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Abstract

In this paper, we study a transonic shock problem for the Euler flows through a class of 2-D or 3-D nozzles.
The nozzle is assumed to be symmetric in the diverging (or converging) part. If the supersonic incoming
flow is symmetric near the divergent (or convergent) part of the nozzle, then, as indicated in [11], there exist
two constant pressures P; and P, with P; < P, such that for given constant exit pressure P, € (P1, P2), a
symmetric transonic shock exists uniquely in the nozzle, and the position and the strength of the shock is
completely determined by P.. Moreover, it is shown in this paper that such a transonic shock solution is
unique under the restriction that the shock goes through the fixed point at the wall in the Multi-dimensional
setting. Furthermore, we establish the global existence, stability and the long time asymptotic behavior of
a unsteady symmetric transonic shock under the exit pressure P, when the initial unsteady shock lies in the
symmetric diverging part of the 2-D or 3-D nozzle. On the other hand, it is shown that a unsteady symmetric
transonic shock is structurally unstable in a global-in-time sense if it lies in the symmetric converging part of
the nozzle.
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81. Introduction and the main results

This is a continuation of our studies on the transonic shock problem in a nozzle [28-30]. In [29-30], under
the assumptions that the flow is steady, isentropic and irrotational, we use the potential equation to study the
well-posedness or ill-posedness of a transonic shock to the steady flow through a general 2-D or 3-D slowly
variable nozzle with a large exit pressure induced by the appropriate boundary condition on the exit. In [28],
the ill-posedness results in [29-30] was extended to the 2-D complete Euler flow case when the nozzle is arbitrary
but slightly curved. However, for a suitably curved 2-D nozzle with symmetric supersonic incoming flows, as
indicated in Section 147 of [11], it is shown in Theorem 5.2 of [28] that there exist two constant pressures
P, and P, with P; < P, which depend only on the incoming flow and the shape of the nozzle, such that if
the exit pressure P, € (P1, P»), then for the 2-D complete steady Euler system, a unique symmetric transonic
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shock exists in the diverging (or converging) part of the nozzle. In this paper, we first study the well-posedness
of the steady transonic shock problem when a steady symmetric supersonic incoming flow goes through a
slightly curved 2-D or 3-D nozzle whose diverging (or converging) part is symmetric with an appropriately
given constant exit pressure at the exit of the nozzle. Although the existence and uniqueness in the symmetric
class can be established quite easily by theory for ordinary differential equations, the uniqueness of such a
symmetric transonic shock in the multi-dimensional setting requires more delicate analysis. Next, we focus
on the unsteady transonic shock problem. More precisely, for symmetric unsteady supersonic incoming flows
through a symmetric De Laval nozzle with an appropriate constant pressure at the exit of the nozzle, we
will establish the global existence, stability and the long time asymptotic behavior of a unsteady symmetric
transonic shock in a nozzle when the initial shock lies in the diverging part. On the other hand, it is shown
that a unsteady symmetric transonic shock is structurally unstable in a global-in-time sense if it lies in the
converging part as observed in physical experiments and numerical computations.

The m-dimensional complete compressible Euler system can be written as

Op + div(pu) =0,
O(pu) + div(pu @ u) + VP =0,

e ) (e 5) ) -

where u = (u1,- - ,un) is the velocity, p, P, e and S represent the density, the pressure, the internal energy
and the specific entropy respectively. Moreover, the equations of states, P = P(p,S) and e = e(p, S), are
assumed to be smooth such that 9,P(p,S) > 0 and Ose(p, S) > 0 for p > 0. For convenience, we sometimes
write the equations of states as p = p(P,S) and e = e(P,S). In the case of the ideal polytropic gases, the
equations of states read as

(1.1)

P
P= Ap”e%, and e=——,
(y="Dp
here A, ¢, and v are positive constants, and 1 < v < 2. The sound speed ¢ is given by ¢* = 9,P(p, S).
In the case of steady flows, the system (1.1) is reduced to

div(pu) = 0,
div(pu @ u) + VP =0,

(o)) -

We now describe the classes of nozzles and supersonic incoming flows we are going to study. Let Xy be any
fixed positive constant. First, for 2-D case, it is assumed that the walls of the nozzle are given by two curves
I'; and Ty, which are C*—regular for r € [Xo, Xo + 1] with 7 = |2| = \/2? + 25. Furthermore, we assume
that T'; can be decomposed into two curves IT} and IT? such that II} and I1} include the converging part of
the nozzle while I1? and 113 form a two-dimensional angular section with its vertex at the origin (0,0), more
precisely, IT? is given by

(1.2)

. 1
x9 = (—1)"'z1 tgag for r e <X0 + 4,Xo) ,aq € (0, g) ,
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so that 117 and I13 form a portion of the diverging part of the nozzle, see Figure 1.

Figure 1

Similarly, for the 3-Dimensional case, the wall of the nozzle, T', is assumed to be C*—regular for r €
(X0, Xo + 1] (r = |z| = \/2§ + 23 + 23), such that I is a disjoint union of II; and Il; with Il being part of a
circular cone surface given by

1
x§+x§ :x?thao for x>0, re {X0+4,X0+1} ,

where g is a positive constant, agy € (O, %) See Figure 2.

Figure 2

We will assume that the steady supersonic incoming flow, (pg,ug, Sy )(z), is C3-smooth and symmetric
near r = Xg + %, i.e.,

1
po () =po (r), wug(z) = UJ(T’)E, Sy = constant mnear r=Xo+ 3
T

We now focus on the well-posedness of steady transonic shock solution. First, by an analyzing some systems
of ordinary differential equations as in Section 147 of [11], one can obtain the following existence and uniqueness
of symmetric transonic shock solutions:
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Theorem 1.1. (Existence) Let m-dimensional nozzle and the steady supersonic incoming flow be given as
above. Then there exist two constant pressures Py and Py with Py < P, which are determined by the coming
flow and the nozzle, such that if the end pressure P. € (P1, P2), then the system (1.1) has a unique symmetric
transonic shock solution
(Py (r),ug (2),8y), forr <ro,

(P (r),ud (z),S5), forr >ro,

here ug (z) = Uy (r)%, Si is a constant, and (Py (r), Uy (r)) is C*—smooth. Moreover, the position r = rg
with ro € (Xo + %, Xo+ 1) and the strength of the shock are uniquely determined by Pe.

Remark 1.1. Although the proof of Theorem 1.1 can be carried out as sketched for the 2-D case in [28],
yet for completeness, we still give a detailed proof, which yields more useful estimates of the solutions that will
be used in the later analysis.

Next, we turn to the uniqueness of the symmetric transonic shock solution constructed in Theorem 1.1
in a large class which is not necessarily symmetric. Assume that the shock X is given by z; = £(z’) with
' = (w2, -+ ,%y), and the flow behind the shock is denoted by (p*,u™,St)(z). The Rankine-Hugoniot
conditions on X read:

[(1, =Ve &(2)) - pu] = 0,

(1, =Var £(2")) - puu] + (1, =V £(2"))" [P] = O, (1.3)
(L =V &) - (p (e + 3uP) + P)u] =0,
where p = p(P,S). Then entropy condition requires (see [11])

(s = {

Pt(z) > P () on 3. (1.4)
At the exit of the nozzle, one poses the following end pressure condition
Pt (z) =P, for x| =r=Xo+1, (1.5)

here the constant pressure P, is given as in Theorem 1.1. A natural boundary condition on the wall of the
nozzle, I', is the no-flow condition, which reads as

!
ut - (tgao,&> =0 on I, (1.6)

for 3-D, and ,
uy = fileuf  on I, (1.7)

where 7o = f;(z1) = (—1)" 21 tg ap for 2-D. Let 2, be the subsonic region, i.e.,

Qp ={z: &)<z <V Xo+1)2— |22, |2/ < 23 tg® o},

D is the projection of ¥ onto a’-plane, L = X N T, and z° € II, be a fixed point. Finally, we assume that X
is suitably large and «y is sufficiently small so that

1
<X0 + 2) tgap = 1, g < ap < 1o (1.8)

hold, where 7 is a small constant. We note that the condition (1.8) implies that Il is close to the cylinder
2’| =1 for r € [Xo + 7, Xo + 1].
We now can state our main uniqueness theorem.
Theorem 1.2. (Uniqueness)
Let the assumptions in Theorem 1.1 and (1.8) hold. Then the steady transonic shock problem, (1.2)-(1.7),
has no more than one pair of solution (P*(x),u™(x), ST (x);&(z")) with the following properties:
4



(i) There exists positive constants 5o € (0,1) and e such that ¢ € C3% (D), 2° € T, N E, (i.e., 29 = £(')),

and
Hsu') 2

where 1o is gwen as in Theorem 1.1, and € depends only on ny and the incoming supersonic flow.
(ii) (P+,ut, S*)(z) € C%%(Qy) N C3(Q) such that

<e, (1.9)
290 (D)

I(P* (2) = By (r), ut (2) — i (2), 5™ (2) = ST )l a0 0, ) < & (1.10)

here af (x) = UOJF(T)%, and (P (r), U () stands for the extension (Py (1), Uy (r)) in Q.
Remark 1.2. For 3-D, the uniqueness holds with less reqularity. Indeed, it suffices to assume that & €

C%% (D) such that
e - 3= o2

and (PT,S1)(z) € C*%(Q,) N C3(Qy), ut(z) € CH%(Qy) N C? Q) such that

<e (1.9")
C2:% (D)

1(PF (@) = B (r), 87 (2) = S)llezt0 0y + IuT (@) = i ()| o100 ) < & (1.107)

This is explained in more details in Appendix B.

Remark 1.3. It can be shown that the compatibility of the boundary conditions (1.3) and (1.6)-(1.7) holds
at the corner L = ©NIly (see Lemma 4.2 in §4 and Lemma 6.1 in §6). Thus, the assumptions on the regularities
of the solution (PT(x),u™(x), ST (x);&(2")) in Theorem 1.2 are plausible. This follows from Remark 1.1 in
[28] (or one can see [2-3], [19-20], and the references therein) for 2-D. In the 8-D case, an explanation is
given in the Appendix B. It is interesting that such a compatibility condition is satisfied naturally for any
C(Q4)-regular solution in contrast to the general unsteady shocks [23-24].

Remark 1.4. [t can be verified (see §2) that (Py (r),US (1)) in Theorem 1.1 can be the domain {x :
Xo+ 1 <r<Xo+1, 2| < zitgag}, so that (P (r),Us (r)) in Theorem 1.2 is well-defined.

Remark 1.5. Consider a general 2-D nozzle. Let the diverging part of the walls of nozzle, given by
T;:xo = fi(x1), i = 1,2, be curved slightly and intersect the shock surface ¥ at the point x* = (2%, 2%). Then a
necessary condition for the existence of a weak transonic shock solution (P¥(x),u™ (z), S*(z);&(x2)) € CH(Qy)
is that f!'(z%) = 0. This implies that, in general, one cannot expect the existence of a C* (2, )—regular transonic
shock solution in the diverging part of a 2-D De Laval nozzle. The proof of this fact is given in Appendiz A.

Remark 1.6. It follows from the proof of Theorem 1.2 that one can actually obtain a more general unique-
ness result even if the supersonic coming flow is not symmetric and the nozzle walls are general but slightly
curved forrog + 90 <1 < Xo+ 1 with a fixed constant § > 0.

Remark 1.7. In order to illustrate the validity of CY° regularity of the solution to (1.2), we require

: - = C=)Me)® 2= 200, 3u(Mg ) -1
that the function G(M; ) # 0, where G(My ) = 200 + = (WA (Mg) — 1) + WM, ) — 1 with

- _ Uy (o) Uq (ro)

Mo = (o). 55 Uy (ro)’
Appendiz B that the assumptions on the regularities of solution (P¥(z),uf (z),uj (z),u3 (z), ST (x); &(x2,73))
in Theorem 1.2 are plausible.

Remark 1.8. For the unsteady multidimensional compressible Euler systems, A.Majda in [23-2/] has
shown the existence and stability of a multidimensional shock under the appropriate compatibility conditions
on the discontinuous initial data along the initial shock curve. But for the steady transonic multidimensional
Euler system (1.2), the compatibility condition will be satisfied naturally for any C*(Q4 )—regular solution (see
Lemma 6.1 and Remark 6.2). This is an interesting fact.
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Analogously, we can study the well-posedness of steady transonic shock in a nozzle with a symmetric
converging part. Indeed, consider a m-D (m = 2,3) nozzle whose wall contains a straight section given by

™
|2'| = |z1]tg g, w1 <O, a06<0,§), for Xo<r=|z|<Xo+1.

In addition, we assume that the supersonic incoming flow is C3-smooth, isentropic, and symmetric near
r = Xo + 2, which can represented as (P (z),U; (z)) = (Py (r), Uy (r)%) near r = X + 3. Then as a
counter part of Theorem 1.1-1.2, we can show

Theorem 1.3. Let the nozzle and the supersonic incoming flow be as described above. Assume further
that the flow is isentropic. Then for suitably large Xo > 0, there exist two constant pressures Py and Py with
Py < Py, such that for P, € (p1,p2), the steady transonic shock problem (1.2)-(1.8) has a unique solution given
by
(By (r),ug (), 7> 70,
(PJF(T%USF(UU) , T <To,

(Pau)(a) = {

where Uy (z) = —U (r)Z, ro € (Xo, Xo + 2) is uniquely determined by Pe, and (P, (r), Uy (r)) is C*-smooth.

Remark 1.9. In Theorem 1.3, the uniqueness is in the class which can be described analogously as in
Theorem 1.2.

Remark 1.10. The proof of Theorem 1.3 is similar to that of Theorem 1.1-1.2, for completeness, we give
the sketch in Appendiz C.

Next, we turn to the problem of dynamical stability of a steady symmetric transonic shock, constructed
in Theorem 1.1 and Theorem 1.4, under small generic unsteady symmetric perturbations for simplicity in
presentation, we will only study the isentropic flows. We start with transonic shocks in a symmetric expanding
nozzle. Thus suppose that the initial flow is a small perturbation of the steady symmetric transonic shock
solution, (pg (r), U (r)) for r € [Xo + %, X + 1], given in Theorem 1.1, i.e.

1
p=(0,7) = pE(r) + epit(r), UE(0,r) = UE(r) + eUE(r), re [X0+Z’XO+1]’ (1.11)

+
where (pF (1), U (r)) is defined in Theorem 1.1 with pi(r) = (POT(T))%, and (p; (r),U; (r)) € C3(Xo + 1,70)
and (pE(r),UL(r)) € C2(ro, Xo + 1), and € > 0 is a suitably small constant. We will impose the following
unsteady boundary condition at the entry and the exit of the nozzle:

.0 (o =X+ 1) = (3,05 (Koot ) + 200505000, (112)
and
pT(t,r=Xo+1)=p.+ep3 (1), (1.13)

here (p; (t), Uy (t); p3 (t)) € C2(0, +00) and p, = (%)% with P. as given in Theorem 1.1.

Let the unsteady shock front ¥ be denoted by r = r(¢) and the flow field before and behind the shock
be given by (p~,U~)(t,7) and (p™,UT)(¢,7) respectively. It then follows from (1.1) for isentropic flows for
r2r(t),

8tpi+3r(piUi)+%4piUi -0, -
O(pEU*) + 0, (p*(UF)? + PF) 4 ML p (U4)? = 0. '
On the shock front ¥, the Rankine-Hugoniot conditions become
() — [pU] = 0,
{ [p)r'(t) — [pU] w15)

[pU]7 (1) —6[pU2 + P]=0.



In addition, (p*, U%)(t,r) should satisfy Lax’s entropy condition ([27]):
A(pt, UN)(Er(t) +0) <o'(t) < M(p™, U7 )(t,r(t) = 0), 7" < Xo(p™, UT)(t,r(t) +0) (1.16)

with A\ (p,U) = U — ¢(p) and Xa(p,U) = U + ¢(p).

Then we have the following nonlinear stability result for a transonic shock in an expending nozzle:

Theorem 1.4. (Global Existence and Dynamical Stability) Consider the problem of unsteady tran-
sonic shocks in an expanding symmetric nozzle as described above. Assume that Xo > 0 is suitably large and the
steady transonic shock (p, UZ)(r), r € [Xo+ %, Xo-+1] is weak in the sense that 0 < min(Ug (ro) —c(pE (r0))) <
max (U= (ro) — ¢(pE(ro))) < 0o for a suitably small positive constant &y. Then there exists a positive constant
o such that for ¢ < g, the initial-boundary value problem (1.11)-(1.16) has a unique global (p=,U*;7r(t))
with the property that r(t) € C2[0,4+00), and (p*,U*)(t,z) is C%-smooth for r = r(t). Furthermore, the
location v = r(t) of the shock front and the flow field after the shock, (p™,UV)(t,r) tend to v = ro and
(pd, U ) () respectively with a rate of decay as (1+t)~2, here (pg, Uy ) (r) denotes the extension of (pd, Uy )(r)
forr e [Xo+ 1, Xo+1].

