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1 Introduction

The three-dimensional (3D) incompressible steady Euler equations in R3 are⎧⎨
⎩

(u · ∇)u + ∇p = 0, x ∈ R3,

div u = 0.
(1.1)

Here u = (u1(x), u2(x), u3(x)) represents the velocity field and p = p(x)
is the pressure.

By an axisymmetric solution of (1.1), we mean that, in the cylindrical
coordinate system, the unknown functions u(x) and p(x) do not depend on
θ-variable, that is,

u(x) = ur(r, z)er + uθ(r, z)eθ + uz(r, z)ez,

p(x) = p(r, z),

where

er = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1)

form the standard orthogonal bases in the cylindrical coordinate system.
Furthermore, when uθ ≡ 0, which means that the axisymmetric flow has
no swirls, the corresponding 3-D steady axisymetric Euler equations can be
written as {

ur∂rur + uz∂zur + ∂rp = 0,

ur∂ruz + uz∂zuz + ∂zp = 0.
(1.2)

And the incompressibility condition becomes

∂r(rur) + ∂z(ruz) = 0. (1.3)

In this case, the vorticity of the velocity is given by

ω = ∇× u = ωθeθ

with ωθ = ∂zur − ∂ruz.
When the initial data is a vortex-sheets data, the 2D Euler equations

have global (in time) weak solutions when the initial vorticity has a distin-
guished sign (see [2], [7], [16], [17], [18], [21]) or has a changing sign with
reflection symmetry (see [14], [15]). However, the global existence of weak
solutions for both general 2D and 3D Euler equations for general vortex-
sheets initial data is still an outstanding open problem. In particular, for
three-dimensional unsteady axisymmetric flows without swirls, this problem
remains to be solved even in the case that the initial vorticity is of one sign.
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It was shown in [3] that, for the 3D unsteady axisymmetric Euler equations
without swirls, a sequence of approximate solutions generated by smoothing
the initial data converges either strongly in L2

loc(R
3 × (0,∞)) or weakly in

L2
loc(R

3 × (0,∞)) to a limit which is not a classical weak solution to the Eu-
ler equations under the additional assumption that the initial vorticity has
a distinguished sign. In other words, there is no concentration-cancellation
occurring for one-sign axisymmetric flows without swirls which is in sharp
contrast to the 2-D theory (see [5]). The authors proved in [12] that the
approximate solutions, generated by smoothing the initial data, converge
strongly in L2([0, T ]; L2

loc(R
3)) provided that they have strong convergence

in the region away from the symmetry axis. This means that if there would
appear singularity or energy lost in the process of limit for the approximate
solutions, it then must happen in the region away from the symmetry axis.
It is noted that there is no restriction on the signs of initial vorticity in [12].
The convergence properties of the viscous approximations were studied in
[11]. When the initial vorticity has stronger assumptions (comparing with
the vortex-sheets initial data), the global existence of weak solutions was
proved in [1] and the references therein.

For the two-dimensional steady Euler equations, DiPerna and Majda
proved that, even though there exist approximate solutions with energy con-
centration, the weak limit of any approximate solutions is a weak solution,
by using the shielding method (see [4]). That is, concentration-cancellation
occurs in this case. The reader may refer to [6] for a more concise proof. How-
ever, for the three-dimensional steady equations, even for the axisymmetric
case, it is not known whether or not there exist approximate solutions with
energy concentration for the three-dimensional steady Euler equations. Re-
cently, the authors studied some convergence properties of the approximate
solutions of the 3D steady Euler equations (1.1) and the 3D steady axisym-
metric Euler equations without swirls (1.2)-(1.3) (see [13]). In particular, in
[13] the authors obtained a criterion for strong convergence for approximate
solutions by establishing a relation between the energy distributions of the
weak limit and the defect measure of the approximate solutions.

On the other hand, the existence of solutions of the 3D steady axisym-
metric Euler equations without swirls (1.2)-(1.3) has been widely studied
(see [8],[9],[19], [20]). In particular, the vortex rings, which are steady, ax-
isymmetric solutions without swirls of the equations (1.1), propagating with
constant speed in the z-direction, has been extensively and systematically
investigated, based mainly on the variational approaches (see [8],[9], [19] and
references therein).

In this paper, we are mainly concerned with the strong convergence of
C1-smooth approximations and existence of C1-smooth exact solution with
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finite energy and uniform constant state at far field of the 3D steady axisym-
metric Euler equations. We will prove that any C1-approximations {uε, pε}
to 3D steady axisymmetric Euler equations will converge strongly to 0 in
L2

loc(R
3) under appropriate assumptions assumptions on approximate solu-

tions and error terms (see Theorem 5.2). The main assumptions on approx-
imate solutions are that the energy is finite and |uε| → 0 and pε → p0 as
r2 + z2 → ∞, where p0 is a constant. These kinds of approximate solutions
are corresponds to 3D steady vortex-sheets. Then, as a direct result of our
main result (Theorem 5.2), we obtain a Liouville type theorem that there
will be no non-trivial C1 exact solutions with finite energy to the 3D steady
axisymmetric Euler equations, which satisfy that |u| → 0 and p → p0 as
r2 + z2 → ∞. Our approach is mainly based on a deliberate construction of
test functions and making full use of structures of the axisymmetric Euler
equations. It should be noted that contrary to the 3D steady axisymmetric
Euler equations, there exist non-trivial smooth exact solutions with finite
energy and there exist smooth approximate solutions with finite energy ap-
pearing energy concentrations in the limit process to the 2D steady Euler
equations (see [4]). Also, using the spherical vortex ring given in [10], an
example of the approximate solutions of the 3D steady axisymmetric Euler
equations which converge strongly to 0 in L2

loc(R
3) was constructed in [13].

The rest of this paper is organized as follows. In Section 2, we review
a criterion for the strong convergence of approximate solutions for the 3D
steady Euler equations, which has been obtained in [13]. In Section 3, we
construct some special test functions which will be needed later. It should
be noted that these test functions do not satisfy the conditions required
in the usual definition of the weak solutions but they possess some special
features which are crucial in the analysis of the strong convergence of the
approximate solutions. In Section 4, we prove the strong convergence of uε

1

and uε
2 in the region away from the symmetry axis. In Section 5, we first prove

the strong convergence of uε
1 and uε

2 in L2
loc(R

3), then applying the criterion
established in [13] for the strong convergence of approximate solutions (see
also Section 2), we obtain the strong convergence of uε in L2

loc(R
3). Some

appropriate conditions are imposed on the approximate solutions and error
terms. Moreover, in this section, as a direct result of the strong convergence
of approximate solutions, we obtain that there is no non-trivial C1-smooth
exact solutions with finite energy and uniform constant at far field to the 3D
steady axisymmetric Euler equations.
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2 A Criterion on the Strong Convergence

In this section, we give a brief review of the results in [13] on the strong
convergence of approximate solutions to 3D steady Euler equations.

Similar to the unsteady case, approximate solutions for the 3D steady
Euler equations (1.1) can be defined in the usual way.

Definition 2.1 (General Case) Smooth vector-valued functions {uε}
(ε ∈ J a parameter) are called approximate solutions of (1.1) if the fol-
lowing conditions are satisfied:

(i) uε(x) is uniformly bounded in L2(R3) and divergence free (div uε = 0);
(ii) For any Φ(x) = (Φ1, Φ2, Φ3) ∈ C∞

0 (R3) satisfying divΦ = 0, it holds
that ∫

R3

uε · (uε · ∇)Φdx = h(ε) (2.1)

with h(ε) → 0 as ε → 0.
In particular, when the approximate solutions are axisymmetric, one can

obtain approximate solutions for the 3D steady axisymmetric Euler equations
(1.2)-(1.3).

