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Abstract

We show that stationary statistical properties for uniformly dissipative dynamical
systems are upper semi-continuous under regular perturbation and a special type of
singular perturbation in time of relaxation type. The results presented are applicable
to many physical systems such as the singular limit of infinite Prandtl-Darcy number
in the Darcy-Boussinesq system for convection in porous media, or the large Prandtl
asymptotics for the Boussinesq system.

1 Introduction

Turbulence is ubiquitous in fluid phenomena. Many (generalized) dynamical systems arising
in fluid applications are dissipative complex systems in the sense that they possess a compact
global attractor and the dynamics are turbulent/chaotic [35, 23]. For instance the Navier-
Stokes equations at large Reynolds number or Grashoff number, the Boussinesq system for
convection at large Rayleigh number, the Darcy-Boussinesq system for convection in fluid
saturated porous media at large Darcy-Rayleigh number, the Lorenz 63 and 96 model are all
such systems. The complex behavior is not necessarily related to the well-posedness of the
system. For instance, the simple discrete dynamical system on the unit interval induced by
the tent map T (x) = 2x, x ∈ [0, 1

2
]; T (x) = 2 − 2x, x ∈ [1

2
, 1], is well-posed but has chaotic

behavior with generic sensitive dependence on initial data. The generic sensitive dependence
on initial data renders it impossible to make precise long time prediction. It has been
long understood that statistical properties of this kind of complex systems are much more
relevant and coherent than single trajectories[28, 17, 21, 25]. If the system reaches some
kind of statistical stationary state, the objects that characterize the stationary statistical
properties are the invariant measures or stationary statistical solutions of the system.
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Consider now an abstract continuous dynamical system {S(t), t ≥ 0} on a phase space H
where H is a separable Hilbert space in general, but could be a metric space as well. Uncer-
tainty in initial data characterized by an initial probability measure μ0 on the phase space
will propagate to future time t characterized by (time dependent/non-stationary) statistical
solution μt which is defined through (strong formulation) pull-back as

μt(E) = μ0(S
−1(t)(E)),∀t ≥ 0

for all Borel measurable sets E, or through (weak formulation) push-forward as

∫
H

Φ(u) dμt(u) =
∫

H
Φ(S(t)u) dμ0(u)

for all suitable test functionals Φ.
Now if the system reaches a statistical equilibrium in the sense that the statistics are time

independent (stationary), the probability measure μ that describes the stationary uncertainty
can be characterized via either the strong (pull-back) or weak (push-forward) formulation.
In the pull-back case, we have the notion of Invariant Measure or stationary statistical
solution

μ(E) = μ(S−1(t)(E)), ∀t ≥ 0 (1)

and in the push-forward case we have the weak invariance

∫
H

Φ(u) dμ(u) =
∫

H
Φ(S(t)u) dμ(u) (2)

for all suitable test functionals Φ.
Once we have a physically relevant invariant measure (stationary statistical solution),

various statistical quantities can be computed/approximated by evaluating the left-hand-
side in the push-forward formulation. Hence all stationary statistical properties are encoded
in the invariant measures.

Besides uncertainty in initial data, we also have uncertainty in many physical param-
eters. Therefore we also need to consider the influence of these uncertainties in physical
parameters on the statistical properties. This is the question of dependence on parameters
of the stationary statistical properties which is the main concern of this manuscript.

Earlier works on dependence of statistical properties on parameters mostly focused on
the vanishing viscosity limit of the Navier-Stokes system for the time dependence statistical
solution [4, 3, 11], or vanishing viscosity limit of the stationary statistical properties for the
damped driven two dimensional Navier-Stokes system [10], or the singular limit of infinite
Prandtl number in the Rayleigh-Bénard system [43]. The results presented here are in a
general setting that are relatively easily applicable to other systems. In particular, our
results cover the case of partially/weakly dissipative systems such as the weakly damped-
driven nonlinear Schrödinger equation [39], the damped and driven KdV equation, fluid of
second grade [27], Darcy-Boussinesq system for convection in fluid saturated porous media
[16, 30] etc.
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The rest of the manuscript is organized as follows: In section 2 we present a few general
results on invariant measures for dissipative dynamical systems. The results presented in
this section are mostly well-known in literatures [1, 17, 38] albeit under different and/or
additional assumptions. In section 3 we discuss perturbation of stationary statistical prop-
erties of uniformly dissipative systems. We show that the stationary statistical properties
are in fact upper semi-continuous in the case of regular perturbation and a special type of
singular perturbation of two time scale of relaxation type. The results presented in this
section are new to the best of our knowledge, and can be applied to many physical situations
such as Rayleigh-Bénard convection at large Prandtl number (an example of strongly dis-
sipative generalized dynamical system), and the Darcy-Boussinesq system for convection in
fluid saturated porous media at large Darcy-Prandtl number (an example of weakly/partial
dissipative dynamical system). In the last section we offer comments on applications and
extensions.

2 Some General Results on Stationary Statistical Prop-

erties for Dissipative Systems

Here we present a few general results on stationary statistical properties for dissipative dy-
namical systems relating invariant measures and the global attractors, time and spatial aver-
ages, ergodicity and extremal points of the set of invariant measures. The results are mostly
well-known in the literatures under various different or additional assumptions although the
current forms that are applicable to the case of weakly/partially dissipative systems are new.

Recall a dynamical system is called dissipative if it possesses a global attractor in the
phase space that is compact, invariant and it attracts all bounded sets [35, 18, 31].

