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Abstract

In this paper, we study a transonic shock problem for the Euler flows through a class of 2-D or 3-D nozzles.
The nozzle is assumed to be symmetric in the diverging (or converging) part. If the supersonic incoming
flow is symmetric near the divergent (or convergent) part of the nozzle, then, as indicated in [11], there exist
two constant pressures P1 and P2 with P1 < P2 such that for given constant exit pressure Pe ∈ (P1, P2), a
symmetric transonic shock exists uniquely in the nozzle, and the position and the strength of the shock is
completely determined by Pe. Moreover, it is shown in this paper that such a transonic shock solution is
unique under the restriction that the shock goes through the fixed point at the wall in the Multi-dimensional
setting. Furthermore, we establish the global existence, stability and the long time asymptotic behavior of
a unsteady symmetric transonic shock under the exit pressure Pe when the initial unsteady shock lies in the
symmetric diverging part of the 2-D or 3-D nozzle. On the other hand, it is shown that a unsteady symmetric
transonic shock is structurally unstable in a global-in-time sense if it lies in the symmetric converging part of
the nozzle.

Keywords: Steady Euler equation, unsteady Euler equation, supersonic flow, subsonic flow, transonic
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§1. Introduction and the main results

This is a continuation of our studies on the transonic shock problem in a nozzle [28-30]. In [29-30], under
the assumptions that the flow is steady, isentropic and irrotational, we use the potential equation to study the
well-posedness or ill-posedness of a transonic shock to the steady flow through a general 2-D or 3-D slowly
variable nozzle with a large exit pressure induced by the appropriate boundary condition on the exit. In [28],
the ill-posedness results in [29-30] was extended to the 2-D complete Euler flow case when the nozzle is arbitrary
but slightly curved. However, for a suitably curved 2-D nozzle with symmetric supersonic incoming flows, as
indicated in Section 147 of [11], it is shown in Theorem 5.2 of [28] that there exist two constant pressures
P1 and P2 with P1 < P2 which depend only on the incoming flow and the shape of the nozzle, such that if
the exit pressure Pe ∈ (P1, P2), then for the 2-D complete steady Euler system, a unique symmetric transonic
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and the National Basic Research Programm of China (No.2006CB805902).
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shock exists in the diverging (or converging) part of the nozzle. In this paper, we first study the well-posedness
of the steady transonic shock problem when a steady symmetric supersonic incoming flow goes through a
slightly curved 2-D or 3-D nozzle whose diverging (or converging) part is symmetric with an appropriately
given constant exit pressure at the exit of the nozzle. Although the existence and uniqueness in the symmetric
class can be established quite easily by theory for ordinary differential equations, the uniqueness of such a
symmetric transonic shock in the multi-dimensional setting requires more delicate analysis. Next, we focus
on the unsteady transonic shock problem. More precisely, for symmetric unsteady supersonic incoming flows
through a symmetric De Laval nozzle with an appropriate constant pressure at the exit of the nozzle, we
will establish the global existence, stability and the long time asymptotic behavior of a unsteady symmetric
transonic shock in a nozzle when the initial shock lies in the diverging part. On the other hand, it is shown
that a unsteady symmetric transonic shock is structurally unstable in a global-in-time sense if it lies in the
converging part as observed in physical experiments and numerical computations.

The m-dimensional complete compressible Euler system can be written as

⎧⎪⎪⎨
⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) + ∇P = 0,

∂t

(
ρ

(
e +

|u|2
2

))
+ div

((
ρ

(
e +

|u|2
2

)
+ P

)
u

)
= 0,

(1.1)

where u = (u1, · · · , um) is the velocity, ρ, P , e and S represent the density, the pressure, the internal energy
and the specific entropy respectively. Moreover, the equations of states, P = P (ρ, S) and e = e(ρ, S), are
assumed to be smooth such that ∂ρP (ρ, S) > 0 and ∂S e(ρ, S) > 0 for ρ > 0. For convenience, we sometimes
write the equations of states as ρ = ρ(P, S) and e = e(P, S). In the case of the ideal polytropic gases, the
equations of states read as

P = Aργe
S
cv , and e =

P

(γ − 1)ρ
,

here A, cv and γ are positive constants, and 1 < γ < 2. The sound speed c is given by c2 = ∂ρP (ρ, S).

In the case of steady flows, the system (1.1) is reduced to

⎧⎪⎪⎨
⎪⎪⎩

div(ρu) = 0,

div(ρu ⊗ u) + ∇P = 0,

div

((
ρ

(
e +

|u|2
2

)
+ P

)
u

)
= 0.

(1.2)

We now describe the classes of nozzles and supersonic incoming flows we are going to study. Let X0 be any
fixed positive constant. First, for 2-D case, it is assumed that the walls of the nozzle are given by two curves
Γ1 and Γ2, which are C4−regular for r ∈ [X0, X0 + 1] with r = |x| ≡

√
x2

1 + x2
2. Furthermore, we assume

that Γi can be decomposed into two curves Π1
i and Π2

i such that Π1
1 and Π1

2 include the converging part of
the nozzle while Π2

1 and Π2
2 form a two-dimensional angular section with its vertex at the origin (0, 0), more

precisely, Π2
i is given by

x2 = (−1)ix1 tgα0 for r ∈
(

X0 +
1
4
, X0

)
, α0 ∈

(
0,

π

2

)
,
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so that Π2
1 and Π2

2 form a portion of the diverging part of the nozzle, see Figure 1.

Figure 1

Similarly, for the 3-Dimensional case, the wall of the nozzle, Γ, is assumed to be C4−regular for r ∈
[X0, X0 + 1] (r = |x| =

√
x2

1 + x2
2 + x2

3), such that Γ is a disjoint union of Π1 and Π2 with Π2 being part of a
circular cone surface given by

x2
2 + x2

3 = x2
1 tg2α0 for x1 > 0, r ∈

[
X0 +

1
4
, X0 + 1

]
,

where α0 is a positive constant, α0 ∈ (
0, Π

2

)
. See Figure 2.

Figure 2

We will assume that the steady supersonic incoming flow, (ρ−0 , u−
0 , S−

0 )(x), is C3-smooth and symmetric
near r = X0 + 1

2 , i.e.,

ρ−0 (x) = ρ−0 (r), u−
0 (x) = U−

0 (r)
x

r
, S−

0 = constant near r = X0 +
1
2
.

We now focus on the well-posedness of steady transonic shock solution. First, by an analyzing some systems
of ordinary differential equations as in Section 147 of [11], one can obtain the following existence and uniqueness
of symmetric transonic shock solutions:
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Theorem 1.1. (Existence) Let m-dimensional nozzle and the steady supersonic incoming flow be given as
above. Then there exist two constant pressures P1 and P2 with P1 < P2, which are determined by the coming
flow and the nozzle, such that if the end pressure Pe ∈ (P1, P2), then the system (1.1) has a unique symmetric
transonic shock solution

(P, u, S) =
{

(P−
0 (r), u−

0 (x), S−
0 ), for r < r0,

(P+
0 (r), u+

0 (x), S+
0 ), for r > r0,

here u+
0 (x) = U+

0 (r)x
r , S+

0 is a constant, and (P+
0 (r), U+

0 (r)) is C3−smooth. Moreover, the position r = r0

with r0 ∈ (X0 + 1
2 , X0 + 1) and the strength of the shock are uniquely determined by Pe.

Remark 1.1. Although the proof of Theorem 1.1 can be carried out as sketched for the 2-D case in [28],
yet for completeness, we still give a detailed proof, which yields more useful estimates of the solutions that will
be used in the later analysis.

Next, we turn to the uniqueness of the symmetric transonic shock solution constructed in Theorem 1.1
in a large class which is not necessarily symmetric. Assume that the shock Σ is given by x1 = ξ(x′) with
x′ = (x2, · · · , xm), and the flow behind the shock is denoted by (ρ+, u+, S+)(x). The Rankine-Hugoniot
conditions on Σ read: ⎧⎪⎨

⎪⎩
[(1,−∇x′ ξ(x′)) · ρu] = 0,

[((1,−∇x′ ξ(x′)) · ρu)u] + (1,−∇x′ ξ(x′))t [P ] = 0,

[(1,−∇x′ ξ(x′)) · (ρ (
e + 1

2 |u|2
)

+ P
)
u] = 0,

(1.3)

where ρ = ρ(P, S). Then entropy condition requires (see [11])

P+(x) > P−(x) on Σ. (1.4)

At the exit of the nozzle, one poses the following end pressure condition

P+(x) = Pe for |x| = r = X0 + 1, (1.5)

here the constant pressure Pe is given as in Theorem 1.1. A natural boundary condition on the wall of the
nozzle, Γ, is the no-flow condition, which reads as

u+ ·
(

tg α0,− x′

|x′|
)

= 0 on Π2, (1.6)

for 3-D, and
u+

2 = f ′
i(x1)u+

1 on Πi
2, (1.7)

where x2 = fi(x1) ≡ (−1)i x1 tg α0 for 2-D. Let Ω+ be the subsonic region, i.e.,

Ω+ = {x : ξ(x′) < x1 <
√

(X0 + 1)2 − |x′|2, |x′|2 < x2
1 tg2 α0},

D is the projection of Σ onto x′-plane, L = Σ̄ ∩ Γ, and x0 ∈ Π2 be a fixed point. Finally, we assume that X0

is suitably large and α0 is sufficiently small so that(
X0 +

1
2

)
tg α0 = 1,

η

2
< α0 < η0 (1.8)

hold, where η0 is a small constant. We note that the condition (1.8) implies that Π2 is close to the cylinder
|x′| = 1 for r ∈ [X0 + 1

4 , X0 + 1].
We now can state our main uniqueness theorem.
Theorem 1.2. (Uniqueness)
Let the assumptions in Theorem 1.1 and (1.8) hold. Then the steady transonic shock problem, (1.2)-(1.7),

has no more than one pair of solution (P+(x), u+(x), S+(x); ξ(x′)) with the following properties:
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(i) There exists positive constants δ0 ∈ (0, 1) and ε such that ξ ∈ C3,δ0(D̄), x0 ∈ Π̄2 ∩ Σ̄, (i.e., x0
1 = ξ(x′)),

and ∥∥∥∥ξ(x′) −
√

r2
0 − |x′|2

∥∥∥∥
C3,δ0 (D̄)

≤ ε, (1.9)

where r0 is given as in Theorem 1.1, and ε depends only on η0 and the incoming supersonic flow.
(ii) (P+, u+, S+)(x) ∈ C2,δ0(Ω̄+) ∩ C3(Ω+) such that

‖(P+(x) − P̂+
0 (r), u+(x) − û+

0 (x), S+(x) − S+
0 )‖C2,δ0 (Ω̄+) ≤ ε, (1.10)

here û+
0 (x) = Û+

0 (r)x
r , and (P̂+

0 (r), Û+
0 (r)) stands for the extension (P+

0 (r), U+
0 (r)) in Ω+.

Remark 1.2. For 3-D, the uniqueness holds with less regularity. Indeed, it suffices to assume that ξ ∈
C2,δ0(D̄) such that ∥∥∥∥ξ(x′) −

√
r2
0 − |x′|2

∥∥∥∥
C2,δ0 (D̄)

≤ ε (1.9’)

and (P+, S+)(x) ∈ C2,δ0(Ω̄+) ∩ C3(Ω+), u+(x) ∈ C1,δ0(Ω̄+) ∩ C2(Ω+) such that

||(P+(x) − P̂+
0 (r), S+(x) − S+

0 )||C2,δ0 (Ω̄+) + ||u+(x) − û+
0 (x)||C1,δ0 (Ω̄+) ≤ ε. (1.10’)

This is explained in more details in Appendix B.
Remark 1.3. It can be shown that the compatibility of the boundary conditions (1.3) and (1.6)-(1.7) holds

at the corner L = Σ̄∩Π2 (see Lemma 4.2 in §4 and Lemma 6.1 in §6). Thus, the assumptions on the regularities
of the solution (P+(x), u+(x), S+(x); ξ(x′)) in Theorem 1.2 are plausible. This follows from Remark 1.1 in
[28] (or one can see [2-3], [19-20], and the references therein) for 2-D. In the 3-D case, an explanation is
given in the Appendix B. It is interesting that such a compatibility condition is satisfied naturally for any
C1(Ω̄+)-regular solution in contrast to the general unsteady shocks [23-24].

Remark 1.4. It can be verified (see §2) that (P+
0 (r), U+

0 (r)) in Theorem 1.1 can be the domain {x :
X0 + 1

4 ≤ r ≤ X0 + 1, |x′| ≤ x1 tg α0}, so that (P̂+
0 (r), Û+

0 (r)) in Theorem 1.2 is well-defined.
Remark 1.5. Consider a general 2-D nozzle. Let the diverging part of the walls of nozzle, given by

Γi : x2 = fi(x1), i = 1, 2, be curved slightly and intersect the shock surface Σ at the point xi = (xi
1, x

i
2). Then a

necessary condition for the existence of a weak transonic shock solution (P+(x), u+(x), S+(x); ξ(x2)) ∈ C1(Ω̄+)
is that f ′′

i (xi
1) = 0. This implies that, in general, one cannot expect the existence of a C1(Ω̄+)−regular transonic

shock solution in the diverging part of a 2-D De Laval nozzle. The proof of this fact is given in Appendix A.
Remark 1.6. It follows from the proof of Theorem 1.2 that one can actually obtain a more general unique-

ness result even if the supersonic coming flow is not symmetric and the nozzle walls are general but slightly
curved for r0 + δ < r < X0 + 1 with a fixed constant δ > 0.