Definition 2.2 (Axisymmetric Case) Smooth vector-valued functions
{uε} (ε ∈ J a parameter) are called approximate solutions of the equations
(1.2)-(1.3) if the following conditions are satisfied:

(i) uε(x) is uniformly bounded in L2(R3) and divergence free (div uε = 0);

(ii) uε = uε
rer + uε

zez;

(iii) ωε = ∇× uε = ωε
θeθ;

(iv) For φr(r, z), φz(r, z) ∈ C∞
0 (H̄), satisfying

∂r(rφr) + ∂z(rφz) = 0, (2.2)

one has ∫
H

[(uε
r)

2∂rφr + (uε
z)

2∂zφz]rdrdz

= −
∫

H

uε
ru

ε
z(∂rφz + ∂zφr)rdrdz + h(ε)

(2.3)

with h(ε) → 0 as ε → 0. Here H = {(r, z)|(r, z) ∈ (0,∞) × (−∞,∞)}
represents the (r, z)−plane.

Formally, multiplying rφr and rφz on both sides of (1.2)1 and (1.2)2 re-
spectively, integrating the resulted equations on (0,∞) × (−∞,∞) with re-
spect to r and z and summing over them, one obtains (2.3) with h(ε) = 0.

It should be noted that the assumption that the approximate solutions
uε in Definitions 1.1-1.2 are smooth is only made for convenience and can be
dispensed with.
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For a sequence of approximate solutions uε = (uε
1, u

ε
2, u

ε
3) as in Definition

2.2, which is expressed by uε = (uε
r, 0, u

ε
z) in the cylindrical coordinates

systems, there exists a subsequence of uε, still denoted by itself, converging
weakly in L2(R3) and in L2(H; rdrdz). Precisely, as ε → 0+, one has

uε
1 ⇀ u1, uε

2 ⇀ u2, uε
3 ⇀ u3 (2.4)

weakly in L2(R3), and, in the cylindrical coordinates,

uε
r ⇀ ur, uε

z ⇀ uz (2.5)

weakly in L2(H; rdrdz).
In what follows, a subsequence of approximate solutions will always be

denoted by itself for convenience unless stated otherwise.
Since (uε(x))2 are uniformly bounded in L1(R3), there exists a subse-

quence of (uε(x))2 which converge weakly to a Radon measure. More pre-
cisely, as ε → 0+,

(uε
1)

2 ⇀ u2
1 + μ1, (u

ε
2)

2 ⇀ u2
2 + μ2, (u

ε
3)

2 ⇀ u2
3 + μ3 (2.6)

weakly in M(R3) which is the space of finite Radon measures. Here μi ≥
0(i = 1, 2, 3) is the defect measure of (uε

i )
2(i = 1, 2, 3) respectively. The total

variation of μi(i = 1, 2, 3), denoted by |μi|(i = 1, 2, 3), is finite.
A criterion on strong convergence of approximate solutions to 3D steady

axisymmetric Euler equations is stated as (see [13])

Theorem 2.1 For any approximate solutions {uε} defined as in Definition
2.2, there exists a subsequence of the approximate solutions satisfying (2.4)-
(2.6). Moreover, it holds that∫

R3

u2
3dx − 1

2

∫
R3

(u2
1 + u2

2)dx + |μ3| − 1

2
(|μ1| + |μ2|) = 0. (2.7)

Consequently, if uε → u strongly in L2
loc(R

3), then∫
R3

u2
3dx − 1

2

∫
R3

(u2
1 + u2

2)dx = 0. (2.8)

Proof. We give a sketch of proof here and it is referred to [13] for more
details. It suffices to prove (2.7).

We choose the test functions in (2.3) as

φr = 1
2
rχ+( r

η
)[χ( z−z0

η
) + z−z0

η
χ′( z−z0

η
)],

φz = −[χ+( r
η
) + r

2η
χ+

′( r
η
)](z − z0)χ( z−z0

η
)

(2.9)
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for any η > 0 and any fixed z0 ∈ R, where χ(s) and χ+(s) are same as (3.20)
and (3.21) respectively. Then direct calculations lead to

φr

r
= 1

2
χ+( r

η
)[χ( z−z0

η
) + z−z0

η
χ′( z−z0

η
)],

∂rφr = 1
2
(χ+( r

η
) + r

η
χ′

+( r
η
))[χ( z−z0

η
) + z−z0

η
χ′( z−z0

η
)],

∂zφz = −[χ+( r
η
) + r

2η
χ+

′( r
η
)][χ( z−z0

η
) + z−z0

η
χ′( z−z0

η
)],

∂zφr = 1
2
rχ+( r

η
)[ 2

η
χ′( z−z0

η
) + z−z0

η2 χ′′( z−z0

η
)],

∂rφz = −[ 3
2η

χ′
+( r

η
) + r

2η2 χ+
′′( r

η
)](z − z0)χ( z−z0

η
).

(2.10)

Letting ε → 0+ in (2.3), one can obtain

1

2π
{
∫

R3

(u2
1 + u2

2)∂rφrdx +

∫
R3

u2
3∂zφzdx

+

∫
R3

∂rφrd(μ1 + μ2) +

∫
R3

∂zφzdμ3}

≤
∫

H

(u2
r + u2

z)(|∂zφr| + |∂rφz|)rdrdz

+

∫
H

(|∂zφr| + |∂rφz|)d(μ1 + μ2 + μ3).

(2.11)

Substituting (2.10) into (2.11), and then letting η → ∞ on both sides of
(2.11), one has∫

R3

u2
3dx − 1

2

∫
R3

(u2
1 + u2

2)dx + |μ3| − 1

2
(|μ1| + |μ2|) = 0.

(2.7) thus follows. The proof of the theorem is completed.
If we choose the test functions in (2.1) as

Φ1 = α1x1χ+(
r

η
)[χ(

x3

η
) +

x3

η
χ′(

x3

η
)],

Φ2 = α2x2χ+(
r

η
)[χ(

x3

η
) +

x3

η
χ′(

x3

η
)],

Φ3 = x3χ(
x3

η
)[α3χ+(

r

η
) − α1x

2
1 + α2x

2
2

ηr
χ′

+(
r

η
)],

(2.12)

where αi ∈ R(i = 1, 2, 3) satisfying
∑3

i=1 αi = 0, and χ(s) and χ+(s) are
defined as in (3.20) and (3.21) respectively, then similar approach gives

Theorem 2.2 For any approximate solutions {uε} defined as in Definition
2.1, there exists a subsequence of the approximate solutions satisfying (2.4)
and (2.6). Moreover, we have

3∑
i=1

αi(Ei + |μi|) = 0, (2.13)
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where, for i = 1, 2, or 3, Ei =
∫

R3 u2
i dx is the energy of the i−th component

of the limit, μi is same as in (2.6), and αi is an real number satisfying∑3
i=1 αi = 0.
Consequently, if uε → u strongly in L2

loc(R
3), then

E1 = E2 = E3. (2.14)

Theorem 2.3 Suppose that a vector function u = (u1, u2, u3) is a weak
solution of (1.1) in the sense that∫

R3

u · (u · ∇)Φdx = 0 (2.15)

for any Φ = Φ(x) ∈ C∞
0 (R3) satisfying divΦ = 0. Then

E1 = E2 = E3, (2.16)

where Ei(i = 1, 2, 3) are the same as in Theorem 2.2. Therefore, suppose that
uε are exact solutions of (1.1) in the sense that (2.1) holds with h(ε) = 0.
Then,

Eε
1 = Eε

2 = Eε
3, (2.17)

where Eε
i =

∫
R3(u

ε
i )

2dx(i = 1, 2, 3).