It is easy to see that if the dynamical system possesses a steady state solution, the delta
measure concentrated at the steady state is a (singular) invariant measure of the system.
Invariant measure is in general not unique due to possible existence of multiple steady states
and/or periodic orbits etc. Even different generalized limits and different trajectories in the
next theorem may induce different invariant measures. For dissipative systems we naturally
anticipate that all invariant measures are supported on the global attractor since the global
attractor attracts all bounded sets. Since the global attractor is compact, we also anticipate
some kind of compactness of the set of all invariant measures which we denote IM. Indeed,
we have

Theorem 1 (IM and the global attractors) The support of any invariant measure μ of
a given continuous dissipative dynamical system is included in the global attractor. Moreover,
the set of all invariant measures, IM, is a convex compact set (with respect to the weak
topology) in the space of Borel measures on the phase space.

Proof: Since the invariant measure μ is finite, for any ε > 0, there exists R > 0 such that

μ(BR) ≥ 1 − ε
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where BR is a ball of radius R.
Since S−1(t)S(t)BR ⊃ BR,∀t ≥ 0, we have together with the invariance of μ,

μ(S−1(t)S(t)BR) = μ(S(t)BR) ≥ μ(BR) ≥ 1 − ε

Since A is the global attractor and hence it attracts BR, we see that for any δ > 0, there
exists Tδ > 0 such that

distH(S(t)BR,A) < δ

i.e., S(t)BR is within the open delta neighborhood of A, denoted Aδ.
On the other hand, μ is regular (since it is a Borel measure [32]) and hence for the given

ε > 0, there exists a δ0 > 0 such that

μ(A) ≥ μ(Aδ0) − ε.

Combining the above inequalities we have

μ(A) ≥ μ(Aδ0) − ε

≥ μ(S(t)BR) − ε ∀t ≥ Tδ0

≥ 1 − 2ε.

This finishes the proof that any invariant measure is supported on the global attractor.
It is easy to see that the set of all invariant measures, IM, is a convex and closed

(under the weak convergence topology) set utilizing the push-forward (weak) formulation for
instance. The compactness follows from Prokharov’s tightness theorem, the compactness of
the global attractor, and the fact that all invariant measures are supported on the global
attractor.

This ends the proof of the theorem.

A proof of this result which relies on the existence of a compact absorbing set is essentially
included in [17]. However, not all dissipative systems possess compact absorbing set [35, 18].

For physically interesting complex systems, steady state may not exist even for dissipative
system. Moreover, even if steady states exist, they may not be physically relevant for typical
statistical behavior. For instance, it is hard to imagine any steady state is physically relevant
at large time for turbulent flow. On the other hand, practitioners have been using long time
average

1

T

∫ T

0
ϕ(S(t)u0) dt, T � 1

to compute/approximate stationary statistics based on the ergodicity idea that generic tra-
jectory will traverse almost all parts of the phase space and hence temporal and spatial
averages are equivalent. The most well-know result is probably Birkhoff’s ergodicity
theorem [21, 38, 33, 45] which dictates that for any given invariant measure μ, limit of long
time average exists almost surely with respect to the given invariant measure. The limit
of the long time average equals to spatial average if μ is an ergodic invariant measure
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in the sense that the only invariant sets are trivial (having probability 1 or 0). Such an
approach is very appealing since only one trajectory/simulation/experiment/observation is
needed. This is particularly useful if the dynamical system is not known explicitly and we
only have historical data (one trajectory observation). However, we usually do not have an
invariant measure to start with in applications.

We recall that the long time average may not have limit. This difficulty can be overcome
by considering generalized (Banach) limit [22]. This together with the dissipative nature of
the system and the Kakutani-Riesz representation theorem [22, 17] enables us to establish
the following equivalence of spatial and temporal averages.

Theorem 2 (IM generated by time averages) Let {S(t), t ≥ 0} be a continuous dis-
sipative dynamical system on a reflexive Banach space H. Then for any given initial data
u0 and any choice of generalized limit LIM, there exists a unique invariant measure μ of the
dynamical system so that the time average defined via LIM is equivalent to spatial average
with respect to μ, i.e.

LIMT→∞
1

T

∫ T

0
ϕ(S(t)u0) dt =

∫
H

ϕ(u) dμ(u),∀ϕ ∈ C(H).

Proof. The first half of the proof, i.e., the proof of existence of an invariant measure so
that the spatial and temporal averages are the same for weakly continuous test functionals
is classical [17]. We reproduce the proof for the sake of completeness.

Since the system possesses a compact global attractor A, there exists a closed absorbing
ball Ba in H for each fixed initial data u0 so that

S(t)u0 ∈ Ba,∀t ≥ 0.

Ba is weakly compact since H is reflexive thanks to Banach-Alaoglu theorem [22] (general-
ized Heine-Borel theorem). Therefore, thanks to the Kakutani-Riesz representation theorem
[22], for a fixed initial data u0 and generalized limit LIM , there exists a Borel probability
measure μ on Ba such that

LIMT→∞
1

T

∫ T

0
ϕ(S(t)u0) dt =

∫
Ba

ϕ(u) dμ(u),∀ϕ ∈ Cw(Ba)

since the long time limit defined through the generalized limit on the left hand side defines
a continuous linear functional on Cw(Ba), the space of all weakly continuous functionals on
Ba.

Thanks to the Tietze extension theorem [22] and the fact that Ba is weakly closed, any
weakly continuous functionals on Ba can be extended to a weakly continuous functional on
H. The Borel probability measure μ on Ba can be extended to a Borel probability measure
on the whole space in a trivial manner (assigning zero probability to H \Ba) and the thus the
same equivalence of spatial and temporal average relation holds. Moreover, we see that if two
weakly continuous functionals agree on Ba, then the long time averages defined through the
generalized limit are the same since the whole trajectory belongs to Ba. Also, the restriction
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of any weakly continuous functional on H onto Ba is weakly continuous. Therefore, we have
the desired equivalence of the spatial and temporal averages for all ϕ ∈ Cw(H), i.e.,

LIMT→∞
1

T

∫ T

0
ϕ(S(t)u0) dt =

∫
H

ϕ(u) dμ(u),∀ϕ ∈ Cw(H).