Remark 1.11. Theorem 1.4 shows that a weak steady symmetric transonic shock in an expanding symmetric
nozzle globally (in time) nonlinear stable for generic unsteady symmetric perturbations with prescribed pressure
condition at the exit of the nozzle. Furthermore, it is remarkable that the solution is globally (in time) piecewise
smooth and there are no other discontinuities in the solution besides the main perturbed transonic shock, which
are in sharp contrast to the theory if Cauchy problems in [21-22, 1].

Remark 1.12. The boundary condition (1.12) guarantees the global existence of a shock. Otherwise, other
singularities may form (see [16], [33] and so on).

Remark 1.13. Since the isentropic compressible Euler systems (1.14) are used to describe the transonic
flow, then it is plausible to require that the shock is weak in the sense that although Uy (ro) > c(py (10)) and
Us (o) < e(pd (r0))), Uy (ro) — c(pg (10)) and c(pg (ro)) — Uy (ro) are suitably small.

Remark 1.14. The rate of decay to the steady transomic shock stated in Theorem 1.4 is not optimal.
In fact, it follows from the proof of Theorem 1.4 that for any positive m, there exists a positive constant €
depending only on m such that if € < gg, then the solutions, (p™(t,7),UT(t,7);7r(t)) in Theorem 1.4, tends to
(pd (1), U (r);r0) as t approaches to infinity with a rate of order (1+t)~™.

Finally, we study the instability of a m-D steady symmetric transonic shock in a symmetric converging
nozzle as given in Theorem 1.3 under generic unsteady small perturbations. For convenience, in this part of
the presentation, we will use the variable 7 = —r instead of €2, and denote the states before and behind the
shock by (p~,U~)(t,7) and (pt, U)(t,7) respectively.

As in Theorem 1.4, the initial data is assumed to be a small perturbation of the steady symmetric transonic
flow (pg (7), U (7)) for 7 € [-Xo — 2, - Xy, i-e.,

(P, U5)(0,7) = (5, U ) () + (o1, UE)(P), 7 € {—Xo -3 —Xo} , (1.17)

+ = ~
where ¢ is small positive constant, (p, Ui)(7) is given in Theorem 1.3 with p (7) = (PUT(T))%, and (p;,U; ) €
C3(=Xo — 3, —70) and (5{,U;") € C§(—ro, —Xo).

In addition, the boundary conditions at the entrance and the exit of the nozzle are imposed as:

670 (X0 - 1) =06 U5) (~Xo = ) + (. Tl0) (118)

and
F(t,~Xo) = p. + 255 (1) (1.19)

here (5, Uy 5 p3) € C3(0,00) and p, = (%)% with P, given in Theorem 1.3. Denote by 7 = 7(t) the unsteady
shock front 3. Then it follows from (1.1) that

Dt + 0n(FEUF) + =L 50+ =, ;
O(FET) + 0p(pE(U*)? + PE) + MLk =0, »
7

7(t),

(1.20)
(t).
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Across the shock front ¥, the Rankine-Hugoniot conditions are

(1) — [0 = 0
{ [fj]f (~) [p ~]~2 ;- (1.21)
[pU]7(t) — [pU* + P] = 0,
and the Lax’s geometrical entropy conditions become
MU, 7F() +0) <7 () < \(p,U7)(t,7(t) —0),  #(t) < Xa(pT, U (L, 7(t) +0), (1.22)

with A (5,0) = U — ¢(p) and A\y(5,U) = U + ¢(p).

Then we have the following instability result:

Theorem 1.5. (Dynamical Instability) Let (o, UL)(7) denote a m-D symmetric steady transonic shock
solution in a symmetric converging nozzle as described in Theorem 1.3. Assume that Xo > 0 is sufficiently large
and the strength of the transonic shock is suitably weak. Then there exist appropriately choosen perturbations
e(pE, UE)(F) and e(py (t), Uy (t); 53 (t)) of the initial-boundary value such that the solution to the problem
(1.17)-(1.22) is asymptotically unstable in the sense that there is no uniform constant Coy > 0 independent of
€ such that

15+, Tt ) = (8. T D) Ollegsoy,—xo) + 7(E) + 7ol + 17 (1) < Coe for all > 0. (1.23)

It should be noted that there have been many studies on m-Dimensional steady transonic shock waves (see
[5-8], [11-12], [17], [25-26], [28-31], [35], and the references therein). In particular, for a flat nozzle of the form
(—=N71,N2) x (0,b;0,b) in 3-D, the existence and uniqueness of a transonic shock for the steady compressible
Euler are established under the assumptions that the shock front goes through a fixed point and the pressure
condition is given with freedom one. However, as conjectured by Courant-Friedrich’s in [11], such transonic
shock phenomena occur in a class of physically interesting nozzles, such as the De Laval nozzle whose wall
cannot be flat, and physically relevant condition at the exit of a nozzle should be a given suitably large pressure.
Furthermore, it is of great important to study the effects of geometry of the nozzle and boundary condition,
in particular, how to determine the shape and location of the transonic shock front [11]. In [29-30], for 2-D
and 3-D steady potential equation, we have established the uniqueness of the transonic shock wave pattern as
conjectured by Courant-Friedrich’s for general slightly curved finite nozzles with arbitrarily given large pressure
at the exit of the nozzle, proved the existence of transonic shock wave solutions in such a nozzle for a class
pressures induced by appropriate boundary conditions at the exit of the nozzle, and more surprisingly, the
problem is ill-posed in general by showing no such piecewise smooth transonic shock wave pattern for a class
of nozzles, which include both De Laval type nozzles and the flat nozzles, for arbitrarily given large pressure at
the exit. The ill-posedness results for the potential in [29-30] were extended to the transonic shock problem for
the full steady compressible Euler system (1.2) for flat nozzles or slightly curved nozzles with given pressure at
the exit in [28]. In this paper, Theorem 1.1, Theorem 1.2 and Theorem 1.3 yield the existence and uniqueness
of a steady transonic shock wave pattern for a special class of m-D nozzle with appriately pressure given at
the exit of the nozzle.

The studies on the unsteady transonic shocks began with the works of Liu ([21-22]), where he studied the
dynamical stability of transonic shock in a duct by Glimm’s method for a quasi-one dimensional model of the

form: ,
Op + Ou(pu) = —%pu,
O (pu) + 95 (pu® + P) = 72/((;3)) pu?, (1.24)
Ot(pE) + 0 (pEu + Pu) = —ij} (pEu + Pu),

where £ = e+ % is the total energy and a(z) is the cross section of the duct. It is shown in [21-22] that flows

along the expanding part of the nozzle are asymptotically stable, while flows with standing shock waves in a
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contracting duct are dynamically unstable by studying weak solutions to Cauchy problems for (1.24) based
on Glimm’s random choice method. For some recent generalization of the results in [21-22], see [1]. However,
these results are different from the results in Theorem 1.4-1.5 in this paper due to the boundary conditions
and the structures of the solutions.

We now comment on the proofs of the main results. First, we note that the steady compressible Euler system
(1.2) is hyperbolic-elliptic in the subsonic region, it is challenging to investigate even the fixed boundary value
problem for such systems. Thus, to prove the m-D uniqueness of a free-boundary value problem, our main
strategy is to decompose the m-D full system (1.2) into a second order elliptic equation on the pressure Pt
with some mixed boundary conditions and m + 1 first order equations on u™ and ST by using the Bernoulli’s
law. Based on this decomposition and the Rankine-Hugoniot relations, we are able to use the theory for second
order elliptic equations and the characteristic method to estimate (P*(z)— By (r), uf (x) —ﬁio(x), SH(x)—S7)
in the subsonic region € in terms of (ug —a3 o, -+, u;,, =@}, )(x), which can be estimated by its values on the
shock surface 3 and the system (1.2) using the method of characteristics. It should be noted that on the shock
surface 3, (uj — ﬂ;o, R TR ﬂ;o)(a:) is governed by the Cauchy-Riemann system with a natural boundary
condition on L, the intersection of ¥ with the wall of the nozzle, so its estimate on X can be obtained without
much difficulties. These will lead to the proof of Theorem 1.2. Next, we turn to the study on unsteady transonic
shocks. In the case of the divergent duct, the keys to the asymptotic stability of the symmetric steady transonic
shock are some global (in time) uniform decay estimates for (p* (r,t)—pi (), Ut (r, t) = Ug (r), r(t) — 7o) and its
derivatives which can be established by making use of the properties of the background solution (P (r), Us (r))
given in Theorem 1.1. The strategy is similar to that in [18, 32-33]. While for converging nozzle, one of the
crucial elements of the analysis for the dynamical instability of the transonic shock is that we can derive an
ordinary differential equation on the shock position 7(t) + r¢ to show that 7(¢) increases rapidly in time, as
motivated by the work in [21], which can yield the unstable phenomena.

The rest of the paper is organized as follows. In §2, we prove Theorem 1.1 and study some useful properties
of the steady symmetric shock solutions. In §3, we reformulate the 2-D problem (1.2) with the boundary
conditions (1.3)-(1.7) by some useful decomposition of the 4 x 4 two dimensional full Euler system. In §4, we
establish some a priori estimates on the difference (Pt (x) — Py (r), Ui (z) = U (r), US (z), ST (x) — S5 € (22) —
\/r8 — 3) based on the decompositions in §3, which yields the proof of Theorem 1.2 for 2-D. The reformulation
of the 3-D problem and the decomposition of the 5 x 5 full Euler system are given in §5. In §6, using
the decompositions in §5, we derive some a priori estimates on (Pt (z) — Py (r),u (z) — 4 (), ud (z) —
iy (z),ug () —af (), ST (z) — Sg; &(w2, x3) — \/12 — 22 — 22), which yields the proof of Theorem 1.3 for 3-D
as in §4. In §7, we give a reformulation on the problem (1.14) with the boundary conditions (1.11)-(1.13)
and (1.15)-(1.16). Subsequently, we complete the proof on Theorem 1.4 in §8. Finally, we prove Theorem 1.5
in §9. In Appendix A, the stated fact in Remark 1.4 will be shown. In Appendix B, we will give a detailed
explanation on the regularity assumption of solution (P*(x),u{ (z),ug (z),u3 (z), ST (z); &(x2,z3)) in Theorem
1.2. In Appendix C, we will give a proof on Theorem 1.3

In what follows, we will use the following convention:

O(Y) means that there exists a generic constant C' such that |O(Y)| < CY, here C' is independent of e and
To-

§2. The existence of steady symmetric transonic shock solution

In this section, we will sketch the proof of the existence of a steady symmetric transonic solution in Theorem
1.1, and list some important properties of such solutions which will be used later. Details of the analysis can
be found in [11, 20, 25, 34, 28|.

The proof of Theorem 1.1. Since we are looking for piecewise smooth solutions of (1.2) separated by a
transonic shock. We may assume the entropy are piecewise constant S, and SO+ before and after the shock.
Due to the symmetric properties of the incoming flow and the nozzle, we can look for symmetric solutions of
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the form (p,u, S)(z) = (p=(r), Ugt(r)f, ST) for r = rg. Then the full steady Euler system is reduced to

(2.1)

2
where h(p, S) is the enthalpy such that d,h(p, S) = ¢ (/;’ 5) and ¢?(p, S) = 9,P(p, S).

Let the location of the shock be given by r = rg with rg € [Xg +%7 Xo+1]. The Rankine-Hugoniot conditions
at r =rg are
[poUo] = 0,
[poUg + Po] =0, (2.2)
[po(%Ug + 6())U0 + PoU()] =0.
Now we divide the proof of Theorem 1.1. IT into four steps.
Step 1. For the given supersonic state (p, (10), Uy (10), Sy ), then it follows from (2.2) that there exists a
unique subsonic state (pg (r0), Ug (r0), Sg) such that (2.2) holds.
This is given in [11, 27] so is omitted here.
Step 2. (2.1) has a unique supersonic solution (py (r), Uy (r),Sq ) for r € [Xo + 1, Xo + 1].
In fact, due to the radial symmetries of both the nozzle for r € [Xo + §, X0 + 1] and (py, Uy , Sy )(z) at
r= Xo+ %, the unique smooth solution to (2.1) should be radial symmetric and satisfies the following relations:

fl(p0_7 UO_?T) = rmilpa(T)UO_(r) —Co =0,
Faloy Ug'»7) = 5(Us (1) + By (1), 55) — O =0

with Co = (Xo + 2)™ 1py (Xo + 2)Uy (Xo + 2) and Cy = L(Uy (Xo + 3))* + hlpy (Xo + 3), 5y )-
Since
dUy  (m—1)Coc*(py,Sy)

dr v py (U ) = A (pg »S5))
d((Uy ) = (pg, Sq)) _ (m— 1)(20,P(py S5 ) + po 03P (py - S5 ) Uy
dr (U5 )2 = (p555) ’

then one has
_ _ _ _ 1 _ 1 _ 1
(U5 (M) = (o5 (1), 57) 2 (U5 (Ko +3))° = oy (Xo+5),85) >0 forr=Xo+5.  (23)

This implies that one the interval of existence of (py, Uy , Sy )(r), Uy (r) and (U (1)) — c2(pg (1), Sy ) are
increasing in r, which, in return, implies that d;]f is bounded a priorily. This, together (2.3), yields that (2.1)
has a unique supersonic solution (p, (r), Uy (1), Sy ) for r € [Xo + %, Xo +1].

Step 3. (2.1) has a unique subsonic solution (pg (r), Uy (), Sy) for r € [ro — 8o, Xo + 1], here 65 > 0 is a
fixed and small constant. If the assumption (1.8) holds, then the subsonic solution (pg (), Ug (1), Sg) of (2.1)
exists uniquely for r € [Xo + 1, Xo + 1].

This can be proved as in Step 2.

Step 4. The end pressure P, = POJr (Xo + 1) is a decreasing function of the shock position r = rg for
ro € [Xo + %,Xo + ].].

Indeed, for ro € [Xo + 5, Xo + 1], let (pf (r), Uy (r), Sq (r)) = (pg (r), Uy (r), Sq (ro)) for 7 € [ro, Xo + 1] be
the unique subsonic solution given in Step 3. It follows from (2.1) and (2.2) that

Lot (MUY (r) = Co,

S ) + hlof (r), 55 (r) = O
10

(2.4)



for r € [ro, Xo + 1], with h(p,S) = e(p,S) + w, and Cy and C; are positive constants determined by the
incoming supersonic flow. In particular, the end pressure P, = PJ (Xo + 1) is the unique solution of

s

PP 55 0) = 5 o (B 53 o)

5 + (g (Pe, Sg (ro)), Sg (ro)) = C1 =0 (2.5)

Note that N )
OF _ . 1 <1 Uy (Xo+1)) > 0, (2.6)
OP  pi(Xo+1) C?*(Xo+1)
e (s (Xo + 1))
OF U (Xo+1 y-1 P, >< ap )
= = + ——(Xo+1)) >0. 2.7
95 < X0t 1) T et ) \Tas Koty @7)
Hence L N
dP,  (OF\ " (OF\ dSy (ro)
dro <as> (ap> arg <% (28)
provided that
dSS_(To)

One need to verify (2.9). Since (2.4) holds at » = 7y and C; and Cy are independent of gy, one can get from
direct computations that

d m—1
o)z (r0)) = =" (ro) U (o),
) d i dSE(ro)  dP; (o) (2.10)
PJ(T‘O)UJ(TO)%UJ(TO) = —pg (ro) Ty (r0) ;7’0 - 37"0 ;
with T' > 0 being the absolute temperature. Thus,
dSg (ro) au dPy
—Pg(TO)TJ(To)giTO = {POUOdTO} (ro) + [dro} (ro) (2.11)
Since dsgr(or‘)) = 0. On the other hand, it follows from (2.2) and (2.10) that
m—1,_ dU, dPy
L) = |G| (o) + [ S200)| (2.12)
Hence, one obtains from (2.11)-(2.12) that
dSg(ro) _ m=1__ L ey (2.13)
dro ro  pg (ro)Ty (ro) potoltro '

here one has used the entropy condition [Py](ro) > 0 and [poUZ + Py](r¢) = 0. Thus, we have shown that the
end pressure P, is a strictly increasing function of the shock position r = rg.

