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Abstract
By extending and developing a series of classical theorems and methods, such as James,

finite tree theorem, Enflo,s renorming technique, Grothendieck,s lemma and the Davis-Figiel-
Johnson-Pelzyński Lemma, this paper finally shows that every super-weakly compact convex
set is isomorphic to a uniformly convex set of a reflexive relatively uniformly convex Banach
space; and that a closed bounded convex set C of a Banach space X is super-weakly compact if
and only if there exists a uniformly continuous and uniformly convex function on it, and which
is equivalent to that there exists a norm on a reflexive space Y with C ⊂ Y ⊂ X such that
the norm of Y with respect to the norm of X is uniformly continuous and uniformly convex
on C. It proves that every relatively compact set of a Banach space and every bounded set
of a super-reflexive space are relatively super-weakly compact. This paper also presents that
super-weakly compact sets have very nice properties, for example,every super-weakly compact
convex set can be renormed to have normal structure; the image of a super-weakly compact
convex set under a uniformly continuous affine mapping is again super-weakly compact; and
for any two super-weakly compact convex sets A and B in a Banach space, both A × B and
A − B are still super-weakly compact.
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1 Introduction

It is just like that the notion of weakly compact set can be viewed as a generalization
and localization of the notion of reflexive Banach space, the aim of this article is first to
generalize and to localize the notion of super-reflexive Banach space to that of super-
weakly compact set of Banach spaces in a natural way; then, to show that the behavior
of a nonempty super-weakly compact set is much like that of the closed unit ball of a
super-reflexive space, such as, a bounded closed convex set is super-weakly compact if
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and only if it does not have James, finite tree property, and which is also equivalent to
that it admits a uniformly continuous and uniformly convex function on it; finally, to
present that every super-weakly compact convex set of a Banach space can be affinely
embedded into a reflexive relatively uniformly convex space, and that every super-
weakly compact convex set admits a uniformly continuous and uniformly convex norm
on it. They are done by extending and developing a sequence of classical theorems and
methods, such as James, tree theorem for super-reflexive spaces [18], Enflo,s renorming
technique in showing that every super-reflexive space admits an equivalent uniformly
convex norm [10], Grothendieck,s lemma for weakly compact sets and the Davis-Figiel-
Johnson-Pelzyński Lemma [5].

The study of renorming characterization of various classes of Banach spaces with
respect to the convexity and smoothness has continued on for over 70 years since
J.A.Clarkson [4] introduced the class of uniformly convex spaces. Now, it is well known
that the geometric and topological properties of uniformly convex Banach spaces have
played an important part in both linear and non-linear functional analysis, and this fact
brought the theoretical research and applications of uniformly convexifiable spaces to
mathematicians great attentions (see, for instance, [1], [6-9], [11-12], [14], [20], [23]). For
example, an early result of F.E.Browder [2] says that it is just that the uniformly con-
vex spaces to guarantee every non-expansive mapping from a nonempty closed bounded
convex subset to itself has a fixed point, and a quite recent conclusion of Kasparrov
and Yu [21] explains that the Novikov conjecture holds for any discrete group which
admits a uniform embedding into a uniformly convex space. The most spectacular re-
sult in this area is certainly the Enflo-Pisier characterization of super-reflexive spaces as
those admitting an equivalent uniformly convex norm [10] (or even having power type
modulus of uniform convexity [25]). There are also many remarkable results showing
characterization of a super-reflexive space or a uniformly convexiflable space, such as
the closed unit ball without James, finite tree property [18], and even the girth charac-
terization of super-reflexive spaces [19]. We also know that both uniformly smoothable
and uniformly non-square spaces are super-reflexive spaces [16].

Here we should mention that in many cases, the assumption of the uniform convexity
on the whole space is not natural, because we need only a localized setting. For example,
if T is a non-expansive mapping from a nonempty closed bounded convex set C of a
Banach space to itself, the assumptions of weak compactness and of normal structure
on C can always guarantee that T has a fixed point [22]. This tells us that we need only
to assume that C has some kind of uniform convexity. On the other hand, a Banach
space is reflexive if and only if every bounded weakly closed set is weakly compact.
Therefore, the notion of weakly compact set can be viewed as a localized setting of
reflexive spaces. These facts arise the following natural questions.

Problem 1 How to localize and generalize the notion of the super-reflexivity in a
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natural way, or more precisely, to introduce a notion of super-weak compactness which
is a localization of super-reflexivity?

The Enflo-Pisier deep renorming theorem (see, [10] and [25]) for super-reflexive
spaces also reminders us to expect that such a super-weakly compact set can be
renormed with some kind of uniform convexity, or equivalently,

Problem 2 Whether every super-weakly compact convex set C of a Banach space
admits a norm, which is uniformly convex on it?

The Davis-Figiel-Johnson-Pelzyński Lemma provides an easy way of making reflex-
ive Banach spaces from weakly compact sets of arbitrary Banach spaces. Making a
comparison between a weakly compact set and a super-weakly compact set, a further
question is arising as follows.

Problem 3 Whether every (super-)weakly compact set can be embedded into a
(super-)reflexive space.

This paper, divided into 6 sections, mainly focuses the three questions above. Sec-
tion 2 generalizes the notion of finite representability between two Banach spaces to
the notion of that between two general subsets of Banach spaces, and this is done by
substituting simplexes for finite dimensional subspaces.

Section 3, in terms of the generalized finite representability, introduces the notion of
super-weakly compact set, that is, a nonempty weakly closed bounded set C in a Banach
space is said to be super-weakly compact, if every bounded weakly closed set D which is
finitely representable in C is weakly compact, and shows that James, characterization
and its consequence for super-reflexive spaces hold again for super-weakly compact sets.
Now we state them as follows.

Theorem 1.1 A bounded closed convex set C in a Banach space X is super-weakly
compact if and only if it does not have the finite tree property.

Theorem 1.2 A bounded closed convex set C of the space X is not super-weakly
compact if and only if there exists 0 < θ < 1 such that for every positive integer n,
there is a sequence {xi}n

i=1 ⊂ C satisfying

dist(co{x1 , · · · , x
k
}, co{x

k+1
, · · · , xn}) > θ

for all 1 ≤ k < n, where coA stands for the convex hull of the set A.
In Section 4, through generalizing a sequence of Enflo,s Lemmas [10] to general

super-weakly compact convex sets, it shows that a bounded closed convex set is super-
weakly compact if and only if for every ε > 0, there exists a bounded ε−uniformly
convex function on it, and further, the image of a super-weakly compact convex set
under a uniformly continuous affine mapping is again super-weakly compact. These, in
turn, imply that the product A×B and the difference A−B of any two super-weakly
compact convex sets A and B are again super-weakly compact.
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In Section 5, it first verifies that Grothendieck,s lemma for weakly compact sets is
again valid for super-weakly compact sets, that is

Theorem 1.3 A closed convex subset K in a Banach space is super-weakly compact
if and only if for every ε > 0 there exists a super-weakly compact convex set Kε such
that K ⊂ Kε + εBX , where BX denotes the closed unit ball of X.

This section also mentions that there is an important and elegant consequence quite
hidden in the original proof of the Davis-Figiel-Johnson-Pelzyński Lemma that we have
not discovered for over 30 years, that is, every (super-)weakly compact convex set is
linearly isomophic to a (super-)weakly compact convex set of a reflexive space. By
employing these results and theorems in the previous sections, it finally shows the
following theorem.

Theorem 1.4 Suppose that C is a super-weakly compact set of a Banach space
(X, ‖ · ‖). Then there exists a Banach space (Y, |‖ · |‖) such that

i) Y is reflexive and C ⊂ BY ⊂ X;
ii) ‖ · ‖ is |‖ · |‖−Lipschitz on Y ;
iii) |‖ · |‖ is ‖ · ‖−uniformly continuous and uniformly convex on C;
iv) (Y, |‖ · |‖) is relatively uniformly convex with respect to ‖ · ‖, that is, for any

two sequences {xn} and {yn} in BY , 2(|‖xn‖|2 + |‖yn‖|2) − |‖xn + yn‖|2 → 0 implies
‖xn − yn‖ → 0.

As a consequence, we obtain
Theorem 1.5 A closed bounded convex set of a Banach space is super-weakly

compact if and only if there exists a uniformly continuous and uniformly convex function
on it.

Motivated by the importance of normal structure of a weakly compact convex set C

guaranteeing that every non-expansive mapping (T : C → C) has a fixed point [22] and
by the recent renorming theorems of Odell-Schlumprecht [24] and Hájek-Johanis[13],
we devote the bulk of Section 6 to some further consideration regarding renormings of
(super-)weakly compact convex sets. We begin with discussion of normal structure of
super-weakly compact convex sets under renormings. After giving some extensions of
Odell-Schlumprecht and Hájek-Johanis, renorming theorems, we finally point out some
questions on this topic.

In this paper, the letter X will always be a real Banach space and X∗ is its dual.
For x ∈ X and r > 0, B(x, r) presents the closed ball centered at x with radius r,
and S(x, r), the sphere of B(x, r). We simply denote by BX , the closed unit ball and
by SX , the sphere of BX . For a set A in X, (coA) coA and (affA) affA stand for the
(closed) convex hull and the (closed) affine hull of the set A.
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2 Generalized Finite Representability

This section mainly introduces a generalized notion of finite representability between
two general sets of Banach spaces, making use of simplexes and affine mappings.

To begin with, we state the classical notion of finite representability introduced by
James (see, [17] and [18]), which has played an important rule in studying various kinds
of ” super-property ” of Banach spaces.

Definition 2.1 Suppose that X and Y are two Banach spaces. We say that X is
finitely representable in Y , if for every ε > 0 and for every finite dimensional subspace
M ⊂ X, there exist a subspace N ⊂ Y and a linear mapping T : M → N such that
‖T‖ · ‖T−1‖ ≤ 1 + ε.

