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Abstract. This paper concerns the sharp threshold of blowup and global
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eiωtu(x) to the system

iφt + Δφ+ a|φ|p−1φ+ bE1(|φ|2)φ = 0 (DS)

in RN , where a > 0, b > 0, 1 ≤ p < N+2
(N−2)+

, N ∈ {2, 3} and u is a ground state.

First, by constructing a type of cross-constrained variational problem and es-

tablishing so-called cross-invariant manifolds of the evolution flow, we derive a

sharp threshold for global existence and blowup of the solution to the Cauchy

problem for (DS) provided 1+ 4
N

≤ p < N+2
(N−2)+

. Secondly, by using the scaling

argument, we show that how small the initial data are for the global solutions

to exist. Finally, we prove the strong instability of the standing waves with

finite time blow up by combining the former results, which partially answer

the open problem proposed in [16,Remark 8].
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1. Introduction

In this paper we study the generalized Davey-Stewartson system:

iφt + Δφ+ a|φ|p−1φ+ bE1(|φ|2)φ = 0, t ≥ 0, x ∈ RN , (1.1)

where φ = φ(t, x) is a complex-valued function of (t, x) ∈ R+ × RN , N ∈ {2, 3}, Δ is

the usual Laplacian operator in RN , a and b are positive constants, 1 ≤ p < N+2
(N−2)+

(If

N = 2, then N+2
(N−2)+

= ∞ and if N = 3, then (N − 2)+ = N − 2) and E1 is the singular

integral operator with symbol σ1(ξ) = ξ2
1/|ξ|2, ξ ∈ RN and E1(ψ) = F−1 (ξ2

1/|ξ|2)Fψ,
F−1 and F are the Fourier inverse transform and Fourier transform on RN , respectively

(see [5,6,10,11]).

The Davey-Stewartson system (1.1) has its origin in fluid mechanics, where for

p = 3 and N = 2, it appears as mathematical models for the evolution of shallow-water

waves having one predominant direction of travel (see[4,5,6]). Moreover, (1.1) is the N -

dimensional extension of the Davey-Stewartson systems in the elliptic-elliptic case,

⎧⎪⎨
⎪⎩
iφt + λφxx + μφyy + a|φ|p−1φ = b1φψx,

νψxx + ψyy = −b2 (|φ|2)x ,
(1.2)

where λ, μ, ν > 0, b1, b2 are positive constants and a ∈ R. In this case, (1.2) describes

the time evolution of two-dimensional surface of water waves having one propagation

preponderantly in the x-direction (see [4,5,6]). In addition, according to the signs of μ

and ν, system (1.2) may be classified as:

−elliptic − elliptic : μ > 0, ν > 0, (1.3)

−elliptic − hyperbolic : μ > 0, ν < 0, (1.4)

−hyperbolic− elliptic : μ < 0, ν > 0, (1.5)

−hyperbolic− hyperbolic : μ < 0, ν < 0, (1.6)

although the last case does not seem to occur in the context of water waves [see also [4]].

A large amount of work [10,11,12,15,16,17,18,22,23] has been devoted to the study of

the Davey-Stewartson systems. The Cauchy problem for the Davey-Stewartson systems
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in all physical relevant cases ((1.3)-(1.5)) has been studied in [10] by using functional ana-

lytical methods, in which Ghidaglia and Saut proved the solvability in the Sobolev spaces

H1 = H1(R2). In the case (1.4), Tsutsumi in [22] obtained the Lp(R2)-decay estimates

of solutions of (1.1) (2 < p < ∞). In [18], Ozawa obtained the exact blowup solutions

of Cauchy problem for (1.2). Ohta in [15,16,17] discussed the existence and nonexistence

of stable standing waves for (1.1) under some conditions. Moreover, Guo and Wang in

[11] studied blow-up in a finite time and global existence of the solutions to the Cauchy

problem for the generalized Davey-Stewartson system with the case (1.3); Wang and Guo

in [23] investigated the initial value problem and scattering of solutions to the generalized

Davey-Stewartson systems; Li, Guo and Jian in [12] exploited the global existence and

blowup of solutions to a degenerate Davey-Stewartson equations. From the view-point of

physics, the following problems are very important. Under what conditions, will the water

waves become unstable to collapse (blowup)? And Under what conditions, will the water

waves stable for all time (global existence)? Especially the sharp thresholds for blowup

and global existence are pursued strongly (see Zhang[25,26,27] and their references).

In the present paper, we investigate the sharp threshold of blowup and global exis-

tence of the Cauchy problem to the generalized Davey-Stewartson system (1.1) and the

instability of the standing waves for (1.1) provided 1 + 4
N

≤ p < N+2
(N−2)+

. Although

there are some results [26,27,30] about the sharp condition for global existence of the

solutions to the Cauchy problem for nonlinear Schrödinger equations, on the study of

sharp threshold of blowup and global existence of the solutions to the Cauchy problem of

the generalized Davey-Stewartson system (1.1), there is little work in the literature. For

1 + 4
N

≤ p ≤ 3, in [28,29], the authors obtained the sharp threshold of global existence to

the Cauchy problem for (1.1) by using potential well argument [31] and concavity method

[32]. However, the methods in [28,29] can not be used to solve the above problems on (1.1)

for 3 ≤ p < N+2
(N−2)+

. Therefore, we must introduce some other method to solve the related

problems for 3 ≤ p < N+2
(N−2)+

. In the present paper, motivated by the study of nonlin-

ear Schrödinger equations [1,21,24], we construct a type of cross-constrained variational

problem and establish its property, then apply it to (1.1). By defining the corresponding

cross-invariant manifolds under the flow generated by the Cauchy problem of the Davey-
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Stewartson system (1.1), we establish the sharp threshold for global existence and blowup

of the solutions to the Cauchy problem for (1.1). In addition, by using the scaling argu-

ments, we show that how small the initial data are for the global solution of the Cauchy

problem for (1.1) to exist. Finally, applying the sharp threshold and the property of the

cross constrained variational problem, we can also prove the strong instability of standing

waves for (1.1).

As for the standing waves for (1.1), Cipolatti [4] treated the standing waves with

the existence of ground state by means of P. L. Lion’s concentration-compactness method

[13,14]. By standing waves we mean special periodic solutions of the form

φ(t, x) = eiωtϕ(x), (1.7)

where ω ∈ R and ϕ is a ground state of the problem:⎧⎪⎨
⎪⎩

−�ψ + ωψ − a|ψ|p−1ψ − bE1(|ψ|2)ψ = 0, x ∈ RN ,

ψ ∈ H1(RN), ψ �≡ 0.
(1.8)

The so-called ground states are standing waves which minimize the action among all non-

trivial solutions of the form (1.7). Concerning the problem of stability and instability of

standing waves for nonlinear Schrödinger equations has been studied by many authors.

Berestycki and Cazenave [1] investigated the instability of ground states; Cazenave and

Lions [3] as well as Grillakis, Shatah and Strauss [9] obtained the existence of stable

standing waves; Shatah and Strauss [20] established the instability of nonlinear bound

states.

Our idea is initiated by the works of Berestycki and Cazenave [1] as well as Wein-

stein [24]. In [1] and [24], the related variational problems have to be solved, the Schwarz

symmetrization and complicated variational computation have to be conducted. But in

the present paper, using our new variational argument, we can refrain from solving the

attaching variational problems, and directly establish the sharp threshold for global exis-

tence and blowup of solutions to the Cauchy problem for system (1.1). Moreover, initiated

by the work of Soffer and Weinstein [21], we also discuss the instability of the standing

waves.

The major difficulties in analysis of the Davey-Stewartson system (1.1) are the non-

linearities which include the singular integral operator E1. In order to study the sharp
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threshold of global existence and blowup of solutions and gain the instability of standing

waves, one has to search for proper functionals and manifolds as well as suitable dila-

tion transformations. In the present paper, we present a cross-constrained variational

argument to study the sharp threshold for global existence and blowup of solutions to

the Cauchy problem for (1.1). The idea is to construct a type of cross-constrained mini-

mization problem, and establish so-called cross-invariant manifolds. Then we can derive

the sharp threshold for global existence and blowup of solutions to the Cauchy problem

for (1.1) provided 1 + 4
N

≤ p < N+2
(N−2)+

. Moreover, utilizing the scaling discussion, we

can also the question: How small are the initial data, the global solutions of the Cauchy

problem for (1.1) exist? At last, combining the former conclusions, we can also obtain the

instability of the standing waves for (1.1) with finite time blow up under the condition

1 + 4
N

≤ p < N+2
(N−2)+

, which partially answer the open problem proposed in [16, Remark

8].

It should be pointed out system (1.1) has its origin in Fluid Mechanics for a ∈ R.

But in the present paper, we only obtain our results for a > 0. It is easily seen that our

results in this paper still hold for a = 0. As far as the case a < 0 is concerned, whether

our results hold or not remains open.

At the end of this section, we give a brief outline of the rest of the paper. In Section

2 we collect some elementary facts which are useful for our analysis later. In Section

3 we establish the cross-invariant manifolds. The sharp threshold for global existence

and blowup is treated in Section 4. Finally, we investigate the strong instability of the

standing waves.

2. Preliminaries

In this section, we will recall some known facts and give some elementary results which

will be used and play important roles later. Firstly, we endow (1.1) with the initial data

φ(0, x) = φ0, x ∈ RN . (2.1)

For system (1.1), Guo and Wang [11] as well as Cazenave [2] established the local

well-posedness of the Cauchy problem in energy class H1(RN). Now we state the following
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result about the local existence of weak solutions to the Cauchy problem (1.1)-(2.1) in

the energy space H1(RN) (see also [5],Theorem 2.1).

Proposition 2.1. Let N ∈ {2, 3} and 1 ≤ p < N+2
(N−2)+

. Then the following holds:

(1) For any φ0 ∈ H1(RN), there exists a unique solution φ of the Cauchy problem

(1.1)-(2.1) on a maximal time interval [0, T ) such that φ ∈ C([0, T ), H1(RN)) and either

T = ∞ or else T <∞ and

lim
t→T

‖φ‖H1(RN ) = ∞.

(2) We have conservation of charge and energy, that is

∫
|φ|2dx =

∫
|φ0|2dx, (2.2)

E(φ(t)) = E(φ0) (2.3)

for all t ∈ [0, T ), where

E(φ) =
1

2

∫
|∇φ|2dx− a

p+ 1

∫
|φ|4dx− 1

4
b
∫

|φ|2E1(|φ|2)dx. (2.4)

Here and hereafter, for simplicity, we denote
∫
RN ·dx by

∫ ·dx.
For more specific results concerning the Cauchy problem (1.1)-(2.1), we refer the

reader to [10].