We can now complete the proof of Theorem 1.1.

For ry € [Xo + %,Xo + 1], by Step 2, there exists a unique supersonic flow in [X( + %,ro]. Moreover, it
follows from Step 1 and Step 3 that there exist a unique shock at r9 and a unique subsonic flow in [rg, X + 1].
Thus the function F(rg) = Py (Xo + 1) is well-defined for ro € [Xo + 3, Xo + 1]. By Step 4, F(ro) is a strictly
decreasing and continuous function on PO+ (Xo+1). When rp = Xo + % or 1o = Xg + 1, one can obtain two
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different end pressures P, and P, with P; < P,. Therefore, by the monotonicity of F(rg), one can obtain a
unique symmetric transonic shock for P, = P;"(Xo + 1) € (P, P»). Hence, Theorem 1.1 is proved.

Remark 2.1. By the assumption (1.7) and the proof of Theorem 1.1, it can be checked easily that there
exists a constant 6(ng) > 0 with 6(ng) — 0 as ny — 0 such that for ro <r < Xg+1

d* Uy (r)
drk

d* B (r)
drk

< (no), kE=1,23.

Remark 2.2. Tt follows from the derivation in Step 2 that one can get an extension (pg (r), Uy (r)) of
(PG (1) Ug () for r € (Xo + 3, Xo + 1).

§3. The reformulation of the 2-D problem

To prove Theorem 1.2 in the 2-D case as in [28] and [35], we reformulate the nonlinear problem (1.2)-(1.7)
so that one can obtain a second order elliptic equation on PT and a 2 x 2 system on the angular velocity U2Jr .
First, due to the Bernoulli’s law, for any C* solution, the system (1.2) in Q is equivalent to

A (pTui) +a(pTuy) =0,

1
(uf‘@l + ’U,;raQ) <2|u+|2 + h(p+7 S+)> _ 0’

(3.1)
O Pt
ul Oug +ud oug + 2/)+ =0,
u{“@lSJ’ + u§“628+ =0.
Next we derive a second order equation on the pressure Pt from (3.1).
By the state equation of gas dynamics, we can assume p = p(P,S) and e = e(P, S).
For simplicity, set D = u} 81 + ug 82. Then it follows from the first equation in (3.1) that
Dpt)2
D?pt + pt D(01uf + doud) — ( /;0+ S _ 0.
Since
Dazuj = &Du;r — ((‘),u:r)z - 01’&38211?, 1= 1, 2,
then combining these with (1.2) yields
o Pt O, Pt 2(Dpt)? 2
2.+ o+ 1 2 _ p ) = +9 Pt _ 9ot o, P —
D=p P <81( ot )+82( o )) T u'li_(aqu o P 82%1 0o P )—O. (32)
Additionally, in terms of DS =0 in (3.1), one can derive that
DpT(PT,ST)=0pp™DPT  and  D*pT =0%pT(DPT)? + dppT D*PT.
Thus (3.2) becomes
81P+ 82P+ Q(app+)2
orp 2Pt () a2 ) 4 (9B - 2O Y P2
2
- uj(aw;alzﬁ — Ooui B PT) = 0. (3.3)
1

12



Furthermore, (3.3) can be rewritten as

(u-li_)2 + UTUJ + ui"u; + (us

+ + + +
— <81(u1 0 7’“2 )>Df)Jr + Lli 81P+ + 782:? 62PJr
c(pt, pt,ST) P p
2 + 2
+ (5123p+ - (a;_€)> (DP+)2 - T(@gu§81P+ - 62u1+82P+) =0. (34)
Uy

Next, we derive a Dirichlet boundary condition for P+ on the shock .

It follows from (1.3) that [ |
Ngo) — LPULU2 ,
{ ) = o) (3.5)

Substituting (3.5) into (1.3) yields on X
Gi(PT,ui uy,8T) = [puruz]lpus] = [pw][P + pu3] =0,
Go(PT,uf uy,ST) = [puruz]® — [P+ pui][P + pu3] = 0,

o (gl 0,))| 1P+ 1) (36)

G3(P*,ui,uf,St)

1
[ua (G2 + 10.) | e =
To derive the relations between (P*,S*) and (u],uj) on ¥, we use the polar coordinates

{ x1 =1rcosb,

To = rsinf

(3.7)

and the decomposition

{ U, = Ul COS@ — U2 Sinea (38)

ug = Uy sin @ + Us cos 6.
Then, (1.2) takes the form

pUz

U
9r(pU1) + Op <7”> + e

r

:O7

LUl
) , (3.9)
O-(pUrUz) + —09(P + pU3) + ~pUrUz = 0,

Oy (pUl <;|u2 + h(p, S))) + % (pU2 <;|u|2 + h(p, S)>> + % (p (;u|2 + h(p, S))) =0.

In addition, for any C* solution, (3.9) is equivalent to

1
9-(pUT + P) + ;39(PU1U2)

ar(pU1> + Oy (pTUQ) + PTUl =0,

o.p U3
p T

U10.Us + %89(]2 + %(%TP + Ul,rU2 =0,

U,0,U, + Y20,0, + — 0,

(3.10)

U105 + Y20,5 = 0.
13



Denote the shock ¥ by » = 7(6) in the polar coordinates. Then, the R-H conditions become

pU1) — =8 ) = 0,
02+ Pl - Hl 0] =
(0 (3.11)
o Uz] = TP+ pU3) = 0,
[pm (;uﬁ T hp, S))} - [pUQ (;W T hp, s>)} —0.
Thus (3.6) is reduced to

G (PT, U UL, ST) = [pUUs][pUs] — [pUL][P + pU3] = 0,

Go(PT, U US,ST) = [pUhUs)? — [P+ pUR|[P + pU3] =

Gs(Pt, U, US,ST) = {pUl (2u|2 + h(p, S))} [P+pU22] (3.12)

- [pva (;W + hip, S>)] (U Us) =

Due to the radial symmetry of the data and the nozzle, the incoming supersonic flow must be symmetric
and (P~,U; ,Uy,57) = (Py,U;,0,5; ). Then it follows from (2.2) and (3.12) and a direct computation that
on r = 7(6),
po (ro) (Ui = Ug"(r0)) + 0ppg (ro)Ug (ro) (PT — Py (r0)) + 0spg (ro)Ug (ro) (ST = S3) = g1,

20 (U () U = U 1) + (1 B ()T (r0))? ) (PF = Py 1)
+0spg (ro) (Ug (r0))* (ST = 87) = g2,

(1 ol o)+ 05 )0 )2 + P 10)) 0 = U () (3.13)

+<§app3<ro>w;<ro>> F140p(0f ] ><ro>) U3 (ro)(P* — B (o))

+ <3S(P(J)r€8r)(7"o) + 35/)0 (ro)(Ug (10))? ) Uy (ro) (ST = S¢) = g3,

where

g = 9i((U)?, (U = Uy (ro))?, (P* = Py (r0))?, (PF = P (ro))(S* = 87), (S* = 57)%, (Uy" = Uy (ro)) (P —
P (ro)), (U = Ui (r0))(ST = S3), Py — Py (ro), Uy — Uy (ro)) (i = 1,2,3) is smooth on its arguments and
9:(0,0,0,0,0,0,0,0,0) = 0.

Furthermore, it can be verified that the determinant A of coefficient matrix in (3.13) satisfies A # 0.

Indeed, for the polytropic gas, one has by a direct computation that

2 Oppg Uy dspy Uy
A = det s US 1 0 (ro)
s

poes +po (U + Py (Or(pgeq) + DU Os(pgeq

0 1
=9 Ut (ro) det
ot (U )8 (o pe S s o) Ontbed) + 008 ) )
Ui )? P P
Ispd U (pded + PF 1—(O )7“ > 0. <b use of e = , 0,e = — and 0 <0>
= (ospiUi e + A0 - S5 ) ) y L O = 1 and 0y
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Thus, on 3, it follows from the implicit function theorem that

Uy = Uq (ro) = 1 ((UF)*, By — Py (r0), Uy — Uy (7o)
Pt — P (ro) = 52((US) By — Py (r0), Uy — Uy (o)), (3.14)
St =8¢ =3((U)? Py = Fy (r0), Uy —Up (o).

An important property of g; is
gi = O((U3)?) + O(Py = Py (r0)) + O(Uy = Uq (r0))-

Roughly speaking, this implies, on the shock, the influence of U2+ on Ufr , PT and S* can be almost

“neglected”.
Next, we derive the boundary conditions of Pt on the fixed boundaries T'; : § = (—1)%6;.
In fact, in terms of the polar coordinates, the boundary condition (1.7) is equivalent to

Uf =0 on  0=+6,. (3.15)
Thus the third equation in (3.10) implies that
O, Pt =0yPT =0 on 0 = 46y, (3.16)

here 0,, represents the derivative along the outer normal direction of the nozzle wall.
Consequently, PT in Q. can be determined by the following boundary value problem

2 u+u ’U/+’U,+ U+ 2
(g ~ P+ er ) <0 e + e -

- 61(71+) +82(72+ ) |pP* + 0" g pr 4 D207, pr

F(pT,57) F(pt,57) p* pt
+\2
+<31%p+ - 2(8};J€)> (DP+)2 - %(82u;alp+ - 82UT62P+) = 07
1

Pt — P (ro) = g2((U)?, Py — Fy (ro), Uy — Uy (r0))  on 7 =7(0),
0, PT =0 on =6,
P+:Pe on r=Xo+ 1.

(3.17)
Next, we derive an algebraic relation for P+, U;", U,S and S* so that we can determine U;" in terms of
Pt U and S+.
It follows from the second equation in (3.1) and the boundary conditions (1.7) and (3.14) that

1
(U;a + —28 ) (2 |UT 1>+ h(p S+)) =0,
Ul =Uq (ro) + 1((US)?, Py = Py (r0), Uy = Ug (o)) on v =7(8),
Pt =P (ro) + 32(US)?, Py — Py (ro),Uy — Uy (r0))  on r=F
St = So+ +§3((U2+)27P0 0 ( O)vU(; - U(;(TO))a
Ui =0 on 0 = x6,.

(3.18)

Let 6 = 9(7" B) be the characteristics starting from the point (7(5), 3) for the first order differential operator

U o, + v 2-0p, that is, 0(r, 3) satisfies
15



{ BEL) — L(E) .00, 510)

0(7(8), B) = B, B € [—bo, 0.
Integratlng the first order equation in (3.18) along # = 6(r, 3) and noting that § = £6y is the characteristics
of U 0, + 2 0Op starting from the point (7(+6p), £6p), then we have in Q4

(3107 + blo*.5)) (1000,8)) = Gul#(6) U7 (7(5).5) (3.20)
with
GolF(3). A.UF (F(8).8)) = e(B (ra) + 0. 53+ ) ((8). ) + £ (U (r0) + ) *(7(9).9)

y (ro) + ga -
# SOECE.0) + (i r gt ) ((5). )

Here it is noted that U, (7(3), 3) has not been determined yet.
Finally, we determine U2+ .
It follows from (3.19) that

.
(G5 = hane )00 8 85

3) Us (3.21)
950 (0).0) =1 = g (FEB).0), B [60.60]
1
By (3.20),
d - -
(o0 (G107 4+ 15.57)) ) (100 8D 55 = 560l (), 5,05 G(5).) (322
and
( ( |UT]* + h(p* S+)>> (r,0(r,
+2 + ot + Py ot o + 90
= \U >+ h(pT,57) ) ) 0sPT + 0s( e+p)(P ,ST)0pS (7‘,9(7‘7ﬂ))5
U+
- (U ) 5005 8)0:6Gu7(5), 6, U5 (7(5),8)2n50.0), (3.29
1
here ((r, 0) represents the inverse function of 8 = 0(r, 3).
In addition, the first equation and the third equation in (3.10) can be rewritten as
+ U
arUf_ + %89U2+ = _UTl - %(U-‘rarp + 2 aeer)a
. P i (3.24)
Uro,uy + L2 o,u5 = %3p+ Ul

Combining (3.23) with (3.24) gives

a”[]2+ = hl(P+7U1+7U2+7S+787'P+a60P+787‘S+786’S+)’
OpUy = ho(PH, U US, S, 0,Pt,0,PF,0,5%,055T), (3.25)

U2+(T07 _00) = Oa
16



here hy = §*,hy = £2 with

AO :T71|U+‘27
+ +77+ + +
Ay =— Uy DpPT 4+ L2 NP 2 (U9.pT + Uy a hp ') — U—Q op(e+ 5)(P+,S+)8TP+
r2pt rpt
P
+0s(e + Z)(P*,SJF)&S“L ( Go)(ﬁ(r 6))993(r, 9))
+ + +77+
AQ:—(Ul) (0 (UFo.pT + v agpﬂ (18‘{ Ui, )
r pt P
+ U <ap(e+ p)(p+ ,ST)0, Pt + ds (e + p)(p+ S5t)9,5" + %+(dgG°)( (r,0))09B(r, 9))

Additionally, it follows from (3.10) and (3.14) that ST satisfies the following equation

{ (Ui 0, + L ay)5+ =0, (3.26)
ST(F(B), B) =S¢ (ro) + 33((Uy)*, Py — Py (r0), Uy — Uy (10))(7(B), B)-
Furthermore, (3.5) can be rewritten as
~/ o f(@)[pUlUg]
"0 =" (3.27)

7:(700) =To.

In order to show Theorem 1.2, we need only to treat the uniqueness problem (3.17)-(3.20) and (3.25)-(3.27).
This will be done in next section.

84. The Uniqueness in 2-D

We now prove the uniqueness of solutions stated in Theorem 1.2 for 2-D. It will be more convenient to change
the domain 24 with a free boundary ¥ into a fixed domain Q4+ ={y: Xo <y1 < Xo+1,—0g < y2 < 6p}. To
this end, set

_ r—7(0)
R o ()} (4.1)

y2 = 0.

For simplicity, in Q4 , we still write (P*,U;", U, S*) as the state of fluid behind the shock in the new
coordinates y = (y1,y2)-

Noting that
1  (Xo+1—y1)7 (y2)

Op = ————0,, Op = ~—
Xo+1—7(ya) " 97 #y2) — (Xo + 1)
1

Oy, + Oy, .



Then the equation (3.17) can be changed as follows

) u)’ uy g ~ ulug (ug)?
Dyt 0D+ D) + R D + o

Pi(tl )+ D
(PG e) 0

2N\ L R ~ ~
+<8123p+ _ M;f)>(Dp+)2 _ %(Dgu D, P+ 7D2u'1FD2P+) -0,
Uy

ut > N+~
~ D ~
2 DPt + 1[) D, P+ + Dap D, P+
(02(p+ S*))> ot 1 ot 2

Pt — Py (ro) = 2((US)*, Py — Py (r0), Uy —Ug (ro))  on g1 = Xo,
Pt =0 on Yo = 6,
Pt =P, on y1 = Xo+ 1.

with

r(y) = 7(y2) + (Xo + 1 — 7(y2))(y1 — Xo),

uf = Ufr coS Yo — U2+ sin yo, u2+ — U1+ sinys + U* cos Yo,

Dy = ( COS Y2 (Xo+1—y1)7 (yg)smy2> 73'11173/28
Xo+1—7(y2) r(y)(Xo + 1 — 7(y2)) T () v

Dy = < Sin yo _ Xo+1- yl)f'(yQ)COSm) cosye
Xo+1-7(y2)  r(@)Xo+1-7(w)) )7 rly) ™

P < U1+ _ (Xo+1- yl)f’(yg)U;> N U—;(?
Xo+1-7(y2) r()(Xo+1—7(y2)) ) 7" " r(y)

Additionally, it follows from the equation (3.18) that
~ (1
D <2|U+|2 +h(p*, S*)) =0.