For generalizing the notion above to general sets, a natural way is to substitute
simplexes and affine mappings for the linear subspaces and the linear mappings.

Definition 2.2 Suppose that {xi}n
i=0 are n + 1 vectors in X.

i) {xi}n
i=0 are said to be affinely independent if {xi−x0}n

i=1 are linearly independent;
ii) co{xi}n

i=0 is called an n−simplex of X with vertices at xi (i = 0, 1, · · · n) if {xi}n
i=0

are affinely independent.
Definition 2.3 Suppose U ⊂ X and V ⊂ Y are two affine subspaces, and suppose

A ⊂ X and B ⊂ Y are two subsets.
i) A mapping T : U → V is called affine, if

T (αu + βv) = αTu + βTv for all u, v ∈ U and α + β = 1

ii) In general, a mapping T : A → B is said to be affine, if T is a restriction of an
affine mapping from affA to affB;

iii) An affine mapping T : A → B is called a (1 + ε)−affine embedding from A to B

for some ε > 0, if

(1 − ε)‖x − y‖ ≤ ‖Tx − Ty‖ ≤ (1 + ε)‖x − y‖, ∀x, y ∈ A

If such a map T exists, then we also call A can be (1 + ε)−affinely embedded into
B, or (1 + ε)−affine embedding into B.

In particular, if A = X,B = Y , then a linear map T from X into Y is called a
(1 + ε)−linear embedding from X to Y if T satisfies inequality above for all x, y ∈ X.
In this case, X is said to be (1 + ε)−linear embedding into Y.

Now we present a generalized notion of finite representability as follows.
Definition 2.4 Suppose that A ⊂ X and B ⊂ Y are nonempty subsets. We say

that A is finitely representable in B (A f.r
↪→ B) if for every ε > 0 and for each n−simplex

S(A) with vertices in A there exists an n−simplex S(B) with vertices in B such that
S(A) is (1 + ε)−affine embedding into S(B).

Clearly, every subset of A is finitely representable in A. Further, it is easy to show
the following properties.
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Proposition 2.5 Suppose that A ⊂ X, B ⊂ Y and C ⊂ Z are three nonempty
subsets. Then

i) A f.r
↪→ B and B f.r

↪→ C =⇒ Af.r
↪→C;

ii) For every x0 ∈ A, y0 ∈ B,Af.r
↪→B ⇐⇒ A − x0

f.r
↪→B − y0;

iii) Af.r
↪→ B ⇐⇒ A f.r

↪→B;
iv) Af.r

↪→B =⇒ affAf.r
↪→ affB.

The following counter-example shows that the converse of Proposition 2.5 iv) is not
true.

Example 2.6 Suppose that X is a separable non-reflexive Banach space and that
{xn} is a dense sequence in the unit ball BX . Let A = co{±xn

n
}. Then A is a compact

convex set in X. Clearly, affA = spanA is a dense subspace of X, and X is not finitely
representable in A. But by Proposition 2.5 iii), X f.r

↪→ affA. This is a contradiction.
Lemma 2.7 Suppose that A ⊂ X and B ⊂ Y are two nonempty subsets, that

E = affA,F = affB, and suppose that A has nonempty relative interior ( denoted by
intEA ). If A is (1 + ε0)−affine embedding in B for some ε0 ≥ 0, then E is again
(1 + ε0)−affine embedding in F .

Proof Choose any a ∈ intE(A) and set A1 = A − a and E1 = affA1(= spanA1).
Then 0 ∈ intE1(A1). Let T : E → F be a (1 + ε0)−affine embedding from A to B.
Then T1 : E1 → F1, defined by

T1(x) = T (x + a) − T (a) for all x ∈ E1

is a (1, ε0)−linear embedding from A1 to B1, where B1 = B − Ta and F1 = affB1 =
spanB1. Therefore, T1 is also a (1 + ε0)−linear embedding from A1 to F1 and which
implies that T1 is again a (1 + ε0)−linear embedding from E1(=

⋃∞
n=1 nA1) to F1.

Thus, T is a (1 + ε0)−affine embedding from E(= E1 + a) to F (= F1 + Ta) �
We should mention here that the converse of the lemma above is not true.
By a simple argument of linear homeomorphism, we can present the following result.
Proposition 2.8 Suppose that X and Y are two Banach spaces. Then

X f.r
↪→ Y ⇐⇒ BX

f.r
↪→ BY .

3 Super-weakly Compact Sets

In this section, we introduce the notion of super-weakly compact set in terms of the
generalized finite representability, and discuss their finite tree property (Theorem 1.1),
which, along with Theorem 1.2, will be used repeatedly in the sequel. We will see that
a super-weakly compact convex set acts just like the closed unit ball of a super-reflexive
space. Therefore, this concept can be viewed as a generalized and localized notion of
super-reflexivity of Banach space.

First, let us recall a sequence of definitions.
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Definition 3.1 A Banach space X is said to be super-reflexive, if every Banach
space Y which can be finitely representable in X is reflexive.

Definition 3.2 Suppose that X is a Banach space, ε > 0, and α is a cardinal
number less or equal to ℵ0, the cardinal number of N; and suppose, further that A ⊂ X

is defined by
A =

{
xε1,ε2,···εk

: k ∈ N with k ≤ α, εi = 1, 2 and i = 1, 2, · · · k
}

Then
i) The subset A is called an ε−tree with n−branches (or an (n, ε)−tree) if α = n

for some n ∈ N and it satisfies
xε1,ε2,···εk

=
1
2

(
xε1,ε2,···εk,1 +xε1,ε2,···εk,2

)
(3.1)

and ∥∥∥xε1,ε2,···εk,1−xε1,ε2,···εk,2

∥∥∥ ≥ ε (3.2)
for k = 1, 2, · · · , n − 1, εi = 1, 2 and i = 1, 2, · · · , k;

ii) The subset A is said to be an infinite ε−tree if α = ℵ0 such that (3.1) and (3.2)
hold for all k ∈ N, εi = 1, 2 and i = 1, 2, · · · , k.

Definition 3.3 Suppose that C is a nonempty convex subset of a Banach space
X. Then we say that

i) C has finite tree property if there is ε > 0 such that for every n ∈ N there exists
an (n, ε)−tree in C;

ii) C has infinite tree property , if for some ε > 0 there exists an infinite ε−tree in
C.

Now we state the definition of super-weakly compact set as follows.
Definition 3.4 A bounded weakly closed set C of X is said to be super-weakly

compact, if every bounded weakly closed set D which is finitely representable in C is
weakly compact.

We know that Definitions 3.2 and 3.3 were introduced by James in 1972 [18], and
they are very useful to characterize super-reflexive and non-super-reflexive spaces. The
James Characterization of super-reflexive spaces [18] says that a Banach space is super-
reflexive if and only if its closed unit ball does not have finite tree property. Next, we
generalize the James Characterization of super-reflexive spaces to that of super-weakly
compact convex subsets in terms of finite tree property(Theorem 1.1 or Theorem 3.6).
For this purpose, we need the following lemma which was motivated by work of James
[18].

Lemma 3.5 Suppose that C ⊂ X is a nonempty convex set. If C has finite tree
property, then there exist ε > 0 and an infinite ε−tree A in a Banach space E such
that A f.r

↪→ C.
Proof We apply the finite tree property of C to construct a Banach space E

which contains an infinite ε−tree for some ε > 0, and then show this tree is finitely
representable in C.
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Since C has finite tree property, there exists a subset G of the form

G =
{
x

(n)
ε1,··· ,εk

: n ∈ N, 1 ≤ k ≤ n, εi = 1, 2 and 1 ≤ i ≤ k
}

in C such that for every n ∈ N and 1 ≤ k ≤ n − 1, for all εi = 1, 2 and i = 1, 2, · · · , k

x
(n)
ε1,ε2,···εk

=
1
2
(x(n)

ε1,ε2,···εk,1 + x
(n)
ε1,ε2,···εk,2) (3.3)

∥∥∥x
(n)
ε1,ε2,···εk,1 − x

(n)
ε1,ε2,···εk,2

∥∥∥ ≥ ε (3.4)

Choose an infinite sequence of symbols

S ≡
{
ξε1,ε2,··· ,εn : n ∈ N, εi = 1, 2 and i = 1, 2, · · · , n

}
and let Y = spanS. Applying a diagonal argument to the number set{∥∥∥ ∑

εi = 1, 2

1 ≤ i ≤ k

1 ≤ k ≤ n

λε1,ε2,··· ,εk
x

(n)
ε1,ε2,··· ,εk

∥∥∥ : n ∈ N

}

we can obtain a subsequence kn ⊂ N such that for every r ∈ N and every subset of 2r

rational numbers {λε1,ε2,··· ,εr : εi = 1, 2}, the following limit exists

lim
n→∞

∥∥∥ ∑
εi=1,2; 1≤i≤r

λε1,ε2,··· ,εi
x(kn)

ε1,ε2,··· ,εi

∥∥∥
Set

A =
{ ∑

εi=1,2; 1≤i≤r

λε1,ε2,··· ,εiξε1,ε2,··· ,εi : ∀r ∈ N, λε1,ε2,··· ,εi ∈ Q

}

and let∣∣∣ ∑
εj =1,2; 1≤j≤r

λε1,ε2,··· ,εjξε1,ε2,··· ,εj

∣∣∣ = lim
n→∞

∥∥∥ ∑
εj=1,2; 1≤j≤r

λε1,ε2,··· ,εjx
(kn)
ε1,ε2,··· ,εj

∥∥∥ (3.5)

Then the equality above defines a function | · | on A. We extend | · | to Y , which is still
denoted by |·|. It is easy to see that |·| is a semi-norm on Y . Let N = {x ∈ X : |x| = 0}.
Then the quotient space F ≡ Y/N endowed with the quotient ‖ · ‖