The detail of the proofs of Theorem 2.2 and Theorem 2.3 is referred to [13]
and is omitted here. It should be remarked that Theorem 2.2 and Theorem
2.3 hold for any n-dimensional (n ≥ 2) steady Euler equations.

3 A Special Class of Test Functions and Es-

timates

Suppose that the approximate solutions uε, pε ∈ C1(R3) satisfy{
uε

r∂ru
ε
r + uε

z∂zu
ε
r + ∂rp

ε = hε
r(r, z),

uε
r∂ru

ε
z + uε

z∂zu
ε
z + ∂zp

ε = hε
z(r, z),

(3.18)

and
∂r(ru

ε
r) + ∂z(ru

ε
z) = 0, (3.19)

where hε
r(r, z) and hε

z(r, z) are some error terms.
To study the structures and properties of approximate solutions satisfying

(3.18) and (3.19), we need to construct special class of test function.
Let χ = χ(s) be a nonnegative smooth function satisfying{

χ(s) = 1, |s| ≤ 1,

χ(s) = 0, |s| > 2.
(3.20)
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Denote by χ+(s) = χ(s)|s≥0 the restriction of χ(s) on {s ≥ 0}. Then{
χ+(s) = 1, 0 ≤ s ≤ 1,

χ(s) = 0, s > 2.
(3.21)

For any η > 1, we define

ψ(r, z) = zχ+(
r

η
)fη(z), (r, z) ∈ H,

with

fη(z) =

{
1, |z| ≤ η,

a1η
α1|z|−α1 + a2η

α2|z|−α2 + a3η
α3|z|−α3 , |z| ≥ η.

(3.22)

Here 1 ≤ α1 < α2 < α3 and a1, a2, a3 are constants to be determined such
that fη(z) is a C2−smooth function satisfying

fη(z) + zf ′
η(z) ≥ 0, z ∈ R, (3.23)

and

|z||f ′
η(z)| + z2|f ′′

η (z)| ≤ C, z ∈ R (3.24)

with C an absolute constant. To be more precise, we consider the case z ≥ 0
and the case z ≤ 0 can be treated similarly. Note that when z ≥ η > 1 we
have

fη(z) = a1η
α1z−α1 + a2η

α2z−α2 + a3η
α3z−α3 ,

f ′
η(z) = −α1a1η

α1z−α1−1 − α2a2η
α2z−α2−1 − α3a3η

α3z−α3−1,

f ′′
η (z) = α1(α1 + 1)a1η

α1z−α1−2 + α2(α2 + 1)a2η
α2z−α2−2

+ α3(α3 + 1)a3η
α3z−α3−2.

To guarantee that fη(z) ∈ C2(R), one requires that⎧⎪⎪⎨
⎪⎪⎩

a1 + a2 + a3 = 1,

α1a1 + α2a2 + α3a3 = 0,

α1(α1 + 1)a1 + α2(α2 + 1)a2 + α3(α3 + 1)a3 = 0.

(3.25)

Solving (3.25), one has⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1 = α2α3(α3−α2)
α2α3(α3−α2)+α1α3(α1−α3)+α1α2(α2−α1)

,

a2 = α1α3(α1−α3)
α2α3(α3−α2)+α1α3(α1−α3)+α1α2(α2−α1)

,

a3 = α1α2(α2−α1)
α2α3(α3−α2)+α1α3(α1−α3)+α1α2(α2−α1)

.

(3.26)
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We note that (3.23) is clearly satisfied when z ≤ η. To guarantee that (3.23)
is satisfied for all z ∈ R, we choose some particular 1 ≤ α1 < α2 < α3, for
example, α1 = 1, α2 = 2, α3 = 10. Then for any z = aη with a ≥ 1, direct
calculations show that

fη(z) + zf ′
η(z)

= a1η
α1z−α1(1 − α1) + a2η

α2z−α2(1 − α2) + a3η
α3z−α3(1 − α3)

=
α2α3(α3 − α2)(1 − α1)a

−α1 + α1α3(α1 − α3)(1 − α2)a
−α2

α2α3(α3 − α2) + α1α3(α1 − α3) + α1α2(α2 − α1)

+
α1α2(α2 − α1)(1 − α3)a

−α3

α2α3(α3 − α2) + α1α3(α1 − α3) + α1α2(α2 − α1)
,

and

α2α3(α3 − α2) + α1α3(α1 − α3) + α1α2(α2 − α1) = 72,

α2α3(α3 − α2)(1 − α1)a
−α1 = 0,

α1α3(α1 − α3)(1 − α2)a
−α2 = 90a−2,

α1α2(α2 − α1)(1 − α3)a
−α3 = −18a−10.

Therefore

fη(z) + zf ′
η(z) =

5a−2 − a−10

4
> 0

for all z = aη with a ≥ 1 and (3.23) is satisfied for all z ∈ R. Moreover,
(3.24) is clearly satisfied.

Now we choose the test functions as follows:

rϕz = −∂rψ = −z

η
χ′

+(
r

η
)fη(z), (3.27)

rϕr = ∂zψ = χ+(
r

η
)fη(z) + zχ+(

r

η
)f ′

η(z). (3.28)

In view of (3.23), one has rϕr ≥ 0. Note that the test functions defined
in (3.27) and (3.28) do not satisfy the conditions required in Definition 2.2.
Especially, the test functions ϕr has singularity o(1

r
) near the symmetry axis.

But for these test functions, we have

Theorem 3.1 Suppose that the approximate solutions uε, pε ∈ C1(R3)
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satisfy (3.18)-(3.19) and the following conditions:

‖uε‖L2(R3) ≤ C, (3.29)∫
R3

1

1 + x2
3

(
uε

r

r
)2dx ≤ C, (3.30)

|uε| → 0, pε → p0 as r2 + z2 → ∞, (3.31)

where C(> 0) and p0 are some absolute constants. Suppose further that∫
H

(|hε
z| +

|hε
r|
r

)rdrdz ≤ C or

∫
H

(
|hε

z|
r

+
|hε

r|
r

)rdrdz ≤ C, (3.32)

∫ z

−∞
hε

z(0, z)dz ≤ 0 (3.33)

for all z ∈ R. Then for the test functions defined as in (3.27)-(3.28), it holds
that ∫

H

(uε
r)

2ϕrdrdz

≤
∫

H

|[(uε
r)

2 − (uε
z)

2][
1

η
χ′

+(
r

η
)fη(z) +

z

η
χ′

+(
r

η
)f ′

η(z)]|drdz

+

∫
H

|uε
ru

ε
z[−ϕz − z

η2
χ′′

+(
r

η
)fη(z)]|drdz

+

∫
H

|uε
ru

ε
z[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|drdz + h(ε), (3.34)

where h(ε) =
∫

H
|[hε

r(r, z)ϕr + hε
z(r, z)ϕz]|rdrdz.