The characteristics y, = y2(y1, 8) of D starting from the point (X, 3) of (4.3) is given by

dyy _ (Xo + 1 — #(y2))Us"
dyr — r(y)Uf — (Xo+1—y1)7 (y2)U3"
y2(X07ﬁ) :ﬂ

Thus it follows from (4.3) that
(;|U+2 + h(p+7 S+)> (yl»yQ(yhB)) = G0<f(ﬁ>:ﬂa U2+(X076))

As in the derivation of (3.24), one can obtain from (4.3), (4.4) and (3.24) that

2,,Uf = Hy(Pt,Uf, U, ST, 0, P, 0,,Pt,0,5",0,5"), i=1,2,
Yi 72 1 2 Y Y ) Y

U2+(X07 _90) = 07 18

7~ 1)D2P+>

(4.2)

(4.3)

(4.4)

(4.5)



here H; = M for i = 1,2, the 4 x 4 matrix Ay = (l1,12,13,14) is defined as
det(Ao)

L= <0 Ut (Xo+1—y1)7(y2) Uyt (Xo+1— yl)f'(yz)Ung>T
! () (Fly2) — (Xo+ 1) Xo+1—F(y2) (@) (F(y2) — (Xo+1)) /)

1 U \"
l2: <U2+70a aUQ > )
r(y) r(y)
1 T
Is=(0Uf,— 0} ,
’ ( U X0 + 1 — () )

T
Iy = <U1+,0,0,0)

and /le(z = 1,2) denotes the 4 x 4 matrix which is obtained from Ay by replacing the ¢—column in Ay with
the vector | = (lo1, lo2, lo3, loa)T defined as

~ d

lOl = %G()(f(ﬁ)’ﬁaU;(XO,B)ayz/B(y) - ath(p+,S+),

~ d d

o =~ Gol7(8) 8.5 (Xo. 8)2,,50) ) — 0, 1y, 57),
- U I +>

s =) w(Ul O Ty )

i L opPt UTUS

M r(y) pt r(y)

where = [((y) is an inverse function of yo = y2(y1, 5).
In addition, ST solves the following problem

{ S (4.7
ST (Xo,42) = 85+ 33((Uy)*, Py = Py (r0), Uy = Ug (r0))(Xo, 92)- .
Finally, (3.27) can be rewritten as
) = 7:(y2)[PUlU2]’
(we) = =P 0 (4.8)
77(790) =To.

To validate the regularity assumption in Theorem 1.2, we now give two lemmas to ensure the compatibility
relations of any C1(£,) solution at the corned points formed by the shock curve and the nozzle walls.
Lemma 4.1. (Orthogonality) Under the assumptions in Theorem 1.2, we have

7 (+60) = 0.

Namely, the shock curve is perpendicular to the walls of the nozzle.

Proof. This fact follows from the third equation in (3.11) and the boundary condition (3.15) directly since
the jump of the pressure is non-zero.

Lemma 4.2. (Compatibility) If the assumptions in Theorem 1.2 hold, then

DpPF(z") =0, i=1,2.
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In particular, the first order compatibility condition of the problem (4.2) at the point z° = (2}, x}) is satisfied
with 2! = (rg cosfy, —rgsinfy) and x2 = (7#(fy) cos by, 7(fo) sin fy).
Proof. By Lemma 4.1, U (r, +6y) = 0 and (3.11), one has

[pU](7(£00), £00) = 0,
[pU} + P)(7(£6o), +6) = 0, (4.9)
[(pe(p, S) + 3pUT + P(p, S))U1)(7(£60), £60) = 0
and Op[pUr](7(£60), £00) = 0,
9[P(p, S) + pUF)(7(£00), £60) = 0,
dol(pe(p, S) + 3pUE + P(p, S))Ui](7(+6,), +60) = 0.
This implies at the points (7(£6), £6p) that

pTOUT + U 9gp™ =0,
20 U 0pU + (2(pt, ST) + (U)?)0gpt + dsP(pT, ST)0pST = 0,

<p+€(p+» ST+ 3ot (U + P(pt, S*)) U + U <e(p+7 ST)+ ptope(p™, ST) + 5(U)?  (4.10)

+0,P(pt, S*)) Oppt + U <p+8se(p+, ST)+ dsP(pT, S*)) 0pST = 0.

For the polytropic gas, the determinant A of coefficients in (4.10) satisfies A = (p*)2U; 9set (c(pT) —
(U;7)?) # 0. Thus,

Oop™ (F(£00), £00) = pU; (F(£6y), £60) = 0S™ (7F(£6y), £6,) = 0.

Consequently, 9p P*(7(£6p), £6p) = 0 and the compatibility condition holds.

Now we are ready to prove Theorem 1.2 in the 2-D case.

Suppose that the problem (4.2)-(4.4) and (4.6)-(4.8) has another solution (P*,U;", Uy, S*;#(y2)) with the
corresponding regularities in Theorem 1.2.

Set

Wily) = P*(y) _P(;'_(TO +(Xo+1—r10) (11 — Xo)), Waly) = Ui (y) = Uy (ro + (Xo + 1 = r0) (11 — Xo)),
Wi(y) = Us (y), Waly) = ST(y) — 5§, E(y2) = 7(y2) — 10

By (4.8), Lemma 4.2, the Remark 2.1 in §2 and the assumptions in Theorem 1.2, one obtains after a careful
computation that

= (y2) = a0(y2)= (1) + D ai(y2) Wi(F(y2), v2)

v (4.12)

E(—6p) =0,
with ao(yg) S Cc1:do [—00, 90]7ai(y2) S 02’60[—90, 90](1 <1< 4) satisfying

laollcrse + llallczso + llasllczso + llasllczs0 < Cle +6(n0)),  llazllgzs0 < C.
It follows from the Granwall’s inequality, Lemma 4.2 and (3.14) that

1Z(y2)| < Cle 4 0(n0)) (Wil Lo (@) + WallLoe () + [WallLe(qy) + CllWall Lo () (4.13)
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Thus, (4.12)-(4.13) implies that
I1Z(y2)llc1[=6,60) < C(e +3(n0))IW1ll Lo (@uy + W3l @iy + Wallze(q.)) + CliWall Lo (@)
and
1Z2(y2)ll 250 [—09,00] < Ce+3(10)) (IWillcrs0 (04 ) +IIWallers0 gy I Wallerso () +ClIWallerso ), (4.14)

here d(n9) > 0 is a generic constant with d(ng) — 0 as 1y — 0.
Based on (4.14) and the assumptions in Theorem 1.2, one can estimate Wi by (4.2).
Indeed, (4.2) implies that

ulug (ug)?

2 +ot
D1 (artismy ~ 1D+ 5 Do) DGy Dt + oy ~ )2t
= F(f(yg),f/(y2)7f”(y2),P+,VP+,U1 7VU1_‘—,U2—~_,VU2J’_,S+,VS+)’
Wi = go((US)? Py — Py (r0), Uy = Uy (r0))  on y1 = Xo,
OgW1 =0 on yo = £,
Wiy=0 on y1 = Xo +1,

here

F= Y 0, 05mW)+ D 0 bWE )+ D )0, W+ ba(y)W;

k=1,2;j=1,2,3,4 k=1,2 k=1,2;j=1,2,3,4 =1
+ b31(y)E(y2) + b32(y)= (42)
with b, (y), bi; € C°(Q4) and [|bl;(y)[lcrs0 (0, ) + 165 (W)l crs0(0, ) < Cle+ (o))

Due to Lemma 4.2, it follows from the known regularity estimates on second order elliptic equations of
divergence form with corned boundaries and mixed boundary conditions (see [2-3], [19-20] and so on) that

Whllcr.do SC(II@zIIcwo > b Willes + Y I8 Wlles

k=1,2;j=1,2,3,4 k=1,2;=1,2,3,4
+ D 106 (= W)lloso + D b2 Willose + [1bs1(9)=(y2) + bz (y)= (yz)llcéo>
k=1,2 1<j<4
<C(e + (o)) (IWillcrao + [Wallcrso + [Wallorao + [[Wallerso + [1E(y2)loro0)-
(4.15)
Substituting (4.14) into (4.15) yields
Willers0 < Cle 4 6(m0))(IWallerso + [[Wallrso + [[Wall .6 )- (4.16)
Next, we estimate Ws.
By (4.4), we obtain
4 4
ly2(y1, ) = B)llcrso o, x0+1:-80.60) < COO IWillerso + [E()llors0) < C Y [ Willgrso (4.17)
i=1 i=1
It follows from (4.6) that W3 satisfies
0, Wy = Hi(y), i=1,2,
{ Yi 3 (y) ¢ (4.18)
W3(0,0) = 0.
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here H;(y) has such a form

8
Hi(y) = di (y)0y, W1 + db(y) Dy, Wi + db(y) Dy, Wa + diy (y)Dy, Wa + Z dj, (Y)Wi—a + dy(y) (y2(y1, 8) — B)
k=5

+ dio(y)E(y2) + di1 (¥)E (y2) + dia(¥)Is(y2(y1, B) — B) + diz(y) U5 (X0, B),

with 8 = B(y) being the inverse function of y» = ya(y1, ), di.(y) € C*% for 1 < k < 13 and

13

> ldillorse < Cle + (o).

k=5
Thus, combining the equation (4.18) with the estimate (4.17) yields

[Wallor.s0 < C([Hillcso + [|1Hzlleso) < CUIWillerso + [[Wallerso + [Wallorso)
+ Ce 4 0(n0)) W3] cr.50 -

For sufficiently small ¢ and 79, one has
[Wsllcrse < C(IWillerso + [[Wallgrso + [[Wallor.50)- (4.19)

Next, we derive the estimate on Wo.
By (4.5) and the estimates above, we obtain

Wallcro < C(IWhllorse + [Wallorso) + Ce([Wallcrso + ly2(y1, 8) = Bllcrso)
< Cle+0(m)) (IWallorsa + [Wslloran) + CllWallerso (4.20)

Finally, it follows from the equation (4.7) that

4
IWallcrso < Cle +8(m0)) (IWallcrso + Ily2(y1, 8) = Bllcrao) < Cle+3(m0)) Y IWikllcnoo- (4.21)
k=1

Combining (4.16) and (4.19)-(4.21) yields

4

4
D IWillgrs < Cle+68(m0)) Y IWillgrso.
k=1 k=1

Thus, for small € and 79 we arrive at
Wi =Wy =W35=W,;=0.

It follows from (4.13) that
E(y2) =0.

Therefore, we can obtain Pt (y) = By (ro+ (Xo+1—7r0)(y1 — X0)), Uy (y) = U (ro+ (Xo+1—ro)(y1 —
X0)),Us (y) = 0,5t (y) = S§ and #(y2) = ro immediately. This leads to the proof on Theorem 1.2 in 2-D
case.
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§5. The reformulation of 3-D Problem

As for the 2-dimension problem in §3, we will use the Bernoulli’s law to reformulate the nonlinear problem
(1.2) with the boundary conditions (1.3)-(1.7) as a second order elliptic equation on P* and four first order
equations for ut = (u],ug,ud) and S*.

First, for any C!—solution to (1.2) in Q, it holds that

+
divu® + Dp% =0,
+
Dut + Vp% =0, (5.1)
1
D (G s, 57) ) <o
here D = uj 0, + ug 9o + uj 05, and p* = p(P+, ST).

Without loss of generality, we consider only the polytropic gases. Then the last equation in (5.1) is equivalent
to

ut - Dut +

~y (DP+_ p+
y=1\ pt  (p")?

Combining (5.2) with the second, third and fourth equations in (5.1) yields

Dp+> = 0. (5.2)

VP

By (5.2), the first equation in (5.1) can be rewritten as

DP+
T _
divu Ny 0 (5.4)
Thus it follows from (5.4) and (5.1) that
VPt pPt <
V() - D)+ > dwufoul =o. (5.5)

4,j=1

It is easy to verify that the equation (5.5) on P is a second order elliptic equation for the subsonic flow.
Note that the third term in (5.5) is of the order O(|Vu*|?), which can be almost “neglected”.

Next we derive a Dirichlet boundary condition for P* on the shock ¥ as in §3.

In fact, it follows from the third and fourth equations in (1.8) that

{ 8i£($2,l’3) = A&;l’ 1= 273a (5 6)

§(a9, 23) = 29
with
Ay = [puyug][P + pu3] — [puius][pugus],

Ay = [purus][P + pu3] — [purus][pusus),
Ao = [P+ pu3)[P + pu3] — [pusus]?,

here 20 = (29,29, 29) € Ty is defined in Theorem 1.3.
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Substituting (5.6) into the other equations in (1.8) yields on X

G1(PT,u™,87) = [pui]Ao — [puz]A1 — [puz]As =0,
Ga2(PTut,8%) =[P+ pu]Ag — [purua] A1 — [puiuz]Ag =0, (5.7)
Gg(P+,u+,S+) = [pu(%|u|2 +h(p,S5)) - (Ao, A1, Ag)] =

As in §3, it follows from a direct computation and the implicit function theorem that on X

uf —uio(2) = gi(ug —ugg,ui —uzg, Py — Py (ro),ug —uq (o)),
Pt — Pyf (ro) = go(uz —uz g, ui —udo, Py — Fy (r0),ug — ug (r0)), (5.8)

St 753_ :§3(u; 7“;071‘;71‘;0’P0_ 7P0_(T0)vu(; 7“5(7“0))7

here uy = U (o) £ (i = 1,2,3) and §;(0,0,0,0) = 0. Thus, by the assumption (1.8) and the Remark 2.1, we
can conclude that g; satisfies

= (O(e) + C(no)) (O(UQF —izg) +O(uf —igy) + O(E(w2, x3) — \/15 — 23 — fﬂ%)) ;

here the generic constant C(ny) — 0 as 79 — 0. This fact also illustrates that on the shock, the influence of
ug — g and uf —agy on uf —afy, PT — By and S* — S can be almost “neglected”
Next, we derive the boundary condition of P* on the cone surface I's : 22 + 22 = 23tg2ayp.
To this end, it is convenient to use the standard spherical coordinates (r, 8, ), and the corresponding velocity
decomposition
Ur = cosauf + sina cos fug + sin asin fuy,
Uy = —sinfug + cosfud,

Uy = sinau — cos avcos ug — cos asin Ouy

with 0 < 0 <27 and 0 < o < «p.
Then the system (5.1) becomes

ctga =0,
+)2 + (172 +12
o-(pt (U2 + P + L9, (pTUUS) - a (b U UT) + 2p* (TUl) _ (U )7"+ (Us)7)

TSI &
+rrtrrt
P U Uy
T

207U U
0 (p T UT) + k= 0p (p* U3 ) — Loa(ptUF) + L — L

ctga =0,

3 ctga =0,

3 +U+U+ +U+U+

0P UTUS) + e 00 (0" (UF)? + PT) = L0u (0t UF U ) + 2512

3ptuf U +(<U+)2—<U-+>2>
7} 3 4 £ ——=ctga =0,

rSin &«

Lo oty ) ot L2 ooty )

o (3107 + 1.5} 57Ut ) + ——an (3107 + 1o, 5%) ) o703
1 1 2 1

=20 (G074 1ot 59) o ) + 20 (G072 4 ht5))

0, (p UL US) + —=—0p(pT U UF) — L0, (pH(UF)2 + PH) +
1

1 1
—;ctgoszrU?,+ <2U+|2 +h(p*, S*)) = 0.
(5.9)
Correspondingly, I's becomes oo = oy and the boundary condition (1.6) reduce to

Uf =0 on o= . (5.10)
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Thus, it follows from the fourth equation in (5.9) that
On Pt = 0,PT = pt (U )ctgag on Ty, (5.11)

here n represents the outer normal of the surface I's.
It follows from the analysis above that P should solve the following problem

3
+ +
V- (YE) = D(2E) + Y dwojuf =0,
3,7=1
Pt — P (ro) = ga(ug —ug g, ui —ugy, Py — Py (ro),uy — ug (r0)) on 21 = E(ma,a),  (5.12)
0Pt = pt(U) ctgag on Iy,
Pt =P, o0 e Xeil

In addition, by (5.1), (1.6), and (5.8), we arrive at the following first order equations on u;” and S+

+
Duf + &= =0,

uf —ufo(x) = gi(ug —uzg,uy —ugo, Py — Py (ro),ug —ug (ro))  on a1 =¢&(wg,a3), (5.13)
ufxltgzozo — u;rxg — u3+x3 =0 on \/xg + x% = z1tg0g
and
DSt =0,
St — Sy = gs(ug —uzg,ui —ugo, Py — Py (ro),ug —ug (r0)) on 1z = {(w2,73), (5.14)
ui"xlthag — u;xg — u}fmg =0 on \/a?% + x% = z1tgay.

It remains to determine uj — “;o and uj — u;{o. Once the values of uf and u3 on the shock are known,
then we can solve the problems (5.13) and (5.14) by the characteristics method to estimate u] — ufo and
St — Sar . Furthermore, by the third and fourth equation in (5.1), one can estimate u2+ - u{o and ugL — u?{o
in Q4 as well.