F
introduced by | · |

is a normed space. We denotes by E the completion of F , and by ξ the quotient vector
of ξ, i.e, ξ = ξ + N for every ξ in Y . To show that

A ≡
{

ξε1,ε2,··· ,εn
: n ∈ N, εi = 1, 2 and i = 1, 2, · · · , n

}
is an infinite ε−tree, it suffices to note the (3.3), (3.4) and (3.5), and which in turn
imply for every m ∈ N, εi = 1, 2 and i = 1, 2, · · · ,m∥∥∥ξε1,ε2,···εm

− 1
2
(ξε1,ε2,···εm,1 + ξε1,ε2,···εm,2)

∥∥∥
F

8



= lim
n→∞

∥∥∥x
(kn)
ε1,ε2,··· ,εm − 1

2
(x(kn)

ε1,ε2,··· ,εm,1 + x
(kn)
ε1,ε2,··· ,εm,2)

∥∥∥ (3.6)

= 0
and ∥∥∥ξε1,ε2,···εm,1 − ξε1,ε2,···εm,2

∥∥∥
F

= lim
n→∞

∥∥∥x
(kn)
ε1,ε2,··· ,εm,1 − x

(kn)
ε1,ε2,··· ,εm,2

∥∥∥ ≥ ε (3.7)

Clearly, the infinite tree A is finitely representable in C by observing the definition of
the semi-norm | · | on Y �

Now, we restate and prove Theorem 1.1 as follows.
Theorem 3.6 A closed bounded convex subset C of a Banach space is super-weakly

compact if and only if it does not possess finite tree property.
Proof Necessity. Suppose, to the contrary, that C has finite tree property. Then

applying Lemma 3.5 to C, we can obtain an infinite (bounded) ε−tree A in a Banach
space and which is finitely representable in C. It is clear that A is not weakly compact.
This in turn contradicts the super-weak compactness of C.

Sufficiency. Suppose that C is not super-weakly compact. Then there exists a closed
bounded non-weakly compact set D of a Banach space X such that it is finitely repre-
sentable in C. Applying the James Characterization of non-weakly compact subsets to
D (see, [15]), we know that there exist θ > 0, a sequence {xn} in D and {x∗

n} in SX∗

such that for all m,n ∈ N

< x∗
m, xn >=

{
θ , m ≤ n;
0 , n < m.

By hypothesis, for every n ∈ N, the (2n − 1)−simplex S2n ≡ co{x1, x2, · · · , x2n} is
finitely representable in C. Thus, there is a (1 + 1

2)−affine embedding Tn from S2n to
C. Let y

(n)
i = Tn(xi), i = 1, 2, · · · , 2n. It is easy to see that for 1 ≤ k ≤ 2n − 1

dist
(
co{y(n)

1 , y
(n)
2 , · · · , y

(n)
k }, co{y(n)

k+1, y
(n)
k+2, · · · , y

(n)
2n }

)
≥ θ

2
By the argument which is like one of that in [18], we see that C has finite tree property �

Corollary 3.7 A bounded closed convex subset C of a Banach space X is not
super-weakly compact if and only if there exists θ > 0 such that for every n ∈ N there
is {xi}n

i=1 ⊂ C such that for all 1 ≤ k ≤ n − 1

dist
(
co{x1, x2, · · · , xk}, co{xk+1, xk+2, · · · , xn}

)
> θ.

Proof The proof is contained in the proof of the sufficiency of Theorem 3.6.
The following results are easy consequences of Corollary 3.7.
Corollary 3.8 Every compact set of a Banach spaces is super-weakly compact.
Corollary 3.9 A Banach space is super-reflexive if and only if its closed unit ball

is super-weakly compact.
Corollary 3.10 Every bounded subset of super-reflexive Banach spaces is rela-

tively super-weakly compact.
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4 A Characterization of Super-Weakly Compact Convex

Sets by ε−Uniformly Convex Functions

In this section, in terms of ε−uniformly convex functions we establish a new geomet-
ric characterization of super-weakly compact convex subsets, and which in turn implies
that both C×D and C−D are super-weakly compact whenever the two convex subsets
C and D are super-weakly compact. The main idea of this section was motivated by
Enflo [10] in showing that every super-reflexive space admits an equivalent uniformly
convex norm.

Suppose that C ⊂ X is a nonempty closed bounded convex set with 0 ∈ C, and
that ρ is the Minkowski functional generated by C. Then ρ is an extended non-negative
real-valued and positively homogenous convex function on X with its effective domain
domρ ≡ {x ∈ X : ρ(x) < ∞} = ∪λ>0λC. Now, we give definition of a generalized
ε−partition of z ∈ domρ as follows.

Definition 4.1 With the set C and the function ρ as above, let ε > 0 and z ∈ domρ

be given. A pair (x1, x2) of (domρ)2 is said to be a (1, ε, ρ)−partition of z if it satisfies

ρ(x1) = ρ(x2), ‖ x1

ρ(x1)
− x2

ρ(x2)
‖ ≥ ε and x1 + x2 = z

We denote by

P1(z, ε) = {(x1, x2) ∈ (domρ)2 : (x1, x2) is a (1, ε, ρ) − partition of z}

We call (x1, x2, x3, x4) in (domρ)4 a (2, ε, ρ)−partition of z if it satisfies that

ρ(x1) = ρ(x2), ρ(x3) = ρ(x4), ‖ x1

ρ(x1)
− x2

ρ(x2)
‖ ≥ ε, ‖ x3

ρ(x3)
− x4

ρ(x4)
‖ ≥ ε

and
(x1 + x2, x3 + x4) ∈ P1(z, ε)

We also denote by

P2(z, ε) = {(x1, x2, x3, x4) ∈ (domρ)4 : (x1, x2, x3, x4) is a (2, ε, ρ) − partition of z}

Inductively, we say that (x1, x2, · · · , x2n) ∈ (domρ)2
n

is an (n, ε, ρ)−partition of z, or
equivalently, (x1, x2, · · · , x2n) ∈ Pn(z, ε), if it satisfies that

ρ(x2k−1) = ρ(x2k), ‖ x2k−1

ρ(x2k−1)
− x2k

ρ(x2k)
‖ ≥ ε for k = 1, 2, · · · , 2n−1

and
(x1 + x2, x3 + x4, · · · , x2n−1 + x2n) ∈ Pn−1(z, ε)

For an (n, ε, ρ)−partition (x1, x2, · · · , x2n) of z, and for every 1 ≤ k ≤ n, we call( 2n−kj∑
i=2n−k(j−1)+1

xi

)2k

j=1
, a k−part of the (n, ε, ρ)−partition of z. Clearly, a k−part of an

(n, ε, ρ)−partition of z is again a (k, ε, ρ)−partition of z.
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Lemma 4.2 Suppose that C is a closed bounded convex set of X with dim(spanC) ≥
3. Then there exist x0 ∈ C and ε > 0 such that for every non-zero z ∈ Cx0 ≡
∪

λ>0
λ(C − x0) and every positive integer n, there exists an (n, ε, ρ)−partition of z

in Cx0, where ρ is the Minkowski functional generated by C − x0. In particular, if C is
symmetric, then we can put x0 = 0.

Proof Since dim(spanC) ≥ 3, there are four affinely independent vectors {xi}4
i=1 in

C such that the 3−simplex S3 ≡ co{xi}4
i=1 has nonempty interior relative to the affine

subspace A ≡ aff{xi}4
i=1 of 3 dimensions. Choose any x0 in the relative interior of S3.

We know that there is δ > 0 such that B(x0, δ) ∩ A ⊂ S3. Thus, the linear subspace
Ax0 ≡ A − x0 is contained in Cx0.

Let ρ be the Minkowski functional generated by C−x0, ε = δ
3 and let z ∈ Cx0 \{0}.

Without loss of generality we assume that ρ(z) = 1. Now, for every n ∈ N, we want to
produce an (n, ε, ρ)−partition of z.

Let Lz = span{S3 − x0, z} and Sz = ∪
λ>0

λco{S3 − x0, z}. Since ρ is continuous on
Sz, the subdifferential mapping ∂ρ : Sz : → 2L∗

z is nonempty-valued everywhere in Sz.

Choose any x∗
1 ∈ ∂ρ(z). Then < x∗

1, x >≤ ρ(x) for all x ∈ Sz and < x∗
1, z >= ρ(z). We

extend x∗
1 to the whole space X and which is still denoted by x∗

1. Then choose x∗
2 ∈ X∗

with ‖x∗
2‖ = 1 such that < x∗

2, z >= ‖z‖. Now, put

Hi = {x ∈ X,< x∗
i , x >= 0}, i = 1, 2

Then the set H1 ∩H2 ∩ (S3 − x0) (⊂ C − x0) contains two vectors ±u1 with ‖u1‖ ≥ δ.