Remark 1.7. In order to illustrate the validity of C1,δ0 regularity of the solution to (1.2), we require

that the function G(M−
0 ) 	= 0, where G(M−

0 ) = (2 − γ)(M−
0 )2

μ2(M−
0 )

+ 2 − γ
2

(
μ2(M−

0 ) − 1
)

+ 3μ(M−
0 ) − 1

μ(M−
0 ) − 1

with

M−
0 = U−

0 (r0)
c(ρ−(r0), S−

0 )
and μ(M−

0 ) = U+
0 (r0)

U−
0 (r0)

, see Lemma 6.1 of §6 for more details. It follows from this and

Appendix B that the assumptions on the regularities of solution (P+(x), u+
1 (x), u+

2 (x), u+
3 (x), S+(x); ξ(x2, x3))

in Theorem 1.2 are plausible.
Remark 1.8. For the unsteady multidimensional compressible Euler systems, A.Majda in [23-24] has

shown the existence and stability of a multidimensional shock under the appropriate compatibility conditions
on the discontinuous initial data along the initial shock curve. But for the steady transonic multidimensional
Euler system (1.2), the compatibility condition will be satisfied naturally for any C1(Ω̄+)−regular solution (see
Lemma 6.1 and Remark 6.2). This is an interesting fact.
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Analogously, we can study the well-posedness of steady transonic shock in a nozzle with a symmetric
converging part. Indeed, consider a m-D (m = 2, 3) nozzle whose wall contains a straight section given by

|x′| = |x1|tg α0, x1 < 0, α0 ∈
(
0,

π

2

)
, for X0 ≤ r ≡ |x| < X0 + 1.

In addition, we assume that the supersonic incoming flow is C3-smooth, isentropic, and symmetric near
r = X0 + 3

4 , which can represented as (P−
0 (x), U−

0 (x)) = (P−
0 (r),−U−

0 (r)x
r ) near r = X0 + 3

4 . Then as a
counter part of Theorem 1.1-1.2, we can show

Theorem 1.3. Let the nozzle and the supersonic incoming flow be as described above. Assume further
that the flow is isentropic. Then for suitably large X0 > 0, there exist two constant pressures P1 and P2 with
P1 < P2, such that for Pe ∈ (p1, p2), the steady transonic shock problem (1.2)-(1.8) has a unique solution given
by

(P, u)(x) =
{

(P−
0 (r), u−

0 (x)), r > r0,

(P+
0 (r), u+

0 (x)), r < r0,

where U+
0 (x) = −U+

0 (r)x
r , r0 ∈ (X0, X0 + 3

4 ) is uniquely determined by Pe, and (P+
0 (r), U+

0 (r)) is C3-smooth.
Remark 1.9. In Theorem 1.3, the uniqueness is in the class which can be described analogously as in

Theorem 1.2.
Remark 1.10. The proof of Theorem 1.3 is similar to that of Theorem 1.1-1.2, for completeness, we give

the sketch in Appendix C.
Next, we turn to the problem of dynamical stability of a steady symmetric transonic shock, constructed

in Theorem 1.1 and Theorem 1.4, under small generic unsteady symmetric perturbations for simplicity in
presentation, we will only study the isentropic flows. We start with transonic shocks in a symmetric expanding
nozzle. Thus suppose that the initial flow is a small perturbation of the steady symmetric transonic shock
solution, (ρ±0 (r), U±

0 (r)) for r ∈ [X0 + 1
4 , X0 + 1], given in Theorem 1.1, i.e.

ρ±(0, r) = ρ±0 (r) + ερ±1 (r), U±(0, r) = U±
0 (r) + εU±

1 (r), r ∈ [X0 +
1
4
, X0 + 1], (1.11)

where (ρ±0 (r), U±
0 (r)) is defined in Theorem 1.1 with ρ±0 (r) = (P±

0 (r)
A )

1
γ , and (ρ−1 (r), U−

1 (r)) ∈ C2
0 (X0 + 1

4 , r0)
and (ρ±1 (r), U±

1 (r)) ∈ C2
0 (r0, X0 + 1), and ε > 0 is a suitably small constant. We will impose the following

unsteady boundary condition at the entry and the exit of the nozzle:

(ρ−, U−)
(

t, r = X0 +
1
4

)
= (ρ−0 , U−

0 )
(

X0 +
1
4

)
+ ε(ρ−2 , U−

2 )(t), (1.12)

and
ρ+(t, r = X0 + 1) = ρe + ερ+

2 (t), (1.13)

here (ρ−2 (t), U−
2 (t); ρ+

2 (t)) ∈ C2
0 (0,+∞) and ρe = (Pe

A )
1
γ with Pe as given in Theorem 1.1.

Let the unsteady shock front Σ be denoted by r = r(t) and the flow field before and behind the shock
be given by (ρ−, U−)(t, r) and (ρ+, U+)(t, r) respectively. It then follows from (1.1) for isentropic flows for
r ≷ r(t), {

∂tρ
± + ∂r(ρ±U±) + m − 1

r ρ±U± = 0,

∂t(ρ±U±) + ∂r(ρ±(U±)2 + P±) + m − 1
r ρ±(U±)2 = 0.

(1.14)

On the shock front Σ, the Rankine-Hugoniot conditions become

{
[ρ]r′(t) − [ρU ] = 0,

[ρU ]r′(t) − [ρU2 + P ] = 0.
(1.15)
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In addition, (ρ±, U±)(t, r) should satisfy Lax’s entropy condition ([27]):

λ1(ρ+, U+)(t, r(t) + 0) < r′(t) < λ1(ρ−, U−)(t, r(t) − 0), r′ < λ2(ρ+, U+)(t, r(t) + 0) (1.16)

with λ1(ρ, U) = U − c(ρ) and λ2(ρ, U) = U + c(ρ).
Then we have the following nonlinear stability result for a transonic shock in an expending nozzle:
Theorem 1.4. (Global Existence and Dynamical Stability) Consider the problem of unsteady tran-

sonic shocks in an expanding symmetric nozzle as described above. Assume that X0 > 0 is suitably large and the
steady transonic shock (ρ±0 , U±

0 )(r), r ∈ [X0+ 1
4 , X0+1] is weak in the sense that 0 < min(U±

0 (r0)−c(ρ±0 (r0))) ≤
max(U±(r0) − c(ρ±0 (r0))) < δ0 for a suitably small positive constant δ0. Then there exists a positive constant
ε0 such that for ε ≤ ε0, the initial-boundary value problem (1.11)-(1.16) has a unique global (ρ±, U±; r(t))
with the property that r(t) ∈ C2[0, +∞), and (ρ±, U±)(t, x) is C2-smooth for r ≷ r(t). Furthermore, the
location r = r(t) of the shock front and the flow field after the shock, (ρ+, U+)(t, r) tend to r = r0 and
(ρ̂+

0 , Û+
0 )(r) respectively with a rate of decay as (1+t)−2, here (ρ̂+

0 , Û+
0 )(r) denotes the extension of (ρ+

0 , U+
0 )(r)

for r ∈ [X0 + 1
4 , X0 + 1].

Remark 1.11. Theorem 1.4 shows that a weak steady symmetric transonic shock in an expanding symmetric
nozzle globally (in time) nonlinear stable for generic unsteady symmetric perturbations with prescribed pressure
condition at the exit of the nozzle. Furthermore, it is remarkable that the solution is globally (in time) piecewise
smooth and there are no other discontinuities in the solution besides the main perturbed transonic shock, which
are in sharp contrast to the theory if Cauchy problems in [21-22, 1].

Remark 1.12. The boundary condition (1.12) guarantees the global existence of a shock. Otherwise, other
singularities may form (see [16], [33] and so on).

Remark 1.13. Since the isentropic compressible Euler systems (1.14) are used to describe the transonic
flow, then it is plausible to require that the shock is weak in the sense that although U−

0 (r0) > c(ρ−0 (r0)) and
U+

0 (r0) < c(ρ+
0 (r0))), U−

0 (r0) − c(ρ−0 (r0)) and c(ρ+
0 (r0)) − U+

0 (r0) are suitably small.
Remark 1.14. The rate of decay to the steady transonic shock stated in Theorem 1.4 is not optimal.

In fact, it follows from the proof of Theorem 1.4 that for any positive m, there exists a positive constant ε0

depending only on m such that if ε < ε0, then the solutions, (ρ+(t, r), U+(t, r); r(t)) in Theorem 1.4, tends to
(ρ̂+

0 (r), Û+
0 (r); r0) as t approaches to infinity with a rate of order (1 + t)−m.

Finally, we study the instability of a m-D steady symmetric transonic shock in a symmetric converging
nozzle as given in Theorem 1.3 under generic unsteady small perturbations. For convenience, in this part of
the presentation, we will use the variable r̃ = −r instead of Ω, and denote the states before and behind the
shock by (ρ̃−, Ũ−)(t, r̃) and (ρ̃+, Ũ+)(t, r̃) respectively.

As in Theorem 1.4, the initial data is assumed to be a small perturbation of the steady symmetric transonic
flow (ρ±0 (r̃), U±

0 (r̃)) for r̃ ∈ [−X0 − 3
4 ,−X0], i.e.,

(ρ̃±, Ũ±)(0, r̃) = (ρ±0 , U±
0 )(r̃) + ε(ρ̃±1 , Ũ±

1 )(r̃), r̃ ∈
[
−X0 − 3

4
,−X0

]
, (1.17)

where ε is small positive constant, (ρ±0 , U±
0 )(r̃) is given in Theorem 1.3 with ρ±0 (r̃) = (P±

0 (r̃)
A )

1
γ , and (ρ̃−1 , Ũ−

1 ) ∈
C2

0 (−X0 − 3
4 ,−r0) and (ρ̃+

1 , Ũ+
1 ) ∈ C2

0 (−r0,−X0).
In addition, the boundary conditions at the entrance and the exit of the nozzle are imposed as:

(ρ̃−, Ũ−)
(

t,−X0 − 1
4

)
= (ρ−0 , U−

0 )
(
−X0 − 3

4

)
+ ε(ρ̃2, Ũ2)(t) (1.18)

and
ρ̃+(t,−X0) = ρe + ερ̃+

2 (t) (1.19)

here (ρ̃−2 , Ũ−
2 ; ρ̃+

2 ) ∈ C2
0 (0,∞) and ρe = (Pe

A )
1
γ with Pe given in Theorem 1.3. Denote by r̃ = r̃(t) the unsteady

shock front Σ̃. Then it follows from (1.1) that{
∂tρ̃

± + ∂r̃(ρ̃±Ũ±) + m − 1
r̃ ρ̃±Ũ± = 0, r̃ ≷ r̃(t),

∂t(ρ̃±Ũ±) + ∂r̃(ρ̃±(Ũ±)2 + P̃±) + m − 1
r̃ ρ̃±(Ũ±)2 = 0, r ≷ r̃(t).

(1.20)
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Across the shock front Σ̃, the Rankine-Hugoniot conditions are{
[ρ̃]r̃′(t) − [ρ̃Ũ ] = 0,

[ρ̃Ũ ]r̃′(t) − [ρ̃Ũ2 + P̃ ] = 0,
(1.21)

and the Lax’s geometrical entropy conditions become

λ1(ρ̃+, Ũ+)(t, r̃(t) + 0) < r̃′(t) < λ1(ρ̃−, Ũ−)(t, r̃(t) − 0), r̃′(t) < λ2(ρ̃+, Ũ+)(t, r̃(t) + 0), (1.22)

with λ1(ρ̃, Ũ) = Ũ − c(ρ̃) and λ2(ρ̃, Ũ) = Ũ + c(ρ̃).
Then we have the following instability result:
Theorem 1.5. (Dynamical Instability) Let (ρ±0 , U±

0 )(r̃) denote a m-D symmetric steady transonic shock
solution in a symmetric converging nozzle as described in Theorem 1.3. Assume that X0 > 0 is sufficiently large
and the strength of the transonic shock is suitably weak. Then there exist appropriately choosen perturbations
ε(ρ̃±1 , Ũ±

1 )(r̃) and ε(ρ̃−2 (t), Ũ−
2 (t); ρ̃+

2 (t)) of the initial-boundary value such that the solution to the problem
(1.17)-(1.22) is asymptotically unstable in the sense that there is no uniform constant C0 > 0 independent of
ε such that

‖(ρ̃+, Ũ+)(t, ·) − (ρ̂+
0 , Û+)(·)‖C[r̃(t),−X0] + |r̃(t) + r0| + |r̃′(t)| ≤ C0ε for all t ≥ 0. (1.23)

It should be noted that there have been many studies on m-Dimensional steady transonic shock waves (see
[5-8], [11-12], [17], [25-26], [28-31], [35], and the references therein). In particular, for a flat nozzle of the form
(−N1, N2) × (0, b; 0, b) in 3-D, the existence and uniqueness of a transonic shock for the steady compressible
Euler are established under the assumptions that the shock front goes through a fixed point and the pressure
condition is given with freedom one. However, as conjectured by Courant-Friedrich’s in [11], such transonic
shock phenomena occur in a class of physically interesting nozzles, such as the De Laval nozzle whose wall
cannot be flat, and physically relevant condition at the exit of a nozzle should be a given suitably large pressure.
Furthermore, it is of great important to study the effects of geometry of the nozzle and boundary condition,
in particular, how to determine the shape and location of the transonic shock front [11]. In [29-30], for 2-D
and 3-D steady potential equation, we have established the uniqueness of the transonic shock wave pattern as
conjectured by Courant-Friedrich’s for general slightly curved finite nozzles with arbitrarily given large pressure
at the exit of the nozzle, proved the existence of transonic shock wave solutions in such a nozzle for a class
pressures induced by appropriate boundary conditions at the exit of the nozzle, and more surprisingly, the
problem is ill-posed in general by showing no such piecewise smooth transonic shock wave pattern for a class
of nozzles, which include both De Laval type nozzles and the flat nozzles, for arbitrarily given large pressure at
the exit. The ill-posedness results for the potential in [29-30] were extended to the transonic shock problem for
the full steady compressible Euler system (1.2) for flat nozzles or slightly curved nozzles with given pressure at
the exit in [28]. In this paper, Theorem 1.1, Theorem 1.2 and Theorem 1.3 yield the existence and uniqueness
of a steady transonic shock wave pattern for a special class of m-D nozzle with appriately pressure given at
the exit of the nozzle.

The studies on the unsteady transonic shocks began with the works of Liu ([21-22]), where he studied the
dynamical stability of transonic shock in a duct by Glimm’s method for a quasi-one dimensional model of the
form: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x(ρu) = −a′(x)
a(x) ρu,

∂t(ρu) + ∂x(ρu2 + P ) = −a′(x)
a(x) ρu2,

∂t(ρE) + ∂x(ρEu + Pu) = −a′(x)
a(x) (ρEu + Pu),

(1.24)

where E = e+ |u|2
2 is the total energy and a(x) is the cross section of the duct. It is shown in [21-22] that flows

along the expanding part of the nozzle are asymptotically stable, while flows with standing shock waves in a
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contracting duct are dynamically unstable by studying weak solutions to Cauchy problems for (1.24) based
on Glimm’s random choice method. For some recent generalization of the results in [21-22], see [1]. However,
these results are different from the results in Theorem 1.4-1.5 in this paper due to the boundary conditions
and the structures of the solutions.