We now derive a system on uj and ud on the shock.

By (5.2)-(5.4), one has

DpPt 1 DP*
agu;—l-agu;:— + ( p+

A E + ug Dug + ui Duj +ufug Gauf + uTuj'&,uf) . (5.15)

In addition, it follows from (5.6) that ds ((2;)(5(3}2,1’3),.’1}27%3)> = 0y ((ﬁi)(f(l‘g,%g),.’l)g,x?,)).
This implies

A A A A

(9381 — 02 0a)(E(wa, w3), 2, 33) = | 0380 — 2020 + 01 (2) A1 — (50 ) Az ) (w2, 23), T2, 73).
AO AO AO A0

This, together with a direct computation making use of (5.1), yields

Osuy — Ogud = F(uy Vu't, uf Vut, VP VST VP, Vuy), (5.16)

here F(0,0,0,0,0,0) = 0.
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By the boundary conditions (1.6) and (5.8), we have that on the intersection line | = {x1 = {(x2,23)} N T2
) x3

+ + + + N s+ + o+ + — - — —
m(% _“2,o)+m(“3 _“3,0) = go(us — Ug o, Ug _“3,0>P0 — Py (ro),ug — uq (r0)),

here the function gy has the same property as in (5.8).
Thus, on 1 = &(x2, x3), we have

+ + _ _Dtp*t 1 Dpt +71y,,+ +71y,,+ +,, 49 .+ +, 9.,
Dauy + Osug = —=pr + (uf)2< o7 1 ug Duy + ug Dug — uy ug Oyuy — ujug Osuy |,

Osuy — Ooud = F(ud Vut,uf Vut, VP VST VP, Vuy), (5.17)

\/;;ng(u; —ugq) + \/;;ng(u; —ug ) = go(uz —ugg,us —uiy, Py — Py (o),
Uy — Ug (7"0)) on l,

here it should be noted that the position of the intersection [ can be exactly estimated in terms of the C1(€2})
regularity of (PT,u™, ST) and the compatibility condition (see Lemma 6.1 for details).
By (5.17), we can obtain some useful estimates on uj — “;,0 and ugj — uio on the shock (see Lemma 6.2).

Then it follows from the third and fourth equation in (5.1) that u3 and u3 can be determined by the following
problems respectively,

+ P _

u = uf (E(wo, x3), w2, 3) on  x1=E(x2,73), (5.18)
3317{(]20401“+ — IQU; — :UgugL =0 on Ty,

here ¢ = 2, 3.

Therefore, in order to prove Theorem 1.3, one needs only to study the uniqueness problem of solutions to
the equations (5.6), (5.12)-(5.14) and (5.17)-(5.19). This will be done in §6.

Remark 5.1. By the references [{] and so on, if the Cauchy-Riemann equation (5.17) has a C? solution,
then the solution is unique. Namely, the boundary condition in (5.17) is enough to give a priori estimate on
(g, ug).

Remark 5.2. We can obtain a pressure boundary condition on the general curved nozzle wall T' for the
system (1.2).

Indeed, let U be any Ct-smooth solution to (1.2).

If T is represented by o = f(r,0) with f(r,0) € C2, then the boundary condition (1.6) can be written as

0, Us
Ufaff+U;,Lf+—3 =0 on T. (5.19)
TSI o« T
Then (5.19) implies that
0 o,U5
U0, U 0, f + UfaTU;rsfja + U5 = ho(0.U, V£, V2 ) (5.20)

with ho(@aU*, VI, V2f) = —Uf (0aUs 2L — U5 4+ 0,U3H (0, 1)2 + U 02 f + 0o U3 22528 4 ), (2L ),
It follows from the equations for the momentum in (5.19) and (5.20) that

1
0, f0, P+ + %S _gp+ - 50aPF = Ho(p", U Uy U VU™ V. V2f)  on I. (5.21)

(rsina)? o
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Moreover, for the small curved nozzle wall T (i.e. \V o(f —ao)| is small for 0 < |B| <2, here ap > 0 is a small
constant), (5.21) is a strictly oblique derivative boundary condition on P*. Thus we can extend Theorem 1.2
to more general curved nozzles.

86. The Uniqueness in 3-D

We now prove Theorem 1.2 for 3-D case. As in §4, we transform the domain 2, with a free boundary X
into a fixed domain Q4 = {y : Xo < y1 < Xo + 1,93 + y2 < 1} by the following transformation

xr1 — 5(1’2,.1‘3)

Xo + )
V(X0 + 1) — 23 — o3 — £(aa,3) (6.1)
_ Zj S
Vi = Tigag LT3

For simplicity in presentation, in Q. , we still denote by (P*,u],u3,us,ST) and ((y) the state of fluid
behind the shock and the shock surface equation £(z2(y), z3(y)) in the new coordinates y = (y1, Y2, y3) respec-
tively.

With the notation 9; = Op, = iamyjayj (i=1,2,3), the equation (5.12) can be rewritten as follows
j=1
> . g Pt . DP+ S -
> )~ DCEr) D df O =0,
i=1 i,j=1
Pt — Py (ro) = ga(uy —uzg,ui —uiy, By — Py (ro),ug —ug (ro))  on  y1 = Xo, (6.2)
0Pt = pt(UF)?etgayg on Y3 +ui=u,
Pt =P, on  y = Xo+ 1.

with D = Uy 81 + u;ag -+ ué"ag and 8~ = tgaoal 252 — ygég.
Additionally, (5.6) becomes
\% Vyza 7t + Vw332,
{ yCO( ) 0 2N, A 3AL A (63)
C(y”) =2y,

here

0 0
0 _ Lo L3
y - (X07

aftgag” atgay”’
zi(y) = vir1(y)tgao, Oy zi(y) = yitgaody,z1(y), i =2,3,
on(y) = Ao+ VAR(Y) + Bow)((yr — Xo)?(Xo + 1) = AF(y))
Bo(y)
Ao(y) = (Xo+1—w1)C(y),  Boly) =1+ (y1 — X0)*(y3 + ¥3)tg° 0,
( )A(y)B*(y) Ao
(21 (1) A(y)B(y) + (z1(y) — (1)) (@3(y) + 23(y)) Ao + A(y)(x1(y) — A(y))(z2(y) A1 + z3(y)A2)’

A) = /(X0 +1)2 —23(s) — 73w, Bly) = AWw) — ()

a@/lxl (y) =

with analogous expressions for 0y, z;(y)(i,j = 2,3). Roughly speaking, 0y,z;(y) = d;; + O(no) + O(e) (4,7 =
1,2,3) holds.
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Correspondingly, (5.13)-(5.14) can be rewritten as follows

~ 5, p+
D+u1’_+alp7€:()a

ut it o(ay) = Gu(uf —ude uf —ufe Py — Py (rohug —ug(ro)  on  w=Xo  (64)
tgaou; — yauy — ysug =0 on Y3 +yi=w
and .
DSt —o,
St —Sf = g3(ug — uio,u;{ — U;;O,P(; — Py (ro),ug — ug (ro)) on 1 = Xo, (6.5)
tgaoui — youy — ysug =0 on v3+yl=u.

Define {(y2,y3) = ((Xo,52,y3) and @ (y2,y3) = u (C(y2,y3), 22(Xo,y2,¥3), 23(Xo, 2, y3)) for i = 2,3.
Then a direct computation yields

ayiﬁ;"—(y27 yS) = 81“;’_8%5 + a?”jayim2(X0> Y2, yS) + aBU;_ayixS(XOa Y2, y3)7 27.7 = 27 3.
Thus, the system (5.17) becomes

ay2ﬂ; + ay?,ﬂg_ = fl(y27y3)7
aysﬂ; - 8}/2'&;— = f2(y27y3)7 (6 6)
v (it — o (2(y))) + s (] — i o(@ (W) = Go(ug — uso,uf —udo, Py — Py (o), '

Uy — g (r0)) on l.

here I = {y1 = Xo} N {y3 + y3 = 1} and
Dtpt
f1(y2,y3) = <3y3$3<31u;3yzc + O3uz Oy, 3) + Oy, w2 (Orug Dys € + Oauf Dyywa) — 3,«,25823;,3&?3(?
1 ,DpP*

- W(pT + U;DU; + U;,TDUSL - UTUJGQUT - u-li_u;aSUT)) + (1 - ay3333)8y2u3_

+ (1 - 8y2x2)8y3u3+> (é(y% y3)) .%'Q(Xo, Y2, y&)a .’13'3(X(), Y2, y3))7

f2(y2,y3) = <3y2562(31u2+3y34 + Byug Qyyv2) — Oy w3(d1uf By, € + Daug Dy, a)
— Dy 00y, w3 F (uf Vut ,uf Vut, VP VST VP~ Vuy) + (1 — 8yy2)0y, iy
- (1 - ay3$3)ay3a:{> (6(3/25 y3)a JTQ(X(), Y2, y3)a 'Z‘3(X07 Y2, y3))

3
We notice that f;(y2,y3)(¢ = 1,2) is of the “quadratic” error (i.e. |f;|+|Vy,ys fil < C(e+(n0)) Z(\VuﬂJr

i=1
IV2u )+ C([VPT[+|V2PT) +Cle+6(n0)) (IVST+|VEST)+ C(IVP™|[+|VS™|+|VZP™[+]|V2S7])). More
precisely, it follows from the second, the third, the fourth equations in (5.1) and the first equality in (5.8) that

fi(y1,y2) and fa(y1,y2) can be expressed the functions of P, uf, ug,ug, S*,V,, 4.t , Vi, ysla VP, VST,
3

g(y%y?)) and Vyz,ygg(yzayB) with |f;| + |vy2,ysfi| < C(e + 6(m)) <Z(|Vy2>ysuj_| + |V12/27y3u;~" )+ |S+| +

=2

Vs ST+ V2 4e STI+ 1+ [V o Cl + V2, 4, ~|) +C(IVPT|+ |V2PT)).
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Similarly, (5.18) can be written as

Du + =t 6 P =0,

a (6.7)
Uj = ﬂj(y%ys) on y1 = Xo, '
tgaouj' — ygu; — y3u3+ =0 on \/m =

with ¢ = 2, 3.
Next we show that the compatibility relation of the solution to (1.2) on the intersection curve [ holds true.

- - —y_ 2= (Ma)? 2=y 20— 3u(Mg ) — 1

For this end, we define the function G(M; ) = ( —0 7 4 My)—1)+-"5=—02 = where
(My) NZ(Mo) ) ((:UJ( 0) ) u(My) —1

- Uy (ro) Uy (r0)

Mo = (). 55) Uy (r0)
can be determined by My (see (6.16) below)

Lemma 6.1. If the solutwn (Pt uf ug,ud, ST) of (1.2) is of C1(Q)—regular, and G(My ) # 0, then we
have on the intersection curve | = {xl E(xa,23)} N Ty

stands for the Mach number of the supersonic incoming flow, further u(M; ) =

Us =0.
Moreover, if the equation of the shock ¥ is given by r = 7(0, «) in the spherical coordinates, then

7(0, ag) = ro.

Remark 6.1. If 1 < v < 2 and the transonic shock is weak, then it follows from the proof of Lemma 6.1
that G(My ) # 0 always holds.

Proof First we show that the shock surface is perpendicular to the fixed boundary, i.e., 9,7(0, ) = 0.
Indeed, in the spherical coordinate, the R-H conditions (1.3) become

pUL] — [pU2]a(9r + = [pUiS]aaT =0,
TSané [,OUle]agT + = [pU1U3]8

=0

[pU3 + P07 + % [PU2U3]8M: =0, (6.8)
=0
P)

rsma
pUf + P —

[
[
[pULUs] —
[
[

TSHIO(

pUlUg] pUQUg]ag’l“ + = [pUg + P]8

TSIHCK[

Ua)0of + 3[(pe + 3p|U[2 + P)Us]0ur = 0.

(pe + LplU? + P)UL) — =L—[(pe + LplUJ? +
Since the fixed boundary condition (1.6) implies
Ui =0 on o= a,
then the fourth equation in (5.9) and [P] # 0 yield
00, ap) = 0. (6.9)

Obviously, (6.9) shows that the shock surface is perpendicular to the fixed boundary T's.

Next, we show U, = 0 on I.

By (6.8), (6.9), U; =0 for r € [Xo + 1, X0 + 1] and U = 0 on Ty, we can arrive at on the intersection
curve [

[pUL][pU3 + P] — [pU1Us][pUs] = 0,
[pU} + P|[pU3 + P] — [pUrUs)* = 0,
[(pe + 5p|U* + P)UL][pU3 + P%g— [(pe + 5p|U* + P)Us][pUrUs] = 0



and

ptutUy

O (pT U +<cta TUF -9, +U+> ;
(P 1) gapp 2 (P 2) p+(U2+)2+[P]

Dalp* (UF)? + P+) + (etgaop+U1+U2+ - aa<p+U1+U;)) U,
7 (U3 + 1P|
prU Uy

0u(p*UFU) + (ctgans" (U7 + [P — (o (U7 + ) ) o,

U7+ 1)
0u((pte” + 31U+ POUT) + (etgaalpte® + o U+ PRI

P Uy Uy
Pt (U ) + [P

—%«p%++§NMHF+PﬂU;O =0.

In order to guarantee PT € C1(2,), due to (5.11), one must require that
Do Pt = pT(US)ctgay on l.
Substituting (6.11) into (6.10) yields
Ut (14 O((U5)2)Bap™ + p0aUf = — 20U cgay 1 O((UF)?),
+ ()2

(U (1L + O(UF)2)0up® +20* U (L4 O((UF )0 = —p* (U2 (14 2580 ctgag

+O((U5)*),
.U = —Uy ctgag + O((US)?),

+ +32
— G Oap ™ + U 0uUT = —Ectgag + O((U5)?).

For convenience, we use the notations that equations p = p(P,S),e = e(P,S) and ¢?(P,S) = p(}Ps)

it follows from (6.12) that

7+ +
U1+(1 + O((U;')2))3Sp+8a5+ +P+aaU1+ + P+(U2+)20t9040(2p[p[{1 + Cz(pUJrl,sﬂ) = O((U;)g);

(UF)?0sp™ (1+ O((UF)2))0a ST + 207 UL (1 + O((UF)?)0aUi" + p* (U3 2etgag (1 4 27O

+32
+c2((lg}r,)s+)> = O((U;)s)v

2(pt,st
— A 0sp 0aST + U UL = O((U5)?).

(6.10)

(6.11)

(6.12)

. Then

(6.13)

Now we claim that Uy = 0 on [. Indeed, regard (6.13) as a system for (9,5%,0,U;", (Uy)?), suffices to

verify that the determinant A # 0 with

20t U Uy
U dspt p* P (F - + 2t
20T (UF)2 U;)?
A = det (UH)20sp™  20TUT pt(1+ 2L [(p]1 -+ c2((P1+,)S+))
2(pt. st
— L oset Uf 0

A direct computation yields

ptosptA(pt, ST)
v—1

ey GO = U
(e NIRRT

A:

+ 0<e>),



here the Mach number M, = —EZOM.
C(p (TO)a S )
Due to the Rankine-Hugoniot conditions (2.2) and the equation of state, one has

pg (ro) _ U (ro)
po (ro) — U™ (ro)’
[Po](ro) = (pg Uy )(ro)(Uy — Ug") (o),

v [Polro) _ v Br(ro)lpol(ro) 1t 2 (e (ry? —
T T T T syt 2 o)) = 5(Uy (o) = 0.

It follows from this that

w2 045) + o+ ) + 29 (14 ) =

" ) (Mg
2 (Mo_)2 12007 — (6.14)
(M(;r) = M2(MO—) +§((/u' (MO ) - 1)3
here pu(My ) = g{g:gg
Therefore, ‘

A p+asp+02(p+,5+)
v—1

G(My) +0(e) #0,

and then Uy” = 0 holds true on [.
Furthermore, it follows from the last equation in (6.8) and [P] # 0 that

80?(9, Ozo) = 0,

which implies 7#(0, ag) = 1o in terms of 2§ = £(x9, 29).

Remark 6.2. It follows from the proof of Lemma 6.1 that the shock surface ¥ : x1 = (2, 23) is perpen-
dicular to the cone surface. More generally, for an arbitrary but slight curved nozzle wall T': = f(r,0)(as in
Remark 5.2) and the solution (U7, Uy, Us™, P+, S*;&(xq,23)) € CH(Qy), the shock surface ¥ is still perpen-
dicular to T'.