We define two functions f and g: [−1, 1] → R by

f(α) = ρ(z + (αz + u1)), g(α) = ρ(z − (αz + u1))

Note
< x∗

1, z ± u1 >=< x∗
1, z >= ρ(z) = 1

We know

f(1) = ρ(2z + u1) ≥< x∗
1, 2z + u1 >= 2, f(−1) = ρ(u1) ≤ 1

g(−1) = ρ(2z − u1) ≥< x∗
1, 2z − u1 >= 2, g(1) = ρ(−u1) ≤ 1

Therefore, there exists α1 ∈ (−1, 1) such that f(α1) = g(α1), that is

ρ(z + (α1z + u1)) = ρ(z − (α1z + u1))

Set
z1 =

z + (α1z + u1)
2

, z2 =
z − (α1z + u1)

2
Then we obtain

z1 + z2 = z, ρ(z1) = ρ(z2) ≤ 3
2

11



and

‖ z1

ρ(z1)
− z2

ρ(z2)
‖ ≥ 2

3
‖α1z + u1‖ ≥ 2

3
max{|α1|‖z‖, ‖u1‖ − |α1|‖z‖} ≥ δ

3
= ε

that is, (z1, z2) is a (1, ε, ρ)−partition of z.
Next, let yi = zi

ρ(zi)
, i = 1, 2. We substitute yi for z and repeat the procedure above

to obtain
α1,i ∈ (−1, 1), ± u1,i ∈ Cx0 with ‖u1,i‖ ≥ δ

and
yi,1 =

yi + (α1,iyi + u1,i)
2

, yi,2 =
yi − (α1,iyi + u1,i)

2
for i = 1, 2, such that

yi,1 + yi,2 = yi, ρ(yi,1) = ρ(yi,2) ≤ 3
2

and such that ∥∥∥ yi,1

ρ(yi,1)
− yi,2

ρ(yi,2)

∥∥∥ ≥ ε for i = 1, 2

Let zi,j = ρ(zi)yi,j, i, j = 1, 2. Thus for i = 1, 2

zi = (yi,1 + yi,2)ρ(zi) = zi,1 + zi,2, ρ(zi,1) = ρ(zi,2)

and ∥∥∥ zi,1

ρ(zi,1)
− zi,2

ρ(zi,2)

∥∥∥ =
∥∥∥ yi,1

ρ(yi,1)
− yi,2

ρ(yi,2)

∥∥∥ ≥ ε,

this says that (z1,1, z1,2, z2,1, z2,2) is a (2, ε, ρ)−partition of z.
Inductively, for every n ∈ N, we can obtain an (n, ε, ρ)−partition (zε1,ε2,··· ,εn : εi =

1, 2, i = 1, 2, · · · , n) of z �
Lemma 4.3 With the sets C,Cx0 , the ε > 0 and the Minkowski functional ρ as

in Lemma 4.2, if, in addition, C is super-weakly compact, then there exist 0 < δ < ε

and n ∈ N such that for all z ∈ Cx0 and for all (n, ε, ρ)−partition (x1, x2, · · · , x2n) of
z, the following inequality holds

2n∑
i=1

ρ(xi) ≥ (1 + δ)ρ(z) (4.1)

Proof Suppose, to the contrary, that for every n ∈ N and δ = 2−n, there exist
z0 ∈ Cx0 and an (n, ε, ρ)−partition (x1, x2, · · · , x2n) of z0 such that

2n∑
i=1

ρ(xi) < (1 + 2−n)ρ(z0)

We assume again that ρ(z0) = 1. Next, we want to produce an (n, ε)−tree in 2(C−x0),
and thus which contradicts the super-weak compactness of C.
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Let

A = {x(k)
j = 2k

2n−kj∑
i=2n−k(j−1)+1

xi, k = 1, 2, · · · , n and j = 1, 2, · · · , 2k}

We claim that
A ⊂ 2(C − x0) and A is an (n, ε) − tree.

By the definition of (n, ε, ρ)−partition of z0, we see that for all 1 ≤ k ≤ n and
1 ≤ j ≤ 2k−1

ρ(x(k)
2j−1) = ρ(x(k)

2j ),
2k∑

j=1

x
(k)
j = 2kz0, ‖ x

(k)
2j−1

ρ(x(k)
2j−1)

− x
(k)
2j

ρ(x(k)
2j )

‖ ≥ ε (4.2)

and by the definition of the set A, for 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ 2k−1

x
(k)
j =

x
(k+1)
2j−1 + x

(k+1)
2j

2
(4.3)

Let k = 1 in (4.2) and (4.3). We observe that

ρ(x(1)
1 ) = ρ(x(1)

2 ) ≥ 1, x
(1)
1 + x

(1)
2 = 2z0, x

(1)
1 =

x
(2)
1 + x

(2)
2

2

and
‖x(1)

1 − x
(1)
2 ‖ ≥ ε

Let k = 2 in (4.2), (4.3) and note the results above. We see that

ρ(x(2)
1 ) = ρ(x(2)

2 ) ≥ 1, ρ(x(2)
3 ) = ρ(x(2)

4 ) ≥ 1, x
(2)
j =

x
(3)
2j−1 + x

(3)
2j

2
, j = 1, 2, 3, 4

and
‖x(2)

1 − x
(2)
2 ‖ ≥ ε, ‖x(2)

3 − x
(2)
4 ‖ ≥ ε

Inductively, for every 1 ≤ k ≤ n, we have for j = 1, 2, · · · , 2k−1

ρ(x(k)
2j−1) = ρ(x(k)

2j ) ≥ 1, ‖x(k)
2j−1 − x

(k)
2j ‖ ≥ ε

Thus, we have proven that A is an (n, ε)−tree in Cx0. It remains to show that A ⊂
2(C − x0).

Since x
(n)
j = 2nxj and since ρ(x(n)

j ) ≥ 1 for j = 1, 2, · · · , 2n, we have ρ(xj) ≥ 2−n.

Thus for each 1 ≤ i ≤ 2n,

ρ(xi) + (2n − 1)2−n ≤
2n∑

j=1

ρ(xj) < 1 + 2−n

13



This explains that ρ(xi) < 2−n+1, and therefore

ρ(x(n)
i ) = ρ(2nxi) < 2

i.e. {x(n)
i }2n

i=1 ⊂ 2(C − x0) and further A ⊂ 2(C − x0) �
Lemma 4.4 Suppose that C is a nonempty super-weakly compact set. Then there

exist x0 ∈ C and ε0 > 0 satisfying that for every 0 < ε < ε0 there exist a function f on
Cx0 and 0 < γ < min{1

8 , ε
1+ε} such that

i) f(x) ≥ 0, f(αx) = αf(x) for all α ≥ 0 and f(x) = 0 ⇔ x = 0;
ii) (1 − γ)ρ(x) ≤ f(x) ≤ (1 − γ

3 )ρ(x), where ρ denotes the Minkowski functional
generated by C − x0;

iii) There exists δ > 0 satisfying ρ(x) = ρ(y) = 1 and ‖x− y‖ ≥ ε imply f(x + y) <

f(x) + f(y) − δ;
iv) In particular, if C is symmetric, then we can put x0 = 0 and therefore ρ is a

lower semi-continuous norm on spanC and there exists a function f on spanC such that
i),ii) and iii) hold.

Proof It is easy to observe that these assertions are true for dim(spanC) < ∞.

Therefore, it suffices to consider the case for dim(spanC) = ∞.

By Lemma 4.2, there exist x0 ∈ C and ε0 > 0 such that for every n ∈ N, every
z ∈ Cx0 and every 0 < ε ≤ ε0, there is an (n, ε, ρ)−partition of z in Cx0. Applying
Lemma 4.3, we know that for every 0 < ε ≤ ε0, there exist 0 < γ < min{1

8 , ε
1+ε} and

n ∈ N such that for all z ∈ Cx0 and for all (n, ε, ρ)−partition (x1, x2, · · · , x2n) of z

2n∑
i=1

ρ(xi) ≥ (1 + γ)ρ(z) (4.4)

Now, we fix such z, ε, n, γ and let

f(z) = inf
{ 2m∑

i=1

ρ(xi)
1 + γ

2 (1 + 1
4 + · · · + 1

4m )
: 0 ≤ m ≤ n

(x1, x2, · · · , x2m) is an (m, ε, ρ) − partition of z
}

(4.5)

Clearly, f satisfies i) and ii). It follows from (4.4) and (4.5) that we can assume
0 ≤ m ≤ n − 1.

Suppose that x, y ∈ Cx0 with ρ(x) = ρ(y) = 1 and with ‖x−y‖ ≥ ε. Then (x, y) is a
(1, ε, ρ)−partition of x+y. Let 0 < r < γ

42n and let (u1 , · · · , u
2k

) be a (k, ε, ρ)−partition
of x and (v1 , v2 , · · · , v

2l
) be an (l, ε, ρ)−partition of y with 0 ≤ k ≤ l ≤ n− 1 such that

f(x) >

∑2k

i=1 ρ(ui)
1 + γ

2 (1 + 1
4 + · · · + 1

4k )
− r, f(y) >

∑2l

i=1 ρ(vi)
1 + δ

2(1 + 1
4 + · · · + 1

4l )
− r (4.6)
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We denote by (w1 , w2 , · · · , w
2k

) the k−part of the (l, ε, ρ)−partition of y. Then

f(y) >

∑2l

i=1 ρ(vi)
1 + γ

2 (1 + 1
4 + · · · + 1

4l )
− r ≥

∑2k

i=1 ρ(wi)
1 + γ

2 (1 + 1
4 + · · · + 1

4l )
− r

≥
∑2k

i=1 ρ(wi)
1 + δ

2(1 + 1
4 + · · · + 1

4k+1 + 1
3·4k+1 )

− r (4.7)

It follows that from (4.6), (4.7) and ii) which we have proven

1 = ρ(x) ≤
2k∑
i=1

ρ(ui) ≤ 1 + γ, 1 ≤
2k∑
i=1

ρ(wi) ≤ 1 + γ (4.8)

Note (u1 , u2 , · · · , u
2k

, w1 , w2 , · · · , w
2k

) is a (k + 1, ε, ρ)−partition. We have

f(x + y) ≤
∑2k

i=1 ρ(ui) +
∑2k

i=1 ρ(wi)
1 + γ

2 (1 + 1
4 + · · · + 1

4k+1 )
(4.9)

It follows that from these inequalities above

f(x) + f(y)− f(x + y) ≥
2k∑
i=1

ρ(ui)
( 1

1 + γ
2

∑k+1
i=0 4−i

− 1

1 + γ
2

∑k+1
i=0 4−i

)