We now comment on the proofs of the main results. First, we note that the steady compressible Euler system
(1.2) is hyperbolic-elliptic in the subsonic region, it is challenging to investigate even the fixed boundary value
problem for such systems. Thus, to prove the m-D uniqueness of a free-boundary value problem, our main
strategy is to decompose the m-D full system (1.2) into a second order elliptic equation on the pressure P+

with some mixed boundary conditions and m + 1 first order equations on u+ and S+ by using the Bernoulli’s
law. Based on this decomposition and the Rankine-Hugoniot relations, we are able to use the theory for second
order elliptic equations and the characteristic method to estimate (P+(x)−P̂+

0 (r), u+
1 (x)−û+

1,0(x), S+(x)−S+
0 )

in the subsonic region Ω̄+ in terms of (u+
2 −û+

2,0, · · · , u+
m−û+

m,0)(x), which can be estimated by its values on the
shock surface Σ and the system (1.2) using the method of characteristics. It should be noted that on the shock
surface Σ, (u+

2 − û+
2,0, · · · , u+

m − û+
m,0)(x) is governed by the Cauchy-Riemann system with a natural boundary

condition on L, the intersection of Σ with the wall of the nozzle, so its estimate on Σ can be obtained without
much difficulties. These will lead to the proof of Theorem 1.2. Next, we turn to the study on unsteady transonic
shocks. In the case of the divergent duct, the keys to the asymptotic stability of the symmetric steady transonic
shock are some global (in time) uniform decay estimates for (ρ+(r, t)− ρ̂+

0 (r), U+(r, t)−Û+
0 (r), r(t)−r0) and its

derivatives which can be established by making use of the properties of the background solution (P±
0 (r), U±

0 (r))
given in Theorem 1.1. The strategy is similar to that in [18, 32-33]. While for converging nozzle, one of the
crucial elements of the analysis for the dynamical instability of the transonic shock is that we can derive an
ordinary differential equation on the shock position r̃(t) + r0 to show that r̃(t) increases rapidly in time, as
motivated by the work in [21], which can yield the unstable phenomena.

The rest of the paper is organized as follows. In §2, we prove Theorem 1.1 and study some useful properties
of the steady symmetric shock solutions. In §3, we reformulate the 2-D problem (1.2) with the boundary
conditions (1.3)-(1.7) by some useful decomposition of the 4 × 4 two dimensional full Euler system. In §4, we
establish some a priori estimates on the difference (P+(x)− P̂+

0 (r), U+
1 (x)− Û+

0 (r), U+
2 (x), S+(x)−S+

0 ; ξ(x2)−√
r2
0 − x2

2) based on the decompositions in §3, which yields the proof of Theorem 1.2 for 2-D. The reformulation
of the 3-D problem and the decomposition of the 5 × 5 full Euler system are given in §5. In §6, using
the decompositions in §5, we derive some a priori estimates on (P+(x) − P̂+

0 (r), u+
1 (x) − û+

1 (x), u+
2 (x) −

û+
2 (x), u+

3 (x) − û+
3 (x), S+(x) − S+

0 ; ξ(x2, x3) −
√

r2
0 − x2

2 − x2
3), which yields the proof of Theorem 1.3 for 3-D

as in §4. In §7, we give a reformulation on the problem (1.14) with the boundary conditions (1.11)-(1.13)
and (1.15)-(1.16). Subsequently, we complete the proof on Theorem 1.4 in §8. Finally, we prove Theorem 1.5
in §9. In Appendix A, the stated fact in Remark 1.4 will be shown. In Appendix B, we will give a detailed
explanation on the regularity assumption of solution (P+(x), u+

1 (x), u+
2 (x), u+

3 (x), S+(x); ξ(x2, x3)) in Theorem
1.2. In Appendix C, we will give a proof on Theorem 1.3

In what follows, we will use the following convention:

O(Y ) means that there exists a generic constant C such that |O(Y )| ≤ CY , here C is independent of ε and
η0.

§2. The existence of steady symmetric transonic shock solution

In this section, we will sketch the proof of the existence of a steady symmetric transonic solution in Theorem
1.1, and list some important properties of such solutions which will be used later. Details of the analysis can
be found in [11, 20, 25, 34, 28].

The proof of Theorem 1.1. Since we are looking for piecewise smooth solutions of (1.2) separated by a
transonic shock. We may assume the entropy are piecewise constant S−

0 and S+
0 before and after the shock.

Due to the symmetric properties of the incoming flow and the nozzle, we can look for symmetric solutions of
9



the form (ρ, u, S)(x) = (ρ±0 (r), U±
0 (r)x

r , S±
0 ) for r ≷ r0. Then the full steady Euler system is reduced to⎧⎪⎨

⎪⎩
d
dr

(rm−1ρ±0 U±
0 ) = 0,

d

dr

(
1
2
(U±

0 )2 + h(ρ±0 , S±
0 )

)
= 0,

(2.1)

where h(ρ, S) is the enthalpy such that ∂ρh(ρ, S) = c2(ρ, S)
ρ and c2(ρ, S) = ∂ρP (ρ, S).

Let the location of the shock be given by r = r0 with r0 ∈ [X0+ 1
2 , X0+1]. The Rankine-Hugoniot conditions

at r = r0 are ⎧⎪⎨
⎪⎩

[ρ0U0] = 0,

[ρ0U
2
0 + P0] = 0,

[ρ0( 1
2U2

0 + e0)U0 + P0U0] = 0.

(2.2)

Now we divide the proof of Theorem 1.1. II into four steps.
Step 1. For the given supersonic state (ρ−0 (r0), U−

0 (r0), S−
0 ), then it follows from (2.2) that there exists a

unique subsonic state (ρ+
0 (r0), U+

0 (r0), S+
0 ) such that (2.2) holds.

This is given in [11, 27] so is omitted here.
Step 2. (2.1) has a unique supersonic solution (ρ−0 (r), U−

0 (r), S−
0 ) for r ∈ [X0 + 1

4 , X0 + 1].
In fact, due to the radial symmetries of both the nozzle for r ∈ [X0 + 1

4 , X0 + 1] and (ρ−0 , U−
0 , S−

0 )(x) at
r = X0+ 1

2 , the unique smooth solution to (2.1) should be radial symmetric and satisfies the following relations:⎧⎨
⎩

f1(ρ−0 , U−
0 , r) ≡ rm−1ρ−0 (r)U−

0 (r) − C0 = 0,

f2(ρ−0 , U−
0 , r) ≡ 1

2
(U−

0 (r))2 + h(ρ−0 (r), S−
0 ) − C1 = 0

with C0 = (X0 + 1
2 )m−1ρ−0 (X0 + 1

2 )U−
0 (X0 + 1

2 ) and C1 = 1
2 (U−

0 (X0 + 1
2 ))2 + h(ρ−0 (X0 + 1

2 ), S−
0 ).

Since ⎧⎪⎪⎨
⎪⎪⎩

dU−
0

dr
= (m − 1)C0c

2(ρ−0 , S−
0 )

rmρ−0 ((U−
0 )2 − c2(ρ−0 , S−

0 ))
,

d((U−
0 )2 − c2(ρ−0 , S−

0 ))
dr

=
(m − 1)

(
2∂ρP (ρ−0 , S−

0 ) + ρ−0 ∂2
ρP (ρ−0 , S−

0 )
)
U−

0

r3((U−
0 )2 − c2(ρ−0 , S−

0 ))
,

then one has

(U−
0 (r))2 − c2(ρ−0 (r), S−

0 ) ≥ (U−
0 (X0 +

1
2
))2 − c2(ρ−0 (X0 +

1
2
), S−

0 ) > 0 for r ≥ X0 +
1
2
. (2.3)

This implies that one the interval of existence of (ρ−0 , U−
0 , S−

0 )(r), U−
0 (r) and (U−

0 (r))2 − c2(ρ−0 (r), S−
0 ) are

increasing in r, which, in return, implies that dU−
0

dr is bounded a priorily. This, together (2.3), yields that (2.1)
has a unique supersonic solution (ρ−0 (r), U−

0 (r), S−
0 ) for r ∈ [X0 + 1

2 , X0 + 1].
Step 3. (2.1) has a unique subsonic solution (ρ+

0 (r), U+
0 (r), S+

0 ) for r ∈ [r0 − δ0, X0 + 1], here δ0 > 0 is a
fixed and small constant. If the assumption (1.8) holds, then the subsonic solution (ρ+

0 (r), U+
0 (r), S+

0 ) of (2.1)
exists uniquely for r ∈ [X0 + 1

4 , X0 + 1].
This can be proved as in Step 2.
Step 4. The end pressure Pe = P+

0 (X0 + 1) is a decreasing function of the shock position r = r0 for
r0 ∈ [X0 + 1

2 , X0 + 1].
Indeed, for r0 ∈ [X0 + 1

2 , X0 + 1], let (ρ+
0 (r), U+

0 (r), S+
0 (r)) = (ρ+

0 (r), U+
0 (r), S+

0 (r0)) for r ∈ [r0, X0 + 1] be
the unique subsonic solution given in Step 3. It follows from (2.1) and (2.2) that⎧⎨

⎩
rm−1ρ+

0 (r)U+
0 (r) ≡ C0,

1
2
(U+

0 (r))2 + h(ρ+
0 (r), S+

0 (r)) ≡ C1

(2.4)
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for r ∈ [r0, X0 + 1], with h(ρ, S) = e(ρ, S) + P (ρ,S)
ρ , and C0 and C1 are positive constants determined by the

incoming supersonic flow. In particular, the end pressure Pe ≡ P+
0 (X0 + 1) is the unique solution of

F (Pe, S
+
0 (r0)) ≡ C2

0

2(X0 + 1)2m−2(ρ+
0 (Pe, S

+
0 (r0)))2

+ h(ρ+
0 (Pe, S

+
0 (r0)), S+

0 (r0)) − C1 = 0 (2.5)

Note that
∂F

∂P
=

1
ρ+
0 (X0 + 1)

(
1 − (U+

0 (X0 + 1))2

C2(X0 + 1)

)
> 0, (2.6)

and
∂F

∂S
=

(
(U+

0 (X0 + 1))2

ρ+
0 (X0 + 1)

+
γ − 1

γ

Pe

ρ+
0 (X0 + 1)

)(
− ∂ρ

∂S
(X0 + 1)

)
> 0. (2.7)

Hence
dPe

dr0
= −

(
∂F

∂S

)−1 (
∂F

∂P

)
dS+

0 (r0)
dr0

< 0, (2.8)

provided that
dS+

0 (r0)
dr0

> 0. (2.9)

One need to verify (2.9). Since (2.4) holds at r = r0 and C1 and C0 are independent of r0, one can get from
direct computations that⎧⎪⎪⎨

⎪⎪⎩
d

dr0
(ρ±0 (r0)U±

0 (r0)) = −m − 1
r0

ρ±0 (r0)U±
0 (r0),

ρ+
0 (r0)U+

0 (r0)
d

dr0
U+

0 (r0) = −ρ+
0 (r0)T+

0 (r0)
dS±

0 (r0)
dr0

− dP+
0 (r0)
dr0

,

(2.10)

with T > 0 being the absolute temperature. Thus,

−ρ+
0 (r0)T+

0 (r0)
dS+

0 (r0)
dr0

=
[
ρ0U0

dU

dr0

]
(r0) +

[
dP0

dr0

]
(r0) (2.11)

Since dS−
0 (r0)
dr0

= 0. On the other hand, it follows from (2.2) and (2.10) that

m − 1
r0

[ρ0U
2
0 ] =

[
ρ0U0

dU0

dr0

]
(r0) +

[
dP0

dr0
(r0)

]
(2.12)

Hence, one obtains from (2.11)-(2.12) that

dS+
0 (r0)
dr0

= −m − 1
r0

1
ρ+
0 (r0)T+

0 (r0)
[ρ0U

2
0 ](r0) > 0 (2.13)

here one has used the entropy condition [P0](r0) > 0 and [ρ0U
2
0 + P0](r0) = 0. Thus, we have shown that the

end pressure Pe is a strictly increasing function of the shock position r = r0.
We can now complete the proof of Theorem 1.1.
For r0 ∈ [X0 + 1

2 , X0 + 1], by Step 2, there exists a unique supersonic flow in [X0 + 1
2 , r0]. Moreover, it

follows from Step 1 and Step 3 that there exist a unique shock at r0 and a unique subsonic flow in [r0, X0 +1].
Thus the function F (r0) = P+

0 (X0 + 1) is well-defined for r0 ∈ [X0 + 1
2 , X0 + 1]. By Step 4, F (r0) is a strictly

decreasing and continuous function on P+
0 (X0 + 1). When r0 = X0 + 1

2 or r0 = X0 + 1, one can obtain two
11



different end pressures P2 and P1 with P1 < P2. Therefore, by the monotonicity of F (r0), one can obtain a
unique symmetric transonic shock for Pe ≡ P+

0 (X0 + 1) ∈ (P1, P2). Hence, Theorem 1.1 is proved.
Remark 2.1. By the assumption (1.7) and the proof of Theorem 1.1, it can be checked easily that there

exists a constant δ(η0) > 0 with δ(η0) → 0 as η0 → 0 such that for r0 ≤ r ≤ X0 + 1

∣∣∣∣dkU+
0 (r)

drk

∣∣∣∣ +
∣∣∣∣dkP+

0 (r)
drk

∣∣∣∣ ≤ δ(η0), k = 1, 2, 3.

Remark 2.2. It follows from the derivation in Step 2 that one can get an extension (ρ̂+
0 (r), Û+

0 (r)) of
(ρ+

0 (r), U+
0 (r)) for r ∈ (X0 + 1

2 , X0 + 1).

