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Abstract: In this paper, a contact wave for 1-dimensional Jin-Xin relaxation
system [10], which is a relaxation version of contact discontinuity of the corre-
sponding hyperbolic system, is shown to be nonlinearly stable. The time-decay
rate is also obtained. The proof is given by a weighted energy estimate.

1 Introduction

The relaxation phenomena often arises in many physical situations, such as the
kinetic theory, non-equilibrium gas dynamics, elasticity with memory, flood flow
with friction and magnetohydrodynamics etc. Mathematically, the investigation
of the behavior of the solutions to the relaxation system is an important subject.

In this paper, we consider the initial value problem of 1-dimensional Jin-Xin
relaxation system [10] which reads

⎧⎪⎨
⎪⎩

ut + vx = 0,

vt + a2ux =
1
ε
(f(u) − v), x ∈ R

1, t ≥ 0,
(v, u)(x, t = 0) = (v0, u0)(x), x ∈ R

1,

(1.1)

where u = u(x, t), v = v(x, t) are vector-valued functions in R
n, f(u) is a

smooth function from R
n to R

n, a > 0 is a given constant satisfying the
sub-characteristic condition (1.5) below, and ε > 0 represents the relaxation
coefficient.

Assume that the initial data satisfies

(v0(x), u0(x)) → (v±, u±), as x→ ±∞, (1.2)

where v±, u± are given constants satisfying v± = f(u±).

∗Email address: fhuang@amt.ac.cn, Huang’s research is supported in part by NSFC Grant
No. 10471138, NSFC-NSAF Grant No. 10676037 and 973 program of China, Grant No.
2006CB805902.
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When the relaxation coefficient ε → 0, formally, the first order approxima-
tion of the system (1.1) is the following conservation laws:

ut + f(u)x = 0. (1.3)

The relaxation system (1.1) is designed by Jin-Xin in [10] to approximate the
conservation laws (1.3) by the numerical scheme. The main advantage of this
scheme is its generality and simplicity since the relaxation system (1.1) is semi-
linear.

We assume that the system (1.3) is strictly hyperbolic and each characteristic
field is either genuinely nonlinear or linearly degenerate, i.e., the Jacobian matrix
Df(u) of the flux f(u) has real and distinct eigenvalues λ1(u) < λ2(u) < · · · <
λn(u) with corresponding left and right eigenvectors lj(u), rj(u) (j = 1, 2, · · · , n)
satisfying

L(u)Df(u)R(u) = diag(λ1(u), λ2(u), · · · , λn(u)) ≡ Λ(u),
L(u)R(u) = Id.,

(1.4)

where L(u) = (l1(u), · · · , ln(u))t, R(u) = (r1(u), · · · , rn(u)), Id. = Identity
matrix; and each i−field is either genuinely nonlinear, i.e., ∇λi(u) · ri(u) �= 0,
or linearly degenerate, namely, ∇λi(u) · ri(u) ≡ 0.

Under the above assumptions, it is well-known that the hyperbolic conserva-
tion laws (1.3) has rich wave phenomenon. In the genuinely nonlinear field, the
nonlinear waves, i.e., shock waves or rarefaction waves, may appear, and contact
discontinuities, which are the linear wave, may occur in the linearly degenerate
field.

To ensure the dissipative nature of the system (1.1), it is important (may
necessary) to require a sub-characteristic condition, [10], [11], i.e.,

−a < λi(u) < a, ∀ u, ∀ i = 1, 2, · · · , n. (1.5)

Due to the effect of the relaxation term, the system (1.1) is dissipative under
the sub-characteristic condition (1.5). The elementary hyperbolic waves, i.e.,
shock waves, rarefaction waves and contact discontinuities, become smooth in
the system (1.1). It is interesting to investigate the asymptotic stability of the
relaxation versions of the hyperbolic waves in the relaxation system.

Liu [11] first considered a general 2 × 2 1-dimensional relaxation system
and gave the stability criteria for the shock waves, rarefaction waves and also
diffusion waves. Since then, many authors have stuided the stability of the shock
waves and rarefaction waves to the relaxation system in 1-dimension or several
space dimension under some small conditions, see [2], [3], [14], [15], [18], [19],
[20] etc. However, there is no result corresponding contact discontinuities for the
relaxation system (1.1) as far as we know. The investigation of the asymptotic
stability of contact discontinuity for the viscous conservation laws begins with
Xin [17] in 1996, which concerned with the Euler system with uniform artificial
viscosity. It was first discovered in [17] that the inviscid contact discontinuity
can not be an asymptotic state for the viscous system, but a viscous contact
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wave which approximates the contact discontinuity on any finite time interval
as the viscosity tends to zero, is nonlinear stable. This is so called meta-stability
[17].

In this paper, we study the meta-stability of contact discontinuities for the
relaxation system (1.1) under the assumptions (1.4) and (1.5). That is, we
construct a contact wave, which approximates the contact discontinuity of the
corresponding hyperbolic system (1.3) on any finite time interval as the relax-
ation coefficient tends to zero, and prove that the contact wave is nonlinear
stable. Our idea is following: it is observed that the relaxation system (1.1) is
equivalent to the perturbed conservation laws with uniform artificial viscosity,
see (1.9) below. We treat the perturbation term utt as a higher-order term in
(1.9) due to the sub-characteristic condition (1.5) and expect that the long time
behavior of the solutions to (1.1) is similar to that for the viscous conservation
laws

ut + f(u)x = a2εuxx − εutt. (1.6)

For (1.6), Liu-Xin [13] in 1997 showed that the inviscid contact discontinuity
is meta-stable by the pointwise estimates. Liu-Xin’s analysis is based on ap-
proximated Green’s function, which is very difficult to construct in many phys-
ical systems whose viscosity matrix is only semi-definite, such as compressible
Navier-Stokes and Boltzmann equation. Thus it is difficult to apply Liu-Xin’s
approach to some physical systems. Recently Huang-Matsumura-Xin [5] and
Huang-Xin-Yang [7] develop a new energy method to treat the stability of the
contact discontinuity for the compressible Navier-Stokes equations and Boltz-
mann equation. Such approach admits that the energy estimate involving the
lower order grows at the rate (1 + t)

1
2 . But it can be compensated by the decay

in the energy estimate for derivatives which is of the order of (1+t)−
1
2 due to the

underlying properties of the viscous contact wave. Thus, these reciprocal order
of decay rates for the time evolution can close the priori estimate containing
the uniform bounds of the L∞ norm on the lower order estimate. This method
can be widely applied to many physical systems, see [8] and [6]. In this paper,
we shall apply the ideas of [5] and [7] to investigate the stability of the contact
discontinuity for the relaxation system (1.1).