Proof. Without loss of generality, we assume that

pε → 0 as r2 + z2 → ∞. (3.35)

Otherwise, one may replace pε by p̃ε = pε − p0 in (3.18).
Let p̄ε = pε − pε(0, z). Then{

uε
r∂ru

ε
r + uε

z∂zu
ε
r + ∂rp̄

ε = hε
r(r, z),

uε
r∂ru

ε
z + uε

z∂zu
ε
z + ∂zp̄

ε + ∂zp
ε(0, z) = hε

z(r, z),
(3.36)

For the test functions rϕr and rϕz defined in (3.27) and (3.28), multiplying
rϕr and rϕz on both sides of (3.36)1 and (3.36)2 respectively and integrating
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on H, we have∫
H

[uε
r∂ru

ε
r + uε

z∂zu
ε
r + ∂rp̄

ε]ϕrrdrdz =

∫
H

hε
r(r, z)ϕrrdrdz, (3.37)∫

H

[uε
r∂ru

ε
z + uε

z∂zu
ε
z + ∂zp̄

ε + ∂zp
ε(0, z)]ϕzrdrdz

=

∫
H

hε
z(r, z)ϕzrdrdz. (3.38)

Since uε ∈ C1(R3) and uε = uε
rer + uε

zez, so uε
r|r=0 = 0. Formally, it follows

from (3.37) and (3.38) through integrating by parts that∫
H

[(uε
r)

2∂rϕr + (uε
z)

2∂zϕz]rdrdz +

∫
H

pε(0, z)∂zϕzrdrdz

= −
∫

H

uε
ru

ε
z(∂rϕz + ∂zϕr)rdrdz + h̄(ε), (3.39)

where h̄(ε) =
∫

H
[hε

r(r, z)ϕr + hε
z(r, z)ϕz]rdrdz.

It follows from (3.27) that

r∂rϕz = −ϕz − z

η2
χ′′

+(
r

η
)fη(z), (3.40)

with

ϕz =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ r ≤ η,

− z
rη

χ′
+( r

η
)fη(z), η ≤ r ≤ 2η,

0, r ≥ 2η,

(3.41)

and

r∂zϕz = −1

η
χ′

+(
r

η
)fη(z) − z

η
χ′

+(
r

η
)f ′

η(z). (3.42)

While (3.28) yields

r∂rϕr = −ϕr +
1

η
χ′

+(
r

η
)fη(z) +

z

η
χ′

+(
r

η
)f ′

η(z), (3.43)

and

r∂zϕr = 2χ+(
r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z). (3.44)

12



Substitute (3.40)-(3.44) into (3.39) to obtain∫
H

(uε
r)

2ϕrdrdz =

∫
H

pε(0, z)∂zϕzrdrdz

+

∫
H

[(uε
r)

2 − (uε
z)

2][
1

η
χ′

+(
r

η
)fη(z) +

z

η
χ′

+(
r

η
)f ′

η(z)]drdz

+

∫
H

uε
ru

ε
z[−ϕz − z

η2
χ′′

+(
r

η
)fη(z)]drdz

+

∫
H

uε
ru

ε
z[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]drdz + h̄(ε). (3.45)

In view of (3.36)2, one has

∂zp
ε(0, z) = −uε

z(0, z)∂zu
ε
z(0, z) + hε

z(0, z). (3.46)

Thus

pε(0, z) = −1

2
(uε

z(0, z))2 +

∫ z

−∞
hε

z(0, z)dz ≤ 0, (3.47)

where the assumptions (3.31) and (3.33) have been used.
Thanks to (3.23), (3.42), we have

r∂zϕz = −1

η
χ′

+(
r

η
)fη(z) − z

η
χ′

+(
r

η
)f ′

η(z) ≥ 0, (3.48)

since χ′
+(s) ≤ 0 for s ≥ 0. Thus, combining (3.47), (3.48) with (3.45) shows∫

H

(uε
r)

2ϕrdrdz

≤
∫

H

|[(uε
r)

2 − (uε
z)

2][
1

η
χ′

+(
r

η
)fη(z) +

z

η
χ′

+(
r

η
)f ′

η(z)]|drdz

+

∫
H

|uε
ru

ε
z[−ϕz − z

η2
χ′′

+(
r

η
)fη(z)]|drdz

+

∫
H

|uε
ru

ε
z[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|drdz + h(ε)

≡ I, (3.49)

where h(ε) =
∫

H
|[hε

r(r, z)ϕr + hε
z(r, z)ϕz]|rdrdz.

Each term on the right hand side of (3.49) is well-defined. In fact, there
exists a constant C = C(η) such that∫

H

|[(uε
r)

2 − (uε
z)

2][
1

η
χ′

+(
r

η
)fη(z) +

z

η
χ′

+(
r

η
)f ′

η(z)]|drdz ≤ C(η)‖uε‖2
L2(R3);∫

H

|uε
ru

ε
z[−ϕz − z

η2
χ′′

+(
r

η
)fη(z)]|drdz ≤ C(η)‖uε‖2

L2(R3).
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Moreover, by (3.24), one has

|(1 + z2)
1
2 [2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]| ≤ C, (3.50)

and hence

|
∫

H

uε
ru

ε
z[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]drdz|

≤ C(

∫
H

1

1 + z2
(
uε

r

r
)2rdrdz)

1
2 (

∫
H

(uε
z)

2rdrdz)
1
2 .

Due to (3.32), one has h(ε) ≤ C. Consequently, using (3.29), (3.30), one has

|I| ≤ C, (3.51)

with C an absolute constant.
To obtain (3.49) rigorously, we should prove that the left hand side of

(3.49) is well-defined. To this end, we denote HM = (0,∞) × [−M,M ] for
any M > 0. Multiplying rϕr and rϕz on both sides of (3.36)1 and (3.36)2

respectively and integrating on HM with respect to (r, z), we have∫
HM

[uε
r∂ru

ε
r + uε

z∂zu
ε
r + ∂rp̄

ε]ϕrrdrdz =

∫
HM

hε
r(r, z)ϕrrdrdz,(3.52)∫

HM

[uε
r∂ru

ε
z + uε

z∂zu
ε
z + ∂zp̄

ε + ∂zp
ε(0, z)]ϕzrdrdz

=

∫
HM

hε
z(r, z)ϕzrdrdz. (3.53)

Integrating by parts in (3.52) and (3.53) and then adding the resulting equa-
tions show that∫

HM

(uε
r)

2ϕrdrdz =

∫
HM

pε(0, z)∂zϕzrdrdz

+

∫
HM

[(uε
r)

2 − (uε
z)

2][
1

η
χ′

+(
r

η
)fη(z) +

z

η
χ′

+(
r

η
)f ′

η(z)]drdz

+

∫
HM

uε
ru

ε
z[−ϕz − z

η2
χ′′

+(
r

η
)fη(z)]drdz

+

∫
HM

uε
ru

ε
z[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]drdz

+hM(ε) + SM
b , (3.54)

where hM(ε) =
∫

HM
[hε

r(r, z)ϕr + hε
z(r, z)ϕz]rdrdz and

SM
b = −

∫ ∞

0

[uε
zu

ε
r∂zϕr + (uε

z)
2∂zϕz]|Mz=−Mrdr

−
∫ ∞

0

[(p̄ε + pε(0, z))∂zϕz]|Mz=−Mrdr

14



which is the boundary term. It follows from (3.47) and (3.48) that∫
HM

(uε
r)