We need to show that μ is invariant under the flow and that the invariance is in fact
valid for all continuous functionals on H (weakly continuous functionals are automatically
continuous functionals but not vice versa).

We now verify that μ is invariant under the flow. For this purpose we fix τ > 0 and we
have
∫

H
ϕ(S(τ)u) dμ(u) = LIMT→∞

1

T

∫ T

0
ϕ(S(τ)S(t)u0) dt

= LIMT→∞
1

T

∫ T+τ

τ
ϕ(S(t)u0) dt

= LIMT→∞
1

T
{
∫ T

0
+

∫ T+τ

T
−

∫ τ

0
}ϕ(S(t)u0) dt

= LIMT→∞
1

T

∫ T

0
ϕ(S(t)u0) dt + LIMT→∞

1

T
{
∫ T+τ

T
−

∫ τ

0
}ϕ(S(t)u0) dt

=
∫

H
ϕ(u) dμ(u)

where we have used the boundedness of the weakly continuous functional ϕ on the weakly
compact set Ba which contains the whole trajectory. This ends the proof of the first half of
the theorem.

Next, we need to show that the equivalence between spatial and temporal averages are
in fact valid for any continuous functionals on H.

Since the weak Borel sets and strong Borel sets are the same, μ is also strongly invariant
and hence its support contained in the global attractor A by the previous theorem.

Now let ϕ ∈ C(H) (continuous but not necessarily weakly continuous), the restriction of
ϕ on A is weakly continuous due to the compactness of A. We also notice that A is weakly
closed since any weak limit would also be a strong limit thanks to the compactness. Now
let ϕ̃ be a weakly continuous extension of ϕ|A to H. Such an extension exists due to Tietze
theorem. We also notice that the two functionals must be asymptotically the same along
the trajectory in the sense that

ϕ(S(t)u0) − ϕ̃(S(t)u0) → 0, t → ∞.

Indeed, if it were not true, we must have a δ > 0 and a time sequence {tn, n = 1, 2, · · ·} with
tn → ∞, n → ∞ so that

|ϕ(S(tn)u0) − ϕ̃(S(tn)u0)| ≥ δ.

Due to the attracting nature of the global attractor A, there exists a sub time sequence, still
denoted {tn, n = 1, 2, · · ·}, and u∞ ∈ A, so that

S(tn)u0 → u∞ ∈ A, n → ∞.
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Therefore, thanks to the continuity of ϕ and weak continuity of ϕ̃, and the fact that ϕ(u∞)
and ϕ̃(u∞) are the same since u∞ ∈ A, we have

lim
n→∞ϕ(S(tn)u0) = ϕ(u∞) = ϕ̃(u∞) = lim

n→∞ ϕ̃(S(tn)u0)

which contradicts the choice of the time sequence.
With the asymptotic equivalence between ϕ(S(t)u0) and ϕ̃(S(t)u0), we have, for any

ϕ ∈ C(H),

∫
H

ϕ(u) dμ(u) =
∫
A

ϕ(u) dμ(u) (support of μ)

=
∫
A

ϕ̃(u) dμ(u) (equivalence of ϕ and ϕ̃ on A)

=
∫

H
ϕ̃(u) dμ(u) (support of μ)

= LIMT→∞
1

T

∫ T

0
ϕ̃(S(t)u0) dt (ϕ̃ ∈ Cw(H) and the weak equivalence)

= LIMT→∞
1

T

∫ T

0
ϕ(S(t)u0) dt. (asymptotic equivalence of ϕ and ϕ̃)

This ends the proof of the theorem.

A proof that relies on the existence of a compact absorbing set, or a weaker result that
the equivalence is valid for only weakly continuous functionals on H, i.e. Cw(H) is essentially
included in [17, 37].

We recall from Birkhoff’s ergodic theorem that spatial and temporal averages are equiva-
lent if the underlying invariant measure is ergodic. Not all invariant measures are ergodic of
course. However, ergodic measures are the building blocks of the set of all invariant measures
of a dissipative system. Indeed, since IM is convex and compact, it is the closed convex
hull of the extremal points in this set (Krein-Milman theorem [22, 17]). This together with
the following result which states that extremal invariant measures are ergodic completes our
argument.

Theorem 3 (Ergodicity and extremal points) Let IM be the set of all invariant prob-
ability measures of a dissipative dynamical system {S(t), t ≥ 0}. Then an invariant measure
μ is ergodic if μ is an extreme point of IM. Moreover, if the dynamical system is injective
on the global attractor A, then every ergodic invariant measure must be an extremal point of
IM.

Proof: The proof of the sufficiency is classical [1, 21, 38]. We reproduce here for the sake
of completeness.

Assume that μ is an extremal point of the set of invariant measures of the dynamical
system.
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Suppose that μ is not ergodic. Then there must exist an invariant set E0 such that
0 < μ(E0) < 1. Define two measures on the phase space as

μ1(E) =
μ(E

⋂
E0)

μ(E0)
,

μ2(E) =
μ(E

⋂
(H \ E0))

μ(H \ E0)
.

It is then easy to see that μ1, μ2 ∈ IM. Indeed,

μ1(S
−1(t)E) =

μ((S−1(t)E)
⋂

E0)

μ(E0)
=

μ(E
⋂

E0)

μ(E0)
= μ1(E).

On the other hand

μ = μ(E0)μ1 + (1 − μ(E0))μ2, μ(E0) ∈ (0, 1)

and
μ 
= μ1.

This contradicts the assumption that μ is an extremal point of IM.
Next we prove the necessity using BWOC.
Recall that the support of all invariant measures are included in the global attractor.