Assume that p−field of system (1.3) is linearly degenerate, i.e. ∃p : 1 ≤
p ≤ n, s.t. ∇λp(u) · rp(u) ≡ 0. Consider the hyperbolic system (1.3) with the
following Reimann initial data

u(x, 0) =
{
u−, x < 0,
u+, x > 0.

Then (1.3), (1.6) admit a p−contact discontinuity solution

Û(x, t) =
{
u−, x < 0,
u+, x > 0, (1.7)

provided that

f(u+) − f(u−) = s(u+ − u−), s = λp(u+) = λp(u−). (1.8)
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Without loss of generality, we assume that s ≡ 0 in (1.8).
From (1.1), we obtain a system for u(x, t) by eliminating v(x, t)

⎧⎨
⎩

ut + f(u)x = a2εuxx − εutt

u(x, 0) = u0(x),
ut(x, 0) = −v0x(x).

(1.9)

Now we construct the viscous p−contact wave for (1.1) motivated by [13]. Firstly
choosing non-singular parameter ρ, we define the p−contact wave curve by

Cp(u−) = {u|u = u(ρ),
du

dρ
= rp(u(ρ)), u(ρ−) = u−}. (1.10)

Along the curve Cp(u−),

dλp(u(ρ))
dρ

= ∇λp(u(ρ)) · du(ρ)
dρ

= ∇λp · rp ≡ 0.

So we have
λp(u(ρ)) = λp(u+) = λp(u−) ≡ 0. (1.11)

This means that the p−eigenvalue λp(u) is zero along the curve Cp(u−).
To define the viscous p−contact wave, we choose the non-singular parameter

ρ in (1.10) satisfying
u(ρ−) = u−, u(ρ+) = u+,

and ⎧⎨
⎩

ρt − a2ερxx = 0, x ∈ R
1, t ≥ −1,

ρ(x, t = −1) =
{
ρ−, x < 0,
ρ+, x > 0.

(1.12)

Without loss of generality, we assume that 0 < ρ− < ρ+. Now we define the
viscous p−contact wave Ū(x, t) by

Ū(x, t) ∈ Cp(u−), Ū(x, t) ≡ u(ρ(x, t)), (1.13)

where the parameter ρ(x, t) is defined in (1.12). From the construction of Ū(x, t),
we have

Ūt(x, t) = rp(u(ρ))ρt, Ūx(x, t) = rp(u(ρ))ρx,

Ūxx(x, t) = rp(u(ρ))ρxx + ∇rp(u(ρ)) · rp(u(ρ))(ρx)2.
(1.14)

Now we impose the following structure condition to the system (1.1) or (1.3)

∇rp(u(ρ)) · rp(u(ρ)) ≡ 0, ∀ u ∈ Cp(u−), (1.15)

in order that, on one hand, Ū(x, t) satisfies the equation in the conservative
form (1.6) so that we can introduce the anti-derivative variable in the proof; on
the other hand, the error term ∇rp(u(ρ)) · rp(u(ρ))(ρx)2 vanishes, which is not
good enough with the decay rate (1 + t)−1.
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It is remarked that we only require here that the p−right eigenvector rp(u(ρ))
is constant along the curve Cp(u−) in the structure condition (1.15), while in
[13], the left eigenvector lp(u(ρ)) is also required to be constant along the curve
Cp(u−).

Under the structure condition (1.15), the viscous contact wave Ū(x, t) de-
fined in (1.12) satisfies the system

Ūt + f(Ū)x − a2εŪxx = 0. (1.16)

The parameter ρ(x, t) in (1.12) has the following properties as x→ ±∞:

|ρ− ρ±| = O(1)(ρ+ − ρ−)e−
x2

8a2ε(1+t) ,

|ρx| = O(1)(ρ+ − ρ−)[ε(1 + t)]−
1
2 e

− x2

8a2ε(1+t) ,

|ρt, ερxx| = O(1)(ρ+ − ρ−)(1 + t)−1e
− x2

8a2ε(1+t) .

(1.17)

Consequently the contact wave Ū(x, t) satisfies the properties:

|Ū − u±| = O(δ)e−
x2

8a2ε(1+t) ,

|Ūx| = O(δ)[ε(1 + t)]−
1
2 e

− x2

8a2ε(1+t) ,

|Ūt, εŪxx| = O(δ)(1 + t)−1e
− x2

8a2ε(1+t) ,

(1.18)

as x→ ±∞, where δ = |u+ − u−| = O(1)(ρ+ − ρ−).
It is straightforward to compute that

‖Ū − Û‖Lq(R1) = O(1)ε
1
2q (1 + t)

1
2q , q ≥ 1.

where Û is the inviscid contact discontinuity defined in (1.6). The above prop-
erty means that the viscous contact wave Ū(x, t) for (1.1) approximate the
inviscid contact discontinuity Û(x, t) to the system (1.3) in Lq norm, q ≥ 1, on
any finite time interval as the relaxation coefficients ε→ 0.

In the following, we only consider the asymptotic behavior of the solutions
of the system (1.1) for fixed relaxation constant ε. Without loss of generality,
we fix ε = 1.