2ϕrdrdz

≤
∫

HM

[(uε
r)

2 − (uε
z)

2][
1

η
χ′

+(
r

η
)fη(z) +

z

η
χ′

+(
r

η
)f ′

η(z)]drdz

+

∫
HM

uε
ru

ε
z[−ϕz − z

η2
χ′′

+(
r

η
)fη(z)]drdz

+

∫
HM

uε
ru

ε
z[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]drdz

+hM(ε) + SM
b . (3.55)

Since

|SM
b | ≤ C max(|uε|2 + |pε|)|[

∫ ∞

0

(∂zϕr + ∂zϕz)rdr]|Mz=−M |,

it is clear to deduce that
|SM

b | → 0

for any fixed ε > 0 and η > 1 as M → ∞. Combing with (3.51) and noting
that |hM(ε)| ≤ C by (3.33), we obtain that the term on the left hand side of
(3.55) is uniformly bounded with respect to M . Therefore, taking the limit
M → ∞ on both sides of (3.55), we obtain (3.49). The proof of the theorem
is finished.

4 Strong Convergence in Region Away From

the Symmetry Axis

For any r0 > 0, we define Ωr0 = {x|x ∈ R3, x2
1 + x2

2 > r2
0}. Then we have

Theorem 4.1 Suppose that the assumptions of Theorem 3.1 hold and
h(ε) → 0 as ε → 0, where h(ε) is same as in (3.34). Then

uε
1 → 0, uε

2 → 0 (4.1)

strongly in L2
loc(Ωr0) for any r0 > 0 as ε → 0.

Proof. Due to (3.23), for any r > 0, we have

ϕr =
1

r
χ+(

r

η
)fη(z) +

z

r
χ+(

r

η
)f ′

η(z) ≥ 0. (4.2)
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For any r = rn = 1
n

> 0(n = 1, 2, · · · ), it follows from (4.2) and (3.34) that

|
∫
{r≥rn}

(uε
r)

2 1

r2
χ+(

r

η
)fη(z)rdrdz|

≤ 1

r2
n

∫
H

|(uε
r)

2zχ+(
r

η
)f ′

η(z)|rdrdz

+

∫
H

|[(uε
r)

2 − (uε
z)

2][
1

rη
χ′

+(
r

η
)fη(z) +

z

rη
χ′

+(
r

η
)f ′

η(z)]|rdrdz

+
1

2

∫
H

|[(uε
r)

2 + (uε
z)

2][
ϕz

r
+

z

rη2
χ′′

+(
r

η
)fη(z)]|rdrdz

+

∫
H

|uε
ru

ε
z[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|drdz + h(ε)

≡ I1 + I2 + I3 + I4 + h(ε). (4.3)

Note that

|I4| ≤ 1

2

∫
H

1

1 + z2
(
uε

r

r
)2(1 + z2)

1
2 |[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|rdrdz

+
1

2

∫
H

(uε
z)

2(1 + z2)
1
2 |[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|rdrdz

=
1

2

∫
{|z|≥η}

1

1 + z2
(
uε

r

r
)2(1 + z2)

1
2 |[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|rdrdz

+
1

2

∫
{|z|≥η}

(uε
z)

2(1 + z2)
1
2 |[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|rdrdz.

(4.3) becomes

|
∫
{r≥rn}

(uε
r)

2 1

r2
χ+(

r

η
)fη(z)rdrdz|

≤ 1

r2
n

∫
H

|(uε
r)

2zχ+(
r

η
)f ′

η(z)|rdrdz

+

∫
H

|[(uε
r)

2 − (uε
z)

2][
1

rη
χ′

+(
r

η
)fη(z) +

z

rη
χ′

+(
r

η
)f ′

η(z)]|rdrdz

+
1

2

∫
H

|[(uε
r)

2 + (uε
z)

2][
ϕz

r
+

z

rη2
χ′′

+(
r

η
)fη(z)]|rdrdz

+
1

2

∫
{|z|≥η}

1

1 + z2
(
uε

r

r
)2(1 + z2)

1
2 |[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|rdrdz

+
1

2

∫
{|z|≥η}

(uε
z)

2(1 + z2)
1
2 |[2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|rdrdz + h(ε)

≡ I1 + I2 + I3 + I5 + I6 + h(ε). (4.4)
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Applying a diagonal procedure, taking the limit ε → 0, one can get∫
{r≥rn}

(uε
r)

2 1

r2
χ+(

r

η
)fη(z)rdrdz =

1

2π

∫
R3\{r≤rn}

[(uε
1)

2 + (uε
2)

2]
1

r2
χ+(

r

η
)fη(z)dx

→ I0 ≡ 1

2π

∫
R3\{r≤rn}

[(u1)
2 + (u2)

2]
1

r2
χ+(

r

η
)fη(z)dx

+
1

2π

∫
R3\{r≤rn}

1

r2
χ+(

r

η
)fη(z)d(μ1 + μ2) (4.5)

for any rn = 1
n

> 0(n = 1, 2, · · · ) and η > 0. Then we obtain

I0 → 1

2π

∫
R3\{r≤rn}

[(u1)
2 + (u2)

2]
1

r2
dx +

1

2π

∫
R3\{r≤rn}

1

r2
d(μ1 + μ2) (4.6)

as η → ∞.
I1, I2 and I3 can be treated in a similar way ( see also the proof of Theorem

2.1). Taking the limit ε → 0 first for any η > 1 and then taking the limit
η → ∞ in I1, I2 and I3, we can obtain

I1 + I2 + I3 → 0. (4.7)

Now we consider the convergence of I5 and I6. Due to (3.30), we have

1

1 + z2
(
uε

r

r
)2rdrdz ⇀ g + μw (4.8)

weakly in M as ε → 0, where g ∈ L1(H) and μw is a Radon measure. Note
that for any fixed η > 1,

|(1 + z2)
1
2 [2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]| = O(
ηα1

|z|α1
)

as |z| → ∞. Then, taking the limit ε → 0 in I5 shows that

I5 → Ĩ5 ≡ 1

2

∫
{|z|≥η−1}

|g(1 + z2)
1
2 [2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|rdrdz

+
1

2

∫
{|z|≥η−1}

|(1 + z2)
1
2 [2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]|dμw (4.9)

for any η > 1. Furthermore, thanks to (3.24), one has

|(1 + z2)
1
2 [2χ+(

r

η
)f ′

η(z) + zχ+(
r

η
)f ′′

η (z)]| ≤ C

with C an absolute constant, which yields

Ĩ5 → 0 (4.10)
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as η → ∞. Similarly, taking the limit ε → 0 first for any η > 1 and then
taking the limit η → ∞ in I6, we obtain

I6 → 0. (4.11)

Combining (4.5)-(4.7) and (4.9)-(4.11), taking the limit (up to a subsequence)
ε → 0 first for any η > 1 and then taking the limit η → ∞ in (4.4) show

1

2π

∫
R3\{r≤rn}

[(u1)
2 + (u2)

2]
1

r2
dx +

1

2π

∫
R3\{r≤rn}

1

r2
d(μ1 + μ2) = 0 (4.12)

for any rn = 1
n
(n = 1, 2, · · · ). Therefore, for any r0 > 0, in the region

Ωr0 = {x|x ∈ R3, x2
1 + x2

2 > r2
0},

u1 = u2 = 0, x ∈ Ωr0 ,

and
μ1(Ωr0) = μ2(Ωr0) = 0.