Since the dynamical system is injective and onto on the global attractor, and that the global
attractor is compact by definition, S(t) is continuously invertible on A.

Suppose that μ is ergodic and μ is not an extremal point of IM. Then there exists
μ1, μ2 ∈ IM and λ ∈ (0, 1) such that

μ = λμ1 + (1 − λ)μ2.

Let

f(u) =
dμ1

dμ
∈ L1(H, μ)

be the Radon-Nikodym derivative of μ1 with respect to μ. Then for any continuous test
functional ϕ(u) we have

∫
H

ϕ(S(t)u)f(S(t)u) dμ(u) =
∫

H
ϕ(u)f(u) dμ(u) invariance

=
∫

H
ϕ(u) dμ1(u) definition

=
∫

H
ϕ(S(t)u) dμ1(u) invariance

=
∫

H
ϕ(S(t)u)f(u) dμ(u) definition
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In particular, for the special choice of test functional ϕ(u) = ψ(S−1(t)u) (this is allowed by
the fact that we can restrict to the global attractor and S−1(t) exists and is continuous on
A), we have

f(S(t)u) = f(u), a.s..

Hence f must be a constant by Koopman’s theorem [21, 45]. The constant must be one
since both μ1 and μ are probability measures. This is a contradiction.

This ends the proof of the necessity and hence we end the proof of the theorem.

Proof of this result without the assumption on dissipativity, but restricted to discrete
dynamical system or when the solution semi-group is in fact a group can be found in [1, 38].

3 Perturbation of Stationary Statistical Properties

For a given dynamical system with parameters (such as the Reynolds number, Grashoff
number, Rayleigh number, Prandtl number ...), there is another level of uncertainty, the
parameters, since they are all estimated. Therefore we are interested in the question of how
stationary statistical properties (invariant measures) depend on various parameters. This
may be viewed as a stability issue.

3.1 Regular perturbation

For an abstract dynamical system with parameters, there is no obvious reason that the sta-
tistical properties should depend in some nice way on the parameters, even if trajectories
converge on any given finite time interval (see [45] for a counter-example). However, the
situation is relatively simpler if we consider uniformly dissipative systems only. What we
can show, for uniformly dissipative system, is that the set of invariant measures is upper
semi-continuous with respect to regular perturbation of parameters. The general argument
is that if we have enough a priori estimates for a given parameter α close to α0, we have
tightness/weak compactness of the set of invariant measures for all interested parameter re-
gion thanks to Prokhorov’s theorem [2, 17]. The limit of invariant measures of the perturbed
system must be an invariant measure of the limit system by taking the limit in the Liouville
type equation or the weak invariance formulation.

More precisely, we have the following theorem:

Theorem 4 (Upper semi-continuity of IM, regular version) Suppose the family of
continuous dynamical systems {S(t, ε), t ≥ 0} on a Hilbert space H is uniformly dissipative
in the sense that K =

⋃
0<|ε|≤ε0 Aε is pre-compact where Aε denotes the global attractor for

the system with parameter ε. Moreover, we assume that the trajectories converge on any
finite time interval uniformly on the attractors, i.e.,

lim
ε→0

sup
u∈Aε

‖S(t, ε)u − S(t, 0)u‖H = 0,∀t ≥ 0.
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Then the set of invariant measures are upper semi-continuous in the sense that for any
{με ∈ IMε, 0 < |ε| ≤ ε0}, there exists μ0 ∈ IM0 and a subsequence (still denoted με) such
that

lim
ε→0

με = μ0

(the convergence is in the weak sense)

Proof: Since the support of any invariant measure is contained in the global attractor Aε

which is contained in the same pre-compact set K, we see that {με, 0 < |ε| ≤ ε0} is tight
in PM(H), the space of Borel probability measures on H, thanks to Prokhorov’s theorem.
Without loss of generality we assume that με weakly converges to μ0.

Our goal now is to show that μ0 ∈ IM0.
Now for any t > 0, since με ∈ IMε, for any continuous test functional ϕ we have

∫
H

ϕ(S(t, ε)u) dμε(u) =
∫

H
ϕ(u) dμε(u).

Thanks to the weak convergence we also have

lim
ε→0

∫
H

ϕ(u) dμε(u) =
∫

H
ϕ(u) dμ0(u),

lim
ε→0

∫
H

ϕ(S(t, 0)u) dμε(u) =
∫

H
ϕ(S(t, 0)u) dμ0(u).

Hence, for any smooth cylindrical test functional ϕ,

|
∫

H
ϕ(S(t, 0))u) dμ0(u) −

∫
H

ϕ(u) dμ0(u)|

= lim
ε→0

|
∫

H
ϕ(S(t, 0))u) dμε(u) −

∫
H

ϕ(u) dμε(u)|

≤ lim
ε→0

|
∫

H
(ϕ(S(t, ε)u) − ϕ(u)) dμε(u)| + lim

ε→0
|
∫

H
ϕ(S(t, ε)u) dμε(u) −

∫
H

ϕ(S(t, 0)u) dμε(u)|

≤ lim
ε→0

∫
H

sup ‖ϕ′(u)‖‖S(t, ε)u − S(t, 0)u‖ dμε(u)

= 0

where we have used the push-forward invariance of με under S(t, ε), mean value theorem,
and the uniform convergence of trajectories starting on Aε.