Usually the integral
∫ +∞

−∞
(u(x, 0) − Ū(x, 0))dx

does not be equal to zero. We shall introduce some linear diffusion waves to
remove the excessive initial mass. We remark that the nonlinear diffusion waves
is first introduced by [12] in studying the nonlinear stability of the viscous shock
wave to remove the the excessive initial mass. But in our case, as in [5], it is
sufficient to use the linear diffusion waves due to the different stability analysis
from [12].
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For weak contact discontinuity, i.e. δ 
 1, the vectors r1(u−), · · · , rp−1(u−),
u+ − u−, rp+1(u+), · · · , rn(u+) form a basis in R

n. We thus decompose the
excessive initial mass as

∫ +∞

−∞
(u(x, 0) − Ū(x, 0))dx =

∑
i�=p

αiri(ûi) + x0(u+ − u−), (1.19)

with the uniquely determined constants αi (i �= p), x0, where and in the sequel,
we use the notation

ûi =
{
u−, i < p,
u+, i > p.

Define the linear diffusion waves by
{
θit + λi(ûi)θix = a2θixx, x ∈ R

1, t ≥ −1, i �= p,
θi(x, t = −1) = αiδ(x),

where δ(x) is the Dirac function satisfying
∫ +∞
−∞ δ(x)dx = 1.

Then we have

θi(x, t) =
αi√

4πa2(1 + t)
e
− |x−λi(ûi)(1+t)|2

4a2(1+t) ,

∫ +∞

−∞
θi(x, t)dx = αi. (1.20)

Now we define the ansantz Ũ(x, t) by

Ũ(x, t) = Ū(x+ x0, t) + θ(x, t) (1.21)

with θ(x, t) =
∑

i�=p θi(x, t)ri(ûi).
Thus we have ∫ +∞

−∞
(u(x, 0) − Ũ(x, 0))dx = 0. (1.22)

A direct computations gives

Ũt + Ũtt + f(Ũ)x − a2Ũxx = Rx, (1.23)

with the error term

R(x, t) = [f(Ũ) − f(Ū) −
∑
i�=p

λi(ûi)θiri(ûi)]

+[−f(Ū)t + a2Ũxt −
∑
i�=p

λi(ûi)θitri(ûi)]

= O(δ̄)(1 + t)−1
n∑

i=1

e
− |x−λi(ûi)(1+t)|2

8a2(1+t) ,

(1.24)
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where we have used the fact

f(Ũ) − f(Ū) −
∑
i�=p

λi(ûi)θiri(ûi)

= Df(Ū)θ −
∑
i�=p

λi(ûi)θiri(ûi) +O(1)|θ|2

=
∑
i�=p

[Df(Ū) −Df(ûi)]θiri(ûi) +O(1)|θ|2

= O(1)(δ|α| + |α|2)(1 + t)−1
n∑

i=1

e
− |x−λi(ûi)(1+t)|2

8a2(1+t)

= O(δ̄)(1 + t)−1
n∑

i=1

e
− |x−λi(ûi)(1+t)|2

8a2(1+t) ,

and the diffusion wave strength |α| =
∑

i�=p |αi| and δ̄ = δ + |α|.
Without loss of generality, we assume that x0 = 0 from now on. In view of

the equation (1.9) for u(x, t), (1.23) for Ũ(x, t), we have

d

dt
H(t) +

d2

dt2
H(t) = 0,

with

H(t) =
∫ +∞

−∞
(u(x, t) − Ũ(x, t))dx.

Thus we have for all t ≥ 0,

H(t) =
∫ +∞

−∞
(u(x, t) − Ũ(x, t))dx = 0, (1.25)

due to the initial excessive mass H(0)=0 (see (1.22)) and

H ′(0) =
∫ +∞

−∞
(ut(x, 0) − Ũt(x, 0))dx

=
∫ +∞

−∞
(−vx(x, 0) − Ūt(x, 0) −

∑
i�=p

θit(x, 0)ri(ûi))dx

= −(v+ − v−) + (f(u+) − f(u−)) = 0.

Set the perturbation by

φ(x, t) = u(x, t) − Ũ(x, t)

and introduce the anti-derivative variable

Φ(x, t) =
∫ x

−∞
φ(y, t)dy.

The equation (1.25) ensures that the anti-derivative variable Φ(x, t) is well-
defined in some Soblev spaces like L2(R1), H1(R1) etc.
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Now we construct the ansatz Ṽ (x, t) for v(x, t). From the first equation in
(1.1), we set

Ṽ (x, t) = f(Ũ) − a2Ũx +
∫ x

−∞
Ũttdx −R, (1.26)

then we have
Ũt + Ṽx = 0. (1.27)

Set
ψ(x, t) = v(x, t) − Ṽ (x, t).

From (1.1)1 and (1.27), we have

φt + ψx = 0

and
Φt = −ψ, Φx = φ. (1.28)

Our main result is
Theorem 1.1 Consider the relaxation problem (1.1)-(1.2) under the sub-
characteristic condition (1.5) with ε being fixed to be 1. Suppose that the corre-
sponding conservation system (1.3) satisfies the condition (1.4) and the structure
condition (1.15) and p−character field is linearly degenerate (1 ≤ p ≤ n). Let
Ũ(x, t) be the ansatz in (1.21) superposed by the viscous p−contact wave Ū(x, t)
and the linear diffusion wave θ(x, t) in the transversal families. Then there ex-
ists a small positive constant δ0 such that if the wave strength δ̄ and the initial
values (v0(x), u0(x)) satisfy

δ̄ + ‖Φ0‖2
H3 + ‖ψ0‖2

H2 ≤ δ20 ,

then the problem (1.1) admits a unique global solution (v(x, t), u(x, t)) satisfying

u(x, t) ∈ C([0,+∞);H2) ∩ L2(0,+∞;H3),

v(x, t) ∈ C([0,+∞);H1) ∩ L2(0,+∞;H2),

and
‖(u− Ũ , v − Ṽ )‖L∞ ≤ Cδ0(1 + t)−

1
4 , (1.29)

where C is a positive constant independent of t.