§3. The reformulation of the 2-D problem

To prove Theorem 1.2 in the 2-D case as in [28] and [35], we reformulate the nonlinear problem (1.2)-(1.7)
so that one can obtain a second order elliptic equation on P+ and a 2× 2 system on the angular velocity U+

2 .
First, due to the Bernoulli’s law, for any C1 solution, the system (1.2) in Ω+ is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂1(ρ+u+
1 ) + ∂2(ρ+u+

2 ) = 0,

(u+
1 ∂1 + u+

2 ∂2)
(

1
2
|u+|2 + h(ρ+, S+)

)
= 0,

u+
1 ∂1u

+
2 + u+

2 ∂2u
+
2 +

∂2P
+

ρ+
= 0,

u+
1 ∂1S

+ + u+
2 ∂2S

+ = 0.

(3.1)

Next we derive a second order equation on the pressure P+ from (3.1).
By the state equation of gas dynamics, we can assume ρ = ρ(P, S) and e = e(P, S).
For simplicity, set D = u+

1 ∂1 + u+
2 ∂2. Then it follows from the first equation in (3.1) that

D2ρ+ + ρ+D(∂1u
+
1 + ∂2u

+
2 ) − (Dρ+)2

ρ+
= 0.

Since
D∂iu

+
i = ∂iDu+

i − (∂iu
+
i )2 − ∂1u

+
2 ∂2u

+
1 , i = 1, 2,

then combining these with (1.2) yields

D2ρ+ − ρ+

(
∂1(

∂1P
+

ρ+
) + ∂2(

∂2P
+

ρ+
)
)
− 2(Dρ+)2

ρ+
− 2

u+
1

(∂2u
+
2 ∂1P

+ − ∂2u
+
1 ∂2P

+) = 0. (3.2)

Additionally, in terms of DS+ = 0 in (3.1), one can derive that

Dρ+(P+, S+) = ∂P ρ+DP+ and D2ρ+ = ∂2
P ρ+(DP+)2 + ∂P ρ+D2P+.

Thus (3.2) becomes

∂P ρ+D2P+ − ρ+

(
∂1(

∂1P
+

ρ+
) + ∂2(

∂2P
+

ρ+
)
)

+
(

∂2
P ρ+ − 2(∂P ρ+)2

ρ+

)
(DP+)2

− 2
u+

1

(∂2u
+
2 ∂1P

+ − ∂2u
+
1 ∂2P

+) = 0. (3.3)
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Furthermore, (3.3) can be rewritten as

∂1

(( (u+
1 )2

c2(ρ+, S+)
− 1

)
∂1P

+ +
u+

1 u+
2

c2(ρ+, S+)
∂2P

+

)
+ ∂2

(
u+

1 u+
2

c2(ρ+, S+)
∂1P

+ +
( (u+

2 )2

c2(ρ+, S+)
− 1

)
∂2P

+

)

−
(

∂1

( u+
1

c2(ρ+, S+)
)

+ ∂2

( u+
2

c2(ρ+, S+)
))

DP+ +
∂1ρ

+

ρ+
∂1P

+ +
∂2ρ

+

ρ+
∂2P

+

+
(

∂2
P ρ+ − 2(∂P ρ+)2

ρ+

)
(DP+)2 − 2

u+
1

(∂2u
+
2 ∂1P

+ − ∂2u
+
1 ∂2P

+) = 0. (3.4)

Next, we derive a Dirichlet boundary condition for P+ on the shock Σ.
It follows from (1.3) that ⎧⎨

⎩ ξ′(x2) = [ρu1u2]
[P + ρu2

2]
,

ξ(x1
2) = x0

1.

(3.5)

Substituting (3.5) into (1.3) yields on Σ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G1(P+, u+
1 , u+

2 , S+) ≡ [ρu1u2][ρu2] − [ρu1][P + ρu2
2] = 0,

G2(P+, u+
1 , u+

2 , S+) ≡ [ρu1u2]2 − [P + ρu2
1][P + ρu2

2] = 0,

G3(P+, u+
1 , u+

2 , S+) ≡
[
ρu1

(
1
2
|u|2 + h(ρ, S)

)]
[P + ρu2

2]

−
[
ρu2

(
1
2
|u|2 + h(ρ, S)

)]
[ρu1u2] = 0.

(3.6)

To derive the relations between (P+, S+) and (u+
1 , u+

2 ) on Σ, we use the polar coordinates{
x1 = r cos θ,

x2 = r sin θ
(3.7)

and the decomposition {
u1 = U1 cos θ − U2 sin θ,

u2 = U1 sin θ + U2 cos θ.
(3.8)

Then, (1.2) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂r(ρU1) + ∂θ

(
ρU2

r

)
+

ρU1

r
= 0,

∂r(ρU2
1 + P ) +

1
r
∂θ(ρU1U2) +

ρ(U2
1 − U2

2 )
r

= 0,

∂r(ρU1U2) +
1
r
∂θ(P + ρU2

2 ) +
2
r
ρU1U2 = 0,

∂r

(
ρU1

(
1
2
|u|2 + h(ρ, S)

))
+

∂θ

r

(
ρU2

(
1
2
|u|2 + h(ρ, S)

))
+

U1

r

(
ρ

(
1
2
|u|2 + h(ρ, S)

))
= 0.

(3.9)

In addition, for any C1 solution, (3.9) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂r(ρU1) + ∂θ

(
ρU2
r

)
+ ρU1

r = 0,

U1∂rU1 + U2
r ∂θU1 + ∂rP

ρ − U2
2
r = 0,

U1∂rU2 + U2
r ∂θU2 + 1

r
∂θP
ρ + U1U2

r = 0,

U1∂rS + U2
r ∂θS = 0.

(3.10)
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Denote the shock Σ by r = r̃(θ) in the polar coordinates. Then, the R-H conditions become
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ρU1] − r̃′(θ)
r̃(θ) [ρU2] = 0,

[ρU2
1 + P ] − r̃′(θ)

r̃(θ) [ρU1U2] = 0,

[ρU1U2] − r̃′(θ)
r̃(θ) [P + ρU2

2 ] = 0,[
ρU1

(
1
2
|u|2 + h(ρ, S)

)]
− r̃′(θ)

r̃(θ)

[
ρU2

(
1
2
|u|2 + h(ρ, S)

)]
= 0.

(3.11)

Thus (3.6) is reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

G̃1(P+, U+
1 , U+

2 , S+) ≡ [ρU1U2][ρU2] − [ρU1][P + ρU2
2 ] = 0,

G̃2(P+, U+
1 , U+

2 , S+) ≡ [ρU1U2]2 − [P + ρU2
1 ][P + ρU2

2 ] = 0,

G̃3(P+, U+
1 , U+

2 , S+) ≡
[
ρU1

(
1
2
|u|2 + h(ρ, S)

)]
[P + ρU2

2 ]

−
[
ρU2

(
1
2
|u|2 + h(ρ, S)

)]
[ρU1U2] = 0.

(3.12)

Due to the radial symmetry of the data and the nozzle, the incoming supersonic flow must be symmetric
and (P−, U−

1 , U−
2 , S−) ≡ (P−

0 , U−
0 , 0, S−

0 ). Then it follows from (2.2) and (3.12) and a direct computation that
on r = r̃(θ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ+
0 (r0)(U+

1 − U+
0 (r0)) + ∂P ρ+

0 (r0)U+
0 (r0)(P+ − P+

0 (r0)) + ∂Sρ+
0 (r0)U+

0 (r0)(S+ − S+
0 ) = g1,

2ρ+
0 (r0)U+

0 (r0)(U+
1 − U+

0 (r0)) +
(

1 + ∂P ρ+
0 (r0)(U+

0 (r0))2
)

(P+ − P+
0 (r0))

+∂Sρ+
0 (r0)(U+

0 (r0))2(S+ − S+
0 ) = g2,(

ρ+
0 (r0)e+

0 (r0) +
3
2
ρ+
0 (r0)(U+

0 (r0))2 + P+
0 (r0)

)
(U+

1 − U+
0 (r0))

+
(

1
2
∂P ρ+

0 (r0)(U+
0 (r0))2 + 1 + ∂P (ρ+

0 e+
0 )(r0)

)
U+

0 (r0)(P+ − P+
0 (r0))

+
(

∂S(ρ+
0 e+

0 )(r0) +
1
2
∂Sρ+

0 (r0)(U+
0 (r0))2

)
U+

0 (r0)(S+ − S+
0 ) = g3,

(3.13)

where
gi = gi

(
(U+

2 )2, (U+
1 −U+

0 (r0))2, (P+−P+
0 (r0))2, (P+−P+

0 (r0))(S+−S+
0 ), (S+−S+

0 )2, (U+
1 −U+

0 (r0))(P+−
P+

0 (r0)), (U+
1 − U+

0 (r0))(S+ − S+
0 ), P−

0 − P−
0 (r0), U−

0 − U−
0 (r0)

)
(i = 1, 2, 3) is smooth on its arguments and

gi(0, 0, 0, 0, 0, 0, 0, 0, 0) = 0.
Furthermore, it can be verified that the determinant Δ of coefficient matrix in (3.13) satisfies Δ 	= 0.
Indeed, for the polytropic gas, one has by a direct computation that

Δ = det

⎛
⎝ ρ+

0 ∂P ρ+
0 U+

0 ∂Sρ+
0 U+

0

ρ+
0 U+

0 1 0
ρ+
0 e+

0 + ρ+
0 (U+

0 )2 + P+
0 (∂P (ρ+

0 e+
0 ) + 1)U+

0 ∂S(ρ+
0 e+

0 )U+
0

⎞
⎠ (r0)

= ∂Sρ+
0 (r0)U+

0 (r0) det
(

0 1
ρ+
0 e+

0 + P+
0 − ρ+

0 (U+
0 )2∂P (ρ+

0 e+
0 ) (∂P (ρ+

0 e+
0 ) + 1)U+

0

)
(r0)

= −
(

∂Sρ+
0 U+

0 (ρ+
0 e+

0 + P+
0 )(1 − (U+

0 )2

c2(ρ+
0 )

)
)

(r0) > 0.

(
by use of e =

P

(γ − 1)ρ
, ∂ρe =

P

ρ2
and ∂Sρ < 0

)
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Thus, on Σ, it follows from the implicit function theorem that

⎧⎪⎨
⎪⎩

U+
1 − U+

0 (r0) = g̃1((U+
2 )2, P−

0 − P−
0 (r0), U−

0 − U−
0 (r0)),

P+ − P+
0 (r0) = g̃2((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0)),

S+ − S+
0 = g̃3((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0)).

(3.14)

An important property of g̃i is

g̃i = O((U+
2 )2) + O(P−

0 − P−
0 (r0)) + O(U−

0 − U−
0 (r0)).

Roughly speaking, this implies, on the shock, the influence of U+
2 on U+

1 , P+ and S+ can be almost
“neglected”.

Next, we derive the boundary conditions of P+ on the fixed boundaries Γi : θ = (−1)iθ0.
In fact, in terms of the polar coordinates, the boundary condition (1.7) is equivalent to

U+
2 = 0 on θ = ±θ0. (3.15)

Thus the third equation in (3.10) implies that

∂nP+ ≡ ∂θP
+ = 0 on θ = ±θ0, (3.16)

here ∂n represents the derivative along the outer normal direction of the nozzle wall.
Consequently, P+ in Ω+ can be determined by the following boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂1

(( (u+
1 )2

c2(ρ+, S+)
− 1

)
∂1P

+ + u+
1 u+

2

c2(ρ+, S+)
∂2P

+

)
+ ∂2

(
u+

1 u+
2

c2(ρ+, S+)
∂1P

+ +
( (u+

2 )2

c2(ρ+, S+)
− 1

)
∂2P

+

)

−
(

∂1

( u+
1

c2(ρ+, S+)
)

+ ∂2

( u+
2

c2(ρ+, S+)
))

DP+ + ∂1ρ
+

ρ+ ∂1P
+ + ∂2ρ

+

ρ+ ∂2P
+

+
(

∂2
P ρ+ − 2(∂P ρ+)2

ρ+

)
(DP+)2 − 2

u+
1

(∂2u
+
2 ∂1P

+ − ∂2u
+
1 ∂2P

+) = 0,

P+ − P+
0 (r0) = g̃2((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0)) on r = r̃(θ),
∂nP+ = 0 on θ = ±θ0,

P+ = Pe on r = X0 + 1.
(3.17)

Next, we derive an algebraic relation for P+, U+
1 , U+

2 and S+ so that we can determine U+
1 in terms of

P+, U+
2 and S+.

It follows from the second equation in (3.1) and the boundary conditions (1.7) and (3.14) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
U+

1 ∂r +
U+

2

r
∂θ

)(
1
2
|U+|2 + h(ρ+, S+)

)
= 0,

U+
1 = U+

0 (r0) + g̃1((U+
2 )2, P−

0 − P−
0 (r0), U−

0 − U−
0 (r0)) on r = r̃(θ),

P+ = P+
0 (r0) + g̃2((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0)) on r = r̃(θ),

S+ = S+
0 + g̃3((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0)),

U+
2 = 0 on θ = ±θ0.

(3.18)

Let θ = θ(r, β) be the characteristics starting from the point (r̃(β), β) for the first order differential operator

U+
1 ∂r + U+

2
r ∂θ, that is, θ(r, β) satisfies
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⎧⎨
⎩

dθ(r, β)
dr

= 1
r
(U+

2

U+
1

)
(r, θ(r, β)),

θ(r̃(β), β) = β, β ∈ [−θ0, θ0].
(3.19)

Integrating the first order equation in (3.18) along θ = θ(r, β) and noting that θ = ±θ0 is the characteristics

of U+
1 ∂r + U+

2
r ∂θ starting from the point (r̃(±θ0),±θ0), then we have in Ω+(

1
2
|U+|2 + h(ρ+, S+)

)
(r, θ(r, β)) = G0(r̃(β), β, U+

2 (r̃(β), β)) (3.20)

with

G0(r̃(β), β, U+
2 (r̃(β), β)) = e

(
P+

0 (r0) + g̃2, S
+
0 + g̃3

)
(r̃(β), β) +

1
2
(
U+

0 (r0) + g̃1

)2(r̃(β), β)

+
1
2
(U+

2 )2(r̃(β), β)) +
(

P+
0 (r0) + g̃2

ρ
(
P+

0 (r0) + g̃2, S
+
0 + g̃3

))(r̃(β), β).

Here it is noted that U+
2 (r̃(β), β) has not been determined yet.