Consequently,

uε
1 → 0, uε

2 → 0 (4.13)

strongly in L2
loc(Ωr0) as ε → 0. The proof of the theorem is finished.

5 Strong Convergence in R3

Theorem 5.1 Under the assumptions of Theorem 4.1, it holds that

uε → 0 (5.1)

strongly in L2
loc(R

3) as ε → 0.

Proof. For any X3 >> 1 large enough and r0 > 0, we have∫
{|x3|≤X3,r≥0}

(uε
r)

2rdrdz

≤
∫
{|x3|≤X3,r>r0}

(uε
r)

2rdrdz +

∫
{|x3|≤X3,0≤r≤r0}

(uε
r)

2rdrdz

≤
∫
{|x3|≤X3,r>r0}

(uε
r)

2rdrdz + (1 + X2
3 )

∫
{|x3|≤X3,0≤r≤r0}

(uε
r)

2

1 + x2
3

rdrdz

≤
∫
{|x3|≤X3,r>r0}

(uε
r)

2rdrdz + r2
0(1 + X2

3 )

∫
H

1

1 + x2
3

(
uε

r

r
)2rdrdz

≤
∫
{|x3|≤X3,r>r0}

(uε
r)

2rdrdz + r2
0(1 + X2

3 )C, (5.2)
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where (3.30) has been used. For any δ0 > 0 and X3 >> 1, we choose r0 > 0
small enough such that r2

0(1 + X2
3 )C ≤ δ0. Using (4.13) and taking the limit

ε → 0 in (5.2) yield∫
{|x3|≤X3,r≥0}

(ur)
2rdrdz +

∫
{|x3|≤X3,r>0}

dμr ≤ δ0. (5.3)

Since δ0 is arbitrary, (5.3) shows that ur = 0 and μr = 0. Consequently,

uε
1 → 0, uε

2 → 0 (5.4)

strongly in L2
loc(R

3) as ε → 0. This, together with (2.7), shows that∫
R3

u2
3dx + |μ3| = 0,

which implies

u3 = μ3 = 0. (5.5)

Consequently, combining (5.4) with (5.5) shows that

uε → 0 (5.6)

strongly in L2
loc(R

3) as ε → 0. The proof of the theorem is finished.

Now we investigate the validity of the condition (3.30).
Lemma 5.1 Suppose that the approximate solutions uε, pε ∈ C2(R3)

satisfy (3.18) and (3.19) with hε
r, h

ε
z some error terms satisfying ∂zh

ε
r, ∂rh

ε
z ∈

C(H). Moreover, suppose that

‖uε‖L2(R3) ≤ C, (5.7)

|ωε
θ| ≤ C(ε), (r, z) ∈ H̄ = [0,∞) × (0,∞), (5.8)

∫
H

|∂zh
ε
r − ∂rh

ε
z

r
|rdrdz ≤ C, (5.9)

|uε| → 0, as r2 + z2 → ∞, (5.10)

where C is an absolute constant and C(ε) is a constant which may depend
on ε. Then (3.30) holds.

Proof. It follows from (3.18) and (3.19) that

uε
r∂r(

ωε
θ

r
) + uε

z∂z(
ωε

θ

r
) =

∂zh
ε
r − ∂rh

ε
z

r
. (5.11)
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Set ρ(x3) =
∫ x3

−∞
1

1+τ2 dτ . For any η > 0, we define ϕ(r, z) = χ+( r
η
)ρ(z) with

χ+ same as in (3.21).
In the following, we will multiply the test functions rϕ(r, z) on both sides

of (5.11) and make the integration on H with respect to r and z. Similar as in
the proof of Theorem 3.1, especially as the rigorous derivation of (3.49), the
proof can be completed rigorously by integrating on HM = (0,∞)× [−M,M ]
instead of H and we will omit the details for conciseness.

Multiplying rϕ(r, z) on both sides of (5.11), integrating the resulting
identity with respect to (r, z) over (0,∞) × (−∞,∞), and using (3.19) and
(5.8), we obtain∫

H

uε
rω

ε
θ∂rϕdrdz +

∫
H

uε
zω

ε
θ∂zϕdrdz = −

∫
H

∂zh
ε
r − ∂rh

ε
z

r
ϕrdrdz. (5.12)

That is ∫
H

uε
zω

ε
θχ+(

r

η
)ρ′(z)drdz

= −
∫

H

uε
rω

ε
θ

1

η
χ′

+(
r

η
)ρ(z)drdz

−
∫

H

∂zh
ε
r − ∂rh

ε
z

r
χ+(

r

η
)ρ(z)rdrdz. (5.13)

Note that ∫
H

uε
zω

ε
θχ+(

r

η
)ρ′(z)drdz =

∫
H

ρ′uε
z(∂zu

ε
r − ∂ru

ε
z)χ+(

r

η
)drdz

=
1

2

∫ ∞

−∞
ρ′(uε

z)
2(0, z)dz +

1

2

∫
H

ρ′(uε
z)

2 1

η
χ′

+(
r

η
)drdz

−
∫

H

(ρ′′uε
zu

ε
r + ρ′uε

r∂zu
ε
z)χ+(

r

η
)drdz. (5.14)

Therefore, one has∫
H

uε
zω

ε
θχ+(

r

η
)ρ′(z)drdz

≥ 1

2

∫
H

ρ′(uε
z)

2 1

η
χ′

+(
r

η
)drdz

−
∫

H

(ρ′′uε
zu

ε
r + ρ′uε

r(−
uε

r

r
− ∂ru

ε
r))χ+(

r

η
)drdz

=

∫
H

ρ′ (u
ε
r)

2

r
χ+(

r

η
)drdz −

∫
H

ρ′′uε
zu

ε
rχ+(

r

η
)drdz

− 1

2

∫
H

ρ′(uε
r)

2 1

η
χ′

+(
r

η
)drdz +

1

2

∫
H

ρ′(uε
z)

2 1

η
χ′

+(
r

η
)drdz. (5.15)
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It follows from (5.13) and (5.15) that∫
H

ρ′ (u
ε
r)

2

r
χ+(

r

η
)drdz −

∫
H

ρ′′uε
zu

ε
rχ+(

r

η
)drdz

≤ 1

2

∫
H

ρ′(uε
r)

2 1

η
χ′

+(
r

η
)drdz − 1

2

∫
H

ρ′(uε
z)

2 1

η
χ′

+(
r

η
)drdz

−
∫

H

uε
rω

ε
θ

1

η
χ′

+(
r

η
)ρ(z)drdz −

∫
H

∂zh
ε
r − ∂rh

ε
z

r
χ+(

r

η
)ρ(z)rdrdz.(5.16)

For any N > 1, we choose η > N large enough such that

|
∫

H

ρ′′uε
zu

ε
rχ+(

r

η
)drdz|

≤ |
∫ N

−N

∫ N

0

ρ′′uε
zu

ε
rdrdz| +

∫
H\(−N,N)×(0,N)

|ρ′′uε
zu

ε
r|drdz

= |
∫ N

−N

∫ N

0

ρ′′uε
zu

ε
rdrdz| + [

∫ −N

−∞

∫ N

0

+

∫ ∞

N

∫ N

0

+

∫ −N

−∞

∫ ∞

N

+

∫ ∞

N

∫ ∞

N

+

∫ N

−N

∫ ∞

N

]| 2z

(1 + z2)2
uε

zu
ε
r|drdz

≡ |
∫ N

−N

∫ N

0

ρ′′uε
zu

ε
rdrdz| +

5∑
i=1

Ii. (5.17)