−
2k∑
i=1

ρ(wi)
( 1

1 + γ
2

∑k+1
i=0 4−i

− 1

1 + γ
2

∑k+1
i=0 4−i + 1

3·4k+1

)
− 2r

This and 0 < r < γ
42n , 0 < γ < 1

8 imply

f(x) + f(y) − f(x + y) ≥ γ

2
· 1
4k+3

≥ γ

2
· 1
4n+2

Therefore, we finish the proof by letting δ = γ
2 · 4−(n+2) �

Lemma 4.5 Suppose that C is a nonempty super-weakly compact convex set in
X. Then there exist ε0 > 0 and x0 ∈ C such that for every 0 < ε < ε0, there are
0 < γ < min{1

8 , ε
1+ε}, δ > 0 and an extended real-valued Minkowski functional pε with

dompε = Cx0 such that
i) (1−γ)ρ(x) ≤ pε(x) ≤ (1− γ

3 )ρ(x), where ρ is the Minkowski functional generated
by C − x0;

ii) ρ(x) = ρ(y) = 1 with ‖x − y‖ ≥ ε imply pε(x + y) ≤ pε(x) + pε(y) − εδ;
iii) For every 0 < β ≤ 1, ρ(xn) → β, ρ(yn) → β and pε(xn)+pε(yn)−pε(xn+yn) → 0

together imply lim
n−→∞‖xn − yn‖ < βε;

iv) In particular, if C is symmetric, then we can put x0 = 0. Therefore ρ is a lower
semi-continuous norm on Y ≡ spanC, and for every 0 < ε < ε0 there exists a norm pε

on spanC satisfying i), ii) and iii).
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Proof Applying Lemma 4.4, we know that there exist x0 ∈ C and ε0 > 0, such that
for every 0 < 5ε1 ≡ ε < ε0, there are a non-negative real-valued positively homogenous
function f on Cx0 and 0 < γ < min{1

8 , ε1
1+ε1

} satisfying
a) (1 − γ)ρ(x) ≤ f(x) ≤ (1 − γ

3 )ρ(x) for all x ∈ Cx0;
b) there exists δ1 > 0 such that ρ(x) = ρ(y) = 1 and ‖x−y‖ ≥ ε1 imply f(x+y) <

f(x) + f(y) − δ1.

Without loss of generality, we can assume C − x0 ⊂ BX . Therefore ‖ · ‖ ≤ ρ on X.

Now, let

pε(x) =

⎧⎨
⎩ inf

{ n∑
i=1

f(xi) : n ∈ N,xi ∈ Cx0 with
n∑

i=1
xi = x

}
, if x ∈ Cx0

+∞ , otherwise.

Clearly, pε is an extended non-negative-valued positively homogenous subadditive func-
tion (hence, a Minkowski functional) on X with dompε = Cx0 and it satisfies i) of the

lemma. Given 0 < a ≤ min{γ(1
3 − γ), δ1ε1

4 }. Let x =
n∑

i=1
xi, y =

m∑
i=1

yi with xi, yi ∈ Cx0

such that

pε(x) >
n∑

i=1

f(xi) − a, pε(y) >
m∑

i=1

f(yi) − a (4.10)

We may assume without loss of generality that m ≤ n, and that ρ(xi) = ρ(yi)
for i = 1, 2, · · · ,m. Otherwise, say, ρ(xi) < ρ(yi) for some i ≤ m, we set si =
ρ(xi)
ρ(yi)

. Then ρ(xi) = ρ(siyi) and note that f(yi) = f(siyi) + f((1 − si)yi). We sub-
stitute the two vectors siyi and (1 − si)yi for yi and renumber the new sequence
{y1, y2, · · · , yi−1, siyi, (1 − si)yi, yi+1, · · · , ym}. Combining a) and (4.10), we can claim

1 ≤
n∑

i=1

ρ(xi) < 1 + γ, 1 ≤
m∑

j=1

ρ(yj) < 1 + γ (4.11)

Note ρ(xi) = ρ(yi), i = 1, 2, · · · ,m. Thus
n∑

i=m+1
ρ(xi) < γ, and which implies

n∑
i=m+1

‖xi‖ <

γ.

Set

J1 =
{
i : 1 ≤ i ≤ m, ‖xi − yi‖ ≤ ε1ρ(xi)

}
, J2 =

{
i : 1 ≤ i ≤ m, ‖xi − yi‖ > ε1ρ(xi)

}
Then

‖x − y‖ ≤
∑
i∈J1

‖xi − yi‖ +
∑
i∈J2

‖xi − yi‖ +
n∑

i=m+1

‖xi‖

≤ ε1

∑
i∈J1

ρ(xi) +
∑
i∈J2

‖xi − yi‖ + γ

≤ ε1(1 + γ) +
∑
i∈J2

‖xi − yi‖ + γ
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< 2ε1 +
∑
i∈J2

‖xi − yi‖

Therefore, ‖x − y‖ ≥ ε implies
∑

i∈J2

‖xi − yi‖ > 3ε1.

It follows from
x + y =

∑
i∈J2

(xi + yi) +
∑
i�∈J2

xi +
∑
i�∈J2

yi

that
pε(x + y) ≤

∑
i∈J2

f(xi + yi) +
∑
i�∈J2

f(xi) +
∑
i�∈J2

f(yi) (4.12)

Inequalities (4.10) and (4.12) together imply

pε(x)+pε(y)−pε(x+y) ≥
n∑

i=1

f(xi)−a+
m∑

i=1

f(yi)−a−
∑
i∈J2

f(xi+yi)−
∑
i�∈J2

f(xi)−
∑
i�∈J2

f(yi)

=
∑
i∈J2

(
f(xi) + f(yi) − f(xi + yi)

)
− 2a (4.13)

Since ρ(xi) = ρ(yi) for i = 1, 2, · · · ,m, we see that

‖ xi

ρ(xi)
− yi

ρ(yi)
‖ ≥ ε1 for all i ∈ J2

This and b) imply

f(
xi

ρ(xi)
+

yi

ρ(yi)
) ≤ f(

xi

ρ(xi)
) + f(

yi

ρ(yi)
) − δ1

Therefore
f(xi) + f(yi) − f(xi + yi) > δ1ρ(xi) for all i ∈ J2 (4.14)

This and (4.13) give

pε(x) + pε(y) − pε(x + y) > δ1

∑
i∈J2

ρ(xi) − 2a (4.15)

Thus
3ε1 ≤

∑
i∈J2

‖xi − yi‖ ≤
∑
i∈J2

(‖xi‖ + ‖yi‖) ≤ 2
∑
i∈J2

ρ(xi)

that is, ∑
i∈J2

ρ(xi) ≥ 3
2
ε1 (4.16)

Finally, it follows from 0 < a < δ1 ε1
4 , (4.15) and (4.16), that

pε(x) + pε(y) − pε(x + y) >
3
2
ε1δ − 2a > δ1ε1 ≡ δε

which explains that ii) holds. It remains to show iii).
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For every 0 < β ≤ 1, let sequences xn, yn (n = 1, 2, · · · )satisfy the condition of iii).
Now, put un = β

ρ(xn)xn and vn = β
ρ(yn)yn. It is not difficult to show that

pε(un + vn) − pε(xn + yn) −→ 0

Therefore
pε(un) + pε(vn) − pε(un + vn) −→ 0

Note ρ(un
β ) = ρ(vn

β ) = 1. It follows from ii) that we have just proven,

lim
n−→∞‖un

β
− vn

β
‖ < ε

that is
lim

n−→∞ ‖xn − yn‖ = lim
n−→∞ ‖un − vn‖ < βε �

Definition 4.6 Suppose f is a convex function on a nonempty convex set C of a
Banach space X and ε > 0. Then

i) We say that f is ε−uniformly convex on C, if there exists δ > 0 such that x, y ∈ C

with ‖x − y‖ ≥ ε implies 1
2 [f(x) + f(y)] − f(x+y

2 ) > δ;
ii) f is said to be uniformly convex on C if f is ε−uniformly convex for all ε > 0.
Theorem 4.7 Suppose that C is a nonempty super-weakly compact convex set

in a Banach space X. Then there exists ε0 > 0 such that for every 0 < ε < ε0, there is
a bounded ε−uniformly convex function fε on C.

Proof By Lemma 4.5, we can find x0 ∈ C and ε0 > 0 such that for every 0 < ε < ε0,
there exist δ > 0 and a Minkowski functional pε with dompε = Cx0 which is bounded
on C − x0, satisfying

pε(x + y) ≤ pε(x) + pε(y) − εδ

whenever ρ(x) = ρ(y) = 1 and ‖x − y‖ ≥ ε
2 , where ρ still denotes the Minkowski

functional generated by C − x0.
Let fε(x) = p2

ε(x) + ρ2(x). Now we claim that gε(x) ≡ fε(x − x0) is ε−uniformly
convex on C. Obviously, it suffices to show that the function fε has the property on
C − x0.

Suppose, to the contrary, that there are two sequences {xn} and {yn} in C − x0

with ‖xn − yn‖ ≥ ε, such that

1
2
[fε(xn) + fε(yn)] − fε(

xn + yn

2
) −→ 0

which in turn implies that

pε(xn) − pε(yn) −→ 0, ρ(xn) − ρ(yn) −→ 0

and
pε(

xn + yn

2
) − 1

2
[pε(xn) + pε(yn)] −→ 0
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We can assume that
ρ(xn) −→ r, ρ(yn) −→ r

for some 0 < r ≤ 1. Let x′
n = r

ρ(xn)xn, y′n = r
ρ(yn)yn for all n ∈ N. Then it is not difficult

to show
pε(

x′
n + y′n

2
) − pε(

xn + yn

2
) −→ 0

Therefore
pε(

un + vn

2
) − 1

2
[pε(un) + pε(vn)] −→ 0

where un = 1
r x′

n, vn = 1
ry′n satisfying ρ(un) = ρ(vn) = 1. By hypothesis on pε, we

obtain
lim

n−→∞ ‖un − vn‖ <
ε

2
On the other hand,

lim
n→∞ ‖un − vn‖ = lim

n→∞
1
r
‖x′

n − y′n‖ = lim
n→∞

1
r
‖xn − yn‖ ≥ ε

r
≥ ε

and this is a contradiction �
Theorem 4.8 Suppose that C is a nonempty bounded closed convex set of X.