In addition, by a direct calculation (see also Ohta [15,16,17]) we have

Proposition 2.2. Let φ0 ∈ H1(RN) and φ(t) be a solution of the Cauchy problem

(1.1)-(2.1) on [0, T ). Put

J(t) :=
∫
|x|2|φ|2dx. (2.5)

Then one has

J ′(t) = −4Im
∫
xφ∇φ̄dx, (2.6)

and by (2.4)

J ′′(t) = 8
∫
|∇φ|2dx− 4N

p− 1

p+ 1
a
∫

|φ|p+1dx− 2Nb
∫

|φ|2E1(|φ|2)dx

= 16E(φ0) − 4N(p− 1) − 16

p+ 1
a
∫
|φ|p+1dx− (2N − 4)b

∫
|φ|2E1(|φ|2)dx.(2.7)
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Thus the following result is true.

Corollary 2.1. Let φ0 ∈ H1(RN) and N ∈ {2, 3}. For 1 + 4
N

≤ p < N+2
(N−2)+

, when

E(φ0) < 0, the solution φ of the Cauchy problem (1.1)-(2.1) blows up in a finite time.

Proof. We prove this proposition by contradiction. Suppose that the maximal

existence time T of the solution φ to the Cauchy problem (1.1)-(2.1) is infinity. Since

N ∈ {2, 3}, and 1 + 4
N

≤ p < N+2
(N−2)+

, by (2.7) we have

J ′′(t) ≤ 16E(φ0), 0 ≤ t <∞. (2.8)

Through a classical analysis, the following identity is true:

J(t) = J(0) + J ′(0)t+
∫ t

0
(t− s)J ′′(s)ds, 0 ≤ t <∞. (2.9)

From (2.8) it follows that

J(t) ≤ 8E(φ0)t
2 + J ′(0)t+ J(0), 0 ≤ t <∞. (2.10)

Noting that J(t) is a nonnegative function, and

J(0) =
∫
|x|2|φ0|2dx, J ′(0) = −4Im

∫
xφ0∇φ̄0dx, (2.11)

by E(φ0) < 0 and (2.10) we get that there exists T ∗ <∞ such that lim
t→T ∗ J(t) = 0. Namely,

lim
t→T ∗

∫
|x|2|φ|2dx = 0, (2.12)

which together with (2.2) leads us to the contradiction.

Remark 2.1. For system (1.1) without the singular integral operator E1, by Glassey

[33] and (2.2), the following conclusion holds:

Conclusion : Let φ0 ∈ H1(RN). Then for 1 ≤ p < 1+ 4
N

, the Cauchy problem (1.1)-

(2.1) has a unique bounded global solution. For 1 + 4
N

≤ p < N+2
(N−2)+

, when ‖φ0‖H1(RN ) is

sufficiently small, the Cauchy problem (1.1)-(2.1) has a unique bounded global solution.

Therefore, for system (1.1) without the singular integral operator E1, from Corollary 2.1

we see that p = 1 + 4
N

is the critical nonlinearity index for blowup and global existence

of the Cauchy problem (1.1)-(2.1). Thus, in that case, we call p = 1 + 4
N

a critical case,

1 ≤ p < 1 + 4
N

a subcritical case, 1 + 4
N
< p < N+2

(N−2)+
a supercritical case. But for system
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(1.1) with the singular integral operator E1, when 1 ≤ p < 1 + 4
N

, the Cauchy problem

(1.1)-(2.1) has a unique bounded global solution only for N = 1 using the method in

Glassey [33], and whether the Cauchy problem (1.1)-(2.1) has a unique bounded solution

or not for N ∈ {2, 3} remains open. For 1 + 4
N

≤ p < N+2
(N−2)+

, it is evident that the

Cauchy problem (1.1)-(2.1) has either global solutions or blowup solutions. Therefore, it

is a natural topic to search for the sharp threshold for global existence and blowup of the

solutions to the Cauchy problem (1.1)-(2.1) for 1 + 4
N

≤ p < N+2
(N−2)+

, which is one of the

aims in the present paper.

Remark 2.2. From (2.7), when N = 2, for the critical case p = 3 one has

J(t) = 8E(φ0)t
2 + J ′(0)t+ J(0),

which is a quadratic function about time t. This is coincide with the case of system (1.1)

without the singular integral operator E1.

Now we give some known facts in Cipolatti [4,5].

Lemma 2.1(Cipolatti [4]). Let E1 be the singular integral operator defined in

Fourier variables by

F{E1(ψ)}(ξ) = σ1(ξ)F{ψ}(ξ),

where σ1(ξ) = ξ2
1/|ξ|2, ξ ∈ RN and F denotes the Fourier transform in RN :

F{ψ}(ξ) = (1/2π)
N
2

∫
e−iξxψ(x)dx.

For 1 < p <∞, E1 satisfies the following properties:

i) E1 ∈ L(Lp, Lp),

where L(Lp, Lp) denotes the space of bounded linear operators from Lp to Lp.

ii) If ψ ∈ Hs, then E1(ψ) ∈ Hs, s ∈ R,

iii) If ψ ∈Wm,p, then E1(ψ) ∈Wm,p and

∂kE1(ψ) = E1(∂kψ), k = 1, · · · , N,

iv) E1 preserves the following operations:

-translation: E1(ψ(· + y))(x) = E1(ψ)(x+ y), y ∈ RN ,

-dilatation: E1(ψ(λ·))(x) = E1(ψ)(λx), λ > 0,
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-conjugation: E1(ψ) = E1(ψ),

where ψ is the complex conjugate of ψ.

Thus Lemma 2.1 yields directly the following properties.

Remark 2.3(Cipolatti [4] and Ohta [16]). Let B1 be the quadratic functional on

L2 defined by

B1(ψ) =
∫
σ1(ξ)|F(ψ)(ξ)|2dξ.

It follows from the Parseval identity

∫
f · gdx =

∫
F [f ]F [g]dξ, dξ = (2π)−Ndx (2.13)

that

B1(ψ) =
∫
E1(ψ)ψdx,

and in particular we have

B1(ψ) ≤
∫

|ψ|2dx, (2.14)

B1 ∈ C∞(L2, R), with B′
1 = 2E1.

Therefore, from the definition of E1, the Parseval identity (2.13) and (2.14), we have

∫
|ψ|2E1(|ψ|2)dx ≤

∫
|ψ|4dx (2.15)

and

∫
|ψ|2E1(|ψ|2)dx =

∫
|ψ|2F−1σ1(ξ)F (|ψ|2)dx

=
∫
σ1(ξ)|F(|ψ|2)|2dξ > 0.

Finally, we state an elementary Lemma.

Lemma 2.2 (Cipolatti [5]). For all φ ∈ S(RN , R) (the Schwartz space of rapidly

decreasing functions), the following identities hold:

(i)
∫
φx · ∇φdx = −N

2

∫
|φ|2dx.
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(ii)
∫

|φ|p−1φx · ∇φdx = − N

p + 1

∫
|φ|p+1dx.

(iii)
∫
E1(|φ|2)φx · ∇φ = −N

4

∫
|φ|2E1(|φ|2)dx.

3. The Cross-Constrained Variational Problem and

the Cross-Invariant Manifolds

In this section, we first define some functionals and manifolds, then consider the con-

strained minimization problems. Since system (1.1) include the singular integral operator

E1, our arguments on system (1.1) are more difficult than the related discussions on the

system (1.1) without including the singular integral operator E1.

For u ∈ H1(RN), ω > 0 and 1 ≤ p < N+2
(N−2)+

, we define the following functionals:

I(u) :=
1

2

∫
|∇u|2dx+

ω

2

∫
|u|2dx− a

p+ 1

∫
|u|p+1dx− b

4

∫
|u|2E1(|u|2)dx, (3.1)

S(u) :=
∫

|∇u|2dx+ ω
∫
|u|2dx− a

∫
|u|p+1dx− b

∫
|u|2E1(|u|2)dx, (3.2)

Q(u) :=
∫
|∇u|2dx− N(p− 1)

2(p+ 1)
a
∫

|u|p+1dx− N

4
b
∫
|u|2E1(|u|2)dx. (3.3)

From Remark 2.3 it follows that

∫
|u|2E1(|u|2)dx ≤

∫
|u|4dx. (3.4)

By (3.4) and the Sobolev’s embedding theorem, the above functionals are well-defined.

In addition, we define a manifold

N :=
{
u ∈ H1(RN) \ {0}, S(u) = 0

}
.

We first define the constrained variational problem:

dN := inf
N
I(u). (3.5)
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Thus, we have the following results.

Lemma 3.1 Let 1 < p < N+2
(N−2)+

, then dN > 0.

Proof. From (3.1),(3.2) and (3.5), on N we get

I(u) =
p− 1

2(p+ 1)
a
∫
|u|p+1dx+

b

4

∫
|u|2E1(|u|2)dx,

=
p− 3

4(p+ 1)
a
∫
|u|p+1dx+

b

4

∫
(|∇u|2 + ω|u|2)dx, (3.6)

and ∫
(|∇u|2 + ω|u|2)dx = a

∫
|u|p+1dx+ b

∫
|u|2E1(|u|2)dx. (3.7)

Since 1 < p < N+2
(N−2)+

,

I(u) ≥ 1

2
min

{
p− 1

p+ 1
,
1

2

}(
a
∫
|u|p+1dx+ b

∫
|u|2E1(|u|2)dx

)
. (3.8)

By the Sobolev embedding theorem and (3.4), one gets

a
∫

|u|p+1 dx+ b
∫

|u|2E1(|u|2)dx

≤ a
∫

|u|p+1dx+ b
∫
|u|4

≤ C1

(∫
|∇u|2dx+ ω

∫
|u|2dx

) p+1
2

+ C2

(∫
|∇u|2dx+ ω

∫
|u|2dx

)2

≤ C
(∫

|∇u|2dx+ ω
∫

|u|2dx
) δ

2

, (3.9)

where δ = max{p + 1, 4} ≥ 4 or δ = min{p + 1, 4} > 2 since p > 1. Here and hereafter,

C > 0 denotes various positive constants. From (3.7) and (3.9), it follows that

a
∫

|u|p+1dx + b
∫

|u|2E1(|u|2)dx

≤ C
(
a
∫
|u|p+1dx+ b

∫
|u|2E1(|u|2)dx

) δ
2

,

thus (
a
∫

|u|p+1dx+ b
∫
|u|2E1(|u|2)dx

) δ
2
−1

≥ C > 0. (3.10)
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Since δ
2
− 1 > 0, (3.10) implies that

a
∫
|u|p+1dx+ b

∫
|u|2E1(|u|2)dx ≥ C > 0. (3.11)

Therefore (3.8), (3.11) and 1 < p < N+2
(N−2)+

imply that I(u) ≥ C > 0, that is,

dN ≥ C > 0. (3.12)

Lemma 3.2. There exists u ∈ H1(RN)\{0} such that both S(u) = 0 and Q(u) = 0.