The following estimates are direct:

I1 =

∫ −N

−∞

∫ N

0

| 2z

(1 + z2)2
uε

zu
ε
r|drdz ≤ C max |uε|2 1

N
;

I2 =

∫ ∞

N

∫ N

0

| 2z

(1 + z2)2
uε

zu
ε
r|drdz ≤ C max |uε|2 1

N
;

I3 =

∫ −N

−∞

∫ ∞

N

| 2z

(1 + z2)2
uε

zu
ε
r|drdz

≤ C
1

N4

∫ −N

−∞

∫ ∞

N

|uε
zu

ε
r|rdrdz ≤ C

1

N4
‖uε‖2

L2(R3);

I4 =

∫ ∞

N

∫ ∞

N

| 2z

(1 + z2)2
uε

zu
ε
r|drdz ≤ C

1

N4
‖uε‖2

L2(R3);

I5 =

∫ N

−N

∫ ∞

N

| 2z

(1 + z2)2
uε

zu
ε
r|drdz ≤ C

1

N4
‖uε‖2

L2(R3).

Consequently, one has from (5.17) that

|
∫

H

ρ′′uε
zu

ε
rχ+(

r

η
)drdz|

≤ |
∫ N

−N

∫ N

0

ρ′′uε
zu

ε
rdrdz| + C

1

N
(max |uε|2 + ‖uε‖2

L2(R3)) (5.18)
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for any N > 1 and η > N . Combining (5.16) with (5.18), one has∫ N

−N

∫ N

0

ρ′ (u
ε
r)

2

r
drdz

≤ |
∫ N

−N

∫ N

0

ρ′′uε
zu

ε
rdrdz| + C

1

N
(max |uε|2 + ‖uε‖2

L2(R3))

+ C

∫
H

|∂zh
ε
r − ∂rh

ε
z

r
|rdrdz + |J |, (5.19)

where

J ≡ 1

2

∫
H

ρ′(uε
r)

2 1

η
χ′

+(
r

η
)drdz − 1

2

∫
H

ρ′(uε
z)

2 1

η
χ′

+(
r

η
)drdz

−
∫

H

uε
rω

ε
θ

1

η
χ′

+(
r

η
)ρ(z)drdz. (5.20)

The last term on the right hand side of (5.20) can be rewritten as∫
H

uε
rω

ε
θ

1

η
χ′

+(
r

η
)ρ(z)drdz

=

∫
H

uε
r(∂zu

ε
r − ∂ru

ε
z)

1

η
χ′

+(
r

η
)ρ(z)drdz

= −1

2

∫
H

(uε
r)

2 1

η
χ′

+(
r

η
)ρ′(z)drdz +

∫
H

∂ru
ε
ru

ε
z

1

η
χ′

+(
r

η
)ρ(z)drdz

+

∫
H

uε
ru

ε
z

1

η2
χ′′

+(
r

η
)ρ(z)drdz

= −1

2

∫
H

(uε
r)

2 1

η
χ′

+(
r

η
)ρ′(z)drdz −

∫
H

(
uε

r

r
+ ∂zu

ε
z)u

ε
z

1

η
χ′

+(
r

η
)ρ(z)drdz

+

∫
H

uε
ru

ε
z

1

η2
χ′′

+(
r

η
)ρ(z)drdz

= −1

2

∫
H

(uε
r)

2 1

η
χ′

+(
r

η
)ρ′(z)drdz −

∫
H

uε
r

r
uε

z

1

η
χ′

+(
r

η
)ρ(z)drdz

+
1

2

∫
H

(uε
z)

2 1

η
χ′

+(
r

η
)ρ′(z)drdz +

∫
H

uε
ru

ε
z

1

η2
χ′′

+(
r

η
)ρ(z)drdz. (5.21)

It follows from (5.20) and (5.21) that

|J | ≤ C
1

η2
‖uε‖2

L2(R3) → 0, (5.22)

as η → ∞.
Taking the limit η → ∞ on both sides of (5.19) yields∫ N

−N

∫ N

0

ρ′ (u
ε
r)

2

r
drdz ≤ |

∫ N

−N

∫ N

0

ρ′′uε
zu

ε
rdrdz|

+C
1

N
(max |uε|2 + ‖uε‖2

L2(R3)) + C

∫
H

|∂zh
ε
r − ∂rh

ε
z

r
|rdrdz. (5.23)
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for any N > 1.
Since ρ′(x3) > 0 for all x3 ∈ R, it follows from (5.23) and (5.9) that∫ N

−N

∫ N

0

ρ′ (u
ε
r)

2

r
drdz ≤ (

∫ N

−N

∫ N

0

ρ′ (u
ε
r)

2

r
drdz)

1
2 (

∫ N

−N

∫ N

0

(uε
z)

2 (ρ′′)2

ρ′ rdrdz)
1
2

+ C
1

N
(max |uε|2 + ‖uε‖2

L2(R3)) + C,

where C is an absolute constant independent of ε and N . By Cauchy-
Schwartz inequality, we obtain∫ N

−N

∫ N

0

ρ′ (u
ε
r)

2

r
drdz ≤ C

1

N
(max |uε|2 + ‖uε‖2

L2(R3)) + C, (5.24)

where C is an absolute constant independent of ε and N . Letting N → ∞
on both sides of (5.24) yields (3.30) and the proof of the theorem is finished.

Lemma 5.2 Suppose that the approximate solutions uε, pε ∈ C1(R3)
satisfy (3.18) and (3.19) with some error terms hε

r and hε
z satisfying hε

r, h
ε
z ∈

C1(H) and hε
z|r=0 = 0. Suppose further that (5.7)-(5.9) are satisfied and

pε → p0 as r2 + z2 → ∞, where p0 is a constant. Then (3.30) holds.

Proof. Without loss of generality, we assume that

pε → 0 as r2 + z2 → ∞.

For any η > 0, we let ϕ(r, z) = χ+( r
η
)ρ(z) be the same as in the proof

of Lemma 5.1. Similar to the proof of Lemma 5.1, it is assumed that the
following integrations make sense and the rigorous proof by integration on
HM instead of H will be omitted for conciseness.