Now for an arbitrary continuous test functional ϕ(u), it can be approximated by cylin-
drical continuous test functional ϕ(Pmu) where Pm is the orthogonal projection onto the
subspace spanned by the first m elements of a given orthonormal basis of H. And we have

∫
H

ϕ(u) dμ0(u) = lim
m→∞

∫
H

ϕ(Pmu) dμ0(u)

by the Lebesgue dominated convergence theorem and the fact that μ0 is supported on the
compact global attractor A and hence ϕ is bounded on A. The finite dimensional cylindrical
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test functionals ϕ(Pmu) can be further approximated by smooth cylindrical test function-
als utilizing standard finite dimensional smoothing (mollifier) techniques, i.e., there exists
smooth cylindrical test functionals ϕm,k such that

ϕm,k(u) → ϕ(Pmu), k → ∞,

||ϕm,k||L∞ ≤ ‖ϕ ◦ Pm‖L∞ .

Therefore, ∫
H

ϕ(Pmu) dμ0(u) = lim
k→∞

∫
H

ϕm,k(u) dμ0(u)

Combining the above we end the proof of the theorem.

A corollary of this upper semi-continuity is that the extremal statistics (defined though
long time averages) are upper semi-continuous in the following sense.

Theorem 5 (Upper semi-continuity of extremal time averaged statistics) Under the
same assumption as in the previous theorem, i.e., uniform dissipativity plus finite time
convergence, we have for any fixed continuous test functional ϕ0, the extremal statistics
are saturated by ergodic invariant measures, i.e., there exist ergodic invariant measures
νε ∈ IMε, ν0 ∈ IM0 such that

sup
u∈H

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, ε)u) dt =

∫
H

ϕ0(u) dνε(u),

sup
u∈H

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, 0)u) dt =

∫
H

ϕ0(u) dν0(u).

Moreover, the extremal statistics are upper semi-continuous in the parameter ε, i.e.,

lim sup
ε→0

sup
u∈H

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, ε)u) dt ≤ sup

u∈H
lim sup

T→∞

1

T

∫ T

0
ϕ0(S(t, 0)u) dt.

Proof: Recall that for a fixed initial data u0 and a fixed continuous test functional ϕ0, there
exists a special Banach/generalized limit that agrees with the lim sup for long time average
on ϕ0. This implies, thanks to the equivalence between spatial and temporal averages, there
exist με,u0 ∈ IMε and μ0,u0 ∈ IM0 such that

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, ε)u0) dt =

∫
H

ϕ0(u) dμε,u0 ,

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, 0)u0) dt =

∫
H

ϕ0(u) dμ0,u0 .

Now for fixed ε, the set IMε is tight and hence the set {με,u0 ,u0 ∈ H} must contain a
subsequence that converges to some με so that

sup
u0∈H

∫
H

ϕ0(u) dμε,u0 =
∫

H
ϕ0(u) dμε,

sup
u0∈H

∫
H

ϕ0(u) dμ0,u0 =
∫

H
ϕ0(u) dμ0.
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It is easy to see that με ∈ IMε, μ0 ∈ IM0 since the sets of invariant measures are closed.
Next, we define

EIM0 = {μ̃0 ∈ IM0, sup
μ∈IM0

∫
H

ϕ0(u) dμ =
∫

H
ϕ0(u) dμ̃0},

EIMε = {μ̃ε ∈ IMε, sup
μ∈IMε

∫
H

ϕ0(u) dμ =
∫

H
ϕ0(u) dμ̃ε}.

It is easy to see that both EIM0 and EIMε are non-empty compact sets by the compactness
of IM0 and IMε. The set of extremals is non-empty by the Krein-Milman theorem and
our assumption of uniform dissipativity. Let ν0 be an extremal point of EIM0 and νε be an
extremal point of EIMε

It is easy to see that ν0 must be an extremal point of IM0 and νε is an extremal point
of IMε. Indeed, if for some λ ∈ (0, 1) and μ1, μ2 ∈ IM0 we have

ν0 = λμ1 + (1 − λ)μ2

then ∫
H

ϕ0(u) dν0 = λ
∫

H
ϕ0(u) dμ1 + (1 − λ)

∫
H

ϕ0(u) dμ2.

Since
∫
H ϕ0(u) dν0 = supμ∈IM0

∫
H ϕ0(u) dμ, we see that

∫
H

ϕ0(u) dμ1 =
∫

H
ϕ0(u) dμ2 = sup

μ∈IMε

∫
H

ϕ0(u) dμ

and therefore, both μ1 and μ2 are elements of EIM0 which contradicts the assumption that
ν0 is an extremal of EIM0. The same argument works for νε.

Thanks to the previous theorem, the lim supε→0 on the right hand side of the last in-
equality in the theorem is attained and the limit is satisfied by an an element ν̃0 of IM0.
Hence

lim sup
ε→0

sup
u0∈H

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, ε)u0) dt = lim sup

ε→0
sup
u0∈H

∫
H

ϕ0(u) dμε,u0

= lim sup
ε→0

∫
H

ϕ0(u) dμε

≤ lim sup
ε→0

∫
H

ϕ0(u) dνε

=
∫

H
ϕ0(u) dν̃0

≤
∫

H
ϕ0(u) dν0

= lim
T→∞

1

T

∫ T

0
ϕ0(S(t, 0)u) dt (a.s. w.r.t. ν0)

≤ sup
u0∈H

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, 0)u0) dt
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where in the second to the last step we have used the fact that extremals of IM0 are
necessarily ergodic, and hence spatial and temporal averages are equivalent.

This ends the proof of the theorem.

A corollary of this is the upper semi-continuity of the Nusselt number for the Boussinesq
system on parameters (Rayleigh number etc) if they are defined as the supremum over all
trajectories.