Indeed, as in (5.20), on the fized boundary o = f(r,0), we have

+
U o f + U;ﬂ LU

rsin « r

=0.

Thus it follows from the second, the third and the fourth equations in (6.8) that on [=TNnY

ko[pU?] = k1[pUrUs] + [P] = 0,

kolpUrUz] — ka[pU3] — 225 [P] = 0, (6.15)
—70, fholpUZ] + (= 2eL ko + 70, flr) [pUr Un] + S2Lkn [pU3] + 222 [P] = 0

with ko = 1 — 8, fOa7 and ky = w27 4 90/%7T

7sin Tsina °

By the first and the second equations in (6.15), we can obtain on !

. .
[pU1Us] = Fé[PUf] + k.o/?%[P]:

21 _ (k12 72 k10T _ 1
(U] = (5,)°[pUs] + k%fsina[P] T F-
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Substituting the expressions above into the third equation in (6.15) yields
Op fOsT n OaT

PO f — —)[P] =0.
(ro.f 7sin? a r JIF]
Since [P] # 0, then
TO-f — (?afazer + &ir =0 on L.
7sin” a T

In addition, a direct computation derives

(O1(a = f(r,0)),02(a — f(1,0)),03(a — f(r,0))) - (O1(r — 7(0, ), Do (r — 7(0, ), D3(r — 7(0, @)))
oSO Daf

= —0, —
U 2sinfa 72
Therefore, the shock surface 3 is perpendicular to the nozzle wall T'. B
Remark 6.3. To guarantee the solution (U, Uy, U, P+ ST &(xe,23)) € CH(Qy) in Remark 6.2, as in
Remark 1.4, one should give some restrictions on the nozzle wall T'.
Next, we study the boundary value problem (6.6). To this end, we need a Lemma.
Lemma 6.2. Let B(0,1) be the disk centered at the origin O = (0,0) with the radius 1. If wy(x), wz(z) €
C*9(B) satisfy
1wy + Dywa = f1(x),
f2( )

8211}1 - Blwg = l‘) (616)
1wy + x2we = g(x) on 0B,
here x = (w1, 12), fi(x), f2(x) € CY(B), g(x) € C*9(B), 0 < § < 1, then it holds that
lwillozs(z) + wello2szy < CUllfillors sy + 1 allors sy + 19llczs(s))- (6.17)
Proof. Set -
Ap; = (=1)"" fi(2),
;=0 on 0B, 1=1,2.
Then the following estimate holds
le1llcs.szy + lle2llesszy < Ol fillers iz + 1 f2llcrsz)) (6.18)
Decompose w; and ws as
wy] = Wy +81§01 —82(,02, Wo 212)24-62901 +81<p2.
Then
011 + Oaig = 0,
Oy — D19 = 0, (6.19)

T1W1 + T2 = §(x) on 0B,

with §(m) = g(l“) — .1‘1(81(,01 — (92502) — .1‘2(82(,01 + 81g02).
Define
Wi(x) = z11 + w22, Wa(z) = 201 — 21102.

Then
81W1 — 82W2 = 0,

OoW1 + 01 Wy =0,
Wi = g(x) on 0B,

W>(0,0) = 0.
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Thus the standard estimates for Cauchy-Riemann equation yield
Wille2.s(py + [[Wallc2s5) < Clldllc2s s,

which implies
[@1][2 () + W2l (m) < Cllgllc2 (- (6.20)

By (6.19), we can assume w; = 91 and we = da with ¢(0,0) = 0 such that

Ap =0,
Orp=4g on 0B,
©(0,0) = 0.

As a consequence of the elliptic estimate and (6.20), one has

lellcss() < Clllello=(s) + 9llc2s(5)) < ClllwrllL~ () + |1©2llp=(s) + 9llc2s(8)) < Cllgllczs(m)-  (6.21)

We are now ready to prove Theorem 1.2 in the 3-D case by modifying the ideas in §4.

Suppose that the problem (6.2)-(6.7) has the solution (P*,uf, ug,uj,S*;((y)) with the corresponding
regularities in Theorem 1.2.

Set

Wiy) =P (y) - BF (P(y),  Wily) =ui (y) — i y(F(y),i =2,3,4, W5 =S5T(y) - 57,

() = (W) — \Jr — (@2)? — (@2(1))?

3
Z:(a‘ci(y))2 and Z(y) = (Z1(y), T2(y), T3(y)) given by the following transformation
i=1

2 .2 9
X1 — /12— -2
y1 = Xo + ¢ = ,
V(Xo+1)2 — a3 — a3 — /13 23 - 23
_ Xy .
yi—m, 2—2,3.

As in §4, making use of (6.3), Lemma 6.1, Remark 2.1 and the assumptions in Theorem 1.2, we can obtain
IEW)llc200 < Cle+ (o)) [|[(Wr, Wa, W)l crs0 (@) + Cll(Ws, Wa)llerso @y ) (6.22)

here 6(n9) > 0 is a generic constant and d(ny) — 0 as 1y — 0.
Similarly, it follows from (6.2) , Lemma 6.1 and (6.22) that

5
Willgz0 < Cle + 5(770))(2 [Willcrso + [1E(9)llc250 + [1(Ws, Wa)(Xo, -, ~)|cwo(3)>
i=1

< e+ 80m) (X Willon o + 10¥a, W) (Ko, oo ). (6.23)

i=1
Next, Wy and W5 can be estimated by the characteristics method and the equations (6.4) and (6.5) as
[Wallcrao + [[Wsllg200 < Cl[Whllg2s0 + Cle + 5(no))<||(W27W3)cwo + [ (Ws, Wa)(Xo, -, ')||02v60(3)2-

6.24)
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In addition, by Lemma 6.2 and (6.6)-(6.7), one has

4
1(Ws, Wa)(Xo, -, )l =0 By < Cle +8(0)) D IWill grso + Cll (W1, We)l|geuso, (6.25)

=2

and

4
(W3, Wa)llerso < [[(Ws, Wa)(Xos -, -)llers0(5) + Cle + (o)) (Z [Willgro0 + ||W5||02,50> + ClWill 250
=2
(6.26)
It follows from (6.22)-(6.26) that

4 4
(W1, Wo)llc2s0 + Y IWillorso < Cle +6(mo)) (II(Wl,Ws)cmo + IIWkllcwo> :
k=2 k=2

Thus, for small € and 719, we arrive at
Wi =Wo=W3=W,=Ws=0.

This and (6.22) show

Therefore, P*(y) = By (7(y)), uf (y) = o (F(y)(@ = 1,2,3),5T(y) = Sg and ((y) = ro. This completes
the proof of Theorem 1.2 for 3-D case.

§7. The reformulation of the dynamical problem

In this section, we start to reformulate the dynamical problem (1.14) with (1.11)-(1.13) and (1.15)-(1.16).
Since the system (1.14)_ is hyperbolic with respect to r—direction and t—direction, then it follows from the
finite propagation property that (1.14)_ has a global C? solution (p~(t,7),U~(¢,7)) in the domain Q_ =
{(t,r) : 0 <t <00, X0+ 3 <7 <r(t)}, especially (p=,U~) = (py (1), Uy (r)) for t > to (to > 0 is some fixed
constant) and |V¥,.(p~ — pg ()| +|VE,. (U™ = Uy (r))| < Ce for k = 0,1, 2, here (pg (r), Uy (7)) represents the
extension of (p, (r),Uy (r))) in [Xo + 1, Xo + 1].

The system (1.14), has two eigenvalues A1 (p™,UT) = Ut — c(p™) and Xo(p™,U") = UT + ¢(p*). The

corresponding Riemann invariants are w; = Ut — F(p") and we = UT + F(p™) with F'(p) = C(pp). In this
case, it follows from (1.14)4, (1.11) and (1.13) that
i w1 + wa)c(w
Byw; + \i(w)dw; = (—1) +1%7
w;(0,7) = w?;o(r) + w; o(e, 1), 1=1,2, (7.1)

pT(w) = pe on r=Xo+1

with wfo(r) = UF (r) + (=1)' F(pi (1)), wio(e,r) = {UT () + (=1)(Jy F'(pg (r) + (1 = 0)p (r))d0) pf (1)},
i = 1,2, c(w) = c(pT(w)), pT(w) = F_I(W), and F~! represents the inverse function of F(p*) =

02n the shock r = r(t), by use of (1.15), one has
T/(t) _ [,DU] _ (p+(w)(w1 + w2) — 2p7U7)(t,T’(t))

0] 2(p" (w) — p7)(t, (1)) ’ (7.2)
T(O) =70
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and
G(w) = [pU]* = [p][pU* + P] = 0. (7.3)
To simplify (7.3), we will use the following fact

(5o Uy )(r(1) = (55 U ) (r(1)).- (7.4)
Indeed, (1.14) implies that
7% Uo =TopPg (TO) i(7“0)-

Thus it follows from the Rankine-Hugoniot condition py (ro)Uy (r0) = pa (ro)Uq (7o) that (7.4) holds.
Next we analyze the boundary condition (7.3) for ¢ > to.
(7.3) can be rewritten as

24 p = P2 (7.5)
(]
Note that
PU? + P| = (o4 (U)2 4+ P (1, 0(0) — (¢ (0% + P ) (r(2))
+ (A5 (U + B (r(1) = (55 (Ug))* + By ) (r (1))
and

(s (U + Py ) (r(1) = (pg (Ug)* + By ) (r(#) = (o (UF)? + Py ) (r(1)) — (pg (U + Py ) (ro)
— (po (U + By ) (r(1) + (pg (U )* + Py ) (ro)
/ {0,(pg (UF)? + By ) (0ro + (1= 0)r () — 0, (pg (Ug )2 + Py ) (Oro + (1 — 9>r(t>>}d9> (r(t) — 7o)

(
( (Po Uy Uo U )) (Oro + (1 — H)r(t))d9> (r(t) = 0)
= By(

(r(t) —ro) + B1 (t)(r(t) —r0)? (by the second equations in (1.14))

with
B, = PV o =U))(ro) _ o
To
Bu(t) /1(1 - 9)d9/1 ar(ﬁOUO(UO U+)> (1= 0y + 0:0)r0 + 0y (1 — O)r(t)) db.
0 0 r
It follows from (7.4), (7.5) and Taylor’s formula that on r = r(t)
b 2808 o ey Bo
R an e T e e )
+ (" = p5)% UT =T (0" = p5)UT =TS, (r(t) = r0)?), (7.6)

here £(0,0,0,0) =0 and f € C? on its arguments.
Hence, due to (7.6), it holds that on r = r(t)

wy =3y = Ag(wi =) —Bo(r(t)—ro)+ fi (w1 —b )2, (wa—1030)?, (w1 = o) (wa—1b3 ), (r(t)—r0)?), (7.7)

here £1(0,0,0,0) =0, fi € C2 on its arguments, W7, (r) = Uy (r) + (=1)'F(p§ (r)), i = 1,2,
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_ (Ui (ro) = clof o) \* o B — 2¢(pif (10)) Bo
AOO_b<-U2+1(T0)+C(P2+(7”0))> 4 Bo = e letod (ro)) + Ug (ra))”
viously,

0<Ap<1. (7.8)
Thanks to (7.4) and (7.6), (7.2) can be rewritten as

r'(t) = A(UT = Ug) = Bo(r(t) — o) + f2 ((wl — ) )%, (wy — 3 )?, (w1 — b ) (wa — b3 ),
(w1 = @3 p)(r(t) = r0), (wo — W3 ) (r(t) — o), (r(t) — 7"0)2> (7.9)

’ Uy (r0))?) 5 BoUy (ro)
with A, po(“))( (90(7"0)) (0 0) ) By = 0~q 70 > 0 and £,(0,0,0,0,0,0) = 0.
lpol( (o (ro)) + (U5 (o))" 7 Toal(@ (o (ro)) + (U r0))) ! :
Here we empl}asize that By > 0 will play a crucial role to derive the decay estimate on the solution
(pt —pg, U = U 57 (t) — o) in §8.
In addition, on the boundary r = Xg + 1,

wy fwf',o = wy waOJrfg(wg fw;0)+go(t) (7.10)
with f3(0) = f4(0) = 0 and go(t) € CZ(0, 0).

Hence in order to prove Theorem 1.4, by the local existence of solution in [18] (since (7.8) implies that
the boundary conditions (7.7) and (7.10) are dissipative), we need only to solve the problem (7.1) with (7.7),
(7.9), (7.10) and with the initial data (w;(¢,r) — w;o(r))|t=t0 (1 = 1,2) and (r(t) — r9)|t=t, in the domain
{(t,r) : t > to,r(t) <r < X+ 1}. Here the initial can be regarded as suitable small in the sense that

sup |V (wilto,r) — (M) < Ce,  [r(to) —rol < Ce, [r'(to)| + |7 (ko) < Ce, (7.11)

lal<1 r(to)<r<Xo+1

which can be derived from the results on the local existence and stability in [18].
§8. Global Dynamical Stability

To prove Theorem 1.4 for m = 2, we will give a uniform estimate on w and its derivatives.
Lemma 8.1. Set Dy = {to < t < T,r(t) < r < Xo+ 1} for any garge T > ty. If w € C*(Dr)
satisfies (7.1),(7.7)- (7.11), then there exist two positive constants Co and Co independent of € and T, such

that |w; — w; ()| + [V (w; — 10( )| < Coe in Dy for|a| <1,i=1,2, and |8J( (t) —ro)| < Coe

(1+1)* (1+1)?
in [to, T] for 0 < j < 2.

Proof. We shall use the reflected characteristics method together with (7.9) to obtain the needed estimates
(the reflected characteristics method has been used in Lemma 2.1 of Chapter 5 of [18]). Because the background
solution (pg (1), Uy (r)) is not a constant state, a more delicate treatment than that in [18] and [32] is needed
here. In addition, by the local existence result of the solution in [18] and the continuity induction, in order to
prove Lemma 8.1, it suffices to show that

For some positive constants Cy, Co, C1, Co and Cs, if |w; — Fo(r) < (16_;_ nEs |0 (w; fo(r))\ < (16_;_1‘;)2
and 10, (s~ 07p(r)| < 250 i Dy i = 1,2 1r(0) = ol () < (1(10;2 and (0] < 255 i [, 7],
then there exist positive constants C4, C4, C4,C% and C% (C! < C; and Cj) < Cy) such that |w; — w;fo(r)| <
TR 10w = ()] < Gy and [on (s = 5] < ey in D i = 1.2 [r(t) = rol [ (8)] <
(1045)?)2 and |1 ()] < (1%;2 in [0,7). (8.1)
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Below we denote by C various strictly positive constants independent of ¢, T, Cy, Co and X,. For (t,r) €
Dr,t <T,let v; (s,t,r) (j = 1,2) be the backward j-th characteristic curve through (¢,r), i.e.,

dvy: (s, t,r) _
{ ]T = )‘.7 (’(U(S, P)/j (Sa t7 7')))7 S S ta (82)
v (85t,7)]s=t =1
By the assumptions in (8.1) and the entropy condition (1.16), one has
d’Y;(Satﬂ“) At — C’C’Oé‘ .
‘T — Aj (g (’Yj (s,t,7)))| < 1+ 9) mn Dr. (8.3)
L= X() + 1} =

If {(s,% (s, ,7)} N {(s,r) v = r(s)} = Ta(t,r),&(t 7)), {(s,71 (s,t,7)} N {(s,7) -
(T1(t,r), & (¢, 7)), then it follows from (7.1) and Remark 2.1 that

Z |wi(557;(8’tvr)) - w;fo(Vf(SvthmdS-

@) <l = BT &)+ 000X) [
i(tr) 521 (8.4)

|wi(t,r) =

It {(577;(53PQ(t7T)7§2(t7T))} n {(5, T) ir=Xo+ 1} = (Wl(th)aﬁl(tar)) and {(57727(331—‘1(1:77“)7 gl(tvr))} n
r=r(s)} = (ma2(t,r),n2(t, 7)), then by the characteristics method (7.7), and (7.10), we get for small

{(s,7) :
e>0
walt,7) = ()] < I = @) (10, 06| + s — 0F) (D167, (8, 7)
£0000) [ 3 o 5, 67) a0 o1l
2_ Ty(t,r)
< (1 + 05) <C5(XO) Z/ ) ‘wi(3772_ (S,Fl(t,r),fl(t,r))) - wZO(FYZ_ (S7F1(t,r),§1(t,r)))\ds

+ l(w2 - UA};_,O)(”TZ(t’ T)an2(t7r))|> + Cé(XU)A ( Z |wi(87’71_(57t7r)) - wxo(Wf(&ta T))IdS