If there is ε0 > 0 such that for every 0 < ε < ε0 there exists a bounded ε−uniformly
convex function fε on C, then C is super-weakly compact.

Proof Suppose that C is not super-weakly compact. Then by Corollary 3.7, there
exists θ > 0 such that for every n ∈ N, there exist x

(n)
i ∈ C for i = 1, 2, · · · , 2n satisfying

dist
(
co{x(n)

1 , x
(n)
2 , · · · , x

(n)
k }, co{x(n)

k+1, x
(n)
k+2, · · · , x

(n)
2n }

)
> θ

for all 1 ≤ k < 2n. Clearly, dim(spanC) = ∞. Now, fix any 0 < ε < min{θ, ε0}, and
let fε be a bounded ε−uniformly convex function which means that there exists δ > 0
such that x, y ∈ C with ‖x − y‖ ≥ ε implies

1
2
[fε(x) + fε(y)] − fε(

x + y

2
) > δ

Let −∞ < α = inf
C

fε and sup
C

fε = β < ∞. Finally let n ∈ N such that β − nδ < α.

Since ‖x(n)
i − x

(n)
j ‖ ≥ θ > ε for all 1 ≤ i �= j ≤ 2n, we know that for all 1 ≤ i �= j ≤ 2n

fε(
x

(n)
i + x

(n)
j

2
) <

1
2
(fε(x

(n)
i ) + fε(x

(n)
j )) − δ

Note also that ‖x
(n)
1 +x

(n)
2

2 − x
(n)
3 +x

(n)
4

2 ‖ > ε. We again see that

fε(
x

(n)
1 + x

(n)
2 + x

(n)
3 + x

(n)
4

4
) < fε(

x
(n)
1 + x

(n)
2

2
) + fε(

x
(n)
3 + x

(n)
4

2
) − δ

<
1
4

(
fε(x

(n)
1 )+fε(x

(n)
2 )+fε(x

(n)
3 )+fε(x

(n)
4 )

)
−2δ
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Inductively, we have

fε(
∑2n

i=1 x
(n)
i

2n
) ≤ 1

2n

( 2n∑
i=1

f(x(n)
i )

)
− nδ ≤ β − nδ < α = inf

C
fε

This is a contradiction �
The following result directly follows from Theorem 4.7 and 4.8.
Corollary 4.9 A nonempty closed bounded convex set C of X is super-weakly

compact if and only if for every ε > 0, there exists a bounded ε−uniformly convex
function fε on C.

The following property is a consequence of Corollary 3.7.
Proposition 4.10 Suppose that C ⊂ X is a super-weakly compact convex set of

a Banach space X and D is a nonempty set of a Banach space Y . Let T : C −→ D

be a uniformly continuous affine mapping. Then TC ⊂ D is relatively super-weakly
compact.

Proposition 4.11 Suppose that X,Y are two Banach spaces and that A ⊂ X,
B ⊂ Y are two super-weakly compact convex sets. Then A × B is also super-weakly
compact in X × Y.

Proof Without loss of generality we can assume that X ×Y is equipped with the
sup-norm, i.e. ‖(x, y)‖ = max{‖x‖, ‖y‖} for all (x, y) ∈ X × Y. Let fε be a bounded
ε−uniformly convex function on A and gε a bounded ε−uniformly convex function on
B. It is easy to see that hε(x, y) = fε(x)+gε(y) is again a bounded ε−uniformly convex
function on A × B. Thus by Theorem 4.8, A × B is super-weakly compact �

Proposition 4.12 Suppose that C,D ⊂ X are two super-weakly compact convex
sets. Then C − D is also super-weakly compact.

Proof By Proposition 4.10 and 4.11, it suffices to note T : C × D −→ X, defined
by T (x, y) = x − y, is a uniformly continuous affine mapping �

5 Renormings of Super-Weakly Compact Convex Sets

We have shown in Section 4 that a nonempty closed bounded convex set C of a
Banach space X is super-weakly compact if and only if for every ε > 0 there exists
a bounded ε−uniformly convex function on C. In this section, we will show that the
super-weakly compact convex set C can always be renormed to have the geometric
property that acts much like the closed unit ball of a uniformly convex Banach space.
First, we need some more preparations.

For an extended real-valued Minkowski functional ρ on X, we denote by Bρ(r), the
set {x ∈ X : ρ(x) ≤ r}.

Definition 5.1 Suppose that C is a nonempty convex set of a Banach space
(X, ‖ · ‖).
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i) The norm ‖ · ‖ is said to be uniformly convex on C, if for every r > 0 and every
x0 ∈ C, it satisfies that

‖xn + yn‖ −→ 2r implies xn − yn −→ 0

whenever {xn}, {yn} are two sequences in B‖·‖(r) ∩ (C − x0);
ii) The space X is called uniformly convex, if ‖ · ‖ is uniformly convex on X.

Lemma 5.2 Suppose that C is a nonempty symmetric closed convex set of a
Banach space (X, ‖ · ‖). If C is super-weakly compact, then there is ε0 > 0 such that
for every 0 < ε < ε0, there exists a norm | · | on Y ≡ spanC such that

i) (1 − ε)ρ(x) ≤ |x| ≤ ρ(x);
ii) For every r > 0, |xn| + |yn| − |xn + yn| → 0 implies ‖xn − yn‖ → 0, whenever

xn, yn ∈ Bρ(r)∩C with ρ(xn) → r and ρ(yn) → r, where ρ denotes the norm( Minkowski
functional) generated by C.

Proof Applying Lemma 4.5, there exists ε0 > 0 such that for every 0 < ε < ε0,

there are 0 < γ < min{1
8 , ε

1+ε}, δ > 0 and a norm pε on Y satisfying
a) (1 − γ)ρ(x) ≤ pε(x) ≤ (1 − γ

3 )ρ(x);
b) for each 0 < r ≤ 1 and sequences {xn}, {yn} ⊂ Bρ(r) with ρ(xn) → r, ρ(yn) → r,

we have limn→∞‖xn − yn‖ < rε, whenever pε(xn + yn) − pε(xn) − pε(yn) → 0.
Let εn = ε

2n and denote by the norms pn ≡ pεn for n = 1, 2, · · · . Finally, let

|x| =
∞∑

n=1

2−npn(x), x ∈ Y (5.1)

Clearly, | · | is a norm on Y satisfying (1 − ε)ρ(x) ≤ |x| ≤ ρ(x). We want to show that
| · | has the desired property.

Suppose that {xm}, {ym} ⊂ Bρ(r) with ρ(xm) → r, ρ(ym) → r such that |xm| +
|ym|− |xm +ym| → 0. We claim that ‖xm−ym‖ → 0. Without loss of generality we can
assume that r = 1. Suppose, to the contrary, that there exist a > 0 and a subsequence
of {xm − ym} which is still denoted by {xm − ym} such that for all sufficiently large
m ∈ N, ‖xm − ym‖ > a. Choose j ∈ N with εj < a. Note that

|xm| + |ym| − |xm + ym| −→ 0

implies that for all i ∈ N

pi(xm) + pi(ym) − pi(xm + ym) −→ 0

Thus, by hypothesis on pj , we have

lim
m−→∞ ‖xm − ym‖ < εj < a

This is a contradiction �
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Lemma 5.3(Enflo, [10]) Suppose that X is a normed space and that x, y ∈ X

with ‖x‖ = ‖y‖ = 1. Let f(α) = ‖αx − y‖. Then f(α) ≥ 1
2f(1) for all α ∈ R.

Lemma 5.4 Suppose that ‖ · ‖1 and ‖ · ‖2 are two norms on a linear space E,
and that C ⊂ E is a convex set. Then ‖ · ‖2 is uniformly convex on C if the following
assumptions are satisfied

i) ‖x‖2 ≤ ‖x‖1 ≤ 2‖x‖2 for all x ∈ E;
ii) for every r > 0 and x0 ∈ C, ‖xn‖2+‖yn‖2−‖xn+yn‖2 → 0 implies ‖xn−yn‖1 → 0,

whenever xn, yn ∈ B‖·‖1
(r) ∩ (C − x0) with ‖xn‖1 → r and ‖yn‖1 → r.

Proof For every r > 0 and every x0 ∈ C, suppose that xn, yn ∈ B‖·‖2
(r)∩ (C −x0)

such that ‖xn+yn‖2 → 2r. We claim that ‖xn−yn‖2 → 0. Indeed, let {αn}, {βn} ⊂ [12 , 1]
be two sequences with ‖αnxn‖1 = ‖xn‖2 and ‖βnyn‖1 = ‖yn‖2. Then, it is easy to see
that αnxn, βnyn ∈ C − x0 and

‖xn + yn‖2 − (‖xn‖2 + ‖yn‖2) ≤ ‖αnxn + βnyn‖2 − (‖αnxn‖2 + ‖βnyn‖2) ≤ 0

Therefore, it follows from ‖xn‖2 + ‖yn‖2 − ‖xn + yn‖2 −→ 0 that

‖αnxn‖2 + ‖βnyn‖2 − ‖αnxn + βnyn‖2 −→ 0

By the assumption of the lemma, we have

‖αnxn − βnyn‖1 −→ 0

Let x′
n = 1

rxn, y′n = 1
ryn and γn = βn

αn
. Due to Lemma 5.3 and i), we obtain

‖αnxn − βnyn‖1 ≥ ‖αnxn − βnyn‖2 ≥ 1
2
‖xn − γnyn‖2 ≥ 1

4
‖xn − yn‖2

Thus
‖xn − yn‖2 → 0 �

In the following, we show that the Grothendieck,s lemma is still valid for super-
weakly compact convex sets.