Proof. From Ohta [16,17], it follows that there exists u ∈ H1(RN) \ {0} such that u

is a solution of the following Euler-Lagrangian equation

−�u+ ωu− a|u|p−1u− bE1(|u|2)u = 0. (3.13)

Thus S(u) = 0, which is obtained by multiplying (3.13) with u and then integrating with

respect to x on RN . Moreover, by (3.13) and Lemma 2.2, we have the Pohozaev identity

N − 2

N

∫
|∇u|2dx+ ω

∫
|u|2dx− 2

p + 1
a
∫

|u|p+1dx− 1

2
b
∫

|u|2E1(|u|2)dx = 0, (3.14)

which is obtained from multiplying (3.13) by x · ∇u. Noting that S(u) = 0, we get

Q(u) = 0.

Now we define a cross-manifold in H1(RN) as follows

M :=
{
u ∈ H1(RN), S(u) < 0, Q(u) = 0

}
. (3.15)

Then the following result is true.

Lemma 3.3. Let N ∈ {2, 3}. Then M is not empty provided 1 + 4
N

≤ p < N+2
(N−2)+

.

Proof. We divide the proof into two cases: i) p = 3 and ii) p �= 3.

We first treat the case i) p = 3. In this case, from Lemma 3.2 it follows that there

exists u ∈ H1(RN) \ {0} such that both S(u) = 0 and Q(u) = 0. Let vλ = λu(λx) for

λ > 0, then vλ ∈ H1(RN) \ {0}. By (3.2) and (3.3), we get

S(vλ) = λ4−N
∫
|∇u|2dx+ λ2−Nω

∫
|u|2dx

−λ4−Na
∫
|u|4dx− λ4−Nb

∫
|u|2E1(|u|2)dx
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= λ4−N
(∫

|∇u|2dx− a
∫
|u|4dx− b

∫
|u|2E1(|u|2)dx

)

+λ2−Nω
∫
|u|2dx, (3.16)

Q(vλ) = λ4−N
(∫

|∇u|2dx− N

4
a
∫

|u|4dx− N

4
b
∫

|u|2E1(|u|2)dx
)
. (3.17)

Thus S(u) = 0 implies that there exists λ∗ > 1 such that S(vλ∗) < 0.

On the other hand, from λ∗ > 1 and Q(u) = 0, we still have Q(vλ∗) = 0. So vλ∗ ∈ M.

This proves M is not empty for i) p = 3.

Next we treat case ii) p �= 3. In this case, by 1 + 4
N

≤ p < N+2
(N−2)+

, we can divide this

case into the following three cases:

(a) 3 < p <∞, when N = 2;

(b)
7

3
≤ p < 3, when N = 3;

(c) 3 < p < 5, when N = 3.

From Lemma 3.2, it follows that there exists u ∈ H1(RN) \ {0} such that both

S(u) = 0 and Q(u) = 0. For λ > 1, let v = λu, then v ∈ H1(RN) \ {0}. From (3.2) and

(3.3) it follows that

S(v) =
∫

|∇v|2dx+ ω
∫
|v|2dx− a

∫
|v|p+1dx− b

∫
|v|2E1(|v|2)dx

= λ2
∫

|∇u|2dx+ λ2ω
∫
|u|2dx

−λp+1a
∫
|u|p+1dx− λ4b

∫
|u|2E1(|u|2)dx, (3.18)

Q(v) =
∫

|∇v|2dx− N(p− 1)

2(p+ 1)
a
∫

|v|p+1dx− N

4
b
∫

|v|2E1(|v|2)dx

13



= λ2
∫

|∇u|2dx− λp+1N(p− 1)

2(p+ 1)
a
∫
|u|p+1dx

−λ4N

4
b
∫
|u|2E1(|u|2)dx. (3.19)

By S(u) = 0 and Q(u) = 0, from N(p−1)
2(p+1)

< 1 since 1 + 4
N

≤ p < N+2
(N−2)+

and N ∈ {2, 3},
we can choose λ > 1 large enough such that S(v) < 0, Q(v) < 0,

∫
|∇v|2dx− N(p− 1)

2(p+ 1)
a
∫
|v|p+1dx > 0, (3.20)

∫
|∇v|2dx− N

4
b
∫
|v|2E1(|v|2)dx > 0, (3.21)

∫
|∇v|2dx− a

∫
|v|p+1dx < 0, (3.22)

and ∫
|∇v|2dx− b

∫
|v|2E1(|v|2)dx < 0. (3.23)

We first prove case (a) 3 < p <∞ and N = 2.

(a) Let vβ = β
2

p−1 v(βx). Thus we have

S(vβ) = β
4

p−1

(∫
|∇v|2dx− a

∫
|v|p+1dx

)

+β
6−2p
p−1 ω

∫
|v|2dx− β

10−2p
p−1 b

∫
|v|2E1(|v|2)dx, (3.24)

Q(vβ) = β
4

p−1

(∫
|∇v|2dx− p− 1

p+ 1
a
∫
|v|p+1dx

)

−1

2
β

10−2p
p−1 b

∫
|v|2E1(|v|2)dx. (3.25)

By 3 < p <∞, it follows that 4
p−1

> 10−2p
p−1

and 6−2p
p−1

< 0. Therefore Q(v) < 0,

(3.20) and (3.25) imply that there exists β∗ > 1 such that Q(vβ∗) = 0.

On the other hand, from β∗ > 1, S(v) < 0, (3.22) and (3.24), it still follows that

S(vβ∗) < 0. So vβ∗ ∈ M.
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Next we prove case (b) 7
3
≤ p < 3 and N = 3. In this case, 1

3
≤ p− 2 < 1.

(b) Let vμ = μv(μx). Thus one has

S(vμ) = μ
(∫

|∇v|2dx− b
∫

|v|2E1(|v|2)dx
)

+μ−1ω
∫

|v|2dx− μp−2a
∫
|v|p+1dx, (3.26)

Q(vμ) = μ
(∫

|∇v|2dx− 3

4
b
∫

|v|2E1(|v|2)dx
)

−3(p− 1)

2(p+ 1)
μp−2a

∫
|v|p+1dx. (3.27)

Therefore by Q(v) < 0, from (3.21) and (3.27) it follows that there exists μ∗ > 1 such

that Q(vμ∗) = 0.

On the other hand, from μ∗ > 1, S(v) < 0, (3.23) and (3.26), it still follows that

S(vμ∗) < 0. So vμ∗ ∈ M.

Finally, we prove case (c) 3 < p < 5 and N = 3. In this case, 5 − p > 11 − 3p

and 7 − 3p < 0.

(c) Let vξ = ξ
2

p−1 v(ξx). Thus we have

S(vξ) = ξ
5−p
p−1

(∫
|∇v|2dx− a

∫
|v|p+1dx

)

+ξ
7−3p
p−1 ω

∫
|v|2dx− ξ

11−3p
p−1 b

∫
|v|2E1(|v|2)dx, (3.28)

Q(vξ) = ξ
5−p
p−1

(∫
|∇v|2dx− 3(p− 1)

2(p+ 1)
a
∫

|v|p+1dx

)

−3

4
ξ

11−3p
p−1 b

∫
|v|2E1(|v|2)dx. (3.29)

Therefore, from (3.20), (3.29) and Q(v) < 0, it follows that there exists ξ∗ > 1 such that

Q(vξ∗) = 0.

On the other hand, from ξ∗ > 1, S(v) < 0, (3.22) and (3.28), it still follows that

S(vξ∗) < 0. So vξ∗ ∈ M.
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From the above argument, we obtain that M is not empty provided 1 + 4
N

≤ p <

N+2
(N−2)+

and N ∈ {2, 3}.
So far, we have completed the proof of Lemma 3.3.

Now let us consider the cross-constrained minimization problem

dM := inf
M
I(u), (3.30)

then we have:

Lemma 3.4. Let N ∈ {2, 3}. Then dM > 0 provided 1 + 4
N

≤ p < N+2
(N−2)+

.

Proof. Let u ∈ M. From S(u) < 0, it follows that u �≡ 0. By Q(u) = 0, we obtain

I(u) =
N(p− 1) − 4

4(p+ 1)
a
∫
|u|p+1dx

+
(
N

8
− 1

4

)
b
∫
|u|2E1(|u|2)dx+

ω

2

∫
|u|2dx. (3.31)

Since 1 + 4
N

≤ p < N+2
(N−2)+

and N ∈ {2, 3}, (3.31) and u �≡ 0 imply that dM ≥ 0.

In the following, we prove dM > 0 by dividing the proof into two cases:

1) the critical case: p = 1 + 4
N

;

2) the supercritical case: 1 + 4
N
< p < N+2

(N−2)+
.

We first consider case 1) the critical case: p = 1 + 4
N

. In this case, we argue

by contradiction. If dM = 0, then from (3.30) there were a sequence {un, n ∈ Z+} ⊂ M
such that Q(un) = 0, S(un) < 0 and I(un) → 0 as n → ∞. Since p = 1 + 4

N
, (3.31)

implies that

∫
|un|2E1(|un|2)dx→ 0,

∫
|un|2dx→ 0 as n→ ∞. (3.32)

From the Gagliardo-Nirenberg inequality

∫
|v|p+1dx ≤ C

(∫
|∇v|2dx

)N(p−1)
4

(∫
|v|2dx

) p+1
2

−N(p−1)
4

, v ∈ H1(RN), (3.33)

for p = 1 + 4
N

and un we have

∫
|un|p+1dx ≤ C

∫
|∇un|2dx ·

(∫
|un|2dx

) 2
N

. (3.34)
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According to S(un) < 0,
∫ |un|2E1(|un|2)dx ≤ ∫ |un|4dx((2.15)) and (3.34), we get for

p = 1 + 4
N

,

∫
|∇un|2dx+ ω

∫
|un|2dx < a

∫
|un|p+1dx+ b

∫
|un|2E1(|un|2)dx

≤ C
∫

|∇un|2dx ·
(∫

|un|2dx
) 2

N

+C
(∫

|∇un|2dx
)N

2 ·
(∫

|un|2dx
) 4−N

2

. (3.35)

For C in (3.35), by (3.32), we have when n sufficiently large,

∫
|∇un|2dx + ω

∫
|un|2dx

≥ C
∫

|∇un|2dx ·
(∫

|un|2dx
) 2

N

+C
(∫

|∇un|2dx
)N

2 ·
(∫

|un|2dx
) 4−N

2

. (3.36)

It is obvious that (3.35) and (3.36) are contradictory. Since we have showed dM ≥ 0, we

get dM > 0 for p = 1 + 4
N

.