1(tr) =1
) _ C5(Xo)C
< (14 CE)lAn(un — 0 (ma(tr) (e, 1) + (1-+ € Blr(malt. 1) = ol + 9
) Ao + C8(Xo) + CCoe)C
< (14 C) Bolr(ma(t,r)) — ro| + 0T COX0) + CCue)Choe. (8.5)
(1+1)
here we have used the following relations (for large t)
| CO+8(X0)+e) _Tiftr) _ |, CL+3(X0)+e) 0
1+1¢ t 14+t
and C(1 +6(X C(1+ 6(X
| CU+00) +e) _miltr) | CO48(X) +2) .
1+t t 1+

Similarly, one can obtain

C(6(Xo) + (Co + éo)é‘)(Co + C'o)s

|wa(t,) — 3o (r)| < Ao| (w1 — @Y o) (Lalt, ), E(t,m))| + TETE
+ BQ|T(F2(t, 7‘)) — 7‘0|
< Bolr(ma(t.r)) — rol + (AO L O+ Co)(5()§())) +(Co + C'O)E)> (1C+0i>2‘ (8.8)
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If{(s7’71_(s7ta T))}m{(sar) = X0+1} = ®7 or {(8,75(8,15,7‘))}(7{(8,7‘) r= T(S)} = @, or {(8571_(3’1—‘2(1:7”)7
S, r))n{(s,r) :r=Xo+1} =0, or {(s,75 (5,T1(t,7), & (E, 7))} N{(s,7) : r = 7(s)} = 0, then by (8.3),
(1.19) and the initial data (7.8) we can conclude

t<C and |w; (¢, ) — zi);"o(r)| < Ce. (8.9)

In addition, it follows from (7.9) and (8.1) that

B B Bot
(5 (r(t) = 10)Y'| < A4(Co + C(Co + Co)2e)e ez
(141
Thus, for large t and small ¢, one has
B - t o—Bo(t—s)
(1) 1ol < Ce 4 44(Co + CLCo + Cope)e | s
B - t 67307'
< Cee™ 7" + A1 (Co + C(Co + Cp) 5)5/0 de

_ nt —Bot t —Bot
< Cee Bt 0)? e / e
< Cee +A1(CQ+C(C()+C()) 8)5( | (1+t—7‘)2d7—+ y (1+t—7’)2dT
Al(CO + C(Co + 00)25)6
Bo(1+ (1 —n)t)?
Ce A1(Co + C(Co 4 Cp)2e)e

< Cs(e_Bot + e_BO”t) +

< , : 8.10
S0P T Bolr -0 (510
here 7 € (0, 1) is a suitably small constant.
Collecting (8.5)-(8.7) and (8.10)
. - Ce  Ai(Co+C(Co+Co)2e)e\  (Ag + C8(Xo) 4+ CCoe)Coe
— < (14+Ce)B — . (811
lwi (t,7) w1,o(T)| < (1+C¢) 0<(1 1) Bo(1+ (1 —n)t)? (1+1)? ( )
In order to show (8.1), for large ¢, X and small €, 7, we require
ByA
07 4 Ap< 1. (8.12)
By
In fact, (8.12) holds if and only if
A (pg (r0)) < 3(U (10))%. (8.13)

For the weak transonic shock (namely, U, (ro) ~ c(pg (r0)) and Uy (ro) ~ c(pg (o)) although Uy (o) >

c(pg (r0)) and Uy (ro) < e(pd (r0))), then (8.13) obviously holds (in fact, we only need Uy (1) > éc(pf{(ro))).
In this case, it follows from (8.11) that for large ¢, Xy and small ¢,

C()E
(1+1)%

i (t,7) — i ()] < i=1,2. (8.14)

Thus, (8.14), together with (7.9) and (8.10), implies that there exists a constant Cy > 0 independent of &
and T such that N

CoE
(1+1)%

()] < (8.15)



Next we estimate |V, (w; (¢, 1) — ﬁ)fo(r))\
Set w; = Oy (w; — w;'y),i =1,2. Then (7.1) yields

where
(W) — N (W wy + ws)e(w o o 4+ o) e(bg : . . _
g (1O ;i(w?x ) (( Fwa)elu) _ (i + 2 JAEG) 1y (hulaw) = Al )0y +wi)>

At At St
) +
N R A e
’ 2r 2r
It follows from (7.10) that
w1 = W + fé(WQ - ’LZ);:O)II)Q + g1 (t) (817)

with g1 (t) € C2(0, 00).
To get the boundary condition of @ on r = r(t), one should notice that the vector field V = 9; + 7' (t)0,
tangent to r = r(t) can be expressed as follows

{i(w) = r'(£)0r + ' ()(0r + Ai(w)0r) }-

So on the shock r = r(t), due to (7.1), (7.7) and the assumptions in (8.1), it holds that

b =A@ D) =T W) s _
P2 N ) el — ) DO Rteera) e =) (818)

with £1(0,0) = 0 and |f1(21, 20)| < (15’:7;”7;1\ + CO(6(Xo) + ﬁﬂzﬂ, here and below the generic constant C

may depend on Cj and Cy but is independent of &, 7 and Xj.
By the assumptions in (8.1),

gu(t, )] < 15 ( ce

Co(Xy) ). 8.19
AN e ( °)> (8.19)

Using the notations above, if v (s,t,7) and 7, (s,t,r) both intersect with fixed boundary and shock front,
then by the characteristics method, (8.19), the boundary conditions (8.17), (8.18) and (8.15), as in (8.9)-(8.13),
one can arrive at

_ , " _ = ¢ 015
@1 (8, )| < [((1+ f3(we — @3))w2) (Ti(t, ), &1(t,7))] + C(6(Xo) +¢) /F](t,r) TS 7
< (1+ Ce)|Aowy (ma(t,7), m2(t, 7)) + (1 + Ce) Bolr' (ma(t, 7))| + C(5(Xo) +¢) (16:;2 + C(S(jj(t){o))f:‘

+ Ay + C6(Xo) + Ce) (16_;_1;2 + C(d((f(—i)t; €)e

Similarly,

+ Ag + C3(Xo) + C¢) (ﬁ:;g + 0(5((1)(j)t)+2 e)e

Thanks to (8.12), (8.1) holds for |9;(w;(t,r) — w;‘:o(r))| (1=1,2).
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Since for ¢ =1, 2,

Or(w; — w;fo) =

—1)" (w1 + wa)e(w u?f 117; c(wt . A R B
&(3(( tug)ew) _ (B + o) o>+(_1)Z((Ai(w)_Ai(wg))arwmwi)),

then a direct computation yields

Cle

0rtwr = 0To)| + 10, (w2 — 0F0)| < =25

here C > 0 can be determined by Cj, Cy and C}.
Thus for the appropriately chosen large constant Cy > C} we can obtain

N N 026
|vt;7“(w1 - wi‘_,o)| + |vt,T(w2 - w;0)| < (1 ¥ t)2 .
2
Since |r”(t)] < C’Z(|Vm(wi — w:’ro)\ + [(w; — w;ro)\) +C6(Xo)(|7" ()| + |r(t) —ro]) on r = r(t), then by the
i=1

estimates on w; — wj)o, Vir(w; — w;fo), |r(t) — ro| and |r'(t)], it is easy to conclude

035
" <
0 < G

here C3 > 0 depends on Cy, C'O, C4 and Cs.

Therefore (8.1) and Lemma 8.1 are proved.

Proof of Theorem 1.4. Since the local well-posedness of the solution is achieved in [18], while for any
given t, the solution of (7.1) with the initial data (7.11) given on ¢ = ¢, and the boundary conditions (7.7),

(7.9) and (7.10) in [to,to + %] can be obtained by use of the characteristics method. Therefore, by Lemma
8.1, we can get a smaller initial data for w — wg and r(t) — o on t = %, then the solution can be extended

continuously to the whole domain. Thus, Theorem 1.3 is proved in the case m = 2. The case m = 3 can be
treated similarly.

§9. Dynamical Instability

We now treat the instability of a transonic shock in a converging nozzle. To simplify the notations, we
will neglect the notation “~” on (5%, U%) in (1.17)-(1.22). By the hyperbolicity with respect to 7#—direction
and t—direction, (1.20)_ has a global C? solution (p~(t,7),U~(t,7)) in the domain Q_ = {(t,7) : 0 < t <
00, —Xo — 3 <7 < #(t)}, especially (p=,U~) = (py (—7), Uy (—7)) for t > to (to > 0 is some fixed constant)
and |V a(p~ — py (—=7)| + |[VE(U~ - Uy (—7))| < Ce for k = 0,1,2, here (py (—7), U (—7)) represents the
extension of (py (1), Uy (7)) in [Xo, Xo + 1]. As in §7, we can reformulate the problem (1.20); with (1.17),
(1.19) and (1.21)-(1.22) as follows:

Oyw; + )\i(’w)a,:wi — (_1)i+1w’
w;(0,7) = wfo(f) + w; o(e, 7), i=1,2, 0.1)
p+(UJ) :pe+ﬁ;(t) on f: _XO

with w; 0(0,7) =0 (i = 1,2).
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On the shock 7 = 7(¢), by (1.21), one has

a0y — 1PU]
{ PO =T (9.2)
’F(O) = —To
and
G(w) = [pU]* — [p][pU? + P] = 0. (9:3)
Since
[pU? + P = (p™(UT)? + PT)(t,7#(t) — (b5 (UF)? + Py ) (—7(1))
+ (05 (TS + P (=7(1) — (py Uy )* + By ) (=7 (1))
and

(65 (U + B ) (=7(1) = (po (U )* + By ) (=7(t) = (o5 (Ug)? + P*)( () = (p5 (UF)* + P+)(7“0)

0
= (po (Ug )? + By ) (=7(1) + (po (Ug )* + Py ) (ro)
= —Bo(7(t) + 7o) + B1(t)(7(t) + 70)*,

with the constant By and the function Bj () being defined in §7. Then as in §7, on 7 = 7(¢) and for ¢ > ¢,
the boundary condition (9.3) can be reduced to

A(J)FU(T (U+ _ U-‘r) + By
~ -~ 0 ~ 2~
c2(pg) + (Uy )? 2(pg) + (Ug )?

+ f((p" = P52 (UT = U2 (0" = p)(UT = U, (F(t) +70)?), (9-4)

pt—pg =~ (7(t) +ro)

here £(0,0,0,0) = 0 and f € C? on its arguments.
Analogously, on 7 = 7(t),

wy =3y = Ag(wi =i ) +Bo(7(t)+ro)+ fi (w1 —f )2, (wa—13)?, (w1 = o) (wa—1b3 ), (F()+70)?), (9.5)

and

#(t) = AL(UY = Ug) + Bo(7(t) +10) + fo ((wl — i )%, (wa — b3)?, (w1 — Wy o) (we — W3 g),

(wy — o) (7(t) +70), (w2 — 1d3,0) (F(t) + 7o), (F(¢) + r0)2>, (9-6)

(7(t) +70)|t=0 = 0,

here f1(0,0,0,0) = 0, f2(0,0,0,0,0,0) = 0, f1, f € C? on its arguments, and Ay, By, A; and By are given in
87.

Here it should be emphasized that the equation (9.6) on 7(¢) and the equation (7.9) on r(t) are very different
because the coefficient of 7(t) 4+ ro in (9.6) is positive meanwhile it is negative in (7.9). This difference yields
that (7.9) has a global decay solution but the solution of (9.6) blows up in general.

In addition, on the boundary 7 = —Xj,

wy — wiy = (w2 — wi,) + f3(wz — wi) + Golt) (9.7)

with f3(0) = f5(0) = 0 and go(t) € C3(0, o0).
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Now we prove Theorem 1.5 by contradiction. To this end, we assume that for large Xg > 0 and some
weak background transonic shock, there exists a small constant g > 0 such that for ¢ < go and any
smooth perturbations (ﬁli(N) UE(7); py (), Uy (1); ~+( )) with supports in some fixed interval and satisfy-

d* d¥
ing Z(d kpl \+| UE (7 )\+|dtkp2()\+|dtk ()|+|dtkp2()|) < 1, then there exists a uniform
constant Cy > 0 such that
2 dk
Z<|V§f(pi — )|+ IVE(U* =T + \dtk( 7(t) +10)| < Coe  holds for all t > 0. (9.8)

k=0
For simplicity, we choose (57 (7),U; (7), o3 (t)) = 0. In addition, one can choose the perturbed initial-
boundary values (5; (7), Uy (7), p; (t)) of the supersonic coming flow such that |7(fo) + ro| > Coe for some
fixed positive constants Cy and %.
In a similar way as in §8, there exists a fixed T > 0 (independent of ¢) such that for ¢ > Ty

|w; (¢, 1) — w;:o(r)| < (14 Ce)ByCoe + (Ag + C6(Xo) + CCoe)Coe, i1=1,2, (9.9)

with a constant C' > 0 independent of £ and Xj.
If t < Ty, one has

|w; (¢, 7) — 1112'0(7“)| < C(C3e? + 6(Xo)|7(t) + 7o|) < C(Coeo + 8(X0))Coe. (9.10)

It follows from (9.6), (9.9) and (9.10) that

{ L((7(t) +70)?) = 2Bo(F(t) + 10)* — 241 (Bo + Ao + C3(Xo) + Ce)C3e2, (9.11)
(7(t) 4+ ro)?|i=g, > Cie. )
Hence, o

(7(t) +19)? > e2Polt=t0) g2 (9.12)
with B = 62 — A1Bo+ Ao+ Co(Xo) + CE)CF.

By
Next we claim that the constant

that B > S0 holds
Indeed, a direct computation yields

AI(BB%:AO) can be very small for the weak background transonic shock such

A1(Bo + Ao) _ 2c(pg (r0))(c(pg (ro) — Uy (1)) ro(c(pg (r0)) — Ug' (r0))? .
Bo (c(pg (r0)) + Uq (ro))Uq (r0)  (Ug" (r0))(c(pg (ro)) + Uy (r0))(Uy — Ug)(ro)

Denote by o = (Uy; — Ui )(r9) > 0. Then o is small when the transonic shock is weak. Due to the
Rankine-Hugoniot condition on r = 7, one has

P(pq (r0)) = P(pg (r0)) + (po Uy )(ro)o.

This gives
(po Uy )(ro) fo (0pg (o) + (1 — Q)PJ(TO))dGU
Jo (Opg (ro) + (1 = 0)pg (r0))do
42

c(pg (ro)) = c(pg (ro)) =




and

c(pg (0)) = Uy (ro) _ ¢(pg (r0)) = Ug (ro) c(pg (r0)) = e(pg (ro))
U -0 e z
_ clog(r0)) = Ug (ro) ;. (0 Uy )1(7'0)f01 ¢(8pg (ro) + (1 = 0)pg (r0))d8. (9.13)
7 Jo €(@pg (ro) + (1 = )pg (r0))df

Next we treat the term C(pg(TO))O_ Uy (ro) in (9.13).

Set Uy (r0) = c(pq (r0)) + p and F(u, ) = P(pg (r0)) + pg (r0)(Ug (10))* = P(pg (r0)) = pg (ro) (Ug (ro))* =

i (ro)(clpg (r0)) -+ 1) ¢ = Pleg (o, )= '
P 0 -r o))~ To)\¢ rg)) + p)o, here p > 0 will be estimated. A direct
ooy - p—o )~ Pl o)) = p5 (ro) (clpg (o)) + 1) i
computation yields

aﬂF(M7U) < 07

P"(py (r0)) ( Po (T0)
2 c(pqg (T0)

F(\o,0) = —2p5 (ro)o? + O(c?) < 0.

o) = o (7 202 o3
F0.0) = (5 (o) + 7)ot +0(6%) >0,

+ ot 2
Therefore there exists a unique u € (0,+/0) such that F(u,o) = 0. Consequently, (clpo (io)) +UO (r0)) is
R Uy = Uy )(ro)
A1 (Bo + Ao)
By

bounded and > 0 is small enough if the transonic shock is sufficiently weak. This implies that

B > %‘2’ holds. Then it follows from (9.12) that tlim (7(t) + 19)* = oo. Obviously, this is contradictory with

(9.8), so we complete the proof of Theorem 1.7.
Appendix A.