Lemma 5.5 A nonempty closed convex set C of a Banach space X is super-weakly
compact if and only if for every ε > 0 there exists a super-weakly compact convex set
Cε in X such that C ⊂ Cε + εBX .

Proof It suffices to show sufficiency. Suppose that C is not super-weakly compact.
By Corollary 3.7, we can find 0 < θ < 1 such that for every n ∈ N, there exist xi ∈ C

for i = 1, 2, · · · , n such that for every 1 ≤ k < n,

dist
(
co{x1, x2, · · · , xk}, co{xk+1, xk+2, · · · , xn}

)
> θ

Let ε = θ
4 . We have a super-weakly compact convex set Cε such that C ⊂ Cε + εBX .

Let
xi = yi + zi, i = 1, 2, · · · , n
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where yi ∈ Cε and ‖zi‖ ≤ ε. One checks easily that for every 1 ≤ k < n,

dist
(
co{y1, y2, · · · , yk}, co{yk+1, yk+2, · · · , yn}

)
≥ ε

By Corollary 3.7 again, Cε is not super-weakly compact which is a contradiction �
It is well-known that the Davis-Figiel-Johnson-Pelzyński Lemma [5] ”provides a

way of making reflexive Banach spaces from weakly compact sets of arbitrary Banach
spaces. This lemma has (at least) two virtues. A number of basic facts about Banach
spaces are easy consequence of it and its proof is striking elementary” (see, [8] and
therein). We first state the lemma as follows.

Lemma 5.6(Davis, Figiel, Johnson, Pelzyński) Suppose that (X, ‖ · ‖) is a Banach
space with closed unit ball BX . Let W be a convex symmetric bounded set of X.

For each positive integer n, let Un = 2nW + 2−nBX . Denote by ‖ · ‖n the Minkowski
functional generated by Un, i.e.

‖x‖n = inf{α > 0 : x ∈ αUn}

For x ∈ X, let |‖x|‖ be given by |‖x|‖ =
( ∑∞

n=1 ‖x‖2
n

) 1
2 and let Y = {x ∈ X : |‖x|‖ <

∞}. Denote by C the |‖ · |‖−closed unit ball of Y. Let J : Y → X be the natural
inclusion. Then

i) W ⊂ C;
ii) (Y, |‖ · |‖) is a Banach space and J is continuous;
ii) J∗∗ : Y ∗∗ → X∗∗ is one-to-one and Y = (J∗∗)−1(X); and
iv) (Y, |‖ · |‖) is reflexive if and only if W is relatively weakly compact in X.

We should mention here that there is still an important and elegant consequence
quite hidden in the lemma that we have not discovered for over 30 years, though many
useful and beautiful properties and applications of it have been founded (such as, the
factorization of weakly compact operators and every weakly compact subsets can be
weak-to-weak continuously embedded into a reflexive space, etc.). Now, we present the
consequence in the following.

Lemma 5.7 With the Banach spaces X and Y , the subsets W and C, the norms
‖ · ‖, |‖ · |‖ and ‖ · ‖n (n = 1, 2, · · · ) as in the previous lemma, then

i) the identity mapping I : Y → Y, restricted to W , is uniformly ‖ · ‖−continuous;
ii) the separability of (Y, |‖ · |‖) coincides with that of (Y, ‖ · ‖);
iii) every relatively weakly compact set of X is (linearly) isomorphic to a weakly

compact set of a reflexive space;
iv) if W is relatively super-weakly compact, then C is again super-weakly compact

in X.

Proof i) For every positive integer m, let

Pm(x) =
( m∑

n=1

‖x‖2
n

) 1
2 for x ∈ Y

23



Then Pm is uniformly ‖ · ‖−continuous, since every ‖ · ‖n is uniformly ‖ · ‖−continuous
on X. Note for every positive integer n and x ∈ W , ‖x‖n < 2−n. We know that
Pm uniformly converges to |‖ · |‖ on W, and further which implies |‖ · |‖ is uniformly
‖ · ‖−continuous on W.

ii) It is trivial to see that (Y, ‖ · ‖) is separable if (Y, ‖| · |‖) is separable. Conversely,
if (Y, ‖ · ‖) is separable, then (Y, ‖ · ‖n) is again separable for every positive integer n

by noting ‖ · ‖ and ‖ · ‖n are equivalent on Y. Therefore the direct sum
∞∑

n=1
⊕(Y, ‖ · ‖n)

equipped with the norm |‖(xn)|‖ =
( ∞∑

n=1
‖xn‖2

n

) 1
2
, is a separable space. We complete

the proof of ii) by observing that (Y, |‖ · |‖) is isometric to a subspace of
∞∑

n=1
⊕(Y, ‖ ·‖n).

iii) This is just a direct consequence of i) we have just proved, since a subset K is
relatively weakly compact if and only the closed convex hull of {K ∪ −K} is weakly
compact.

iv) It suffices to note Lemma 5.4 and to note C ⊂ 2nW + 2−nBX for every positive
integer n �

Theorem 5.8 Suppose that K is a nonempty super-weakly compact convex set
of a Banach space (X, ‖ · ‖). Then there exists a reflexive Banach space (Y, |‖ · |‖) such
that

i) K − K ⊂ BY ⊂ X;
ii) The topology of |‖ · |‖ is stronger than that of ‖ · ‖ on Y ;
iii) |‖ · |‖ is uniformly ‖ · ‖−continuous and uniformly convex on K − K;
iv) |‖ · |‖ is uniformly convex with respect to ‖ · ‖ on Y, that is, for any two

|‖ · |‖−bounded sequences {xn} and {yn} in Y,

2(|‖xn|‖2 + |‖yn|‖2) − |‖xn + yn|‖2 → 0 implies ‖xn − yn‖ → 0.

Proof Without loss of generality we assume that 0 ∈ K. Let W = K − K. Then,
by Proposition 4.12, W is again super-weakly compact. Applying the Davis-Figiel-
Johnson-Pelzyński Lemma and Lemma 5.7 to produce a reflexive Banach space (X1, ‖ ·
‖1) such that the closed unit ball BX1(≡ W1) of X1 is also super-weakly compact in
X and W ⊂ W1. Lemma 5.2 explains that there is ε0 > 0 such that for any fixed
0 < ε < ε0, there exists a norm |‖ · ‖|1 on X1 satisfying

a) (1 − ε)‖x‖1 ≥ |‖x|‖1 ≤ ‖x‖1 for every x ∈ X1;
b) for every r > 0 and for any two sequences {xn}, {yn} in rBX1 with ‖xn‖1 → r

and ‖yn‖1 → r, 2(|‖xn|‖2
1 + |‖yn|‖2

1) − |‖xn + yn|‖2
1 → 0 implies ‖xn − yn‖ → 0.

Since ‖·‖1 and |‖·|‖1 are equivalent on X1 and since ‖·‖1 is uniformly ‖·‖−continuous
from Lemma 5.7, thus |‖ · ‖|1 is again uniformly ‖ · ‖−continuous on W. Now, for every
x0 ∈ W and for any two sequences {xn}, {yn} in rBX1 ∩ {C − x0} satisfying the
assumptions of b), thus we have ‖xn−yn‖ → 0, and which in turn implies |‖xn−yn|‖1 →
0. This together with a) and Lemma 5.4 give that |‖ · |‖1 is uniformly convex on W.
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Starting with the super-weakly compact set W1 of X and repeating the construction
above, we obtain again a reflexive space (X2, ‖ · ‖2) with its closed unit ball W2 ⊃ W1

and an equivalent norm |‖ · |‖2 of ‖ · ‖2 on X2 such that it is uniformly continuous and
uniformly convex on W1. Finally, let |‖ · |‖ =

√
|‖ · |‖2

1 + |‖ · |‖2
2 on Y ≡ X1. Then it is

easy to check that |‖ · |‖ is an equivalent norm of |‖ · |‖1 on Y such that it satisfies the
desired properties �

Corollary 5.9 Suppose C is a closed bounded convex set of a Banach space X.

Then it is super-weakly compact if and only if there exists a uniformly continuous and
uniformly convex function on C.

Proof Sufficiency is obvious by Theorem 4.8.
Necessity. We can assume that C is symmetric. Otherwise, we substitute K ≡

co{C ∪−C} for C. Since co{C ∪−C} is the image of the super-weakly compact convex
set C × (−C) × [0, 1] under the affine mapping T : X2 → X, defined by T (x, y, λ) =
λx + (1− λ)y, co{C ∪−C} is relatively super-weakly compact. Now, by Theorem 5.8,
there exists a norm | · | on spanK which is uniformly continuous and uniformly convex
on K. We observe that f = | · |2 is a function with the desired properties �

6 Final Remarks

Remark 6.1 Normal structure of super-weakly compact convex sets under
Renormings

We begin with discussion of normal structure of super-weakly compact convex sets
under renormings. After giving some extensions of Odell-Schlumprecht and Hájek-
Johanis, renorming theorems, we finally point out some questions on this topic.

Suppose that C is a nonempty closed bounded convex set of a Banach space X. Let
d

C
(x) = sup

y∈C
‖x − y‖ for every x ∈ C.

Definition 6.1.1 With the set C and the function dC as above, then
i) A point x0 ∈ C is said to be a diametral point if d

C
(x0) = diamC;

ii) We call C having normal structure if for every closed convex subset D of C

containing at least two points has one non-diametral point of D.