Next we treat the supercritical case 2) 1 + 4
N
< p < N+2

(N−2)+
. In this case, we

use the Sobolev embedding inequality

∫
|u|p+1dx ≤ C

(∫
|∇u|2dx+ ω

∫
|u|2dx

) p+1
2

. (3.37)

From S(u) < 0, (2.15) and (3.37), it follows that

∫
|∇u|2dx + ω

∫
|u|2dx < a

∫
|u|p+1dx+ b

∫
|u|2E1(|u|2)dx

≤ C
(∫

|∇u|2dx+ ω
∫

|u|2dx
) p+1

2

+ b
∫

|u|4dx

≤ C
(∫

|∇u|2dx+ ω
∫

|u|2dx
) p+1

2

+ C
(∫

|∇u|2dx+ ω
∫

|u|2dx
)2

17



≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C (
∫ |∇u|2dx+ ω

∫ |u|2dx)W
,

when
∫ |∇u|2dx+ ω

∫ |u|2dx ≥ 1,

C (
∫ |∇u|2dx+ ω

∫ |u|2dx)m
,

when
∫ |∇u|2dx+ ω

∫ |u|2dx < 1,

where W = max{(p+ 1)/2, 2} ≥ 2 and m = min{(p+ 1)/2, 2}. Since 1 + 4
N
< p < N+2

(N−2)+

and N ∈ {2, 3}, we get (p+ 1)/2 ≥ 1 + 2
N

≥ 5
3
> 1. Thus we get

∫
|∇u|2dx+ ω

∫
|u|2dx ≥ C > 0. (3.38)

In order to prove dM > 0, we divide the following proof into two cases:

2-i) N = 3, 7
3
< p < 5;

2-ii) N = 2, 3 < p <∞.

First we consider 2-i) N = 3, 7
3
< p < 5. In this case, by (3.31) we get

I(u) =
3p− 7

4(p+ 1)
a
∫

|u|p+1dx+
1

8
b
∫
|u|2E1(|u|2)dx+

ω

2

∫
|u|2dx. (3.39)

Let D = min{ 3p−7
4(p+1)

, 1
8
}. Then by 7

3
< p < 5, we get D = 3p−7

4(p+1)
.

Thus by (3.39),

I(u) ≥ D
(
a
∫
|u|p+1dx+ b

∫
|u|2E1(|u|2)dx

)
+
ω

2

∫
|u|2dx. (3.40)

From S(u) < 0 it follows that

∫
|∇u|2dx+ ω

∫
|u|2dx ≤ a

∫
|u|p+1dx+ b

∫
|u|2E1(|u|2)dx,

which together with (3.40) implies that

I(u) ≥ D
(∫

|∇u|2dx+ ω
∫
|u|2dx

)
+
ω

2

∫
|u|2dx. (3.41)

By (3.38) and (3.41), we get

I(u) ≥ C > 0. (3.42)

Thus when N = 3, (3.30) implies that dM > 0 for 7
3
< p < 5.

Next we consider 2-ii) N = 2, 3 < p <∞. In this case, by (3.31) and (3.32),

I(u) =
2p− 6

4(p+ 1)
a
∫
|u|p+1dx+

ω

2

∫
|u|2dx. (3.43)
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In the following, we discuss by contradiction. If dM = 0, then from (3.43) there were a

sequence {un, n ∈ Z+} ⊂ M such that Q(un) = 0, S(un) < 0 and I(un) → 0 as n → ∞.

Since 3 < p <∞, (3.43) implies that

∫
|un|p+1dx→ 0,

∫
|un|2dx→ 0 as n→ ∞. (3.44)

From the Gagliardo-Nirenberg inequality for N = 2 and 3 < p <∞,

∫
|v|p+1dx ≤ C

(∫
|∇v|2dx

) (p−1)
2
(∫

|v|2dx
)
, v ∈ H1(R2), (3.45)

un satisfies ∫
|un|p+1dx ≤ C

(∫
|∇un|2dx

) (p−1)
2
(∫

|un|2dx
)
. (3.46)

According to S(un) < 0,
∫ |un|2E1(|un|2)dx ≤ ∫ |un|4dx((2.15)) and (3.46), we get

∫
|∇un|2dx+ ω

∫
|un|2dx < a

∫
|un|p+1dx+ b

∫
|un|2E1(|un|2)dx

≤ C
(∫

|∇un|2dx
) (p−1)

2
(∫

|un|2dx
)

+C
∫

|∇un|2dx ·
∫

|un|2dx. (3.47)

For C in (3.47), from (3.44), it follows that when n sufficiently large,

∫
|∇un|2dx + ω

∫
|un|2dx

≥ C
(∫

|∇un|2dx
) (p−1)

2
(∫

|un|2dx
)

+C
∫
|∇un|2dx ·

∫
|un|2dx. (3.48)

It is obvious that (3.47) and (3.48) are contradictory. Since we have showed dM ≥ 0, thus

we get dM > 0 for N = 2 and 3 < p <∞.

So far, we have proved that dM > 0 for the supercritical case 1 + 4
N
< p < N+2

(N−2)+
.

Therefore from the above arguments of 1) and 2), we obtain dM > 0 for 1 + 4
N

≤ p <

N+2
(N−2)+

.
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This completes the proof of Lemma 3.4.

Now we define

d := min{dN , dM}. (3.49)

Thus by Lemma 3.1 and Lemma 3.4, the following result is true.

Proposition 3.1. Let N ∈ {2, 3}. Then d > 0 provided 1 + 4
N

≤ p < N+2
(N−2)+

.

We further define

K :=
{
φ ∈ H1(RN), I(φ) < d, S(φ) < 0, Q(φ) < 0

}
. (3.50)

Thus we have

Lemma 3.5. Let N ∈ {2, 3}. Then K is not empty provided 1 + 4
N

≤ p < N+2
(N−2)+

.

Proof. From Lemma 3.2, there exists u ∈ H1(RN) \ {0} such that both S(u) = 0

and Q(u) = 0. Put uλ(x) = λu(x), then by (3.1), (3.2) and (3.3), one has

S(uλ) = λ2
(∫

|∇u|2dx+ ω
∫

|u|2dx
)

−λp+1a
∫

|u|p+1dx− λ4b
∫
|u|2E1(|u|2)dx, (3.51)

Q(uλ) = λ2
∫
|∇u|2dx− N(p− 1)

2(p+ 1)
λp+1a

∫
|u|p+1dx

−N
4
λ4b

∫
|u|2E1(|u|2)dx, (3.52)

I(uλ) =
1

2
λ2
(∫

|∇u|2dx+ ω
∫

|u|2dx
)

− a

p + 1
λp+1

∫
|u|p+1dx− 1

4
λ4b

∫
|u|2E1(|u|2)dx. (3.53)

Since d > 0 and 1 + 4
N

≤ p < N+2
(N−2)+

, for λ > 1 large enough, in view of (3.51), (3.52) and

(3.53) as well as S(u) = 0 and Q(u) = 0, one always has that S(uλ) < 0, Q(uλ) < 0 and

I(uλ) < d. Thus uλ ∈ K.
This completes the proof of Lemma 3.5. Furthermore, we have

Proposition 3.2. Let 1 + 4
N
< p < N+2

(N−2)+
and N ∈ {2, 3}. Then K is an invariant
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manifold of the Cauchy problem (1.1)-(2.1). That is, if φ0(x) ∈ K, then the solution

φ(t, x) of the Cauchy problem (1.1)-(2.1) satisfies φ(t, ·) ∈ K for any t ∈ [0, T ).

Proof. Let φ0 ∈ K. According to Proposition 2.1, there exists a unique φ(t, ·) ∈
C([0, T );H1(RN)) with T ≤ ∞ such that φ(t, x) is a solution of the Cauchy problem

(1.1)-(2.1). From (2.2), (2.3), (2.4) and (3.1), it follows that

I(φ(t, ·)) = I(φ0), t ∈ [0, T ). (3.54)

Thus I(φ0) < d implies that I(φ(t, ·)) < d for any t ∈ [0, T ).

We first show S(φ(t, ·)) < 0 for t ∈ [0, T ) by contradiction. If otherwise, from the

continuity, there were a t∗ ∈ (0, T ) such that S(φ(t∗, ·)) = 0. By (3.54), it has φ(t∗, ·) �≡ 0.

From (3.5) and (3.49), it follows that I(φ(t∗, ·)) ≥ dN ≥ d. This is contradictory to

I(φ(t∗, ·)) < d for t ∈ [0, T ). Therefore S(φ(t, ·)) < 0 for all t ∈ [0, T ).

Next we prove Q(φ(t, ·)) < 0 for t ∈ [0, T ) by contradiction. If otherwise, from

the continuity, there were a t̄ ∈ (0, T ) such that Q(φ(t̄, ·)) = 0. Since we have showed

S(φ(t̄, ·)) < 0, it follows that φ(t̄, ·) ∈ M. Thus (3.30) and (3.49) imply that I(φ(t̄, ·)) ≥
dM ≥ d. This is contradictory to I(φ(t̄, ·)) < d for t ∈ [0, T ). Therefore Q(φ(t, ·)) < 0 for

all t ∈ [0, T ).

From the above argument, we proved that φ(t, ·) ∈ K for any t ∈ [0, T ). Thus the

proof of Proposition 3.2 is completed.

By the same argument as Proposition 3.2, we get

Proposition 3.3. Let N ∈ {2, 3}. Define

K+ :=
{
φ ∈ H1(RN), I(φ) < d, S(φ) < 0, Q(φ) > 0

}
,

R− :=
{
φ ∈ H1(RN), I(φ) < d, S(φ) < 0

}
,

R+ :=
{
φ ∈ H1(RN), I(φ) < d, S(φ) > 0

}
.