The rest of the paper will be arranged as follows. In the next section, we
will give the desired a priori energy estimates. Theorem 1.1 will be given in
Sections 3.
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2 Energy Estimate

From (1.9) and (1.23), we obtain a system for φ(x, t)

φt + φtt + (f(u) − f(Ũ))x − a2φxx = −Rx, (2.1)

Integrating the system (2.1) over (−∞, x) yields

Φt + Φtt + (f(u) − f(Ũ)) − a2Φxx = R. (2.2)

Linearizing the above system (2.2) gives

Φt + Φtt +Df(Ū)Φx − a2Φxx

= −[f(u) − f(Ū) −Df(Ū)(u− Ū)] + [f(Ũ) − f(Ū) −Df(Ū)θ] +R
=: R1,

(2.3)

with
R1 = O(1)(|Φx|2 + |θ|2 +R). (2.4)

To diagonalize the system (2.3), we introduce the new variable

W (x, t) = L(Ū)Φ(x, t),Φ(x, t) = R(Ū)W (x, t), (2.5)

where L(Ū) and R(Ū) are defined in (1.4). Multiplying the system (2.3) by
L(Ū) in the left, we get

Wt +Wtt + Λ(Ū)Wx − a2Wxx = L(Ū)tR(Ū)W + 2L(Ū)t(R(Ū)W )t

+L(Ū)ttR(Ū)W + Λ(Ū)L(Ū)xR(Ū)W − a2L(Ū)xxR(Ū)W

−2a2L(Ū)x(R(Ū)W )x + L(Ū)R1,

(2.6)

Let
W = (W1,W2, · · · ,Wp−1,Wp,Wp+1, · · · ,Wn)t, (2.7)

where and in the sequel the notation ()t represents the transpose of a vector or
matrix ().

Introduce a weight function

η(x, t) =
ρ(x, t)
ρ+

, (2.8)

where ρ(x, t), ρ+ is the parameter defined in (1.12). If δ 
 1, then |η(x, t)−1| 

1. Note that 0 < ρ− < ρ+, thus ρx > 0.

Denote that

W̄ = (ηNW1, η
NW2, · · · , ηNWp−1,Wp, η

−NWp+1, · · · , η−NWn)t,

where N is a large positive constant to be determined later. Also we have if N
is large enough, ηN and η−N is very close to 1.
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Since the local existence of the solution of (2.3) is well-known, we omit the
proof for brevity. To prove Theorem 1.1, it is sufficient to prove the following a
priori assumption by using the continuum process,

N(T ) = sup
t∈[0,T ]

(‖Φ‖L∞ + ‖φ‖H2 + ‖Φt‖H1 + (1 + t)
1
4 ‖φ‖L2) ≤ ε0, (2.9)

where the small positive constant ε0 is only depending on the initial values and
the wave strength δ̄.

Multiplying the system (2.6) by W̄ , we have

(
ηN

2

p−1∑
i=1

W 2
i +

1
2
W 2

p +
η−N

2

n∑
i=p+1

W 2
i )t − (

ηN

2
)t

p−1∑
i=1

W 2
i − (

η−N

2
)t

n∑
i=p+1

W 2
i

+(ηN

p−1∑
i=1

WiWit +WpWpt + η−N
n∑

i=p+1

WiWit)t − (ηN )t

p−1∑
i=1

WiWit

−(η−N )t

n∑
i=p+1

WiWit − ηN

p−1∑
i=1

W 2
it −W 2

pt − η−N
n∑

i=p+1

W 2
it

+(ηN

p−1∑
i=1

λi(Ū)
W 2

i

2
+ η−N

n∑
i=p+1

λi(Ū)
W 2

i

2
)x

−ηN−1

p−1∑
i=1

(Nηxλi(Ū) + ηλix(Ū))
W 2

i

2
+ η−N−1

n∑
i=p+1

(Nηxλi(Ū) − ηλix(Ū))
W 2

i

2

−a2(ηN

p−1∑
i=1

WiWix +WpWpx + η−N
n∑

i=p+1

WiWix)x + a2NηN−1ηx

p−1∑
i=1

WiWix

+a2(−Nη−N−1ηx)
n∑

i=p+1

WiWix + a2ηN

p−1∑
i=1

W 2
ix + a2W 2

px + a2η−N
n∑

i=p+1

W 2
ix

= W̄ · [L(Ū)tR(Ū)W + 2L(Ū)t(R(Ū)W )t + L(Ū)ttR(Ū)W

+Λ(Ū)L(Ū)xR(Ū)W − a2L(Ū)xxR(Ū)W − 2a2L(Ū)x(R(Ū)W )x + L(Ū)R1]
(2.10)

Note that |λix(Ū)| ≤ Cρx, we choose N is large enough such that

−ηN−1

p−1∑
i=1

(Nηxλi(Ū) + ηλix(Ū))
W 2

i

2

+η−N−1
n∑

i=p+1

(Nηxλi(Ū) − ηλix(Ū))
W 2

i

2

−W̄ · Λ(Ū)L(Ū)xR(Ū)W ≥ C−1ρx

∑
i�=p

W 2
i

(2.11)

with a positive constant C, where we have used the construction condition (1.15)
such that rp(Ū)x = ∇rp(Ū) · rp(Ū)ρx = 0 and

|W̄ · Λ(Ū)L(Ū)xR(Ū)W | ≤ Cρx

∑
i�=p

W 2
i .
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Integrating (2.10) and using the a priori assumption (2.9) as well as (2.4) give

[
∫
ηN

p−1∑
i=1

(
W 2

i

2
+WiWit) + (

W 2
p

2
+WpWpt) + η−N

n∑
i=p+1

(
W 2

i

2
+WiWit)dx]t

+a2‖Wx‖2 − (1 + Cδ̄)‖Wt‖2

≤ Cδ̄(1 + t)−1‖W‖2 + C(δ̄ + ε0)‖Wx‖2dx+ Cδ̄(1 + t)−
1
2 .