Multiplying ∂zϕ and ∂rϕ on both sides of (3.36)1 and (3.36)2 respectively
and integrating on H, one may get∫

H

[uε
r∂ru

ε
r + uε

z∂zu
ε
r + ∂rp̄

ε]∂zϕdrdz =

∫
H

hε
r(r, z)∂zϕdrdz, (5.25)∫

H

[uε
r∂ru

ε
z + uε

z∂zu
ε
z + ∂zp̄

ε + ∂zp
ε(0, z)]∂rϕdrdz

=

∫
H

hε
z(r, z)∂rϕdrdz, (5.26)

where p̄ε = pε(r, z) − pε(0, z).
Since ∫

H

[uε
r∂ru

ε
r + uε

z∂zu
ε
r]∂zϕdrdz

=

∫
H

uε
r∂zu

ε
r∂rϕdrdz +

∫
H

uε
z∂zu

ε
r∂zϕdrdz, (5.27)
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and ∫
H

[uε
r∂ru

ε
z + uε

z∂zu
ε
z]∂rϕdrdz

=

∫
H

uε
r∂ru

ε
z∂rϕdrdz +

∫
H

uε
z∂ru

ε
z∂zϕdrdz

+
1

2

∫ ∞

−∞
(uε

z)
2(0, z)∂zϕ(0, z)dz, (5.28)

subtracting (5.26) from (5.25) and then integrating by parts, with help of
(5.27) and (5.28), one has∫

H

uε
rω

ε
θ∂rϕdrdz +

∫
H

uε
zω

ε
θ∂zϕdrdz − 1

2

∫ ∞

−∞
(uε

z)
2(0, z)ρ′(z)dz

+

∫
H

pε(0, z)∂r∂zϕdrdz = −
∫

H

∂zh
ε
r − ∂rh

ε
z

r
ϕrdrdz. (5.29)

Moreover, since χ′
+(s) ≤ 0 (s ∈ R), ρ′ > 0 and pε(0, z) ≤ 0 due to (3.46),

(3.47) and the assumption that hε
z(0, z) = 0, it holds that∫

H

pε(0, z)∂r∂zϕ =

∫
H

pε(0, z)
1

η
χ′

+(
r

η
)ρ′drdz ≥ 0. (5.30)

It follows from (5.29), (5.30) and (5.14) that

−
∫

H

(ρ′′uε
zu

ε
r + ρ′uε

r∂zu
ε
z)χ+(

r

η
)drdz

≤ −
∫

H

uε
rω

ε
θ∂rϕdrdz − 1

2

∫
H

ρ′(uε
z)

2 1

η
χ′

+(
r

η
)drdz

−
∫

H

∂zh
ε
r − ∂rh

ε
z

r
ϕrdrdz. (5.31)

Noting that the left hand side of (5.31) is

−
∫

H

(ρ′′uε
zu

ε
r + ρ′uε

r(−
uε

r

r
− ∂ru

ε
r))χ+(

r

η
)drdz

=

∫
H

ρ′ (u
ε
r)

2

r
χ+(

r

η
)drdz −

∫
H

ρ′′uε
zu

ε
rχ+(

r

η
)drdz

− 1

2

∫
H

ρ′(uε
r)

2 1

η
χ′

+(
r

η
)drdz, (5.32)
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one has ∫
H

ρ′ (u
ε
r)

2

r
χ+(

r

η
)drdz −

∫
H

ρ′′uε
zu

ε
rχ+(

r

η
)drdz

≤ 1

2

∫
H

ρ′(uε
r)

2 1

η
χ′

+(
r

η
)drdz − 1

2

∫
H

ρ′(uε
z)

2 1

η
χ′

+(
r

η
)drdz

−
∫

H

uε
rω

ε
θ

1

η
χ′

+(
r

η
)ρ(z)drdz −

∫
H

∂zh
ε
r − ∂rh

ε
z

r
χ+(

r

η
)ρ(z)rdrdz

≡ J −
∫

H

∂zh
ε
r − ∂rh

ε
z

r
χ+(

r

η
)ρ(z)rdrdz, (5.33)

where J is same as in (5.20). Using similar arguments of (5.17)-(5.22), we
obtain (5.23) from (5.33) and hence (5.24) by Cauchy-Schwartz inequality.
Letting N → ∞ on both sides of (5.24) yields (3.30) and the proof of the
theorem is finished.

Remark 5.1 For unsteady 3D axisymmetric Euler equations with vortex-
sheets initial data, Chae and Imanuvilov proved in [1] that the smooth ap-
proximate solutions constructing through regularizing the initial data satisfy∫ T

0

∫
R3

1

1 + x2
3

(
uε

r

r
)2dx ≤ C,

where C is a constant depending on initial energy and total variation of ini-
tial vorticity. Corresponding viscous approximations can be found in [11].
Lemma 5.1 and Lemma 5.2 above concern with the steady approximations
with error terms and in particular in Lemma 5.2 we only need that approxi-
mate solutions are C1-smooth.

Based on Theorem 5.1, Lemma 5.1 and Lemma 5.2, we have
Theorem 5.2 i) Suppose that the approximate solutions uε, pε ∈ C2(R3)

satisfy (3.18) and (3.19) with error terms hε
r and hε

z satisfying ∂zh
ε
r, ∂rh

ε
z ∈

C(H). Moreover, suppose that

‖uε‖L2(R3) ≤ C, (5.34)

|ωε
θ| ≤ C(ε), (r, z) ∈ H̄ = [0,∞) × (0,∞), (5.35)

∫
H

(|hε
z| +

|hε
r|
r

)rdrdz ≤ C or

∫
H

(
|hε

z|
r

+
|hε

r|
r

)rdrdz ≤ C, (5.36)

∫
H

|∂zh
ε
r − ∂rh

ε
z

r
|rdrdz ≤ C, (5.37)

|uε| → 0, pε → p0, as r2 + z2 → ∞, (5.38)
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where C, p0 are some constants and C(ε) is a constant which may depend on
ε. Then uε → 0 strongly in L2

loc(R
3).

ii) Suppose that the approximate solutions uε, pε ∈ C1(R3) satisfy (3.18)
and (3.19) with error terms hε

r and hε
z satisfying hε

r, h
ε
z ∈ C1(H) and hε

z|r=0 =
0. Assume further that (5.34) and (5.36)-(5.38) are satisfied. Then uε → 0
strongly in L2

loc(R
3).

Remark 5.2 Contrary to the 3D steady axisymmetric Euler equations,
there exist non-trivial smooth exact solutions with finite energy and there
exist smooth approximate solutions with finite energy appearing energy con-
centrations in the limit process to the 2D steady Euler equations (see [4]).
More precisely, in 2D steady case, choose a velocity field,

u(x) = r−2

( −x2

x1

) ∫ r

0

sω(s)ds,

satisfying suppω ⊂ {|x| ≤ 1} and
∫ 1

0
sω(s)ds = 0. Set uε(x) = ε−1u(x/ε).

Then uε are the exact solutions of the two-dimensional steady Euler equa-
tions. Moreover, ∫

R2

|uε|2dx +

∫
R2

|∇uε|dx ≤ C,

and
uε ⇀ 0

weakly in L2(R2). However,

uε ⊗ uε ⇀ C1

(
δ0 0

0 δ0

)

weakly in M(Ω), the finite Radon space, where uε ⊗ uε = (uε
iu

ε
j) is a 2 × 2

matrix, δ0 is Dirac measure supported at the origin and C1 is a positive
constant.

Remark 5.3 Using the spherical vortex rings given in [10], an example
of the approximate solutions of the 3D steady axisymmetric Euler equations
which converge strongly to 0 in L2

loc(R
3) was constructed in [13].

Based on Theorem 2 ii), we obtain a Liouville type theorem which reads
as

Theorem 5.3 Suppose that u, p ∈ C1(R3) are exact solutions of 3D
steady axisymmetric Euler equations (1.2)-(1.3) satisfying

‖u‖L2(R3) ≤ C,

|u| → 0, p → p0 as r2 + z2 → ∞,
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where C and p0 are some constants. Then u ≡ 0 and p ≡ p0.

Proof. Taking uε = u, pε = p, hε
r, h

ε
z = 0 in Theorem 5.2 ii), we obtain

that u ≡ 0 directly. While (1.1) and the fact that p → p0 as r2 + z2 → ∞
shows that p ≡ p0. The proof of the theorem is complete.
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