If 1 + 4
N

≤ p < N+2
(N−2)+

, then K+, R− and R+ are all invariant manifolds of the Cauchy

problem (1.1)-(2.1).

Remark 3.1. For these manifolds defined in Proposition 3.3, we call R− and R+

are invariant manifolds of the Cauchy problem (1.1)-(2.1). In the course of nature, we

call K and K+ cross-invariant manifolds of the Cauchy problem (1.1)-(2.1).
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By the definitions of K, K+ and R+, as well as (3.5), (3.30) and (3.49), the following

result holds.

Proposition 3.4. Let N ∈ {2, 3} and 1 + 4
N

≤ p < N+2
(N−2)+

. Then

{
φ ∈ H1(RN) \ {0}, I(φ) < d

}
= R+ ∪ K+ ∪ K.

4. Sharp Threshold for Global Existence and Blowup

In this section, we discuss the sharp sufficient condition for blowup and global exis-

tence. Firstly, we give a sufficient condition for blowup of the solutions to the Cauchy

problem (1.1)-(2.1).

Theorem 4.1 Let N ∈ {2, 3} and 1 + 4
N

≤ p < N+2
(N−2)+

. If φ0(x) ∈ K and satisfies

|x|φ0 ∈ L2(RN), then the solution φ(t, x) of the Cauchy problem (1.1)-(2.1) blows up in

a finite time.

Proof. According to Ginibre and Velo [7,8], from |x|φ0(x) ∈ L2(RN), one has

|x|φ ∈ L2(RN). By φ0 ∈ K, Proposition 3.2 implies that φ(t, .) ∈ K for t ∈ [0, T ). Thus

we have I(φ) < d, S(φ) < 0 and Q(φ) < 0. Now we put

J(t) =
∫

|x|2|φ|2dx, (4.1)

(2.7) and (3.3) imply that

J ′′(t) = 8Q(φ(t, .)), t ∈ [0, T ). (4.2)

Fixed t ∈ [0, T ) and denote φ(t, .) = φ. Thus φ satisfies that I(φ) < d, Q(φ) < 0 and

S(φ) < 0.

In the following, we prove Theorem 4.1 through two steps:

Step 1. p = 3;

Step 2. p �= 3.

We first consider Step 1. p = 3.

Let φλ = λ
N
2 φ(λx). Then

S(φλ) = λ2
∫
|∇φ|2dx+ ω

∫
|φ|2dx
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−aλN
∫

|φ|4dx− λNb
∫

|φ|2E1(|φ|2)dx, (4.3)

Q(φλ) = λ2
∫
|∇φ|2dx− N

4
λNa

∫
|φ|4dx

−N
4
λNb

∫
|φ|2E1(|φ|2)dx. (4.4)

Since S(φ) < 0, it yields that there exists 0 < λ∗ < 1 such that S(φλ∗) = 0, and when

λ ∈ (λ∗, 1], S(φλ) < 0. For λ ∈ [λ∗, 1] and Q(φ) < 0, Q(φλ) has the following three

possibilities:

1-i) Q(φλ) < 0 for λ ∈ [λ∗, 1];

1-ii) Q(φλ∗) = 0;

1-iii) There exist μ ∈ (λ∗, 1) such that Q(φμ) = 0.

For the case 1-i) and 1-ii), we both have S(φλ∗) = 0 and Q(φλ∗) ≤ 0. It follows

from (3.5), (3.30) and (3.49) that I(φλ∗) ≥ dN ≥ d. Moreover, we have

I(φ) − I(φλ∗) =
1

2
(1 − λ∗2)

∫
|∇φ|2dx

−1

4
(1 − λ∗N)

[
a
∫
|φ|4dx+ b

∫
|φ|2E1(|φ|2))dx

]
, (4.5)

Q(φ) −Q(φλ∗) = (1 − λ∗2)
∫
|∇φ|2dx

−N
4

(1 − λ∗N )
[
a
∫
|φ|4dx+ b

∫
|φ|2E1(|φ|2))dx

]
. (4.6)

According to 0 < λ∗ < 1 and N ∈ {2, 3}, (4.5) and (4.6) imply that

I(φ) − I(φλ∗) ≥ 1

2
Q(φ) − 1

2
Q(φλ∗) ≥ 1

2
Q(φ). (4.7)

For the case 1-iii), we have Q(φμ) = 0 and S(φμ) < 0. Thus φμ ∈ M. From (3.30)

and (3.49), it follows that I(φμ) ≥ dM ≥ d. In addition,

I(φ) − I(φμ) ≥ 1

2
Q(φ) − 1

2
Q(φμ) ≥ 1

2
Q(φ). (4.8)
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Since I(φλ∗) ≥ d and I(φμ) ≥ d, in view of (4.7) and (4.8), we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q(φ) ≤ 2(I(φ) − I(φμ)) ≤ 2[I(φ) − d],

Q(φ) ≤ 2(I(φ) − I(φλ∗)) ≤ 2[I(φ) − d].

(4.9)

From (2.2), (2.3), (2.4) and (3.1), it has

I(φ) = I(φ0). (4.10)

Thus by φ0 ∈ K and (4.2), we have

J ′′(t) = 8Q(φ) < 16[I(φ0) − d] < 0.

Obviously J(t) can not verify the above inequality for all time (see also Glassey [33]).

Therefore, from Proposition 2.1, it must be the case that T <∞ , which implies

lim
t∈T

‖φ(t, .)‖H1(RN ) = ∞.

Now we consider Step 2. p �= 3. In this case, by N ∈ {2, 3} and 1+ 4
N

≤ p < N+2
(N−2)+

,

we divide the proof into two cases:

2-1) 3 < p < N+2
(N−2)+

and N ∈ {2, 3};
2-2) 7

3
≤ p < 3 and N = 3.

Step 2-1) We first consider the case 2-1) 3 < p < N+2
(N−2)+

and N ∈ {2, 3}.
In this case, let φβ = β

N
p+1φ(βx). Then

S(φβ) = β
N+2−p(N−2)

p+1

∫
|∇φ|2dx− a

∫
|φ|p+1dx

+β
(1−p)N

p+1 ω
∫

|φ|2dx− β
(3−p)N

p+1 b
∫

|φ|2E1(|φ|2)dx, (4.11)

Q(φβ) = β
N+2−p(N−2)

p+1

∫
|∇φ|2dx

−N(p− 1)

4(p+ 1)
a
∫
|φ|p+1dx− N

4
β

(3−p)N
p+1 b

∫
|φ|2E1(|φ|2)dx. (4.12)
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Since 3 < p < N+2
(N−2)+

and N ∈ {2, 3}, we have

N + 2 − p(N − 2)

p+ 1
>

(3 − p)N

p+ 1
,

N + 2 − p(N − 2)

p+ 1
> 0,

(3 − p)N

p+ 1
< 0.

Thus Q(φ) < 0 implies that there exists β∗ > 1 such that Q(φβ∗) = 0, and when β ∈
[1, β∗), Q(φβ) < 0. For β ∈ [1, β∗], because S(φ) < 0, S(φβ) has the following two

possibilities:

2-1-i) S(φβ) < 0 for β ∈ [1, β∗];

2-1-ii) There exists 1 < μ ≤ β∗ such that S(φμ) = 0.

For the case 2-1-i), we have Q(φβ∗) = 0 and S(φβ∗) < 0, that is, φβ∗ ∈ M. From

(3.30) and (3.49), it follows that I(φβ∗) ≥ dM ≥ d. Moreover, we have

I(φ) − I(φβ∗) =
1

2

(
1 − β∗ N+2−p(N−2)

p+1

) ∫
|∇φ|2dx

+
ω

2

(
1 − β∗ (1−p)N

p+1

) ∫
|φ|2dx

−1

4

(
1 − β∗ (3−p)N

p+1

)
b
∫

|φ|2E1(|φ|2)dx, (4.13)

Q(φ) −Q(φβ∗) =
(
1 − β∗ N+2−p(N−2)

p+1

)∫
|∇φ|2dx

−N
4

(
1 − β∗ (3−p)N

p+1

)
b
∫

|φ|2E1(|φ|2)dx. (4.14)

Thus from β∗ > 1, N ∈ {2, 3} and 3 < p < N+2
(N−2)+

, it follows that

I(φ) − I(φβ∗) ≥ 1

2
Q(φ) − 1

2
Q(φβ∗) =

1

2
Q(φ). (4.15)

For the case 2-1-ii), we have S(φμ) = 0 and Q(φμ) ≤ 0. Thus (3.5) and (3.49)

imply that I(φμ) ≥ dN ≥ d. Referring to (4.13) and (4.14), we have

I(φ) − I(φμ) ≥ 1

2
Q(φ) − 1

2
Q(φμ) ≥ 1

2
Q(φ). (4.16)
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For the case 2-1-i) and the case 2-1-ii), since I(φβ∗) ≥ d, I(φμ) ≥ d, from (4.15)

and (4.16), it follows that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q(φ) ≤ 2[I(φ) − I(φβ∗)] ≤ 2[I(φ) − d],

Q(φ) ≤ 2[I(φ) − I(φμ)] ≤ 2[I(φ) − d].

(4.17)

From (2.2), (2.3), (2.4) and (3.1), one has I(φ) = I(φ0). Thus by φ0 ∈ K and (4.2), we

have

J ′′(t) = 8Q(φ) < 16[I(φ) − d] = 16[I(φ0) − d] < 0. (4.18)

Step 2-2) Now we deal with the case 2-2) 7
3
≤ p < 3 and N = 3.

In this case, let φη = η
3
4φ(ηx). Then

S(φη) = η
1
2

∫
|∇φ|2dx− η

3p−9
4 a

∫
|φ|p+1dx

+η−
3
2ω
∫
|φ|2dx− b

∫
|φ|2E1(|φ|2)dx, (4.19)

Q(φη) = η
1
2

∫
|∇φ|2dx− 3(p− 1)

4(p+ 1)
η

3p−9
4 a

∫
|φ|p+1dx− 3

4
b
∫
|φ|2E1(|φ|2)dx. (4.20)

From 7
3
≤ p < 3, it follows that

3p− 9

4
< 0,

3p− 9

4
≥ −1

2
> −3

2
.

Thus Q(φ) < 0 implies that there exists η∗ > 1 such thatQ(φη∗) = 0, and when η ∈ [1, η∗),

Q(φη) < 0. For η ∈ [1, η∗], by S(φ) < 0, we get S(φη) has the following two possibilities:

2-2-a) S(φη) < 0 for η ∈ [1, η∗];

2-2-b) There exists 1 < λ ≤ η∗ such that S(φλ) = 0.