Recall that a Banach space X is uniformly convex if and only if the convexity
modulus δX of X is always proper positive-valued on (0,∞), where

δX(ε) = inf
{

1 − ‖x + y

2
‖, ‖x‖, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}
For a closed convex set C of X, we define a function δC by

δC(x0, r, ε) = inf
{

1−1
r
‖x + y

2
−x0‖ : x, y ∈ C, ‖x−x0‖ ≤ r, ‖y−x0‖ ≤ r and ‖x−y‖ ≥ ε

}
for all x0 ∈ C, r > 0 and ε > 0. Then it is clear that a norm ‖ · ‖ is uniformly convex
on C if and only if δC is proper positive-valued on C × R+2.
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Definition 6.1.2 A convex set C ⊂ X is said to be uniformly convexifiable if there
exists a norm |‖· |‖ on spanC such that it is uniformly continuous and uniformly convex
on C.

Keeping this in mind, we immediately have the following consequence from Theorem
5.8.

Theorem 6.1.3 A closed bounded convex set of a Banach space is super-weakly
compact if and only if it is uniformly convexifiable.

Theorem 6.1.4 Suppose that C is a super-weakly compact convex set of a Banach
space (X, ‖ · ‖). Then for every ε > 0, there exists a norm |‖ · |‖ on spanC such that

i) ‖x‖ ≤ |‖x|‖ ≤ ‖x‖ + ε for all x ∈ C;
ii) C has normal structure with respect to |‖ · |‖.
Proof By Theorem 5.8, there exists a norm ‖·‖1 on spanC such that it is uniformly

continuous and uniformly convex on C. For any fixed ε > 0, choose δ > 0 such that
sup
x∈C

‖x‖1 < ε
δ , and let |‖ · |‖ = ‖ · ‖ + δ‖ · ‖1. Then |‖ · |‖ is also uniformly continuous

and uniformly convex on C, and it satisfies i). It remains to show (C, |‖ · |‖) has normal
structure.

We can assume that C is symmetric. Now, note C ± C = 2C. For every closed
convex subset D of C with diamD ≡ d > 0, let 0 < ε < d and let x, y ∈ D with
|‖x − y|‖ ≥ ε. Then for every u ∈ D, we have x − u, y − u ∈ 2C, |‖x − u|‖ ≤ d and
|‖y − u|‖ ≤ d. Thus

1 − 1
d
|‖(x − u) + (y − u)

2
|‖ ≥ δ(D−u)(0, d, ε) ≡ α > 0

This implies
d

D
(
x + y

2
) ≡ sup

u∈D
|‖x + y

2
− u|‖ ≤ (1 − α)d < d

That is, z = x+y
2 is a non-diametral point of D �

Theorem 6.1.5 Suppose C is a super-weakly compact convex set of a Banach
space (X, ‖ · ‖). Then for every ε > 0 there exists a norm |‖ · |‖ on spanC such that

i) |‖ · |‖ is ‖ · ‖−uniformly continuous on C;
ii) ‖x‖ ≤ |‖x|‖ ≤ ‖x‖ + ε for all x ∈ C;
iii) every |‖ · |‖−non-expansive mapping T : C → C has a fixed point.
Proof We can still assume that C is symmetric. By Theorem 5.8, there exists

a reflexive Banach space (Y, |‖ · |‖) with C ⊂ C − C ⊂ BY ⊂ X such that |‖ · |‖ is
uniformly ‖ · ‖−continuous and uniformly convex on C. Obviously, we can claim that
ii) holds. Theorem 6.1.4 tells us that (C, |‖ · |‖) has normal structure. Thus, Kirk,s
theorem[22] guarantees that every |‖ · |‖−non-expansive mapping from C to C has a
fixed point �

Remark 6.2 Extensions of recent renorming theorems for reflexive spaces

26



In 1998, E.Odell and T.Schlumprecht[24] gave an affirmative answer of the long-
standing question ”whether there exists a property of a geometric nature which is
equivalent to reflexivity of Banach spaces” for separable spaces, that is the following
theorem.

Theorem (Odell, Schlumprecht) A separable Banach space X is reflexive if and
only if there exists an equivalent norm | · | on X such that for every sequence {xn} ⊂ X,

lim
m

lim
n

|xn + xm

2
| = lim

n

|xn|

implies that {xn} is convergent in norm.
Recently, P.Hájek and M.Johanis, through introducing a new convexity property

of Day,s norm on C0(κ), showed the following renorming characterization of general
reflexive spaces[13].

Theorem (Hájek, Johanis) A Banach space X is reflexive if and only if there exists
an equivalent norm | · | on X such that for every sequence {xn} ⊂ X,

lim
m

lim
n

|xm + xn

2
| = lim

n

|xn|

implies that {xn} weakly converges.
As an application of Lemma 5.7, we extend and localize both the Odell-Schlumprecht

Theorem and Hájek-Johanis Theorem for reflexive spaces to those for weakly compact
convex subsets. The following result is an extension version of the Odell-Schlumprecht
renorming theorem.

Theorem 6.2.1 Suppose K is a nonempty closed bounded separable convex set
of a Banach space (X, ‖ · ‖). Let W = K − K and Y = spanW. Then

i) K is weakly compact if and only if there exists a norm | · | on Y (not necessarily
equivalent to ‖ · ‖), which is ‖ · ‖−continuous on W, such that | · | has the asymptotic
property on K, that is, every sequence {xn} ⊂ K with lim

m
lim
n

|xm+xn
2 | = lim

n
|xn| is

necessarily ‖ · ‖−convergent in K;
ii) In particular, if W has nonempty interior, then we can further claim that | · | is

an equivalent norm of ‖ · ‖ with the asymptotic property on the whole space X.
Proof It suffices to show i). Sufficiency. Without loss of generality we assume

0 ∈ K. Assume | · | is a norm on Y and which restricted to W is ‖ · ‖−continuous, such
that lim

m
lim
n

|xm+xn
2 | = lim

n
|xn| implies that {xn} is ‖ · ‖−convergent in K for every

sequence {xn} ⊂ K. By the James, Characterization for weakly compact subsets, we
need only to show that every linear functional x∗ ∈ X∗ attains its maximum on K.

Given x∗ ∈ X∗, we can assume that sup
K

x∗ ≡ sup{< x∗, x >: x ∈ K} > 0 (Otherwise

we have sup
K

x∗ = 0 =< x∗, 0 >). Since W is also ‖ · ‖−bounded and since | · | is

‖ · ‖−continuous on W, there exists r > 0 such that W ⊂ {x ∈ Y : |x| ≤ r} ≡ B|·|(r).
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Let g : R+ → R+ be defined by

g(s) = sup{< x∗, x >: x ∈ K, |x| ≤ s}

Clearly, g is a continuous and positively homogenous function on R+. Let s0 = min{s >

0 : g(s) = sup
K

x∗}, and let {xn} ⊂ K ∩ B|·|(s0) such that lim
n

< x∗, xn >= sup
K

x∗. By

definition of s0 we know |xn| → s0, and yet,

lim
m

lim
n

|xm + xn

2
| = lim

n
|xn| = s0

Therefore {xn} is ‖ · ‖−convergent in K, say, lim
n

xn = x0 ∈ K. So we have sup
K

x∗ =<

x∗, x0 > .

Necessity. Suppose that K is a nonempty weakly compact separable convex set of
(X, ‖·‖). Then Y (the ‖·‖−closure of Y ) is ‖·‖−separable. By Lemma 5.7, there exists

a reflexive space (Z, |‖ · |‖) with |‖x|‖ =
( ∑∞

n=1
‖xn‖2

n

) 1
2 and with W ⊂ C ≡ {x ∈

X : |‖x|‖ ≤ 1} satisfying |‖ · |‖ is ‖ · ‖−continuous on W. By noting the construction
of ‖ · ‖n, we assert that Y ⊂ Z ⊂ Y . Separability of (Y , ‖ · ‖) and Lemma 5.7 together
imply that (Z, |‖ · |‖) is separable. Applying the Odell-Schlumprecht Theorem to the
space (Z, |‖ · |‖), there is a norm | · | which is equivalent to |‖ · |‖ on Z such that
lim
m

lim
n

|xm+xn
2 | = lim

n
|xn| implies {xn} converges in the norm | · | whenever {xn} is a

bounded sequence in Z. Clearly, the norm | · | is ‖ · ‖−continuous on W and it has the
desired properties when it is restricted to K, since | · | stronger than ‖ · ‖ on Y �

Analogously, we can prove the following extension version of the Hájek-Johanis
Theorem.

Theorem 6.2.2 Suppose K is a nonempty closed bounded convex set of a Banach
space (X, ‖ · ‖). Let W = K − K and Y = spanW. Then

i) K is weakly compact if and only if there exists a norm | · | on Y (not necessarily
equivalent to ‖ · ‖), which is ‖ · ‖−continuous on W, such that | · | has the weakly
asymptotic property on K, that is, every sequence {xn} ⊂ K with lim

m
lim
n

|xm+xn
2 | =

lim
n

|xn| is necessarily weakly convergent in K;
ii) In particular, if W has nonempty interior, then we can further claim that | · | is

an equivalent norm of ‖ · ‖ with the weakly asymptotic property on the whole space X.
Remark 6.3 Cheng, Wu, Xue and Yao [3] showed that a Banach space is uniformly

convexifiable if and only if it admits a continuous uniformly convex function on some
nonempty open convex set of the space. Thus, Corollary 5.9 is a perfect generalization
of this result.

Remark 6.4 From Theorem 5.8 we see that for every super-weakly compact convex
set C of a Banach space (X, ‖ · ‖), there exists a reflexive Banach space (Y, |‖ · |‖) with
C − C ⊂ BY ⊂ X such that |‖ · |‖ is relatively uniformly convex with respect to ‖ · ‖
on Y. But we do not know that whether such space Y is super-reflexive. Therefore
Problem 3 in the first section remains open.
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