3.2 Singular perturbation

The case of singular perturbation of parameter is much more difficult in general. However, for
a singular perturbation problem of two time scale of relaxation type, upper semi-continuity
of statistical properties are still valid in some appropriate sense (after projection or lifting,
see [43] for the case of singular limit of infinite Prandtl number in the Boussinesq system for
convection). The singularity usually involves an initial layer in time [40] and hence render the
problem not that singular if one considers long time behavior (such as stationary statistical
properties). In terms of long time statistics, we can imagine that the fast variable quickly
relaxes and hence essentially slaved by the slow variable at large time. Therefore we have
that the long time statistics is essentially given by the slow dynamics with the fast dynamics
slaved by the slow variable, i.e., the limit dynamics. To be more precise, we consider the
following type of two time scale problem of relaxation type which is basically the same as
those we considered for the problem of global attractors [42]

ε(
du1

dt
+ g(u1,u2)) = f1(u1,u2), u1(0) = u10, (3)

du2

dt
= f2(u1,u2), u2(0) = u20, (4)

where X1, X2 are two separable Hilbert spaces. The limit problem for ε = 0 is given by

0 = f1(u
0
1,u

0
2), (5)

du0
2

dt
= f2(u

0
1,u

0
2),u2(0) = u20. (6)

This is a two time scale problem with u1 being the fast variable and u2 being the slow
variable.

Theorem 6 (Upper semi-continuity of IM, singular version) Consider a generalized
dynamical system on X1 × X2 with two explicitly separated time scales given by (3, 4) with
the limit system given by (5,6).

We postulate the following assumptions:

H1 (uniform dissipativity of the perturbed system) The two-time-scale system (3, 4) pos-
sesses a global attractor Aε for all small positive ε such that K =

⋃
0<ε<ε0 Aε is pre-

compact in X1 × X2.
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H2 (dissipativity of the limit system) The limit system is wellposed and possesses a global
attractor A0 in X2.

H3 (convergence of the slow variable) The slow variable of the solutions of the two time
scale system converge uniformly on Aε, i.e.

lim
ε→0

sup
u2∈P2Aε

‖P2S(t, ε)(F1(u2, 0),u2) − S(t, 0)u2‖X2 = 0, ∀ t ≥ 0.

where P2 is the projection from X1 × X2 to X2 defined as P2(u1,u2) = u2, and
u1 = F1(u2, 0) is the unique solution to the first part of the limit system, i.e. 0 =
f1(F1(u2, 0),u2).

H4 (smallness of the perturbation) The two time scale problem (3, 4) is a uniformly small
perturbation of the limit problem (5, 6) when confined to the global attractors, i.e.,

lim
ε→0

sup
(u1,u2)∈Aε

‖ε(du1

dt
+ g(u1,u2))‖X1 = 0.

H5 (continuity of the slave relation) The first equation in the limit system (5) can be solved
continuously for x0

1 with given x0
2 and a nontrivial left hand side, i.e., there exists a

continuous function F1 : X2 × X1 → X1 such that

y = f1(F1(u2, y),u2).

Moreover, we assume F1 is uniformly continuous for y = 0 and u2 ∈ P2K.

Then the stationary statistical properties are upper semi-continuous after lifting in this sin-
gular limit, i.e., for {με ∈ IMε, 0 < ε ≤ ε0}, there exists a weakly convergent subsequence,
still denoted {με}, and μ0 ∈ IM0 such that

με ⇀ Lμ0,

where L is the lift from X2 to X1 × X2 defined by
∫

X1×X2

ϕ(u1,u2) d(Lμ)(u1,u2) =
∫

X2

ϕ(F1(u2, 0),u2) dμ(u2).

Proof: We will approach the problem utilizing ideas developed in [42, 43].
We first show that the statistical properties converge in the projected sense, i.e., the

statistical properties converge when restricted to the slow manifold (equivalent of taking
marginal distribution in appropriate sense).

We first perform the following change of variables

u1 = y1 + F1(y2, 0), u2 = y2

where F1 is the one defined through the slave relation.

14



Let με be an invariant measure of the perturbed system on X1×X2, the change of variable
induces another Borel probability measure μ̃ε on X1 × X2 which is defined by

∫
ϕ(u1,u2) dμε(u1,u2) =

∫
ϕ(y1 + F1(y2, 0), y2) dμ̃ε(y1, y2).

Thanks to the uniform dissipativity assumption, the set {με} is tight in the space of
Borel probability measures. This also implies that the set {μ̃ε} is tight in the space of Borel
probability measures on X1 × X2 since F1 is continuous and K is pre-compact. Therefore
the marginal distribution of {μ̃ε} in X2, denoted {Mμ̃ε}, is also tight in the space of all
Borel probability measures on X2. Hence there must exist a weakly convergent subsequence
so that

Mμ̃ε ⇀ μ0, ε → 0.

Our first goal is to show that μ0 ∈ IM0, i.e., the upper semi-continuity of the stationary
statistical properties in the projected sense.

For this purpose we take a smooth cylindrical test functional ϕ0 on X2 and show the
invariance of the average of ϕ0 under the flow. Indeed, for any t > 0,

∫
X2

ϕ0(S
0(t)y2) dμ0(y2)

= lim
ε→0

∫
X2

ϕ0(S
0(t)y2) d(Mμ̃ε)(y2)

= lim
ε→0

∫
X1×X2

ϕ0(S
0(t)y2) dμ̃ε(y1, y2)

= lim
ε→0

∫
X1×X2

ϕ0(S
0(t)u2) dμε(u1,u2)

= lim
ε→0

∫
X1×X2

ϕ0(P2S
ε(t)(F1(u2, 0),u2)) dμε(u1,u2)

+ lim
ε→0

∫
X1×X2

(ϕ0(S
0(t)u2) − ϕ0(P2S

ε(t)(F1(u2, 0),u2))) dμε(u1,u2)

= lim
ε→0

∫
X1×X2

ϕ0(P2(F1(u2, 0),u2)) dμε(u1,u2)

+ lim
ε→0

∫
X1×X2

(ϕ0(S
0(t)u2) − ϕ0(P2S

ε(t)(F1(u2, 0),u2))) dμε(u1,u2)