For the case 2-2-a), we have Q(φη∗) = 0 and S(φη∗) < 0, that is, φη∗ ∈ M. From

(3.30) and (3.49), it follows that I(φη∗) ≥ dM ≥ d. In addition, one has

I(φ) − I(φη∗) =
1

2

(
1 − η∗

1
2

) ∫
|∇φ|2dx+

ω

2

(
1 − η∗−

3
2

) ∫
|φ|2dx

−1

4

(
1 − η∗

(3p−9
4

)
a
∫
|φ|p+1dx, (4.21)
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Q(φ) −Q(φη∗) =
(
1 − η∗

1
2

) ∫
|∇φ|2dx− 3

4

(
1 − η∗

3p−9
4

)
a
∫
|φ|p+1dx. (4.22)

Thus from η∗ > 1 and 7
3
≤ p < 3, it follows that

I(φ) − I(φη∗) ≥ 1

2
Q(φ) − 1

2
Q(φη∗) =

1

2
Q(φ). (4.23)

For the case 2-2-b), we have S(φλ) = 0 and Q(φλ) ≤ 0. Thus (3.5) and (3.49)

imply that I(φλ) ≥ dN ≥ d. Referring to (4.21) and (4.22), we have

I(φ) − I(φλ) ≥ 1

2
Q(φ) − 1

2
Q(φλ) ≥ 1

2
Q(φ). (4.24)

For the case 2-2-a) and the case 2-2-b), since I(φη∗) ≥ d, I(φλ) ≥ d, from (4.23)

and (4.24), it follows that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q(φ) ≤ 2[I(φ) − I(φη∗)] ≤ 2[I(φ) − d],

Q(φ) ≤ 2[I(φ) − I(φλ)] ≤ 2[I(φ) − d].

(4.25)

From (2.2), (2.3), (2.4) and (3.1), one has I(φ) = I(φ0). Thus by φ0 ∈ K and (4.2), we

have

J ′′(t) = 8Q(φ) < 16[I(φ) − d] = 16[I(φ0) − d] < 0. (4.26)

Thus, from the arguments of Step 2-1 and Step 2-2, in view of (4.18) and (4.26),

obviously J(t) can not verify the above inequality for all time (see also Glassey [33]).

Therefore, from Proposition 2.1, it must be the case that T <∞ , which implies

lim
t∈T

‖φ(t, .)‖H1(RN ) = ∞.

That is, the solution φ of the Cauchy problem (1.1)-(2.1) blows up in a finite time.

From the arguments of Step 1 and Step 2, the proof of Theorem 4.1 is completed.

Remark 4.1. In Theorem 4.1, we developed a new argument to obtain the blowup

property of the solutions to the Cauchy problem (1.1)-(2.1). Since d > 0, we see that

Theorem 4.1 is quite different from Corollary 2.1. If d ≤ 1
2

∫ |φ0|2dx, then by (2.2), (2.3),

(2.4), (3.1) and I(φ) < d, we can obtain E(φ0) < 0. Thus in this case, from Theorem

2.1, it can follow the result of Theorem 4.1. On the other hand, if d > 1
2

∫ |φ0|2dx, then

from I(φ) < d, it may conclude three cases: (1) E(φ0) > 0; (2) E(φ0) = 0; (3)
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E(φ0) < 0. So Theorem 4.1 includes the result that when initial energy is nonnegative,

the solution φ of the Cauchy problem (1.1)-(2.1) can also blow up in a finite time. This

kind of results in Theorem 4.1 generalize the result in Corollary 2.1.

In the following, we give a sufficient condition for global existence of the solutions to

the Cauchy problem (1.1)-(2.1).

Theorem 4.2. Let N ∈ {2, 3} and 1 + 4
N

≤ p < N+2
(N−2)+

. If φ0 ∈ K+ ∪ R+, then

the solution φ(t, x) of the Cauchy problem (1.1)-(2.1) exists globally in t ∈ [0,∞).

Proof. We prove this theorem by two steps.

Step 1. we prove the case φ0 ∈ K+.

Step 2. we prove the case φ0 ∈ R+.

Firstly, we consider Step 1. φ0 ∈ K+.

From φ0 ∈ K+, Proposition 3.3 implies that the solution φ(t, x) of the Cauchy

problem (1.1)-(2.1) satisfies that φ(t, ·) ∈ K+ for t ∈ [0, T ). For fixed t ∈ [0, T ), we denote

φ(t, ·) = φ. So we have I(φ) < d, Q(φ) > 0 and S(φ) < 0. According to (3.1) and (3.3),

we obtain

(
1

2
− 2

N(p− 1)

) ∫
|∇φ|2dx+

ω

2

∫
|φ|2dx

+

(
1

2(p− 1)
− 1

4

)
b
∫

|φ|2E1(|φ|2)dx < d. (4.27)

In the following, we divide the proof into six cases:

1) N = 2 and p = 3;

2) N = 3 and p = 3;

3) N = 2 and 3 < p <∞;

4) N = 3 and p = 7
3
;

5) N = 3 and 7
3
< p < 3;

6) N = 3 and 3 < p < 5.

Step 1-1. We first consider the case 1) N = 2 and p = 3.

By (4.27), we have
ω

2

∫
|φ|2dx < d. (4.28)
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In the following, we prove that
∫ |∇φ|2dx is bounded. Put φλ = λ

1
2φ(λx). It follows from

(3.3) that

Q(φλ) = λ
∫
|∇φ|2dx− 1

2
a
∫

|φ|4dx− 1

2
b
∫

|φ|2E1(|φ|2)dx. (4.29)

By Q(φ) > 0, it follows that when λ → 0, Q(φλ) < 0 and λ → 1, Q(φλ) > 0. Thus by

continuity, there exists a 0 < λ∗ < 1 such that Q(φλ∗) = 0. According to (3.1) and (3.3),

we have

I(φλ∗) =
ω

2

∫
|φλ∗|2dx =

ω

2
λ∗−1

∫
|φ|2dx. (4.30)

From (4.28), it follows that

I(φλ∗) < λ∗−1d. (4.31)

Also, by (3.2) and (3.3), it follows from Q(φλ∗) = 0 that

S(φλ∗) = ω
∫

|φλ∗|2dx−
∫

|∇φλ∗|2dx,

which has two possibilities:

1-1-i) S(φλ∗) < 0;

1-1-ii) S(φλ∗) ≥ 0.

We first treat 1-1-i) S(φλ∗) < 0. In this case, noting that Q(φλ∗) = 0, we get

φλ∗ ∈ M. Thus by (3.30) and (3.49), one has

I(φλ∗) ≥ dM ≥ d > I(φ), (4.32)

which implies that

I(φ) − I(φλ∗) < 0. (4.33)

That is, (
1

2
− 1

2
λ∗
) ∫

|∇φ|2dx+
(

1

2
− 1

2
λ∗−1

)
ω
∫

|φ|2dx < 0. (4.34)

By (4.28), it has

∫
|∇φ|2dx < λ∗−1 − 1

1 − λ∗
ω
∫
|φ|2dx < 2

λ∗−1 − 1

1 − λ∗
d. (4.35)

Since 0 < λ∗ < 1, one has λ∗−1−1
1−λ∗ > 0.

Now we consider 1-1-ii) S(φλ∗) ≥ 0. In this case, from (4.31) it follows that

I(φλ∗) − 1

4
S(φλ∗) < λ∗−1d. (4.36)
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Thus by (3.1) and (3.2), one gets

1

4

∫
|∇φλ∗|2dx+

1

4
ω
∫

|φλ∗|2dx < λ∗−1d. (4.37)

Namely,

λ∗
∫
|∇φ|2dx+ λ∗−1ω

∫
|φ|2dx < 4λ∗−1d,

which implies that ∫
|∇φ|2dx < 4λ∗−2d. (4.38)

By (4.35) and (4.38), we obtain that
∫ |∇φ|2dx is bounded for any t ∈ [0, T ), which

together with (4.28) yields that φ is bounded in H1(RN). So Proposition 2.1 implies that

the solution φ of the Cauchy problem (1.1)-(2.1) globally exists on t ∈ [0,∞) for φ0 ∈ K+,

p = 3 and N = 2.

Step 1-2. Secondly, we treat the case 2) N = 3 and p = 3.

By (4.27), we get
1

6

∫
|∇φ|2dx+

ω

2

∫
|φ|2dx < d, (4.39)

which implies that the solution φ of the Cauchy problem (1.1)-(2.1) is bounded in H1(RN)

for any t ∈ [0, T ). So Proposition 2.1 implies that the solution φ of the Cauchy problem

(1.1)-(2.1) globally exists on t ∈ [0,∞) for φ0 ∈ K+, p = 3 and N = 3.

Step 1-3. Thirdly, we deal with the case 3) N = 2 and 3 < p <∞. In this case,

it follows from Q(φ) > 0 that

∫
|∇φ|2dx > p− 1

p+ 1
a
∫
|φ|p+1dx+

1

2
b
∫

|φ|2E1(|φ|2)dx.

Thus (3.1) implies that

I(φ) ≥ p− 1

2(p+ 1)
a
∫
|φ|p+1dx+

1

4
b
∫

|φ|2E1(|φ|2)dx

+
ω

2

∫
|φ|2dx− 1

p+ 1
a
∫
|φ|p+1dx− 1

4
b
∫
|φ|2E1(|φ|2)dx

=

(
p− 1

2(p+ 1)
− 1

p+ 1

)
a
∫

|φ|p+1dx+
ω

2

∫
|φ|2dx

=
p− 3

2(p+ 1)
a
∫
|φ|p+1dx+

ω

2

∫
|φ|2dx,
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which together with I(φ) < d yields that

p− 3

2(p+ 1)
a
∫
|φ|p+1dx+

ω

2

∫
|φ|2dx < d.

Since 3 < p <∞, we obtain
ω

2

∫
|φ|2dx < d. (4.40)

In the following, we prove that
∫ |∇φ|2dx is bounded.