Finally, we determine U+
2 .

It follows from (3.19) that⎧⎪⎪⎨
⎪⎪⎩

d
dr

( ∂θ
∂β

) = 1
r ∂θ(

U+
2

U+
1

)(r, θ(r, β)) ∂θ
∂β

,

∂θ
∂β

(r̃(β), β) = 1 − r̃′(β)
r̃(β) (U+

2

U+
1

)(r̃(β), β), β ∈ [−θ0, θ0].
(3.21)

By (3.20), (
∂θ

(
1
2
|U+|2 + h(ρ+, S+)

))
(r, θ(r, β))

∂θ

∂β
=

d

dβ
G0(r̃(β), β, U+

2 (r̃(β), β)) (3.22)

and (
∂r

(
1
2
|U+|2 + h(ρ+, S+)

))
(r, θ(r, β))

= −
(

∂θ

(
1
2
|U+|2 + h(ρ+, S+)

))
∂θP

+ + ∂S

(
e +

P

ρ

)
(P+, S+)∂θS

+

)
(r, θ(r, β))

∂θ

∂r

= − 1
r

(
U+

2

U+
1

)
(r, θ(r, β))∂βG0(r̃(β), β, U+

2 (r̃(β), β))∂θβ(r, θ), (3.23)

here β(r, θ) represents the inverse function of θ = θ(r, β).
In addition, the first equation and the third equation in (3.10) can be rewritten as⎧⎪⎪⎨

⎪⎪⎩
∂rU

+
1 + 1

r ∂θU
+
2 = −U+

1
r − 1

ρ+ (U+
1 ∂rρ

+ + U+
2
r ∂θρ

+),

U+
1 ∂rU

+
2 + U+

2
r ∂θU

+
2 = −1

r
∂θP

+

ρ+ − U+
1 U+

2
r .

(3.24)

Combining (3.23) with (3.24) gives⎧⎪⎨
⎪⎩

∂rU
+
2 = h1(P+, U+

1 , U+
2 , S+, ∂rP

+, ∂θP
+, ∂rS

+, ∂θS
+),

∂θU
+
2 = h2(P+, U+

1 , U+
2 , S+, ∂rP

+, ∂θP
+, ∂rS

+, ∂θS
+),

U+
2 (r0,−θ0) = 0,

(3.25)

16



here h1 = Δ1
Δ0

, h2 = Δ2
Δ0

with

Δ0 = r−1|U+|2,

Δ1 = − U+
1

r2ρ+
∂θP

+ +
U+

1 U+
2

rρ+
(U+

1 ∂rρ
+ +

U+
2

r
∂θρ

+) − U+
2

r

(
∂P

(
e +

P

ρ

)
(P+, S+)∂rP

+

+ ∂S

(
e +

P

ρ

)
(P+, S+)∂rS

+ +
U+

2

rU+
1

(
d

dβ
G0)(β(r, θ))∂θβ(r, θ)

)
,

Δ2 = − (U+
1 )3

r
− (U+

1 )2

ρ+
(U+

1 ∂rρ
+ +

U+
2

r
∂θρ

+) − U+
2 (

1
r

∂θP
+

ρ+
+

U+
1 U+

2

r
)

+ U+
1

(
∂P

(
e +

P

ρ

)
(P+, S+)∂rP

+ + ∂S

(
e +

P

ρ

)
(P+, S+)∂rS

+ +
U+

2

rU+
1

(
d

dβ
G0)(β(r, θ))∂θβ(r, θ)

)

Additionally, it follows from (3.10) and (3.14) that S+ satisfies the following equation

{
(U+

1 ∂r + U+
2
r ∂θ)S+ = 0,

S+(r̃(β), β) = S+
0 (r0) + g̃3((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0))(r̃(β), β).
(3.26)

Furthermore, (3.5) can be rewritten as

⎧⎨
⎩ r̃′(θ) = r̃(θ)[ρU1U2]

[P + ρU2
2 ]

,

r̃(−θ0) = r0.

(3.27)

In order to show Theorem 1.2, we need only to treat the uniqueness problem (3.17)-(3.20) and (3.25)-(3.27).
This will be done in next section.

§4. The Uniqueness in 2-D

We now prove the uniqueness of solutions stated in Theorem 1.2 for 2-D. It will be more convenient to change
the domain Ω+ with a free boundary Σ into a fixed domain Q+ = {y : X0 < y1 < X0 + 1,−θ0 < y2 < θ0}. To
this end, set ⎧⎨

⎩ y1 = X0 + r − r̃(θ)
X0 + 1 − r̃(θ) ,

y2 = θ.
(4.1)

For simplicity, in Q+, we still write (P+, U+
1 , U+

2 , S+) as the state of fluid behind the shock in the new
coordinates y = (y1, y2).

Noting that

∂r =
1

X0 + 1 − r̃(y2)
∂y1 , ∂θ =

(X0 + 1 − y1)r̃′(y2)
r̃(y2) − (X0 + 1)

∂y1 + ∂y2 .
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Then the equation (3.17) can be changed as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̃1

(( (u+
1 )2

c2(ρ+, S+)
− 1

)
D̃1P

+ + u+
1 u+

2

c2(ρ+, S+)
D̃2P

+

)
+ D̃2

(
u+

1 u+
2

c2(ρ+, S+)
D̃1P

+ +
( (u+

2 )2

c2(ρ+, S+)
− 1

)
D̃2P

+

)

−
(

D̃1

( u+
1

c2(ρ+, S+)
)

+ D̃2

( u+
2

c2(ρ+, S+)
))

D̃P+ + D̃1ρ
+

ρ+ D̃1P
+ + D̃2ρ

+

ρ+ D̃2P
+

+
(

∂2
P ρ+ − 2(∂P ρ+)2

ρ+

)
(D̃P+)2 − 2

u+
1

(D̃2u
+
2 D̃1P

+ − D̃2u
+
1 D̃2P

+) = 0,

P+ − P+
0 (r0) = g̃2((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0)) on y1 = X0,

∂θP
+ = 0 on y2 = ±θ0,

P+ = Pe on y1 = X0 + 1.
(4.2)

with

r(y) = r̃(y2) + (X0 + 1 − r̃(y2))(y1 − X0),

u+
1 = U+

1 cos y2 − U+
2 sin y2, u+

2 = U+
1 sin y2 + U+

2 cos y2,

D̃1 =
(

cos y2

X0 + 1 − r̃(y2)
+

(X0 + 1 − y1)r̃′(y2) sin y2

r(y)(X0 + 1 − r̃(y2))

)
∂y1 −

sin y2

r(y)
∂y2 ,

D̃2 =
(

sin y2

X0 + 1 − r̃(y2)
− (X0 + 1 − y1)r̃′(y2) cos y2

r(y)(X0 + 1 − r̃(y2))

)
∂y1 +

cos y2

r(y)
∂y2 ,

D̃ =
(

U+
1

X0 + 1 − r̃(y2)
− (X0 + 1 − y1)r̃′(y2)U+

2

r(y)(X0 + 1 − r̃(y2))

)
∂y1 +

U+
2

r(y)
∂y2 .

Additionally, it follows from the equation (3.18) that

D̃

(
1
2
|U+|2 + h(ρ+, S+)

)
= 0. (4.3)

The characteristics y2 = y2(y1, β) of D̃ starting from the point (X0, β) of (4.3) is given by

⎧⎨
⎩

dy2
dy1

= (X0 + 1 − r̃(y2))U+
2

r(y)U+
1 − (X0 + 1 − y1)r̃′(y2)U+

2

,

y2(X0, β) = β.

(4.4)

Thus it follows from (4.3) that

(
1
2
|U+|2 + h(ρ+, S+)

)
(y1, y2(y1, β)) = G0(r̃(β), β, U+

2 (X0, β)). (4.5)

As in the derivation of (3.24), one can obtain from (4.3), (4.4) and (3.24) that

{
∂yiU

+
2 = H̃i(P+, U+

1 , U+
2 , S+, ∂y1P

+, ∂y2P
+, ∂y1S

+, ∂y2S
+), i = 1, 2,

U+
2 (X0,−θ0) = 0,

(4.6)
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here H̃i = det(Ãi)
det(Ã0)

for i = 1, 2, the 4 × 4 matrix Ã0 = (l1, l2, l3, l4) is defined as

l1 =
(

0, U+
2 ,

(X0 + 1 − y1)r̃′(y2)
r(y)(r̃(y2) − (X0 + 1))

,
U+

1

X0 + 1 − r̃(y2)
+

(X0 + 1 − y1)r̃′(y2)U+
2

r(y)(r̃(y2) − (X0 + 1))

)T

,

l2 =
(

U+
2 , 0,

1
r(y)

,
U+

2

r(y)

)T

,

l3 =
(

0, U+
1 ,

1
X0 + 1 − r̃(y2)

, 0
)T

,

l4 =
(

U+
1 , 0, 0, 0

)T

and Ãi(i = 1, 2) denotes the 4 × 4 matrix which is obtained from Ã0 by replacing the i−column in Ã0 with
the vector l̃ = (l̃01, l̃02, l̃03, l̃04)T defined as

l̃01 =
d

dβ
G0(r̃(β), β, U+

2 (X0, β)∂y2β(y) − ∂y2h(ρ+, S+),

l̃02 = − d

dβ
G0(r̃(β), β, U+

2 (X0, β)∂y2β(y)
dy2(y1, β)

dy1
− ∂y1h(ρ+, S+),

l̃03 = − U+
1

r(y)
− 1

ρ+

(
U+

1 ∂rρ
+ +

U+
2

r(y)
∂θρ

+

)
,

l̃04 = − 1
r(y)

∂θP
+

ρ+
− U+

1 U+
2

r(y)
,

where β = β(y) is an inverse function of y2 = y2(y1, β).
In addition, S+ solves the following problem

{
D̃S+ = 0,

S+(X0, y2) = S+
0 + g̃3((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0))(X0, y2).
(4.7)

Finally, (3.27) can be rewritten as

⎧⎨
⎩ r̃′(y2) = r̃(y2)[ρU1U2]

[P + ρU2
2 ]

,

r̃(−θ0) = r0.

(4.8)

To validate the regularity assumption in Theorem 1.2, we now give two lemmas to ensure the compatibility
relations of any C1(Ω̄+) solution at the corned points formed by the shock curve and the nozzle walls.

Lemma 4.1. (Orthogonality) Under the assumptions in Theorem 1.2, we have

r̃′(±θ0) = 0.

Namely, the shock curve is perpendicular to the walls of the nozzle.
Proof. This fact follows from the third equation in (3.11) and the boundary condition (3.15) directly since

the jump of the pressure is non-zero.
Lemma 4.2. (Compatibility) If the assumptions in Theorem 1.2 hold, then

∂θP
+(xi) = 0, i = 1, 2.
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In particular, the first order compatibility condition of the problem (4.2) at the point xi = (xi
1, x

i
2) is satisfied

with x1 = (r0 cos θ0, −r0 sin θ0) and x2 = (r̃(θ0) cos θ0, r̃(θ0) sin θ0).
Proof. By Lemma 4.1, U±

2 (r,±θ0) = 0 and (3.11), one has

⎧⎪⎨
⎪⎩

[ρU1](r̃(±θ0),±θ0) = 0,

[ρU2
1 + P ](r̃(±θ0),±θ0) = 0,

[(ρe(ρ, S) + 1
2ρU2

1 + P (ρ, S))U1](r̃(±θ0),±θ0) = 0
(4.9)

and ⎧⎪⎨
⎪⎩

∂θ[ρU1](r̃(±θ0),±θ0) = 0,

∂θ[P (ρ, S) + ρU2
1 ](r̃(±θ0),±θ0) = 0,

∂θ[(ρe(ρ, S) + 1
2ρU2

1 + P (ρ, S))U1](r̃(±θ0),±θ0) = 0.

This implies at the points (r̃(±θ0),±θ0) that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ+∂θU
+
1 + U+

1 ∂θρ
+ = 0,

2ρ+U+
1 ∂θU

+
1 + (c2(ρ+, S+) + (U+

1 )2)∂θρ
+ + ∂SP (ρ+, S+)∂θS

+ = 0,(
ρ+e(ρ+, S+) + 3

2ρ+(U+
1 )2 + P (ρ+, S+)

)
∂θU

+
1 + U+

1

(
e(ρ+, S+) + ρ+∂ρe(ρ+, S+) + 1

2 (U+
1 )2

+∂ρP (ρ+, S+)
)

∂θρ
+ + U+

1

(
ρ+∂Se(ρ+, S+) + ∂SP (ρ+, S+)

)
∂θS

+ = 0.

(4.10)

For the polytropic gas, the determinant Δ of coefficients in (4.10) satisfies Δ = (ρ+)2U+
1 ∂Se+(c2(ρ+) −

(U+
1 )2) 	= 0. Thus,

∂θρ
+(r̃(±θ0),±θ0) = ∂θU

+
1 (r̃(±θ0),±θ0) = ∂θS

+(r̃(±θ0),±θ0) = 0.

Consequently, ∂θP
+(r̃(±θ0),±θ0) = 0 and the compatibility condition holds.

Now we are ready to prove Theorem 1.2 in the 2-D case.
Suppose that the problem (4.2)-(4.4) and (4.6)-(4.8) has another solution (P+, U+

1 , U+
2 , S+; r̃(y2)) with the

corresponding regularities in Theorem 1.2.
Set

W1(y) = P+(y) − P̂+
0

(
r0 + (X0 + 1 − r0)(y1 − X0)

)
,W2(y) = U+

1 (y) − Û+
0

(
r0 + (X0 + 1 − r0)(y1 − X0)

)
,

W3(y) = U+
2 (y),W4(y) = S+(y) − S+

0 , Ξ(y2) = r̃(y2) − r0.

By (4.8), Lemma 4.2, the Remark 2.1 in §2 and the assumptions in Theorem 1.2, one obtains after a careful
computation that ⎧⎪⎨

⎪⎩
Ξ′(y2) = a0(y2)Ξ(y2) +

4∑
i=1

ai(y2)Wi(r̃(y2), y2)

Ξ(−θ0) = 0,

(4.12)

with a0(y2) ∈ C1,δ0 [−θ0, θ0], ai(y2) ∈ C2,δ0 [−θ0, θ0](1 ≤ i ≤ 4) satisfying

‖a0‖C1,δ0 + ‖a1‖C2,δ0 + ‖a3‖C2,δ0 + ‖a4‖C2,δ0 ≤ C(ε + δ(η0)), ‖a2‖C2,δ0 ≤ C.