(2.12)
Multiplying the system (2.6) by C̄Wt with the positive constant C̄ deter-

mined later, we obtain

C̄

n∑
i=1

W 2
it + C̄(

n∑
i=1

W 2
it

2
)t + C̄

n∑
i=1

λi(Ū)WixWit − a2C̄(
n∑

i=1

WixWit)x

+a2C̄(
n∑

i=1

W 2
ix

2
)t = C̄Wt · [L(Ū)tR(Ū)W + 2L(Ū)t(R(Ū)W )t

+L(Ū)ttR(Ū)W + Λ(Ū)L(Ū)xR(Ū)W − a2L(Ū)xxR(Ū)W

−2a2L(Ū)x(R(Ū)W )x + L(Ū)R1].

(2.13)

Integrating (2.13) yields

C̄(
∫ n∑

i=1

(
Wit

2
+
a2W 2

ix

2
)dx)t + C̄

∫ n∑
i=1

λi(Ū)WixWitdx+ C̄‖Wt‖2

≤ Cδ̄(1 + t)−1‖W‖2 + C(δ̄ + ε0)(‖Wx‖2 + ‖Wt‖2) + Cδ̄(1 + t)−
3
2 .

(2.14)

Combining (2.12) and (2.14), we have

[
∫ p−1∑

i=1

(
ηN

2
W 2

i + ηNWiWit +
C̄

2
W 2

it) + (
W 2

p

2
+WpWpt +

C̄

2
W 2

pt)

+
n∑

i=p+1

(
η−N

2
W 2

i + η−NWiWit +
C̄

2
W 2

it) +
a2C̄

2
|Wx|2dx]t

+
∫ n∑

i=1

[a2W 2
ix + λi(Ū)WixWit + (C̄ − 1)W 2

it]dx

≤ Cδ̄(1 + t)−1‖W‖2 + C(δ̄ + ε0)(‖Wx‖2 + ‖Wt‖2) + Cδ̄(1 + t)−
1
2 .

(2.15)

Choosing N large enough, C̄ suitably, s.t. the discriminant of each quadratic in
the left side of (2.15) is strictly negative, i.e.

(ηN )2 − 4 × ηN

2
× C̄

2
< 0, 12 − 4 × 1

2
× C̄

2
< 0,

(η−N )2 − 4 × η−N

2
× C̄

2
< 0, (C̄λi(Ū))2 − 4a2(C̄ − 1) < 0,

Set C̄ = 2 − β, where β 
 1, then all the above inequalities hold when N is
large enough due to the sub-characteristic condition (1.5) and η±N ∼ 1. The
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sub-characteristic condition (1.5) plays a crucial role in our proof. With C̄ being
chosen above, then ∃C1 > 0, s.t.

C−1
1 (‖W‖2 + ‖Wx‖2 + ‖Wt‖2) ≤ E1 ≤ C1(‖W‖2 + ‖Wx‖2 + ‖Wt‖2),∫ n∑

i=1

[a2W 2
ix + λi(Ū)WixWit + (C̄ − 1)W 2

it]dx ≥ C−1
1 (‖Wx‖2 + ‖Wt‖2) =: K1

(2.16)
where

E1 ≡
∫ p−1∑

i=1

(
ηN

2
W 2

i + ηNWiWit +
C̄

2
W 2

it) + (
W 2

p

2
+WpWpt +

C̄

2
W 2

pt)+

+
n∑

i=p+1

(
η−N

2
W 2

i + η−NWiWit +
C̄

2
W 2

it)dx+
1
2
a2C̄‖Wx‖2.

(2.17)
Furthermore, choosing δ̄, ε0 small enough in (2.15), we have the lower estimate

Lemma 2.1. It follows that

E1t +
1
2
K1 ≤ Cδ̄(1 + t)−1E1 + Cδ̄(1 + t)−

1
2 , (2.18)

where E1 and K1 are defined in (2.16) and (2.17).

Now we estimate the higher order estimate of Φx = φ. Let

Z(x, t) = L(Ū)φ(x, t),

then
φ(x, t) = R(Ū)Z(x, t).

Applying ∂x to the system (2.3), we have the system for φ(x, t)

φt + φtt + (Df(Ū)φ)x − a2φxx = R1x. (2.19)

Multiplying (2.19) by L(Ū) in the left, we get the system for Z(x, t),

Zt + Ztt + (Λ(Ū)Z)x − a2Zxx = L(Ū)xΛ(Ū)R(Ū)Z + L(Ū)tR(Ū)Z

+L(Ū)ttR(Ū)Z + 2L(Ū)t(R(Ū)Z)t − a2L(Ū)xxR(Ū)Z

−2a2L(Ū)x(R(Ū)Z)x + L(Ū)R1x.

(2.20)

Let
Z = (Z1, · · · , Zp−1, Zp, Zp+1, · · · , Zn)t,

Z̄ = (ηNZ1, · · · , ηNZp−1, Zp, η
−NZp+1, · · · , η−NZn)t,

with the weight function η(x, t) defined in (2.8) and N being large constant to
be determined later. Here N may be different from the previous one, and we
use the same notation without confusion.
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Multiplying Z̄ to the system (2.20), we obtain

(
ηN

2

p−1∑
i=1

Z2
i +

1
2
Z2

p +
η−N

2

n∑
i=p+1

Z2
i )t − (

ηN

2
)t

p−1∑
i=1

Z2
i − (

η−N

2
)t

n∑
i=p+1

Z2
i

+(ηN

p−1∑
i=1

ZiZit + ZpZpt + η−N
n∑

i=p+1

ZiZit)t − (ηN )t

p−1∑
i=1

ZiZit

−(η−N )t

n∑
i=p+1

ZiZit − (ηN

p−1∑
i=1

Z2
it + Z2

pt + η−N
n∑

i=p+1

Z2
it)

