimates (3.5)-(3.7), one arrives at the a priori estimate of I3 as

∑
j∈Z

I3 =
∑
j∈Z

∫
R3

22j	j(u · ∇b) · 	jbdx

≤ γ

12
‖b‖2

Ḣ2 + C(‖u‖2
Ḃ0∞,∞

+ ‖b‖2
Ḃ0∞,∞

)(‖u‖2
Ḣ1 + ‖b‖2

Ḣ1). (3.8)

It is a little complicate to estimated I5, because ω is not divergence free. We first write
I5 in the form of a commutator, then estimate it by a cancel property of the commutator.

∑
j∈Z

22j

∫
R3

	j(u · ∇ω) · 	jωdx

= −
∑
j∈Z

22j

∫
R3

[u,	j ] · ∇ω · 	jωdx
(

�
∑
j∈Z

22j

∫
R3

(	j(u · ∇ω) − u · ∇	jω) · 	jωdx
)

=
∑
j∈Z

22j

∫
R3

∫
R3

ϕj(x− y)(u(y) − u(x)) · ∇ω(y)dy · 	jω(x)dx

= −
∑
j∈Z

22j

∫
R3

∫
R3

∫ 1

0
ϕj(x− y)(x− y) · ∇u(x− τ(x− y)) · ∇ω(y)dτdy · 	jω(x)dx

= −
∑
j∈Z

2j

∫
R3

∫
R3

∫ 1

0
ϕ(z)z · ∇u(x− τ2−jz) · ∇ω(x− 2−jz)dτdz · 	jω(x)dx.

Applying the Bony’s para-product decomposition (3.1) to ∇u(x− τ2−jz) ·∇ω(x−2−jz),
I5 can be decomposed as

∑
j∈Z

22j

∫
R3

|	j(u · ∇ω) · 	jω|dx

≤ C
∑
j∈Z

2j

∫
R3

∫
R3

∫ 1

0
ϕ(z)

∣∣∣(z · ∇Sj−1u(x− τ2−jz) · ∇	jω(x− 2−jz)

+z · ∇	ju(x− τ2−jz) · ∇Sj−1ω(x− 2−jz)

+
∑

k≥j−4

z · ∇	ku(x− τ2−jz) · ∇	kω(x− 2−jz)
)
dzdτ · 	jω(x)

∣∣∣dx
= B1 +B2 +B3.

Here we regard k ≈ j in the para-product term and k ≈ l in the remainder term for the
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sake of concise exposition.

B1

≤ C
∑
j∈Z

∫ 1

0

∫
R3

∫
R3

2jϕ(z)|z ·
∑

k≤j−1

∇	ku(x− τ2−jz)

·∇	jω(x− 2−jz)dz · 	jω(x)|dxdτ

≤ C
∑
j∈Z

∫ 1

0

∫
R3

∫
R3

2jϕ(z)|z|
∑

k≤j−1

2k‖	ku‖∞|∇	jω(x− 2−jz)||	jω(x)|dxdzdτ

≤ C
∑
j∈Z

∫
R3

|z|ϕ(z)dz
∑

k≤j−1

‖	ku‖∞22j‖	jω‖22j‖	jω‖22k−j

Thus the Young inequalities yield

B1 ≤ C‖u‖Ḃ0∞,∞
‖ω‖Ḣ2‖ω‖Ḣ1

≤ γ

48
‖ω‖2

Ḣ2 + C‖u‖2
Ḃ0∞,∞

‖ω‖2
Ḣ1 . (3.9)

Arguing similarly as the above, for B2, one has

B2 ≤ γ

48
‖u‖2

Ḣ2 + C‖ω‖2
Ḃ0∞,∞

‖ω‖2
Ḣ1 . (3.10)

Similarly, for B3 it follows that

B3 ≤ C
∑
j∈Z

∑
k≥j−4

2k‖	ku‖222k‖	kω‖2‖	jω‖∞2j−k

≤ γ

48
‖ω‖2

Ḣ2 + C‖ω‖2
Ḃ0∞,∞

‖u‖2
Ḣ1 . (3.11)

Collecting the estimates (3.9)-(3.11) to arrive at
∑
j∈Z

I5 =
∑
j∈Z

22j

∫
R3

|	j(u · ∇ω) · 	jω|dx

≤ γ

48
(‖(u, ω)‖2

Ḣ2 + C‖(u, ω)‖2
Ḃ0∞,∞

‖(u, ω)‖2
Ḣ1 . (3.12)

Concerning I6, by means of the Young inequality with ε one has
∑
j∈Z

I6 = 2χ
∑
j∈Z

22j

∫
R3

|∇ ×	ju · 	jω|dx

≤ 2χ
∑
j∈Z

(
1
4
22j‖	j∇u‖2

2 + 22j‖	jω‖2
2)

≤ χ

2
‖∇u‖Ḣ1 + 2χ‖ω‖Ḣ1 . (3.13)

Inserting the estimates (3.12), (3.13) of I5 and I6 and similar estimates to (3.8) for I1−I4
into (3.4) it follows

d
dt

(‖(u, ω, b)‖2
Ḣ1) + (2μ+

1
2
χ)‖∇u‖2

Ḣ1 + γ‖∇ω‖2
Ḣ1 + ν‖∇b‖2

Ḣ1 + 2κ‖divω‖2
Ḣ1

≤ C(‖u‖2
Ḃ0∞,∞

+ ‖ω‖2
Ḃ0∞,∞

+ ‖b‖2
Ḃ0∞,∞

)(‖u‖2
Ḣ1 + ‖ω‖2

Ḣ1 + ‖b‖2
Ḣ1).
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Gronwall inequality implies

‖(u, ω, b)‖2
Ḣ1 (3.14)

≤ ‖(u0, ω0, b0)‖2
Ḣ1 exp

{
C

∫ t

0
‖(u(s), ω(s), b(s))‖2

Ḃ0∞,∞
ds

}
<∞.

Combining the energy inequality (1.5) with estimates (3.14) and (3.3), by standard
arguments of continuation of local solutions, the proof of Theorem 1.3 is thus complete.
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