It follows from the Granwall’s inequality, Lemma 4.2 and (3.14) that

|Ξ(y2)| ≤ C(ε + δ(η0))(‖W1‖L∞(Q+) + ‖W3‖L∞(Q+) + ‖W4‖L∞(Q+)) + C‖W2‖L∞(Q+). (4.13)
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Thus, (4.12)-(4.13) implies that

‖Ξ(y2)‖C1[−θ0,θ0] ≤ C(ε + δ(η0))(‖W1‖L∞(Q+) + ‖W3‖L∞(Q+) + ‖W4‖L∞(Q+)) + C‖W2‖L∞(Q+)

and

‖Ξ(y2)‖C2,δ0 [−θ0,θ0] ≤ C(ε+δ(η0))(‖W1‖C1,δ0 (Q+)+‖W3‖C1,δ0 (Q+)+‖W4‖C1,δ0 (Q+))+C‖W2‖C1,δ0 (Q+), (4.14)

here δ(η0) > 0 is a generic constant with δ(η0) → 0 as η0 → 0.
Based on (4.14) and the assumptions in Theorem 1.2, one can estimate W1 by (4.2).
Indeed, (4.2) implies that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̃1

(( (u+
1 )2

c2(ρ+, S+)
− 1

)
D̃1W1 + u+

1 u+
2

c2(ρ+, S+)
D̃2W1

)
+ D̃2

(
u+

1 u+
2

c2(ρ+, S+)
D̃1W1 +

( (u+
2 )2

c2(ρ+, S+)
− 1

)
D̃2W1

)
= F (r̃(y2), r̃′(y2), r̃′′(y2), P+,∇P+, U+

1 ,∇U+
1 , U+

2 ,∇U+
2 , S+,∇S+),

W1 = g̃2((U+
2 )2, P−

0 − P−
0 (r0), U−

0 − U−
0 (r0)) on y1 = X0,

∂θW1 = 0 on y2 = ±θ0,

W1 = 0 on y1 = X0 + 1,

here

F =
∑

k=1,2;j=1,2,3,4

∂yk
(bk

0j(y)Wj) +
∑

k=1,2

∂yk
(bk

05(y)Ξ′(y2)) +
∑

k=1,2;j=1,2,3,4

bk
1j(y)∂yk

Wj +
4∑

j=1

b2j(y)Wj

+ b31(y)Ξ(y2) + b32(y)Ξ′(y2)

with bl
ij(y), bij ∈ C1,δ0(Q̄+) and ‖bl

ij(y)‖C1,δ0 (Q̄+) + ‖bij(y)‖C1,δ0 (Q̄+) ≤ C(ε + δ(η0)).
Due to Lemma 4.2, it follows from the known regularity estimates on second order elliptic equations of

divergence form with corned boundaries and mixed boundary conditions (see [2-3], [19-20] and so on) that

‖W1‖C1,δ0 ≤C

(
‖g̃2‖C1,δ0 +

∑
k=1,2;j=1,2,3,4

‖bk
0jWj‖Cδ0 +

∑
k=1,2;j=1,2,3,4

‖bk
1j∂yk

Wj‖Cδ0

+
∑

k=1,2

‖bk
05(y)Ξ′(y2)‖Cδ0 +

∑
1≤j≤4

‖b2jWj‖Cδ0 + ‖b31(y)Ξ(y2) + b32(y)Ξ′(y2)‖Cδ0

)

≤C(ε + δ(η0))(‖W1‖C1,δ0 + ‖W2‖C1,δ0 + ‖W3‖C1,δ0 + ‖W4‖C1,δ0 + ‖Ξ(y2)‖C1,δ0 ).
(4.15)

Substituting (4.14) into (4.15) yields

‖W1‖C1,δ0 ≤ C(ε + δ(η0))(‖W2‖C1,δ0 + ‖W3‖C1,δ0 + ‖W4‖C1,δ0 ). (4.16)

Next, we estimate W3.
By (4.4), we obtain

‖y2(y1, β) − β)‖C1,δ0 [X0,X0+1;−θ0,θ0] ≤ C(
4∑

i=1

‖Wi‖C1,δ0 + ‖Ξ(y2))‖C1,δ0 ) ≤ C

4∑
i=1

‖Wi‖C1,δ0 . (4.17)

It follows from (4.6) that W3 satisfies{
∂yiW3 = H̄i(y), i = 1, 2,

W3(0, 0) = 0.
(4.18)
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here H̄i(y) has such a form

H̄i(y) = di
1(y)∂y1W1 + di

2(y)∂y2W1 + di
3(y)∂y1W4 + di

4(y)∂y2W4 +
8∑

k=5

di
k(y)Wk−4 + di

9(y)(y2(y1, β) − β)

+ di
10(y)Ξ(y2) + di

11(y)Ξ′(y2) + di
12(y)∂β(y2(y1, β) − β) + di

13(y)∂2U
+
2 (X0, β),

with β = β(y) being the inverse function of y2 = y2(y1, β), di
k(y) ∈ C1,δ0 for 1 ≤ k ≤ 13 and

13∑
k=5

‖di
k‖C1,δ0 ≤ C(ε + δ(η0)).

Thus, combining the equation (4.18) with the estimate (4.17) yields

‖W3‖C1,δ0 ≤ C(‖H̄1‖Cδ0 + ‖H̄2‖Cδ0 ) ≤ C(‖W1‖C1,δ0 + ‖W2‖C1,δ0 + ‖W4‖C1,δ0 )

+ C(ε + δ(η0))‖W3‖C1,δ0 .

For sufficiently small ε and η0, one has

‖W3‖C1,δ0 ≤ C(‖W1‖C1,δ0 + ‖W2‖C1,δ0 + ‖W4‖C1,δ0 ). (4.19)

Next, we derive the estimate on W2.
By (4.5) and the estimates above, we obtain

‖W2‖C1,δ0 ≤ C(‖W1‖C1,δ0 + ‖W4‖C1,δ0 ) + Cε
(‖W3‖C1,δ0 + ‖y2(y1, β) − β‖C1,δ0

)
≤ C(ε + δ(η0))

(‖W2‖C1,δ0 + ‖W3‖C1,δ0 ) + C‖W4‖C1,δ0 . (4.20)

Finally, it follows from the equation (4.7) that

‖W4‖C1,δ0 ≤ C(ε + δ(η0))(‖W3‖C1,δ0 + ‖y2(y1, β) − β‖C1,δ0 ) ≤ C(ε + δ(η0))
4∑

k=1

‖Wk‖C1,δ0 . (4.21)

Combining (4.16) and (4.19)-(4.21) yields

4∑
k=1

‖Wk‖C1,δ0 ≤ C(ε + δ(η0))
4∑

k=1

‖Wk‖C1,δ0 .

Thus, for small ε and η0 we arrive at

W1 = W2 = W3 = W4 = 0.

It follows from (4.13) that
Ξ(y2) = 0.

Therefore, we can obtain P+(y) = P̂+
0

(
r0 + (X0 + 1 − r0)(y1 − X0)

)
, U+

1 (y) = Û+
0

(
r0 + (X0 + 1 − r0)(y1 −

X0)
)
, U+

2 (y) = 0, S+(y) = S+
0 and r̃(y2) = r0 immediately. This leads to the proof on Theorem 1.2 in 2-D

case.
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§5. The reformulation of 3-D Problem

As for the 2-dimension problem in §3, we will use the Bernoulli’s law to reformulate the nonlinear problem
(1.2) with the boundary conditions (1.3)-(1.7) as a second order elliptic equation on P+ and four first order
equations for u+ = (u+

1 , u+
2 , u+

3 ) and S+.
First, for any C1−solution to (1.2) in Ω+, it holds that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

divu+ + Dρ+

ρ+ = 0,

Du+ + ∇P+

ρ+ = 0,

D

(
1
2
|u+|2 + h(ρ+, S+)

)
= 0,

(5.1)

here D = u+
1 ∂1 + u+

2 ∂2 + u+
3 ∂3, and ρ+ = ρ(P+, S+).

Without loss of generality, we consider only the polytropic gases. Then the last equation in (5.1) is equivalent
to

u+ · Du+ +
γ

γ − 1

(
DP+

ρ+
− P+

(ρ+)2
Dρ+

)
= 0. (5.2)

Combining (5.2) with the second, third and fourth equations in (5.1) yields

DP+ =
γP+

ρ+
Dρ+. (5.3)

By (5.2), the first equation in (5.1) can be rewritten as

divu+ DP+

γP+
= 0. (5.4)

Thus it follows from (5.4) and (5.1) that

∇ · (∇P+

ρ+
) − D(

DP+

γP+
) +

3∑
i,j=1

∂iu
+
j ∂ju

+
i = 0. (5.5)

It is easy to verify that the equation (5.5) on P+ is a second order elliptic equation for the subsonic flow.
Note that the third term in (5.5) is of the order O(|∇u+|2), which can be almost “neglected”.

Next we derive a Dirichlet boundary condition for P+ on the shock Σ as in §3.
In fact, it follows from the third and fourth equations in (1.8) that

{
∂iξ(x2, x3) = Δi−1

Δ0
, i = 2, 3,

ξ(x0
2, x

0
3) = x0

1

(5.6)

with

Δ1 = [ρu1u2][P + ρu2
3] − [ρu1u3][ρu2u3],

Δ2 = [ρu1u3][P + ρu2
2] − [ρu1u2][ρu2u3],

Δ0 = [P + ρu2
2][P + ρu2

3] − [ρu2u3]2,

here x0 = (x0
1, x

0
2, x

0
3) ∈ Γ2 is defined in Theorem 1.3.
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Substituting (5.6) into the other equations in (1.8) yields on Σ⎧⎪⎨
⎪⎩

G1(P+, u+, S+) ≡ [ρu1]Δ0 − [ρu2]Δ1 − [ρu3]Δ2 = 0,

G2(P+, u+, S+) ≡ [P + ρu2
1]Δ0 − [ρu1u2]Δ1 − [ρu1u3]Δ2 = 0,

G3(P+, u+, S+) ≡ [ρu( 1
2 |u|2 + h(ρ, S)) · (Δ0, Δ1, Δ2)] = 0.

(5.7)

As in §3, it follows from a direct computation and the implicit function theorem that on Σ

⎧⎪⎨
⎪⎩

u+
1 − u+

1,0(x) = g̃1(u+
2 − u+

2,0, u
+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)),

P+ − P+
0 (r0) = g̃2(u+

2 − u+
2,0, u

+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)),

S+ − S+
0 = g̃3(u+

2 − u+
2,0, u

+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)),

(5.8)

here u+
i,0 = U+

0 (r0)xi

r0
(i = 1, 2, 3) and g̃j(0, 0, 0, 0) = 0. Thus, by the assumption (1.8) and the Remark 2.1, we

can conclude that g̃i satisfies

g̃i = (O(ε) + C(η0))
(

O(u+
2 − û+

2,0) + O(u+
3 − û+

3,0) + O(ξ(x2, x3) −
√

r2
0 − x2

2 − x2
3)
)

,

here the generic constant C(η0) → 0 as η0 → 0. This fact also illustrates that on the shock, the influence of
u+

2 − û+
2,0 and u+

3 − û+
3,0 on u+

1 − û+
1,0, P+ − P̂+

0 and S+ − S+
0 can be almost “neglected”.

Next, we derive the boundary condition of P+ on the cone surface Γ2 : x2
2 + x2

3 = x2
1tg

2α0.
To this end, it is convenient to use the standard spherical coordinates (r, θ, α), and the corresponding velocity

decomposition ⎧⎪⎨
⎪⎩

U+
1 = cos αu+

1 + sin α cos θu+
2 + sin α sin θu+

3 ,

U+
2 = − sin θu+

2 + cos θu+
3 ,

U+
3 = sin αu+

1 − cos α cos θu+
2 − cos α sin θu+

3 ,

with 0 ≤ θ < 2π and 0 ≤ α ≤ α0.
Then the system (5.1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂r(ρ+U+
1 ) + 1

r sinα∂θ(ρ+U+
2 ) − 1

r ∂α(ρ+U+
3 ) + 2ρ+U+

1
r − ρ+U+

3
r ctgα = 0,

∂r(ρ+(U+
1 )2 + P+) + 1

r sin α∂θ(ρ+U+
1 U+

2 ) − 1
r ∂α(ρ+U+

1 U+
3 ) + 2ρ+(U+

1 )2
r − ρ+((U+

2 )2 + (U+
3 )2)

r

−ρ+U+
1 U+

3
r ctgα = 0,

∂r(ρ+U+
1 U+

2 ) + 1
r sin α∂θ(ρ+(U+

2 )2 + P+) − 1
r ∂α(ρ+U+

2 U+
3 ) + 3ρ+U+

1 U+
2

r − 2ρ+U+
2 U+

3
r ctgα = 0,

∂r(ρ+U+
1 U+

3 ) + 1
r sin α∂θ(ρ+U+

2 U+
3 ) − 1

r ∂α(ρ+(U+
3 )2 + P+) + 3ρ+U+

1 U+
3

r + ρ+((U+
2 )2−(U+

3 )2)
r ctgα = 0,

∂r

((
1
2
|U+|2 + h(ρ+, S+)

)
ρ+U+

1

)
+

1
r sinα

∂θ

((
1
2
|U+|2 + h(ρ+, S+)

)
ρ+U+

2

)

−1
r
∂α

((
1
2
|U+|2 + h(ρ+, S+)

)
ρ+U+

3

)
+

2
r
ρ+U+

1

(
1
2
|U+|2 + h(ρ+, S+)

)

−1
r
ctgαρ+U+

3

(
1
2
|U+|2 + h(ρ+, S+)

)
= 0.