In this appendix, the two nozzle walls I'; and I'y are assumed to be small perturbations of two straight line
segments ro = —1 and x5 = 1 with —1 < 7 < 1. More precisely, the equations of I'y and I'y are given by

o = f1(z1) and 9 = fa(w1) (A1)

respectively with

k dk
| (fi(z1) + D] <e and | (fa(z1) = 1)[ <e for — 1<z <1,k <4, ke NU{0},

dzy dzy

(A.2)

here € > 0 suitably small.
Suppose that the supersonic coming flow (p~(z),u; (z),us (), S~ (z)) in the nozzle satisfies
{ (p~(2),uy (2),uy () € C*Q),  Ohuy () = Druy (2), S (2) = So, (A3)
Ve (p™ (@) = po)| + V5 (uy (2) — o) + [VZuy ()| < Ce, o[ <2,

here @ = {(z1,22) : =1 < 21 < 1, fi(z1) < 22 < fa(z1)} and go > c(po, So). Namely, the assumption (A.3)
implies that the incoming flow is close to the uniform supersonic flow (po, o, 0, So)-
Across the shock ¥ : x1 = £(z3), the flow field is denoted by (P*(z),u] (z),u3 (), ST(z)). Then we have
the following proposition which yields Remark 1.5.
Proposition. Under the assumptions (A.1)-(A.3), for small € > 0, if the weak transonic shock solution
(P*(z),uf (z),us (), ST (x); &(x2)) has the following reqularities and estimates
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(i). £(z2) € C?[xl, 23], here (x%, 2 ) with xb = f;(2})(i = 1,2) stands for the intersection point of x1 = &(xa)
with k2 = fi(x1). Moreover
[€(z2) 221 ,02) < Ce-

2

(i3). Denote by Qy = {(z1,12) : E(22) < 21 < 1, fi(21) < 22 < fol21)}, then (PT(z),u (x),us (z), ST (z))
€ CH(Qy) satisfies

1P*(2) = P llosay) + llui (@) — ad loray) + lluz @)ller o,y + 157 (@) = S llera, < Ce,
here the constants (P0+, qar, 0, Sar) are determined by the following relations

poto = p(Py 89 )ag,  pods + Po = p(Fy", 53 )(ag )> + '
(poeo + 3043 + Po)ao = (p(Fy, Sq e(Fy . Sy) + 50(Fg S5 )(ag )* + Py )ag s (A.4)
Py < Py and qq < c(Py,S5).
Then f!'(z}) =0 holds.
Remark A.1. The transonic shock is assumed to be weak in the sense that although qo > ¢(Py,So) and
ai < (P, 85)), a0 — c(Po, So) and c(Py,Sy) — qf are small.
Remark A.2. All the assumptions in Proposition can be realized in some cases, one can see [28] for more
details.
Proof. First we show that the shock curve ¥ is perpendicular to the fixed boundaries I'y and I'y, namely,
¢ (xh) = —fl(2%)(i = 1,2) holds.
It follows from (1.7) and (1.3) that

[o(P, S)ur](xy, 25) (1 = &'(a3) fi (21)) = 0.
Thus by the “smallness” assumption in Proposition we have
[o(P, Syur](a},75) = 0. (A.5)
(A.5) together with the second equation in (1.3), yields
[Pl(a},25) = —(p(P*, SF)ui [ua]) (), 23) (1 — €' (w}) fi (21))- (A.6)
Additionally, (1.3) yields
&' (@) [P)(at,23) = fi(21) (p(PF, SF)ui fua]) (2, 23) (1 — €' (23) fi (1)) (A7)
Noting that [P](z%, %) # 0 and [u1](z%, z%) # 0, then combining (A.6) with (A.7) yields
¢'(z3) = —fi(a1)- (A.8)
Next, we derive f!'(xi) =0.
By (A.5), (A.8) and the third equation in (1.3), one has

[%IUI2 +h(p, 9)](@1,25) (p(PF, S )uy) (21, 25) (1 + (fi (21))*) = 0.

This implies
1 i
[5lul® + (p, 9)](21,25) = 0. (A.9)
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Taking 9, = £'(22)01 + 02 on two sides of the equations (1.3), and noting that (A.5), (A.8) and (A.9), then
at the points (2}, z%) we have
O [p(P, Syw](a, 25) + fi(1)0 [p(P, S)uo](x, 25) =0,
(fi(@1))?0:[P + p(P, S)u3)(w}, 23) + 2] (21)0-[p(P, S)uruz] (1, x5)
+0-[P + p(P, S>u1)2]($iv IZ) =0, (A.10)
0:((p(P, S)e(P, S) + Lo(P, S)[uf? + P)u](a}, )
+f{(@1)0:[(p(P, S)e(P, S) + 3p(P, S)|ul? + P)us] (21, 23) = 0.

Thus it follows from a direct computation that at the point (%, 2%)

0t + faorud = b 0.7 + O us) ~ (uf + SeDu)o (P55

0t + SUeOd = g | e (P (1 ) + 2610 )

+0- (P~ +p7 (ug)?) — ((1 +(fi(@1))?)0- P + ((fi(21))?(uz)? + 2] (@ Jui ug + (UT)Q)&/)*},

‘ - +
Ol + fi(21)0ruf = uh{aT(e- + 3P+ £2) — 0, (e(P,5) + P))}.
1

p(P*, 5%
(A11)
Since
— (i FoiN, —(od _ _ _ _ 2(P~, S _
uy (1, 73) = fi(x])uy (27, 73)), uy Oruy + uy Oruy +u@p =0,
1, P
- (e +§|U | +F):0»
then
- - = — = \\ ([ PO N\2Y,,— (el i 2(PSO) i
(0r(p~uy ) + fi(21)07 (p"uy ) (2], 25) = | (1 + (fi (1)) )uy (z7,23) — (T)(‘Tl zh) ) 0rp~ (2, 2)
1
and

((fi’(xi))?af(P o (up)?) + 270 (o uruy) + 0 (P + p(u;>2>) (ah 28)

(L (7)) (<u;>2 T (ug)? - c2<P,so>) (240, (2 2.

Substituting the above computations and the equation of state for the polytropic gas into (A.11) yields at
the point (2%, x3)

Oruf + fi(@})0ruf = p(P{Sﬂ{((l ()P = L300, 07 — (uf + fl(ah)ud) (85
+9sp(P*,57)9,5F) }

Orui + fl(a})oruf =

P ST (O I )" = 2 50)ons

~+ (i) (o - LG o b~ (ut + fiGetyuf oso(PT 5705,

; 2 pt ot
0rut + S0t = b (0, - ST au(pr 50,5+ ).
’ 1

(A.12)
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Furthermore, (A.12) can be simplified at the point (2%, z%) as follows

((1+ (F@))WD)? = AP, 80)) 2 — (14 (F(@4)2) gy — )0 P
(0 eyt + S osp(r 540,57+ =0,

L+ (F) (L + (F @) wD)? = AP, 50)) 2 + (1+ (f(2})?) (LEHEREH + Lyo, P

u

1t () ((1 ()t + W*’S”)aspwt SH0.S = 0.

(v=Duf
(A.13)
Thus it follows from (A.13) and the assumptions in Proposition that at the point (z%,z%)
+ 2(p+ o +
40 (P50 ) (90 — 244 ) -
(@ - ro s (1- L +0())o.p
0 4 (v = Daolqg )?

2 +\2 3 2 P-‘r S+

( 5 (?8) T G 22 +O(s))8TP+ =0. (A.14)
A(Fy,Sy) v—1 (v—1(g)

—( =2
I addition, 0rp~(af,25) =~ ( A0 (ot o) 7 (a1) and 0,2 o 8) = (5" ] 7)) )
» D0
hold, thus by use of (A.14) we obtain _
(Ao + O(e)) f{'(z1) =0, (A.15)

_ fo2f _20)? 3 C (PS8 2 2 ag . (P8¢ (q0—2ad) po4g
here Ay = p; (g ) <62(Po+050+) 35— (71“)(%1’)2) + (g5 — ¢*(FPo, So)) (1 T (:,1‘)’%(;3)2 =) =P 50y

For the weak transonic shock solution, one can easily derive that Ag > 0 holds. Then we have from (A.15)
that _
fi'(@y) =0.

Hence, the Proposition is proved.
Remark A.3. It follows from the proof above that the weak transonic shock assumption in Proposition can
be removed as long as Ag # 0 holds.

Appendix B.
Now we give some explanations on the regularity assumption of the solution (P*(z),u] (x),us (), ud (),

ST (z); £(we, x3)) in Theorem 1.2, see Remark 1.2.
For the C! solution, the energy equation in (5.9) can be rewritten as

1 1
Uo.ST + ———S10pUs — ~U; 0,5 =0. (B.1)
rsina r
Set D = Uy 9, + ——U; 89 — LUS 0,. Then for any C?(Q") solution, one can derive from (B.1) and (5.9)
that
2 4+ + 1 +_ 1 + + + 1 + Doyt
Dp™ + p*| 0, DU + ———0g DU — —0,DU5" |+p™ | [D, 0,|U{" + [D, —— 09U — [D, —|U3
rsin T rsina T

207U ptUS
T

+ Dp™ ((%Ufr + Uy — i@aUgL> + D( ctga> =0 (B.2)

rsin o

with the standard notation of commutator [A, B] = AB — BA.
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It follows from (B.1) and the equation of state that

p2p+
(P+,ST)

Dp+

+
D™= G 57y

1
D*pt = +DP+D<>. (B.3)

2(Pt,5%)

Substituting the momentum equations in (5.9) and (B.3) into (B.2) yields

<62((U1+)2 - 1)8?P+ n 1 2a<c2 (U7)? - 1>6§P+ i 1<c2((U;)2 - 1>8§P++

P-i-7 S+ ’)“2 sin (P-‘—’ S+ 7‘2 f7+7 S+
0,0y p e 2U, U5 g2 pr_ 200U oy
rsinac?(P+,S+) " r2sin® ac(P+,5+) re2(Pt,S5t)
+ F(r,0,0,U%, VU, PT,VP* 8%, VSt) =0 (B.4)
with
2 2 + +rr+ 77t
F(r,0,0,U% VU*, P*,VP*, 5% VS*) = p%((UQ S0 ) - Tspinaaf;(UlrU? e ctga)

+ UruF  (U)? 1 1
+ %3(1 <17“3 + (z)ctgoz> +pt <8T.DU1Jr + 0‘9DU2+ — T%DUJ)

T rsin o

1 1
ot ([D,@r]Uf+[D, L Ui — b, %@) + Dpt (&Ufur . 69U2+—6aU3+>
TSI & T TSI & T
207U ptUS n 1 I n 1
p(*f = £ =3 DPYD(————) — p(P Pro(————
+ D220 - B din) + D Dt 5y) = (P57 (0.0 ()
+;69P+89(¥) + La.rro ( ! ) )+ ! DU o P++D(U72+)89P+
r2sin? o p(P*,S%) r2 “Ap(PF,ST) c2(P+,5t) Lo rsina
Uy +
—D(T)GQP . (B.5)

It follows from the boundary condition (5.10) and Lemma 6.1 that U,” = U;™ = 0 on the intersection curve I,
the shock surface r = 7(6, «) is perpendicular to the fixed boundaries & = «, and the compatibility condition
holds on [. In this case, the principal part of second order elliptic equation (B.4) on [ is

(Ui")? 2 1 2 1
—(1-=tL 2Pt — ——_ 92Pt — 92 pt
< cA(pPt,st)) " r2sin?a 0 r2oe

which can be transformed into the Laplacian —92 — 83 — 02 on [ by a dilation as follows

(P (7o), 5" (Fo))

AP, 5+ () — (U 2(P*(0), 5+ (7o)
0 = 7o sin ag,
a = Toq,

here we have used the facts that the intersection curve [ is represented by r = 7y and (P*(x),U; (z), U (z),
Uy (x), ST (z)) depends only on 7 on [ in Lemma 6.1.

Thus by the compatibility condition on ! in Lemma 6.1 and the results in [3], we can assert the validity of
the assumption of P*(x) € C%%(Q) in Remark 1.2. The C1%(Q)—regularity of (u] (z),us (x),us (z)) and
C%%(Q)—regularity of S*(z) near the intersection curve [ can be obtained from (5.13), (5.18), (5.19) and
(5.14).
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Appendix C.

In this appendix, we sketch the proof of the existence in Theorem 1.3. Although the existence proof is very
similar to that on Theorem 1.1, we still give a detailed proof for the reader’s convenience. Without loss of
generality, we consider only the 2-D isentropic flow in Theorem 1.3.

Proof of Theorem 1.3

On two hand sides of the shock 7 =7y (Xo < rg < Xo + 2), the supersonic incoming flow (py (r), Uy (1))
and the subsonic flow (pg (r), Uy (7)) satisfy respectively

{ &g Uy) =0, ©1)
3(U5)? + h(pg) = 5(Ug (r0))* + hipg (ro)),
+ o _ Alpp)
here h(py ) is the enthalpy with A'(py ) = pTO~
0
The corresponding Rankine-Hugoniot conditions across the shock r = rq are
Us] =0,
{ [po g] (C.2)
[poUg + Po] = 0.

As in the proof of Theorem 1.1, the proof can be divided into four steps.

Step 1. For the supersonic incoming flow (pg (r0), Uy (r0)), it follows from (C.2) that there exists a unique
subsonic flow (pg (r0), Uy (10)), see [11, 27].

Step 2. For any given supersonic state (py (Xo + 2), U (Xo + 2)), (C.1) has a unique supersonic solution
(po (r), Uy (1)) for r € [Xo, Xo + 3] for large Xj.

In fact, it follows from (C.1) that

{ filpo ,Ug ,7) =7py (r)Uq (1) = Co = 0,
falpg, Uy ) = 5(Ug (r)* + h(pg (r) —Cr =0

with Co = (Xo + 3)pg (Xo + 2)Uy (Xo + 2) and C7 = §(Uy (Xo + 2))% + h(pg (Xo + 3)).

Since

dpg _ ___ pg(Ug)?

dr r*((Uy )* = (pp))’

dUy _ Uy (pg)

dr— v ((Ug )? = (py))
and
d((Ug )* = A(py)) _ (2P'(py) + po P"(p)) (U )?
dr r2((Uy )2 = 2(pg))
then for large Xg, one has
U5 (01 = 5 0) = 5 (W G+ DP = s (Ko + 1)) >0 TrXo<r<Xor] (€3

" o(f1, — - I(f1,
In addition % = r((Uy (r)* = A(py (r))) and %hg@ﬁ%)ﬂ&@ﬁ%)

together with the implicit function theorem and (C.3), yields that (C.1) has a unique supersonic solution
(pg (1), Ug (r)) for r € [Xo, Xo + 3.

Step 3. (C.1) has a unique subsonic solution (pg (r), Uy (1)) for r € [Xo, Xo + 2] and large Xo.

Since the proof is very similar to that in Step 2, we omit it.
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Step 4. The shock position rg is a continuously decreasing function of P, when the end pressure P, lies in
an appropriate scope.
In fact, from (C.1) and (C.2) we arrive at for r € [Xo, Xo + 2]

{ rpgt(r)Ugt(r) = Co, (C.4)

LU ()2 + h(pg(r))) = CF,

here CF are the Bernoulli’s constants. We note that C; and C]” may be different in general, moreover, C;"
depends on the end pressure P, = PO+ (Xo)-
Especially,

{ Xopg (Xo)Us (Xo) = Co, (C.5)

HUF(X0))? + hipg (Xo)) = CF.

Next we derive the dependence of rg on the end pressure P, = P(;r (Xo).
It follows from the first equation in (C.4) and the second equation in (C.5) that

d(pi (ro) U (r0)) _ dr
”0% = —P§(T0)U§(To)m7

)+02(P§(T0)) dpg (ro) _ _dCY
) dpg(ro) pg(Xo)  dpg(Xo)

(C.6)

o

In addition, due to C’f‘ = X2 (pl (X0))2
0 0

+ h(pg (Xo)), the second equation in (C.2) and (C.6), one gets

d’l“o
rodpg (Xo)

_ dcy pg(ro)(c5(Xo) — (Ug (X0))?)
—pﬁ{(fro)dpg(XO) = 0 F(%o) : (C.7)

[poU§]

Since [poUZ] < 0 holds by use of [poUg + Py] = 0 and [Py] > 0, we conclude that rq is a continuous and
strictly decreasing function of the end pressure Py (Xy).

Now, the existence result in Theorem 1.3 can be proved in the same as that for Theorem 1.1. Furthermore,
the uniqueness in Theorem 1.3 can be shown in a similar way as in §3 and §4 (even much simpler). Thus, the
proof of Theorem 1.3 is considered complete.
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