+(ηN

p−1∑
i=1

λi(Ū)
Z2

i

2
+ η−N

n∑
i=p+1

λi(Ū)
Z2

i

2
)x

−ηN−1

p−1∑
i=1

(Nηxλi(Ū) − ηλix(Ū))
Z2

i

2
+ η−N−1

n∑
i=p+1

(Nηxλi(Ū) + ηλix(Ū))
Z2

i

2

−a2(ηN

p−1∑
i=1

ZiZix + ZpZpx + η−N
n∑

i=p+1

ZiZix)x + a2NηN−1ηx

p−1∑
i=1

ZiZix

+a2(−Nη−N−1ηx)
n∑

i=p+1

ZiZix + a2ηN

p−1∑
i=1

Zix2 + a2Z2
px + a2η−N

n∑
i=p+1

Z2
ix

= Z̄ · {L(Ū)xΛ(Ū)R(Ū)Z + L(Ū)tR(Ū)Z + L(Ū)ttR(Ū)Z + 2L(Ū)t(R(Ū)Z)t

−a2L(Ū)xxR(Ū)Z − 2a2L(Ū)x(R(Ū)Z)x + L(Ū)R1x}.
(2.21)

Note that R1 = −[f(u)− f(Ū)−Df(Ū)(u− Ū)]+ [f(Ũ)− f(Ū)−Df(Ū)θ]+R,
we calculate

∫
Z̄ · L(Ū)R1xdx term by term. We have

∫
Z̄ · L(Ū)Rxdx =

∫
[−Z̄x · L(Ū)R− Z̄ · L(Ū)xR]dx

≤ Cδ̄(1 + t)−1‖Z‖2 + Cδ̄‖Zx‖2 + Cδ̄(1 + t)−
3
2 ,

(2.22)

∫
Z̄ · L(Ū)[f(u) − f(Ū) −Df(Ū)(R(Ū)Z + θ)]xdx

=
∫
Z̄ · L(Ū){[Df(u) −Df(Ū)](R(Ū)Z + θ)x

+[Df(u)−Df(Ū)]Ūx −∇2f(Ū)(Ūx, R(Ū)Z + θ)}dx
≤ C

∫
|Z|[(|Z| + |θ|)(|Zx| + |θx| + ρx|Z|) + ρx(|Z|2 + |θ|2)]dx

≤ ε1‖Zx‖2 + Cε1‖Z‖6 + Cδ̄(1 + t)−1‖Z‖2 + Cδ̄(1 + t)−
3
2 ,

(2.23)

and ∫
Z̄ · L(Ū)[f(Ũ) − f(Ū) −Df(Ū)θ]xdx

≤ Cδ̄‖Zx‖2 + Cδ̄(1 + t)−1‖Z‖2 + Cδ̄(1 + t)−
3
2 .

(2.24)

13



Choosing N large enough and integrating (2.21) over R, we obtain

[
∫
ηN

p−1∑
i=1

(
Z2

i

2
+ ZiZit) + (

Z2
p

2
+ ZpZpt) + η−N

n∑
i=p+1

(
Z2

i

2
+ ZiZit)dx]t

+a2‖Zx‖2 − ‖Zt‖2

≤ Cδ̄(1 + t)−1‖Z‖2 + C(δ̄ + ε0)(‖Zx‖2 + ‖Zt‖2) + Cδ̄(1 + t)−
3
2

(2.25)
Multiplying (2.20) by C̄Zt with C̄ = 2 − β, β 
 1, gives

C̄
n∑

i=1

Z2
it + C̄(

n∑
i=1

Z2
it

2
)t + C̄

n∑
i=1

λi(Ū)ZixZit + C̄
n∑

i=1

λix(Ū)ZiZit

−a2C̄(
n∑

i=1

ZixZit)x + a2C̄(
n∑

i=1

Z2
ix

2
)t = C̄Zt · [L(Ū)xΛ(Ū)R(Ū)Z

+L(Ū)tR(Ū)Z + 2L(Ū)t(R(Ū)Z)t + L(Ū)ttR(Ū)Z − a2L(Ū)xxR(Ū)Z

−2a2L(Ū)x(R(Ū)Z)x + L(Ū)R1x]
(2.26)

Integrating (2.26) yields

C̄(
∫ n∑

i=1

(
Zit

2
+
a2Z2

ix

2
)dx)t + C̄

∫ n∑
i=1

λi(Ū)ZixZitdx+ C̄‖Zt‖2

≤ Cδ̄(1 + t)−1‖Z‖2 + C(δ̄ + ε0)(‖Zx‖2 + ‖Zt‖2) + Cδ̄(1 + t)−
3
2 ,

(2.27)

Combining (2.25) and (2.27), we have

[
∫ p−1∑

i=1

(
ηN

2
Z2

i + ηNZiZit +
C̄

2
Z2

it) + (
Z2

p

2
+ ZpZpt +

C̄

2
Z2

pt)

+
n∑

i=p+1

(
η−N

2
Z2

i + η−NZiZit +
C̄

2
Z2

it) +
a2C̄

2

n∑
i=1

Z2
ixdx]t

+
∫ n∑

i=1

[a2Z2
ix + λi(Ū)ZixZit + (C̄ − 1)Z2

it]dx

≤ Cδ̄(1 + t)−1‖Z‖2 + C(δ̄ + ε0)(‖Zx‖2 + ‖Zt‖2) + Cδ̄(1 + t)−
3
2 .

(2.28)

Choosing N large enough, δ̄, ε0 small enough as in (2.18), there ∃C2 > 0, s.t.

C−1
2 (‖Z‖2 + ‖Zx‖2 + ‖Zt‖2) ≤ E2 ≤ C1(‖Z‖2 + ‖Zx‖2 + ‖Zt‖2),∫ n∑

i=1

[a2Z2
ix + λi(Ū)ZixZit + (C̄ − 1)Z2

it]dx ≥ C−1
2 (‖Zx‖2 + ‖Zt‖2) =: K2,

(2.29)
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where

E2 ≡
∫ p−1∑

i=1

(
ηN

2
Z2

i + ηNZiZit +
C̄

2
Z2

it) + (
Z2

p

2
+ ZpZpt +

C̄

2
Z2

pt)+

+
n∑

i=p+1

(
η−N

2
Z2

i + η−NZiZit +
C̄

2
Z2

it)dx +
1
2
a2C̄‖Zx‖2.