(5.9)
Correspondingly, Γ2 becomes α = α0 and the boundary condition (1.6) reduce to

U+
3 = 0 on α = α0. (5.10)
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Thus, it follows from the fourth equation in (5.9) that

∂nP+ ≡ ∂αP+ = ρ+(U+
2 )2ctgα0 on Γ2, (5.11)

here n represents the outer normal of the surface Γ2.
It follows from the analysis above that P+ should solve the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (∇P+

ρ+ ) − D(DP+

γP+ ) +
3∑

i,j=1

∂iu
+
j ∂ju

+
i = 0,

P+ − P+
0 (r0) = g̃2(u+

2 − u+
2,0, u

+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)) on x1 = ξ(x2, x3),

∂nP+ = ρ+(U+
2 )2ctgα0 on Γ2,

P+ = P̃e on r = X0 + 1.

(5.12)

In addition, by (5.1), (1.6), and (5.8), we arrive at the following first order equations on u+
1 and S+

⎧⎪⎪⎨
⎪⎪⎩

Du+
1 + ∂1P+

ρ+ = 0,

u+
1 − u+

1,0(x) = g̃1(u+
2 − u+

2,0, u
+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)) on x1 = ξ(x2, x3),

u+
1 x1tg

2α0 − u+
2 x2 − u+

3 x3 = 0 on
√

x2
2 + x2

3 = x1tgα0

(5.13)

and ⎧⎪⎨
⎪⎩

DS+ = 0,

S+ − S+
0 = g̃3(u+

2 − u+
2,0, u

+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)) on x1 = ξ(x2, x3),

u+
1 x1tg

2α0 − u+
2 x2 − u+

3 x3 = 0 on
√

x2
2 + x2

3 = x1tgα0.

(5.14)

It remains to determine u+
2 − u+

2,0 and u+
3 − u+

3,0. Once the values of u+
2 and u+

3 on the shock are known,
then we can solve the problems (5.13) and (5.14) by the characteristics method to estimate u+

1 − u+
1,0 and

S+ − S+
0 . Furthermore, by the third and fourth equation in (5.1), one can estimate u+

2 − u+
2,0 and u+

3 − u+
3,0

in Ω+ as well.
We now derive a system on u+

2 and u+
3 on the shock.

By (5.2)-(5.4), one has

∂2u
+
2 + ∂3u

+
3 = −DP+

γP+
+

1
(u+

1 )2

(
DP+

ρ+
+ u+

2 Du+
2 + u+

3 Du+
3 + u+

1 u+
2 ∂2u

+
1 + u+

1 u+
3 ∂3u

+
1

)
. (5.15)

In addition, it follows from (5.6) that ∂3

((
Δ1
Δ0

)
(ξ(x2, x3), x2, x3)

)
= ∂2

((
Δ2
Δ0

)
(ξ(x2, x3), x2, x3)

)
.

This implies

(∂3Δ1 − ∂2Δ2)(ξ(x2, x3), x2, x3) =
(

Δ1

Δ0
∂3Δ0 − Δ2

Δ0
∂2Δ0 + ∂1(

Δ2

Δ0
)Δ1 − ∂1(

Δ1

Δ0
)Δ2

)
(ξ(x2, x3), x2, x3).

This, together with a direct computation making use of (5.1), yields

∂3u
+
2 − ∂2u

+
3 = F (u+

2 ∇u+, u+
3 ∇u+,∇P+,∇S+,∇P−

0 ,∇u−
0 ), (5.16)

here F (0, 0, 0, 0, 0, 0) = 0.
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By the boundary conditions (1.6) and (5.8), we have that on the intersection line l = {x1 = ξ(x2, x3)} ∩ Γ2

x2√
x2

2 + x2
3

(u+
2 − u+

2,0) +
x3√

x2
2 + x2

3

(u+
3 − u+

3,0) = g̃0(u+
2 − u+

2,0, u
+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)),

here the function g̃0 has the same property as in (5.8).
Thus, on x1 = ξ(x2, x3), we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2u
+
2 + ∂3u

+
3 = −D+P+

γP+ + 1
(u+

1 )2

(
DP+

ρ+ + u+
2 Du+

2 + u+
3 Du+

3 − u+
1 u+

2 ∂2u
+
1 − u+

1 u+
3 ∂3u

+
1

)
,

∂3u
+
2 − ∂2u

+
3 = F (u+

2 ∇u+, u+
3 ∇u+,∇P+,∇S+,∇P−

0 ,∇u−
0 ),

x2√
x2
2+x2

3

(u+
2 − u+

2,0) + x3√
x2
2+x2

3

(u+
3 − u+

3,0) = g̃0

(
u+

2 − u+
2,0, u

+
3 − u+

3,0, P
−
0 − P−

0 (r0),

u−
0 − u−

0 (r0)
)

on l,

(5.17)

here it should be noted that the position of the intersection l can be exactly estimated in terms of the C1(Ω̄+)
regularity of (P+, u+, S+) and the compatibility condition (see Lemma 6.1 for details).

By (5.17), we can obtain some useful estimates on u+
2 − u+

2,0 and u+
3 − u+

3,0 on the shock (see Lemma 6.2).
Then it follows from the third and fourth equation in (5.1) that u+

2 and u+
3 can be determined by the following

problems respectively,

⎧⎪⎨
⎪⎩

Du+
i + ∂iP

+

ρ+ = 0,

u+
i = u+

i (ξ(x2, x3), x2, x3) on x1 = ξ(x2, x3),

x1tg
2α0u

+
1 − x2u

+
2 − x3u

+
3 = 0 on Γ2,

(5.18)

here i = 2, 3.
Therefore, in order to prove Theorem 1.3, one needs only to study the uniqueness problem of solutions to

the equations (5.6), (5.12)-(5.14) and (5.17)-(5.19). This will be done in §6.
Remark 5.1. By the references [4] and so on, if the Cauchy-Riemann equation (5.17) has a C2 solution,

then the solution is unique. Namely, the boundary condition in (5.17) is enough to give a priori estimate on
(u+

2 , u+
3 ).

Remark 5.2. We can obtain a pressure boundary condition on the general curved nozzle wall Γ for the
system (1.2).

Indeed, let U be any C1-smooth solution to (1.2).
If Γ is represented by α = f(r, θ) with f(r, θ) ∈ C2, then the boundary condition (1.6) can be written as

U+
1 ∂rf + U+

2

∂θf

r sin α
+

U+
3

r
= 0 on Γ. (5.19)

Then (5.19) implies that

U+
1 ∂rU

+
1 ∂rf + U+

1 ∂rU
+
2

∂θf

r sin α
+ U+

1

∂rU
+
3

r
= h0(∂αU+,∇f,∇2f) (5.20)

with h0(∂αU+,∇f,∇2f) = −U+
1

(
∂αU+

3
∂rf
r − U+

3
r2 + ∂αU+

1 (∂rf)2 + U+
1 ∂2

rf + ∂αU+
2

∂rf∂θf
r sin α + U+

2 ∂r( ∂θf
r sin α )

)
.

It follows from the equations for the momentum in (5.19) and (5.20) that

∂rf∂rP
+ +

∂θf

(r sin α)2
∂θP

+ − 1
r2

∂αP+ = H0(ρ+, U+
1 , U+

2 , U+
3 ,∇θ,αU+,∇f,∇2f) on Γ. (5.21)
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Moreover, for the small curved nozzle wall Γ (i.e. |∇β
r,θ(f −α0)| is small for 0 ≤ |β| < 2, here α0 > 0 is a small

constant), (5.21) is a strictly oblique derivative boundary condition on P+. Thus we can extend Theorem 1.2
to more general curved nozzles.

§6. The Uniqueness in 3-D

We now prove Theorem 1.2 for 3-D case. As in §4, we transform the domain Ω+ with a free boundary Σ
into a fixed domain Q+ = {y : X0 < y1 < X0 + 1, y2

2 + y2
3 < 1} by the following transformation

⎧⎪⎪⎨
⎪⎪⎩

y1 = X0 + x1 − ξ(x2, x3)√
(X0 + 1)2 − x2

2 − x2
3 − ξ(x2, x3)

,

yi = xi
x1tgα0

, i = 2, 3.

(6.1)

For simplicity in presentation, in Q+, we still denote by (P+, u+
1 , u+

2 , u+
3 , S+) and ζ(y) the state of fluid

behind the shock and the shock surface equation ξ(x2(y), x3(y)) in the new coordinates y = (y1, y2, y3) respec-
tively.

With the notation ∂̃i ≡ ∂xi
=

3∑
j=1

∂xi
yj∂yj

(i = 1, 2, 3), the equation (5.12) can be rewritten as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i=1

∂̃i(
∂̃iP

+

ρ+
) − D̃(

D̃P+

γP+
) +

3∑
i,j=1

∂̃iu
+
j ∂̃ju

+
i = 0,

P+ − P+
0 (r0) = g̃2(u+

2 − u+
2,0, u

+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)) on y1 = X0,

∂ñP+ = ρ+(U+
2 )2ctgα0 on

√
y2
2 + y2

3 = y1,

P+ = P̃e on y1 = X0 + 1.

(6.2)

with D̃ = u+
1 ∂̃1 + u+

2 ∂̃2 + u+
3 ∂̃3 and ∂ñ = tgα0∂̃1 − y2∂̃2 − y3∂̃3.

Additionally, (5.6) becomes {
∇yζ(y) = ∇yx2

Δ1
Δ0

+ ∇yx3
Δ2
Δ0

,

ζ(y0) = x0
1,

(6.3)

here

y0 = (X0,
x0

2

x0
1tgα0

,
x0

3

x0
1tgα0

),

xi(y) = yix1(y)tgα0, ∂y1xi(y) = yitgα0∂y1x1(y), i = 2, 3,

x1(y) =
A0(y) +

√
A2

0(y) + B0(y)((y1 − X0)2(X0 + 1)2 − A2
0(y))

B0(y)
,

A0(y) = (X0 + 1 − y1)ζ(y), B0(y) = 1 + (y1 − X0)2(y2
2 + y2

3)tg2α0,

∂y1x1(y) =
x1(y)A(y)B2(y)Δ0(

x1(y)A(y)B(y) + (x1(y) − ζ(y))(x2
2(y) + x2

3(y)
)
Δ0 + A(y)(x1(y) − A(y))(x2(y)Δ1 + x3(y)Δ2)

,

A(y) =
√

(X0 + 1)2 − x2
2(y) − x2

3(y), B(y) = A(y) − ζ(y)

with analogous expressions for ∂yixj(y)(i, j = 2, 3). Roughly speaking, ∂yixj(y) = δij + O(η0) + O(ε)(i, j =
1, 2, 3) holds.
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Correspondingly, (5.13)-(5.14) can be rewritten as follows⎧⎪⎪⎨
⎪⎪⎩

D̃+u+
1 + ∂̃1P+

ρ+ = 0,

u+
1 − u+

1,0(x(y)) = g̃1(u+
2 − u+

2,0, u
+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)) on y1 = X0,

tgα0u
+
1 − y2u

+
2 − y3u

+
3 = 0 on

√
y2
2 + y2

3 = y1

(6.4)

and ⎧⎪⎨
⎪⎩

D̃+S+ = 0,

S+ − S+
0 = g̃3(u+

2 − u+
2,0, u

+
3 − u+

3,0, P
−
0 − P−

0 (r0), u−
0 − u−

0 (r0)) on y1 = X0,

tgα0u
+
1 − y2u

+
2 − y3u

+
3 = 0 on

√
y2
2 + y2

3 = y1.

(6.5)

Define ζ̃(y2, y3) = ζ(X0, y2, y3) and ũ+
i (y2, y3) = u+

i (ζ̃(y2, y3), x2(X0, y2, y3), x3(X0, y2, y3)) for i = 2, 3.
Then a direct computation yields

∂yi ũ
+
j (y2, y3) = ∂1u

+
j ∂yi ζ̃ + ∂2u

+
j ∂yix2(X0, y2, y3) + ∂3u

+
j ∂yix3(X0, y2, y3), i, j = 2, 3.

Thus, the system (5.17) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂y2 ũ
+
2 + ∂y3 ũ

+
3 = f1(y2, y3),

∂y3 ũ
+
2 − ∂y2 ũ

+
3 = f2(y2, y3),

y2(ũ+
2 − û+

2,0(x(y))) + y3(ũ+
3 − û+

3,0(x(y))) = g̃0(u+
2 − u+

2,0, u
+
3 − u+

3,0, P
−
0 − P−

0 (r0),

u−
0 − u−

0 (r0)) on l̃.

(6.6)

here l̃ = {y1 = X0} ∩ {y2
2 + y2

3 = 1} and

f1(y2, y3) =
(

∂y3x3(∂1u
+
2 ∂y2ζ + ∂3u

+
2 ∂y2x3) + ∂y2x2(∂1u

+
3 ∂y3ζ + ∂2u

+
3 ∂y3x2) − ∂y2x2∂y3x3

(D̃+P+

γP+

− 1
(u+

1 )2
(D̃P+

ρ+
+ u+

2 D̃u+
2 + u+

3 D̃u+
3 − u+

1 u+
2 ∂̃2u

+
1 − u+

1 u+
3 ∂̃3u

+
1

))
+ (1 − ∂y3x3)∂y2u

+
2

+ (1 − ∂y2x2)∂y3u
+
3

)
(ζ̃(y2, y3), x2(X0, y2, y3), x3(X0, y2, y3)),

f2(y2, y3) =
(

∂y2x2(∂1u
+
2 ∂y3ζ + ∂2u

+
2 ∂y3x2) − ∂y3x3(∂1u

+
3 ∂y2ζ + ∂2u

+
3 ∂y2x2)

− ∂y2x2∂y3x3F (u+
2 ∇̃u+, u+

3 ∇̃u+, ∇̃P+, ∇̃S+, ∇̃P−, ∇̃u−
0 ) + (1 − ∂y2x2)∂y3 ũ

+
2

− (1 − ∂y3x3)∂y3 ũ
+
3

)
(ζ̃(y2, y3), x2(X0, y2, y3), x3(X0, y2, y3)).