= lim
ε→0

∫
X1×X2

ϕ0(u2) dμε(u1,u2)

=
∫

X2

ϕ0(y2) dμ0(y2)

where we have used the weak convergence of Mμ̃ε, the change of variables/measures (defi-
nition of μ̃ε), the invariance of με under Sε(t), and the following straightforward estimate

|ϕ0(S
0(t)u2) − ϕ0(P2S

ε(t)(F1(u2, 0),u2))| ≤ ‖Φ′
0‖‖S0(t)u2 − P2S

ε(t)(F1(u2, 0),u2)‖
→ 0, ε → 0
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uniformly for u2 ∈ P2Aε by the uniform convergence of the slow variable assumption.
A general continuous test functional can be approximated by smooth finite dimensional

cylindrical functional just as the case of regular perturbation.
This ends the the proof of the convergence in the projected sense.
For the convergence in the lifted sense, we have, for any smooth cylindrical test functional

ϕ on X1 × X2

|
∫

X1×X2

ϕ(u1,u2) dμε(u1,u2) −
∫

X1×X2

ϕ(u1,u2) d(Lμ0)(u1,u2)|

= |
∫

X1×X2

ϕ(u1,u2) dμε(u1,u2) −
∫

X2

ϕ(F1(u2, 0),u2) dμ0(u2)|

≤ |
∫

X1×X2

ϕ(F1(u2, 0),u2) dμε(u1,u2) −
∫

X2

ϕ(F1(u2, 0),u2) dμ0(u2)|

+|
∫

X1×X2

(ϕ(u1,u2) − ϕ(F1(u2, 0),u2)) dμε(u1,u2)|

≤ |
∫

X1×X2

ϕ(F1(u2, 0),u2) dMμ̃ε(u2) −
∫

X2

ϕ(F1(u2, 0),u2) dμ0(u2)|

+
∫

X1×X2

‖ϕ′‖‖u1 − F1(u2, 0)‖ dμε(u1,u2)

≤ |
∫

X1×X2

ϕ(F1(u2, 0),u2) dMμ̃ε(u2) −
∫

X2

ϕ(F1(u2, 0),u2) dμ0(u2)|

+
∫

X1×X2

‖ϕ′‖‖F2(u2, ε(
du1

dt
+ g(u1,u2))) − F1(u2, 0)‖ dμε(u1,u2)

→ 0, ε → 0

where we have utilized the definition of lift, marginal distribution, mean value theorem, the
slave property and the smallness of the perturbation and the uniform continuity of the slave
property.

Again, a general continuous functional can be approximated by smooth finite dimensional
cylindrical functional just as the case of regular perturbation.

This ends the proof of the theorem.

A corollary of this result together with the compactness of IM0 and the fact that ex-
tremal points of IM are ergodic leads us to the upper semi-continuity of extreme time
averaged statistics.

Theorem 7 (Upper semi-continuity of extremal time averaged statistics, singular version)
Under the same assumption as in the previous theorem, we have for any fixed continuous test
functionals ϕ0(u1,u2) and ϕ02(u2), the extremal statistics are saturated by ergodic invariant
measures, i.e., there exist ergodic invariant measures νε ∈ IMε, ν0 ∈ IM0 such that

sup
(u1,u2)∈X1×X2

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, ε)(u1,u2)) dt =

∫
X1×X2

ϕ0(u1,u2) dνε(u1,u2),

sup
u2∈X2

lim sup
T→∞

1

T

∫ T

0
ϕ02(S(t, 0)u2) dt =

∫
X2

ϕ02(u2) dν0(u2).
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Moreover, the extremal statistics are upper semi-continuous in parameter, i.e.,

lim sup
ε→0

sup
(u1,u2)∈X1×X2

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, ε)(u1,u2)) dt ≤ sup

u2∈X2

lim sup
T→∞

1

T

∫ T

0
ϕ0(F1(S(t, 0)u2, 0), S(t, 0)u

Proof: The first half of the proof, saturation by ergodic measures, is exactly the same as
the regular perturbation part.

For the second part, the upper semi-continuity, we have, assuming με ⇀ Lμ0,

lim sup
ε→0

sup
(u1,u2)∈X1×X2

lim sup
T→∞

1

T

∫ T

0
ϕ0(S(t, ε)(u1,u2)) dt

= lim sup
ε→0

∫
X1×X2

ϕ0(u1,u2) dνε (saturation by ergodic measure)

=
∫

X1×X2

ϕ0(u1,u2) dLμ0 (weak convergence after lift)

=
∫

X2

ϕ0(F1(u2, 0),u2) dμ0 (definition of lift)

≤
∫

X2

ϕ0(F1(u2, 0),u2) dν0 (definition of ν0)

= lim
T→∞

1

T

∫ T

0
ϕ0(F1(S(t, 0)u2, 0), S(t, 0)u2) dt (a.s. w.r.t. ν0) (ergodicity of ν0)

= sup
u2∈X2

lim sup
T→∞

1

T

∫ T

0
ϕ0(F1(S(t, 0)u2, 0), S(t, 0)u2) dt. (definition of ν0)

This ends the proof of the theorem.

4 Remarks on Applications and Extensions

Here we give a few remarks on the application of the abstract theorems to Rayleigh-Bénard
convection at large Prandtl number, and convection in fluid saturated porous media (Darcy-
Boussinesq system).