Put φλ = λ
2

p+1φ(λx). It follows from (3.3) that

Q(φλ) = λ
4

p+1

∫
|∇φ|2dx− p− 1

p+ 1
a
∫
|φ|p+1dx− 1

2
λ

6−2p
p+1 b

∫
|φ|2E1(|φ|2)dx. (4.41)

By Q(φ) > 0, one has when λ → 0, Q(φλ) < 0, and when λ → 1, Q(φλ) > 0. Thus by

continuity, there exists 0 < λ∗ < 1 such that Q(φλ∗) = 0. According to (3.1) and (3.2),

one has

I(φλ∗) =
1

2
λ∗

4
p+1

∫
|∇φ|2dx+

ω

2
λ∗

2−2p
p+1

∫
|φ|2dx

− 1

p + 1
a
∫
|φ|p+1dx− 1

4
λ∗

6−2p
p+1 b

∫
|φ|2E1(|φ|2)dx, (4.42)

S(φλ∗) = λ∗
4

p+1

∫
|∇φ|2dx+ ωλ∗

2−2p
p+1

∫
|φ|2dx

−a
∫

|φ|p+1dx− λ∗
6−2p
p+1 b

∫
|φ|2E1(|φ|2)dx. (4.43)

From S(φ) < 0, it follows that S(φλ∗) has two possibilities:

1-3-a) S(φλ∗) < 0;

1-3-b) S(φλ∗) ≥ 0.

We first consider 1-3- a) S(φλ∗) < 0. In this case, noting that Q(φλ∗) = 0, one

has φλ∗ ∈ M. Thus by (3.30) and (3.49), one has

I(φλ∗) ≥ dM ≥ d > I(φ). (4.44)

(4.44) implies that

I(φ) − I(φλ∗) < 0. (4.45)
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That is,

(
1

2
− 1

2
λ∗

4
p+1

) ∫
|∇φ|2dx

+
(

1

2
− 1

2
λ∗

2−2p
p+1

)
ω
∫
|φ|2dx

+
(

1

4
λ∗

6−2p
p+1 − 1

4

)
b
∫

|φ|2E1(|φ|2)dx

< 0. (4.46)

Since 3 < p < ∞ and 0 < λ∗ < 1, one has λ∗
6−2p
p+1 > 1, λ∗

4
p+1 < 1 and λ∗

2−2p
p+1 > 1. So

(4.40) and (4.46) imply that

∫
|∇φ|2dx <

(
1

2
λ∗

2−2p
p+1 − 1

2

)
/
(

1

2
− 1

2
λ∗

4
p+1

)
ω
∫
|φ|2dx

< 2
(
λ∗

2−2p
p+1 − 1

)
/
(
1 − λ∗

4
p+1

)
d. (4.47)

Secondly, we deal with 1-3-b) S(φλ∗) ≥ 0. In this case, let φβ = β
2

p+1φλ∗(βx).

By (3.2), we get

S(φβ) = β
4

p+1

∫
|∇φλ∗|2dx+ β

2−2p
p+1 ω

∫
|φλ∗|2dx

− a
∫
|φλ∗|p+1dx− β

6−2p
p+1 b

∫
|φλ∗|2E1(|φλ∗|2)dx. (4.48)

From S(φλ∗) ≥ 0, it has S(φ1) = S(φλ∗) ≥ 0 for β = 1 and S(φβ) < 0 for β close to zero.

Therefore, there exists β∗ ∈ (0, 1] such that S(φβ∗) = 0. Thus by (3.5) and (3.49), it has

I(φβ∗) ≥ dN ≥ d > I(φ). (4.41)

Since

I(φβ∗) =
1

2
(β∗λ∗)

4
p+1

∫
|∇φ|2dx+

ω

2
(β∗λ∗)

2−2p
p+1

∫
|φ|2dx

− 1

p+ 1
a
∫
|φ|p+1dx− 1

4
(β∗λ∗)

6−2p
p+1 b

∫
|φ|2E1(|φ|2)dx,
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which together with (4.49) implies that

1

2

(
1 − (β∗λ∗)

4
p+1

) ∫
|∇φ|2dx+

ω

2

(
1 − (β∗λ∗)

2−2p
p+1

)∫
|φ|2dx

+
1

4

(
(β∗λ∗)

6−2p
p+1 − 1

)
b
∫

|φ|2E1(|φ|2)dx

< 0. (4.50)

Since 3 < p <∞ and β∗λ∗ ∈ (0, 1), (4.40) and (4.50) yield that

∫
|∇φ|2dx < 2

(
(β∗λ∗)

2−2p
p+1 − 1

)
/
(
1 − (β∗λ∗)

4
p+1

)
d. (4.51)

By (4.40), (4.47) and (4.51), we get that φ is bounded in H1(RN). So Proposition 2.1

implies that the solution φ of the Cauchy problem (1.1)-(2.1) globally exists on t ∈ [0,∞)

for φ0 ∈ K+, N = 2 and 3 < p <∞.

Step 1-4. We then consider the case 4) N = 3 and p = 7
3
. In this case, by

(4.27) we have
ω

2

∫
|φ|2dx+

1

8
b
∫

|φ|2E1(|φ|2)dx < d. (4.52)

We put φμ = μ
9
10φ(μx). Then we get

Q(φμ) = μ
4
5

∫
|∇φ|2dx− 3

5
a
∫
|φ| 103 dx− 3

4
μ

3
5 b
∫

|φ|2E1(|φ|2)dx. (4.53)

Thus Q(φ) > 0 implies that there exists a μ∗ ∈ (0, 1) such that Q(φμ∗) = 0. By (3.1) and

(3.3), we have

I(φμ∗) =
ω

2

∫
|φμ∗|2dx+

1

8
b
∫
|φμ∗|2E1(|φμ∗|2)dx

=
ω

2
μ∗− 6

5

∫
|φ|2dx+

1

8
μ∗ 3

5 b
∫

|φ|2E1(|φ|2)dx. (4.54)

It follows from (4.53) and μ∗ ∈ (0, 1) that

I(φμ∗) < μ∗− 6
5d. (4.55)

Now we consider S(φμ∗), which has two possibilities:

1-4-a) S(φμ∗) < 0;
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1-4-b) S(φμ∗) ≥ 0.

At first, we consider 1-4-a) S(φμ∗) < 0. In this case, noting that Q(φμ∗) = 0, we

have φμ∗ ∈ M, which together with (3.30) and (3.49) implies that

I(φμ∗) ≥ dM ≥ d > I(φ). (4.56)

So one has

I(φ) − I(φμ∗) < 0, (4.57)

namely, (
1

2
− 1

2
μ∗ 4

5

) ∫
|∇φ|2dx+

1

2

(
1 − μ∗− 6

5

)
ω
∫
|φ|2dx

−1

4

(
1 − μ∗ 3

5

)
b
∫

|φ|2E1(|φ|2)dx

< 0,

which implies that∫
|∇φ|2dx <

(
μ∗− 6

5 − 1
)
/
(
1 − μ∗ 4

5

)
ω
∫

|φ|2dx

+
1

2

(
1 − μ∗ 3

5

)
/
(
1 − μ∗ 4

5

)
b
∫
|φ|2E1(|φ|2)dx. (4.58)

By (4.52) and μ∗ ∈ (0, 1), we get ∫
|∇φ|2dx < C. (4.59)

Now we deal with 1-4-b) S(φμ∗) ≥ 0. In this case, from (4.55), it follows that

I(φμ∗) − 3

10
S(φμ∗) < μ∗− 6

5d. (4.60)

It follows that

1

5
μ∗ 4

5

∫
|∇φ|2dx +

1

5
μ∗− 6

5ω
∫
|φ|2dx

+
1

20
μ∗ 3

5 b
∫
|φ|2E1(|φ|2)dx

< μ∗− 6
5d.
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Thus ∫
|∇φ|2dx < C. (4.61)

Therefore, (4.52), (4.59) and (4.61) show that φ is bounded in H1(RN) for any t ∈ [0, T ).

Thus by Proposition 2.1, we get that the solution φ of the Cauchy problem (1.1)-(2.1)

exists globally in t ∈ [0,∞) for φ0 ∈ K+, N = 3 and p = 7
3
.

Step 1-5. We further treat the case 5) N = 3 and 7
3
< p < 3. In this case, by

(4.27) we get

(
1

2
− 2

3(p− 1)

) ∫
|∇φ|2dx+

ω

2

∫
|φ|2dx

+

(
1

2(p− 1)
− 1

4

)
b
∫

|φ|2E1(|φ|2)dx

< d. (4.62)

Since 7
3
< p < 3, it has 1

2
− 2

3(p−1)
> 0 and 1

2(p−1)
− 1

4
> 0. Therefore, (4.62) implies that

the solution φ of the Cauchy problem (1.1)-(2.1) is bounded in H1(RN ) for any t ∈ [0, T ).

Thus Proposition 2.1 implies that the solution φ of the Cauchy problem (1.1)-(2.1) exists

globally in t ∈ [0,∞) for φ0 ∈ K+, N = 3 and 7
3
< p < 3.

Step 1-6. At last, we investigate the case 6) N = 3 and 3 < p < 5. In this case,

from (3.3) and Q(φ) > 0, it follows that

1

4
b
∫
|φ|2E1(|φ|2)dx > −1

3

∫
|∇φ|2dx+

p− 1

2(p+ 1)
a
∫
|φ|p+1dx, (4.63)

which together with (3.1) and I(φ) < d implies that

1

6

∫
|∇φ|2dx+

ω

2

∫
|φ|2dx+

p− 3

2(p+ 1)
a
∫
|φ|p+1dx < d. (4.64)

Since 3 < p < 5, (4.64) yields that

1

6

∫
|∇φ|2dx+

ω

2

∫
|φ|2dx < d. (4.65)

(4.65) gives that φ is bounded in H1(RN) for any t ∈ [0, T ). Thus Proposition 2.1 implies

that the solution φ of the Cauchy problem (1.1)-(2.1) exists globally in t ∈ [0,∞) for
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φ0 ∈ K+, N = 3 and 3 < p < 5.

Thus from Step 1-1-Step 1-6, for φ0 ∈ K+, N ∈ {2, 3} and 1 + 4
N

≤ p < N+2
(N−2)+

,

we have proved that the solution φ(t, x) of the Cauchy problem (1.1)-(2.1) exists globally

in t ∈ [0,∞).

Now we deal with Step 2. φ0 ∈ R+.

By φ0 ∈ R+, Proposition 3.3 implies that the solution φ(t, x) of the Cauchy problem

(1.1)-(2.1) satisfies that φ(t, ·) ∈ R+ for t ∈ [0, T ). Then we have I(φ) < d and S(φ) > 0.