(2.30)

Thus we have the higher order estimate

Lemma 2.2. It follows that

E2t +
1
2
K2 ≤ Cδ̄(1 + t)−1‖Z‖2 + Cδ̄(1 + t)−

3
2 , (2.31)

where E2 and K2 are defined in (2.29) and (2.30).

Then we estimate the term Zxx(x, t) and Zxt(x, t). Multiplying the system
(2.20) by −Zxx, we obtain

−(Zt · Zx)x + (
n∑

i=1

Z2
ix

2
)t − (Ztt · Zx)x + (Zx · Zxt)t − |Zxt|2

−
∑
i�=p

λix(Ū)ZiZixx −
∑
i�=p

λix(Ū)ZixZixx + a2
n∑

i=1

Z2
ixx

= −Zxx · {L(Ū)xΛ(Ū)R(Ū)Z + L(Ū)tR(Ū)Z

+L(Ū)ttR(Ū)Z + 2L(Ū)t(R(Ū)Z)t − a2L(Ū)xxR(Ū)Z

−2a2L(Ū)x(R(Ū)Z)x + L(Ū)R1x}.

(2.32)

Integrating the above system yields

[
∫ n∑

i=1

(
Z2

ix

2
+ ZixZixt)dx]t + a2‖Zxx‖2 − ‖Zxt‖2

−
∫ ∑

i�=p

λi(Ū)ZixZixxdx ≤ Cδ̄(1 + t)−1‖Z‖2

+C(δ̄ + ε0)(‖Zxx‖2 + ‖Zt‖2 + ‖Zx‖2) + Cδ̄(1 + t)−
3
2 .

(2.33)

Applying ∂x to the system (2.20), we get

Zxt + Zxtt + (Λ(Ū)Z)xx − a2Zxxx = {L(Ū)xΛ(Ū)R(Ū)Z + L(Ū)tR(Ū)Z

+L(Ū)ttR(Ū)Z + 2L(Ū)t(R(Ū)Z)t − a2L(Ū)xxR(Ū)Z

−2a2L(Ū)x(R(Ū)Z)x + L(Ū)R1x}x.
(2.34)
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Multiplying (2.34) by C̄Zxt with C̄ = 2 − β, β 
 1, we get

C̄Z2
xt + C̄(

Z2
xt

2
)t + C̄

n∑
i=1

λi(Ū )ZixxZixt + 2C̄
n∑

i=1

λix(Ū)ZixZixt

+C̄
n∑

i=1

λixx(Ū)ZiZixt − a2C̄(Zxx · Zxt)x + a2C̄(
Z2

xx

2
)t

= C̄Zxt · {L(Ū)xΛ(Ū)R(Ū)Z + L(Ū)tR(Ū)Z

+L(Ū)ttR(Ū)Z + 2L(Ū)t(R(Ū)Z)t − a2L(Ū)xxR(Ū)Z

−2a2L(Ū)x(R(Ū)Z)x + L(Ū)R1x}x.

(2.35)

Integrating (2.35) implies

C̄[
∫ n∑

i=1

(
Z2

ixt

2
+
a2Z2

ixx

2
)dx]t + C̄‖Zxt‖2 + C̄

∫ n∑
i=1

λi(Ū)ZixxZixtdx

≤ Cδ̄(1 + t)−1‖Z‖2 + C(δ̄ + ε0)(‖Zx‖2 + ‖Zt‖2 + ‖Zxx‖2 + ‖Zxt‖2)
+Cδ̄(1 + t)−

3
2 .

(2.36)

Combining (2.33) and (2.36), we have

[
∫ n∑

i=1

(
Z2

ix

2
+ ZixZixt +

C̄Z2
ixt

2
) +

a2C̄

2

n∑
i=1

Z2
ixxdx]t

+
∫ n∑

i=1

[a2Z2
ixx + C̄λi(Ū)ZixxZixt + (C̄ − 1)Z2

ixt]dx

≤
∫ ∑

i�=p

λi(Ū)ZixZixxdx+ Cδ̄(1 + t)−1‖Z‖2

+C(δ̄ + ε0)(‖Zx‖2 + ‖Zt‖2 + ‖Zxx‖2 + ‖Zxt‖2) + Cδ̄(1 + t)−
3
2

≤ Cδ̄(1 + t)−1‖Z‖2 + C(δ̄ + ε0 + ε2)‖Zxx‖2

+Cε2‖Zx‖2 + C(δ̄ + ε0)(‖Zt‖2 + ‖Zxt‖2) + Cδ̄(1 + t)−
3
2 ,

(2.37)

where we have used Young inequality in the second inequality and ε2 is a small
positive constant.

Thus ∃C3, C4 > 0, s.t.

[
∫ n∑

i=1

(
Z2

ix

2
+ ZixZixt + Z2

ixt) + a2
n∑

i=1

Z2
ixxdx]t

+C−1
3 (‖Zxx‖2 + ‖Zxt‖2)

≤ C4δ̄(1 + t)−1‖Z‖2dx+ C4‖Zx‖2

+C4(δ̄ + ε0)‖Zt‖2 + C4δ̄(1 + t)−
3
2 ,

(2.38)

if we take δ̄, ε0, ε2 small enough in (2.37).
Multiplying (2.31) a large constant Ĉ > 1 s.t.

Ĉ

2
K2 − C4‖Zx‖2 ≥ Ĉ

4
K2,
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then combining to (2.38), we get

Lemma 2.3. It follows that

E3t +K3 ≤ Cδ̄(1 + t)−1‖Z‖2 + Cδ̄(1 + t)−
3
2 , (2.39)

where

E3 = ĈE2 +
∫ n∑

i=1

(
Z2

ix

2
+ ZixZixt + Z2

ixt)dx+ a2‖Zxx‖2,

K3 =
Ĉ

4
K2 + C−1

3 (‖Zxx‖2 + ‖Zxt‖2).