We recall the well-known Boussinesq system for Rayleigh-Bénard convection
(non-dimensional) [5, 36]:

1

Pr
(
∂u

∂t
+ (u · ∇)u) + ∇p = Δu + Rakθ, ∇ · u = 0, u|z=0,1 = 0,

∂θ

∂t
+ u · ∇θ − u3 = Δθ, θ|z=0,1 = 0,

where u is the fluid velocity field, p is the kinematic pressure, θ is the deviation of the
temperature field from the pure conduction state 1−z, k is the unit upward vector, Ra is the
Rayleigh number, Pr is the Prandtl number, and the fluids occupy the (non-dimensionalized)
region Ω = [0, Lx] × [0, Ly] × [0, 1] with periodicity in the horizontal directions assumed for
simplicity.
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Although the Boussinesq system does not define a dynamical system due to the well-
known difficulty associated with the three dimensional incompressible fluid Navier-Stokes
system, we have eventual regularity at large Prandtl number [40, 41, 42]. Hence the gener-
alized dynamical system can be treated as a usual dynamical system in terms of long time
behavior (global attractors, stationary statistical properties) at large Prandtl number. The
phase space in this case is given by H ×L2 where H is the divergence free subspace of (L2)3

with zero normal trace at z = 0, 1. The results presented in the previous sections (except
the singular perturbation one) apply to the Boussinesq system at large Prandtl number.
In particular, for the continuous test functional ϕ0(u, θ) = 1 + 1

|Ω|
∫
Ω u3(x)θ(x) dx defined

on H × L2, we have upper semi-continuity in the Rayleigh number and Prandtl number.
We leave the details to the interested reader. For the singular perturbation case, we have
X1 = H and X2 = L2, and the limit problem is given by the infinite Prandtl number
model

∇p0 = Δu0 + Rakθ0, ∇ · u0 = 0, u0|z=0,1 = 0,

∂θ0

∂t
+ u0 · ∇θ0 − u0

3 = Δθ0, θ0|z=0,1 = 0.

The results regarding singular perturbation in section 3 also apply with ε = 1
Pr

and F1(θ, y) =
Ra A−1(kθ)−A−1(y) where A is the Stokes operator with the associated boundary conditions.
In particular, we have upper semi-continuity on Prandtl number even in the singular limit
of infinite Prandtl number. The interested reader is referred to [43] for more details.

Next, we consider an application of the abstract results to the case of convection in
fluid saturated porous media. The governing equation is the following Darcy-Oberbeck-
Boussinesq system (non-dimensional) [29]:

γa
∂v

∂t
+ v + ∇p = RaD kT, ∇ · v = 0, v3|z=0,1 = 0,

∂θ

∂t
+ v · ∇θ − v3 = Δθ, θ|z=0,1 = 0

where v is the non-dimensional seepage velocity, p is the non-dimensional kinematic pressure,
T = 1−z+θ is the non-dimensional temperature. The parameters in the system are given by
the Prandtl-Darcy number γ−1

a , and the Rayleigh-Darcy number RaD. Again we assume the
fluids occupy the (non-dimensionalized) region Ω = [0, Lx] × [0, Ly] × [0, 1] with periodicity
in the horizontal directions assumed for simplicity.

The system is partially/weakly dissipative since there is no dissipation in the velocity
equation. In particular, there is no compact absorbing ball in the phase space H × L2.
However, the results presented in the previous sections (except the singular perturbation
one) apply to the Darcy-Boussinesq system. In particular, for the continuous test functional
ϕ0(v, θ) = 1 + 1

|Ω|
∫
Ω v3(x)θ(x) dx defined on H × L2, we have upper semi-continuity in the

Rayleigh-Darcy number and Prandtl-Darcy number. For the singular perturbation case, we
have X1 = H and X2 = L2, and the limit problem is given by the infinite Prandtl-Darcy
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number model

u + ∇p = RaDkT, ∇ · u = 0, u3|z=0,1 = 0,

∂θ

∂t
+ u · ∇θ − u3 = Δθ, θ|z=0,1 = 0.

The results regarding singular perturbation in section 3 also apply with ε = γa and F1(θ, y) =
RaD P (kθ) − P (y) where P is the Leray-Hopf projection from (L2)3 to H. The interested
reader is referred to [30] for more details.

Many questions remain open. For instance, although we have non-uniqueness in general
in terms of invariant measures, it is very likely there is a unique physically observable one. A
question then is to have physically interesting and verifiable conditions on the uniqueness of
physically relevant invariant measures. Some interesting progress has been made on axiom-A
systems [46]. However, it seems extremely difficult if not impossible to verify those conditions
listed there on any practical fluid system. On the other hand, we may consider noisy system
since our world is intrinsically noisy. Appropriate noise may lead to uniqueness of invariant
measure (see for instance [12, 14, 21, 26, 20, 15]) since appropriate noise may help to connect
different parts of the (deterministic) global attractor that are otherwise disconnected (having
disjoint basin of attraction). Nevertheless, it is non-trivial to find physically relevant noises.
Also, the possible selection of physically relevant invariant measure through zero noise limit
is not well understood (see [46] for axiom-A system however). There are many advantages
of having unique invariant measure including continuous dependence on parameters for uni-
formly dissipative systems. Even in the case with unique invariant measure, accurate and
efficient methods for estimating leading order change of various statistical quantities are still
not well understood (this is related to the linear response theory, see for instance [24]). More
generally, we do not expect continuity of arbitrary statistical quantity. But can we expect
continuity of physically relevant statistical quantities? If no continuity, can we classify the
bifurcation phenomena for statistical behaviors? On a more practical side, we still do not
have good a priori estimates on the (long) time interval needed for temporal average to ef-
fectively approximate spatial average (related to the rate of mixing). The study of numerical
methods that are good for capturing stationary statistical properties is still in its infancy
(see [6, 7]). Explicit physically relevant estimates on specific statistical quantities are also
rare (see estimates on Nusselt number [8, 9, 13, 44]). Another practical (difficult) problem
would be statistical inversion, i.e., finding relevant information on the system with available
statistical observation (see for instance [19] for more details).
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