By S(φ) > 0 and (3.2), one has

−a
∫

|φ|p+1dx− b
∫

|φ|2E1(|φ|2)dx > −
(∫

|∇φ|2dx+ ω
∫

|φ|2dx
)
. (4.66)

From I(φ) < d and 1 + 4
N

≤ p < N+2
(N−2)+

, one has the following two results:

(1) For N ∈ {2, 3} and 3 ≤ p <∞, it follows from I(φ) < d that

1

2

∫
|∇φ|2dx +

ω

2

∫
|φ|2dx

− a

4

∫
|φ|p+1dx− 1

4
b
∫

|φ|2E1(|φ|2)dx

≤ I(φ) < d. (4.67)

(2) For N = 3 and 7
3
≤ p < 3, it follows from I(φ) < d that

1

2

∫
|∇φ|2dx +

ω

2

∫
|φ|2dx

− a

p+ 1

∫
|φ|p+1dx− 1

p+ 1
b
∫
|φ|2E1(|φ|2)dx

< I(φ) < d. (4.68)

Therefore (4.66), (4.67) and (4.68) imply that

1

4

∫
|∇φ|2dx+

ω

4

∫
|φ|2dx < d, (4.69)

or (
1

2
− 1

p+ 1

)(∫
|∇φ|2dx+ ω

∫
|φ|2dx

)
< d. (4.70)
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In view of 1 + 4
N

≤ p < N+2
(N−2)+

, (4.69) and (4.70) imply that φ is bounded in H1(RN)

for any t ∈ [0, T ). Thus by Proposition 2.1, we obtain that the solution φ of the Cauchy

problem (1.1)-(2.1) exists globally in t ∈ [0,∞) for φ0 ∈ R+, 1 + 4
N

≤ p < N+2
(N−2)+

and

N ∈ {2, 3}.
Through the arguments of Step 1 and Step 2, we complete the proof of Theorem

4.2.

By Theorem 4.1 and 4.2, using Proposition 3.4, we can get a necessary and sufficient

condition for blowup of the solution to the Cauchy problem (1.1)-(2.1) for 1 + 4
N

≤ p <

N+2
(N−2)+

and N ∈ {2, 3}..
Theorem 4.3. Let 1 + 4

N
≤ p < N+2

(N−2)+
and N ∈ {2, 3}. If φ0 satisfy I(φ0) < d,

then the solution φ(t, x) of the Cauchy problem (1.1)-(2.1) blows up in a finite time if and

only if φ0 ∈ K.

In addition, if we limit ω to 0 < ω ≤ 1, then by Theorem 4.2 and using the scaling

argument, we can also get another sufficient condition for the global existence of the

solution to the Cauchy problem (1.1)-(2.1).

Corollary 4.1. Let 1 + 4
N

≤ p < N+2
(N−2)+

, N ∈ {2, 3} and 0 < ω ≤ 1. If

φ0 ∈ H1(RN) and satisfies

∫
|∇φ0|2dx+

∫
|φ0|2dx < 2d, (4.71)

then the solution φ(t, x) of the Cauchy problem (1.1)-(2.1) exists globally in t ∈ [0,∞).

Proof. According to (3.1), (4.71) and 0 < ω ≤ 1, we can get I(φ0) < d. In addition,

we assert that S(φ0) > 0. If otherwise, from (3.2), there were a 0 < λ ≤ 1 such that

S(λφ0) = 0. Thus by (3.5) and (3.49),

I(λφ0) ≥ dN ≥ d. (4.72)

On the other hand,

∫
|∇(λφ0)|2dx +

∫
|λφ0|2dx

= λ2
(∫

|∇φ0|2dx+
∫

|φ0|2dx
)
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< 2λ2d ≤ 2d, (4.73)

which together with 0 < ω ≤ 1 implies that

I(λφ0) < d. (4.74)

(4.72) and (4.74) are contradictory. So S(φ0) > 0 holds. From the above argument, we

get φ0 ∈ R+, thus Theorem 4.2 yields the result of Corollary 4.1.

Remark 4.2. Although the condition for global existence in Corollary 4.1 is not

sharp, Corollary 4.1 gives an answer to the question: How small are the initial data, the

solution of the Cauchy problem (1.1)-(2.1) exists globally?

5. Instability of the Standing Waves

Using the methods in Berestycki and Cazenave [1] as well as Rabinowitz [19], one can

easily obtain that the constrained variational problem (3.5) is attained.

Let u be a solution of (3.5), that is we have

dN = min
u∈N

I(u). (5.1)

Then u ∈ H1(RN) \ {0} is a solution of (3.13). Thus

φ(t, x) = eiωtu(x) (5.2)

is a standing wave solution of (1.1). From (5.1), it follows that u(x) is a ground state

solution of (3.13).

Now we hope to study the instability of the standing wave (5.2). In general, it

depends upon the frequency ω and the solvability of the following variational problem

dQ = inf
{u∈H1(RN )\{0},Q(u)=0}

I(u). (5.3)

In the present paper, by Proposition 3.1 and Theorem 4.1, we can refrain from solving

the problem (5.3), and show the instability of the standing wave (5.2), which commonly

depends upon the frequency ω(see Ohta [16,17], Cipolatti[5]).
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In order to obtain the instability result, we first consider two lemmas which are key

to our analysis later.

Lemma 5.1. Let φ ∈ H1(RN) \ {0}. Then there exists a unique μ > 0 such that

S(μφ) = 0 and I(μφ) > I(λφ) for any λ > 0 and λ �= μ.

Proof. Let λ > 0. Then we have

S(λφ) = λ2
(∫

|∇φ|2dx+ ω
∫

|φ|2dx
)

− λp+1a
∫
|φ|p+1dx− λ4b

∫
|φ|2E1(|φ|2)dx, (5.4)

I(λφ) =
1

2
λ2
(∫

|∇φ|2dx+ ω
∫

|φ|2dx
)

− 1

p+ 1
λp+1a

∫
|φ|p+1dx− 1

4
λ4b

∫
|φ|2E1(|φ|2)dx. (5.5)

Noting that (5.4) and (5.5), we obtain

d

dλ
I(λφ) = λ−1S(λφ). (5.6)

Thus by (5.4) and (5.6), the result of Lemma 5.1 is true.

Lemma 5.2 Let u be a minimizer of (5.1). Then Q(u) = 0.

Proof. Since u is a minimizer of (5.1), thus u is also a solution of (3.13)(or (1.8)).

So multiplying (3.13) by x · ∇u, we get

N − 2

N

∫
|∇u|2dx+ ω

∫
|u|2dx− 2

p+ 1
a
∫
|u|p+1dx− 1

2
b
∫

|u|2E1(|u|2)dx = 0, (5.7)

which is called Pohozaev identity. Note that S(u) = 0, (5.7) implies that Q(u) = 0.

Using Lemma 5.1 and Lemma 5.2, on the standing wave (5.2), we get the following

instability theorem.

Theorem 5.1. For 1 + 4
N

≤ p < N+2
(N−2)+

and N ∈ {2, 3}, Let ω be such that

dM ≥ dN . Then for the minimizer u of (3.5) and any ε > 0, there exists φ0 ∈ H1(RN)

with ‖φ0 − u‖H1(RN ) < ε such that the solution φ(t, x) of the Cauchy problem (1.1)-(2.1)

blows up in a finite time.

Proof. Since dM ≥ dN , one has d = dN by (3.49). Because u is the minimizer
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of (3.5), it follows from Lemma 3.2 that there exists u ∈ H1(RN) \ {0} such that both

S(u) = 0 and Q(u) = 0. Thus by (3.2) and (3.3), for any λ > 1 we have

S(λu) < 0, Q(λu) < 0, λ > 1. (5.8)

On the other hand, from Lemma 5.1, S(u) = 0 implies that I(λu) < I(u) for any

λ > 1. Note that I(u) = dN = d. Thus for any λ > 1, we have λu ∈ K. Now we take

λ > 1, and λ is sufficiently close to 1 such that

‖λu− u‖H1(RN ) = (λ− 1)‖u‖H1(RN ) < ε. (5.9)

Then take φ0 = λu(x). From Theorem 4.1, it follows that the solution φ(t, x) of the

Cauchy problem (1.1)-(2.1) blows up in a finite time.

Remark 5.1. Under the condition dM ≥ dN , Theorem 5.1 gives the strong insta-

bility of the ground state standing wave (5.2) for system (1.1) with finite time blow up

when 1 + 4
N

≤ p < N+2
(N−2)+

and N ∈ {2, 3}. For the related results on the instability of

the standing wave (5.2) for system (1.1), there has been a lot of works (see Cipolatti [5]

and Ohta [15,16,17]). Cipolatti [5] proved that if p ≥ 3 and N ∈ {2, 3}, then the standing

wave (5.2) is unstable for any ω ∈ (0,∞) and that if N = 2 and p = 3, then the standing

wave (5.2) is strongly unstable for any ω ∈ (0,∞). After that, the author [16] proved that

if p ≥ 1 + 4
N

and N ∈ {2, 3}, then (5.2) is unstable for any ω ∈ (0,∞), and if N = 3 and

1 < p < 7
3
, then there exists a positive constant ω0 = ω0(a, p) such that (5.2) is unstable

for any ω ∈ (ω0,∞). In addition, the author [15] showed that if N = 3 and 7
3
< p < 5,

then (5.2) is strongly unstable for any ω ∈ (0,∞). On the other hand, when N = 2 and

p ≤ 3, the author [15] proved the existence of stable standing waves of (1.1). Further,

under the condition N = 2 and p > 3 or N = 3 and p = 7
3
, the author [17] obtained that

for any ω ∈ (0,∞), (5.2) is strongly unstable in the sense of Definition 1.1 of [17].

It should be pointed out that in the present paper, we introduce the cross-invariant

manifold to discuss the instability of standing waves for system (1.1) with finite time blow

up, which partially answer the open problem proposed in [16, Remark 8]. In Theorem

5.1, by limiting frequency ω to satisfy dM ≥ dN , we get the strong instability of (5.2) for

1 + 4
N

≤ p < N+2
(N−2)+

and N ∈ {2, 3}. Of course, the condition dM ≥ dN is still vague.
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Further we need to determine for which ω, dM ≥ dN is true. Moreover, if dM < dN , is

the standing wave (5.2) orbital stable? These problems remain open.
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[3] T. Cazenave, P. L. Lions, Orbital stability of standing waves for nonlinear

Schrödinger equations, Commun. Math. Phys., 1982, 85:549-561.

[4] R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,

Comm.P.D.E., 1992,17:967-988.

[5] R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,

Ann. Inst. Henri Poincaré, Phys. Théor., 1993, 58:85-104.
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