In order to get the decay rate of ψ = −Φt, finally we estimate the term Φtt.
We apply ∂t to the system (2.3),

Φtt + Φttt + ∇2f(Ū)(Ūt,Φx) +Df(Ū)Φxt − a2Φxxt = R1t. (2.40)

Multiplying (2.40) by Φtt, we have

Φ2
tt + (

Φ2
tt

2
)t + Φtt · ∇2f(Ū)(Ūt,Φx) +Df(Ū)(Φxt,Φtt)

−a2(Φxt · Φtt)x + (
a2Φ2

xt

2
)t = Φtt ·R1t.

(2.41)

Integrating (2.41) and using Young inequality yield

(
∫

Φ2
tt

2
+
a2Φ2

xt

2
dx)t +

∫
Φ2

ttdx ≤ Cδ̄(1 + t)−1‖Φx‖2

+C(δ̄ + ε3)‖Φtt‖2 + Cε3{‖Φxt‖2 +
∫

|R1t|2dx}.
(2.41)

Note that

|[f(u) − f(Ū) −Df(Ū)(u − Ū)]t| = O(1)[(|φ| + |θ|)(|φt| + |θt| + |Ūt|)],
and

|[f(Ũ) − f(Ū) −Df(Ū)θ]t| = O(1)|θ|(|θt| + |Ūt|).
Thus (2.3)-(2.4) and (2.41) give

(
∫

Φ2
tt

2
+
a2Φ2

xt

2
dx)t +

1
2
‖Φtt‖2

≤ Cδ̄(1 + t)−1‖φ‖2 + C‖φt‖2 + Cδ̄(1 + t)−
3
2

≤ C5δ̄(1 + t)−1‖Z‖2 + C5‖Zt‖2 + C5δ̄(1 + t)−
3
2 ,

(2.42)

if we choose δ̄, ε3 small enough.
Multiplying (2.39) by a large constant C̃ > 1 such that

C̃K3 − C5‖Zt‖2 ≥ C̃

2
K3,
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we get our desired higher order estimate
⎧⎨
⎩

E4t +K4 ≤ Cδ̄(1 + t)−1‖Z‖2 + C‖Z‖6 + Cδ̄(1 + t)−
3
2 ,

E4 = C̃E3 +
∫

Φ2
tt

2
+
a2Φ2

xt

2
dx, K4 =

C̃

2
K3 +

1
2

∫
Φ2

ttdx.
(2.43)

Note that ∫
|Z|2dx =

∫
|L(Ū)Φx|2dx =

∫
|L(Ū)(R(Ū )W )x|2dx

≤ Cδ̄(1 + t)−1

∫
|W |2dx+ C

∫
|Wx|2dx

≤ Cδ̄(1 + t)−1E1 + CK1.

Thus from (2.43) and the a priori assumption (1 + t)
1
4 ‖φ‖ ≤ ε0, we have

Lemma 2.4. It follows that

E4t +K4 ≤ Cδ̄(1 + t)−2E1 + C(δ̄ + ε40)(1 + t)−1K1 + Cδ̄(1 + t)−
3
2 , (2.44)

where E4 and K4 are defined in (2.43).

3 Time decay rate

In view of the lower estimate (2.18), we have

E1 ≤ C(E1(0) + δ̄)(1 + t)
1
2 . (3.1)

Set
E5 = E1 + E4, K5 =

1
2
K1 +K4

From (2.18), (2.44), (3.1), we have

E5t +K5 ≤ Cδ̄(1 + t)−1E5 + Cδ̄(1 + t)−
1
2 ,

which gives

E5 ≤ C(E5(0) + δ̄)(1 + t)
1
2 ,

∫ t

0

K5dτ ≤ C(E5(0) + δ̄)(1 + t)
1
2 . (3.2)

In terms of (3.1) and (3.2), (2.44) implies

[(1 + t)E4]t = E4 + (1 + t)E4t

≤ E4 + Cδ̄(1 + t)−1E1 + C(δ̄ + ε40)K1 + Cδ̄(1 + t)−
1
2

≤ CK5 + Cδ̄(1 + t)−
1
2 .

Integrating the above inequality yields

E4 ≤ C(E5(0) + δ̄)(1 + t)−
1
2 . (3.3)
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From (3.1), (3.3), we verify the a priori assumption (2.9)

‖Φ‖2
L∞ ≤ C‖Φ‖L2‖φ‖L2 ≤ C‖W‖L2‖Z‖L2 ≤ CE

1
2
1 E

1
2
4 ≤ C(E5(0) + δ̄),

(1 + t)
1
2 ‖φ‖2 ≤ C(1 + t)

1
2E4 ≤ C(E5(0) + δ̄),

and
‖φ‖2

H2 ≤ CE4 ≤ C(E5(0) + δ̄)(1 + t)−
1
2 .

Also we can get the desired decay rate of φ, φx in the L∞ norm

‖(φ, φx)‖L∞ ≤ C‖φ‖H2 ≤ C(E5(0) + δ̄)
1
2 (1 + t)−

1
4 .

Now we verify the decay rate of ψ = −Φt. From the system (2.3), we get

Φt = −Φtt −Df(Ū)Φx + a2Φxx +R.

Thus
‖Φt‖L2 ≤ C(‖Φtt‖L2 + ‖Φx‖L2 + ‖Φxx‖L2 + ‖R‖L2)

≤ CE
1
2
4 + Cδ̄(1 + t)−

1
4

≤ C(E5(0) + δ̄)
1
2 (1 + t)−

1
4 .

Finally,

‖ψ‖L∞ = ‖Φt‖L∞ ≤ C‖Φt‖
1
2
L2
‖Φxt‖

1
2
L2

≤ C(E5(0) + δ̄)
1
2 (1 + t)−

1
4 .

Note that
E5(0) ≈ ‖Φ0‖2

H3 + ‖ψ0‖2
H1 .

Thus Theorem 1.1 is proved.
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