We notice that fi(y2, y3)(i = 1, 2) is of the “quadratic” error (i.e. |fi|+ |∇y2,y3fi| ≤ C(ε+δ(η0))
3∑

i=1

(|∇u+
i |+

|∇2u+
i |)+C(|∇P+|+ |∇2P+|)+C(ε+δ(η0))(|∇S+|+ |∇2S+|)+C(|∇P−|+ |∇S−|+ |∇2P−|+ |∇2S−|)). More

precisely, it follows from the second, the third, the fourth equations in (5.1) and the first equality in (5.8) that
f1(y1, y2) and f2(y1, y2) can be expressed the functions of P+, u+

1 , u+
2 , u+

3 , S+,∇y2,y3 ũ
+
2 ,∇y2,y3 ũ

+
3 , ∇̃P+, ∇̃S+,

ζ̃(y2, y3) and ∇y2,y3 ζ̃(y2, y3) with |fi| + |∇y2,y3fi| ≤ C(ε + δ(η0))
( 3∑

i=2

(|∇y2,y3u
+
i | + |∇2

y2,y3
u+

i |) + |S+| +

|∇y2,y3S
+| + |∇2

y2,y3
S+| + |ζ̃| + |∇y2,y3 ζ̃| + |∇2

y2,y3
ζ̃|
)

+ C(|∇P+| + |∇2P+|).
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Similarly, (5.18) can be written as

⎧⎪⎪⎨
⎪⎪⎩

D̃u+
i + ∂̃iP

+

ρ+ = 0,

u+
i = ũ+

i (y2, y3) on y1 = X0,

tgα0u
+
1 − y2u

+
2 − y3u

+
3 = 0 on

√
y2
2 + y2

3 = y1

(6.7)

with i = 2, 3.
Next we show that the compatibility relation of the solution to (1.2) on the intersection curve l holds true.

For this end, we define the function G(M−
0 ) = (2 − γ)(M−

0 )2

μ2(M−
0 )

+ 2 − γ
2

(
(μ2(M−

0 )− 1
)
+ 3μ(M−

0 ) − 1
μ(M−

0 ) − 1
, where

M−
0 = U−

0 (r0)
c(ρ−(r0), S−

0 )
stands for the Mach number of the supersonic incoming flow, further μ(M−

0 ) = U+
0 (r0)

U−
0 (r0)

can be determined by M−
0 (see (6.16) below).

Lemma 6.1. If the solution (P+, u+
1 , u+

2 , u+
3 , S+) of (1.2) is of C1(Ω̄+)−regular, and G(M−

0 ) 	= 0, then we
have on the intersection curve l = {x1 = ξ(x2, x3)} ∩ Γ2

U+
2 = 0.

Moreover, if the equation of the shock Σ is given by r = r̃(θ, α) in the spherical coordinates, then

r̃(θ, α0) ≡ r0.

Remark 6.1. If 1 < γ ≤ 2 and the transonic shock is weak, then it follows from the proof of Lemma 6.1
that G(M−

0 ) 	= 0 always holds.
Proof. First we show that the shock surface is perpendicular to the fixed boundary, i.e., ∂αr̃(θ, α0) = 0.
Indeed, in the spherical coordinate, the R-H conditions (1.3) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ρU1] − 1
r̃ sin α [ρU2]∂θ r̃ + 1

r̃ [ρU3]∂αr̃ = 0,

[ρU2
1 + P ] − 1

r̃ sin α [ρU1U2]∂θ r̃ + 1
r̃ [ρU1U3]∂αr̃ = 0,

[ρU1U2] − 1
r̃ sin α [ρU2

2 + P ]∂θ r̃ + 1
r̃ [ρU2U3]∂αr̃ = 0,

[ρU1U3] − 1
r̃ sin α [ρU2U3]∂θ r̃ + 1

r̃ [ρU2
3 + P ]∂αr̃ = 0,

[(ρe + 1
2ρ|U |2 + P )U1] − 1

r̃ sin α [(ρe + 1
2ρ|U |2 + P )U2]∂θ r̃ + 1

r̃ [(ρe + 1
2ρ|U |2 + P )U3]∂αr̃ = 0.

(6.8)

Since the fixed boundary condition (1.6) implies

U+
3 = 0 on α = α0,

then the fourth equation in (5.9) and [P ] 	= 0 yield

∂αr̃(θ, α0) = 0. (6.9)

Obviously, (6.9) shows that the shock surface is perpendicular to the fixed boundary Γ2.
Next, we show U+

2 = 0 on l.
By (6.8), (6.9), U−

2 ≡ 0 for r ∈ [X0 + 1
4 , X0 + 1] and U±

3 = 0 on Γ2, we can arrive at on the intersection
curve l ⎧⎪⎨

⎪⎩
[ρU1][ρU2

2 + P ] − [ρU1U2][ρU2] = 0,

[ρU2
1 + P ][ρU2

2 + P ] − [ρU1U2]2 = 0,

[(ρe + 1
2ρ|U |2 + P )U1][ρU2

2 + P ] − [(ρe + 1
2ρ|U |2 + P )U2][ρU1U2] = 0
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α(ρ+U+
1 ) +

(
ctgα0ρ

+U+
2 − ∂α(ρ+U+

2 )
)

ρ+U+
1 U+

2

ρ+(U+
2 )2 + [P ]

= 0,

∂α(ρ+(U+
1 )2 + P+) +

(
ctgα0ρ

+U+
1 U+

2 − ∂α(ρ+U+
1 U+

2 )
)

ρ+U+
1 U+

2

ρ+(U+
2 )2 + [P ]

= 0,

∂α(ρ+U+
1 U+

2 ) +
(

ctgα0(ρ+(U+
2 )2 + [P ]) − ∂α(ρ+(U+

2 )2 + P+)
)

ρ+U+
1 U+

2

ρ+(U+
2 )2 + [P ]

= 0,

∂α

(
(ρ+e+ + 1

2ρ+|U+|2 + P+)U+
1

)
+

(
ctgα0(ρ+e+ + 1

2ρ+|U+|2 + P+)U+
2

−∂α

(
(ρ+e+ + 1

2ρ+|U+|2 + P+)U+
2

)) ρ+U+
1 U+

2

ρ+(U+
2 )2 + [P ]

= 0.

(6.10)

In order to guarantee P+ ∈ C1(Ω̄+), due to (5.11), one must require that

∂αP+ = ρ+(U+
2 )2ctgα0 on l. (6.11)

Substituting (6.11) into (6.10) yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U+
1 (1 + O((U+

2 )2))∂αρ+ + ρ+∂αU+
1 = − 2(ρ+)2U+

1 (U+
2 )2

[P ] ctgα0 + O((U+
2 )3),

(U+
1 )2(1 + O((U+

2 )2))∂αρ+ + 2ρ+U+
1 (1 + O((U+

2 )2))∂αU+
1 = −ρ+(U+

2 )2
(
1 + 2ρ+(U+

1 )2

[P ]

)
ctgα0

+O((U+
2 )3),

∂αU+
2 = −U+

2 ctgα0 + O((U+
2 )2),

− γP+

(γ−1)(ρ+)2 ∂αρ+ + U+
1 ∂αU+

1 = − (U+
2 )2

γ−1 ctgα0 + O((U+
2 )3).

(6.12)

For convenience, we use the notations that equations ρ = ρ(P, S), e = e(P, S) and c2(P, S) = γP
ρ(P,S) . Then

it follows from (6.12) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U+
1 (1 + O((U+

2 )2))∂Sρ+∂αS+ + ρ+∂αU+
1 + ρ+(U+

2 )2ctgα0

( 2ρ+U+
1

[P ] + U+
1

c2(P+,S+)

)
= O((U+

2 )3),

(U+
1 )2∂Sρ+(1 + O((U+

2 )2))∂αS+ + 2ρ+U+
1 (1 + O((U+

2 )2))∂αU+
1 + ρ+(U+

2 )2ctgα0

(
1 + 2ρ+(U+

1 )2

[P ]

+ (U+
1 )2

c2(P+,S+)

)
= O((U+

2 )3),

− c2(P+,S+)
(γ−1)ρ+ ∂Sρ+∂αS+ + U+

1 ∂αU+
1 = O((U+

2 )3).

(6.13)

Now we claim that U+
2 = 0 on l. Indeed, regard (6.13) as a system for (∂αS+, ∂αU+

1 , (U+
2 )2), suffices to

verify that the determinant Δ 	= 0 with

Δ = det

⎛
⎜⎜⎜⎝

U+
1 ∂Sρ+ ρ+ ρ+

( 2ρ+U+
1

[P ] + U+
1

c2(P+,S+)

)
(U+

1 )2∂Sρ+ 2ρ+U+
1 ρ+

(
1 + 2ρ+(U+

1 )2

[P ] + (U+
1 )2

c2(P+,S+)

)
− c2(P+,S+)

(γ−1)ρ+ ∂Sρ+ U+
1 0

⎞
⎟⎟⎟⎠

A direct computation yields

Δ =
ρ+∂Sρ+c2(ρ+, S+)

γ − 1

(
(2 − γ)(M+)2 +

(3U+
0 − U−

0 )(r0)
(U+

0 − U−
0 )(r0)

+ O(ε)
)

,
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here the Mach number M+
0 = U+

0 (r0)
c(ρ+(r0), S+)

.

Due to the Rankine-Hugoniot conditions (2.2) and the equation of state, one has

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ+
0 (r0)

ρ−0 (r0)
= U−(r0)

U+(r0)
,

[P0](r0) = (ρ−0 U−
0 )(r0)(U−

0 − U+
0 )(r0),

γ
γ − 1

[P0](r0)
ρ+
0 (r0)

− γ
γ − 1

P−
0 (r0)[ρ0](r0)
(ρ+

0 ρ−0 )(r0)
+ 1

2(U+
0 (r0))2 − 1

2(U−
0 (r0))2 = 0.

It follows from this that⎧⎪⎪⎨
⎪⎪⎩

μ2(M−
0 ) + 2

γ + 1
(
γ + 1

(M−
0 )2

)
μ(M−

0 ) + 2(γ − 1)
γ + 1

(
1 + 1

(γ − 1)(M−
0 )2

)
= 0,

(M+
0 )2 = (M−

0 )2

μ2(M−
0 )

+ 1
2
(
(μ2(M−

0 ) − 1
)
,

(6.14)

here μ(M−
0 ) = U+

0 (r0)
U−

0 (r0)
.

Therefore,

Δ =
ρ+∂Sρ+c2(ρ+, S+)

γ − 1
G(M−

0 ) + O(ε) 	= 0,

and then U+
2 ≡ 0 holds true on l.

Furthermore, it follows from the last equation in (6.8) and [P ] 	= 0 that

∂θ r̃(θ, α0) = 0,

which implies r̃(θ, α0) ≡ r0 in terms of x0
1 = ξ(x0

2, x
0
3).

Remark 6.2. It follows from the proof of Lemma 6.1 that the shock surface Σ : x1 = ξ(x2, x3) is perpen-
dicular to the cone surface. More generally, for an arbitrary but slight curved nozzle wall Γ: α = f(r, θ)(as in
Remark 5.2) and the solution (U+

1 , U+
2 , U+

3 , P+, S+; ξ(x2, x3)) ∈ C1(Ω̄+), the shock surface Σ is still perpen-
dicular to Γ.

Indeed, as in (5.20), on the fixed boundary α = f(r, θ), we have

U+
1 ∂rf + U+

2

∂θf

r sinα
+

U+
3

r
= 0.

Thus it follows from the second, the third and the fourth equations in (6.8) that on l̃ = Γ ∩ Σ

⎧⎪⎨
⎪⎩

k0[ρU2
1 ] − k1[ρU1U2] + [P ] = 0,

k0[ρU1U2] − k1[ρU2
2 ] − ∂θ r̃

r̃ sin α [P ] = 0,

−r̃∂rfk0[ρU2
1 ] + (− ∂θf

sin αk0 + r̃∂rfk1)[ρU1U2] + ∂θf
sin αk1[ρU2

2 ] + ∂αr̃
r̃ [P ] = 0

(6.15)

with k0 = 1 − ∂rf∂αr̃ and k1 = ∂θ r̃
r̃ sin α + ∂θf∂αr̃

r̃ sin α .
By the first and the second equations in (6.15), we can obtain on l̃

⎧⎪⎨
⎪⎩

[ρU1U2] = k1
k0

[ρU2
2 ] + ∂θ r̃

k0r̃ sin α
[P ],

[ρU2
1 ] = (k1

k0
)2[ρU2

2 ] + k1∂θ r̃
k2
0 r̃ sin α

[P ] − 1
k0

[P ].
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Substituting the expressions above into the third equation in (6.15) yields

(r̃∂rf − ∂θf∂θ r̃

r̃ sin2 α
+

∂αr̃

r̃
)[P ] = 0.

Since [P ] 	= 0, then

r̃∂rf − ∂θf∂θ r̃

r̃ sin2 α
+

∂αr̃

r̃
= 0 on l̃.

In addition, a direct computation derives

(∂1(α − f(r, θ)), ∂2(α − f(r, θ)), ∂3(α − f(r, θ))) · (∂1(r − r̃(θ, α)), ∂2(r − r̃(θ, α)), ∂3(r − r̃(θ, α)))

= −∂rf +
∂θf∂θ r̃

r̃2 sin2 α
− ∂αr̃

r̃2
.

Therefore, the shock surface Σ is perpendicular to the nozzle wall Γ.
Remark 6.3. To guarantee the solution (U+

1 , U+
2 , U+

3 , P+, S+; ξ(x2, x3)) ∈ C1(Ω̄+) in Remark 6.2, as in
Remark 1.4, one should give some restrictions on the nozzle wall Γ.

Next, we study the boundary value problem (6.6). To this end, we need a Lemma.
Lemma 6.2. Let B(0, 1) be the disk centered at the origin O = (0, 0) with the radius 1. If w1(x), w2(x) ∈

C2,δ(B̄) satisfy ⎧⎪⎨
⎪⎩

∂1w1 + ∂2w2 = f1(x),
∂2w1 − ∂1w2 = f2(x),
x1w1 + x2w2 = g(x) on ∂B,

(6.16)

here x = (x1, x2), f1(x), f2(x) ∈ C1,δ(B̄), g(x) ∈ C2,δ(B̄), 0 < δ < 1, then it holds that

‖w1‖C2,δ(B̄) + ‖w2‖C2,δ(B̄) ≤ C(‖f1‖C1,δ(B̄) + ‖f2‖C1,δ(B̄) + ‖g‖C2,δ(B̄)). (6.17)

Proof. Set {
Δϕi = (−1)i+1fi(x),
ϕi = 0 on ∂B, i = 1, 2.

Then the following estimate holds

‖ϕ1‖C3,δ(B̄) + ‖ϕ2‖C3,δ(B̄) ≤ C(‖f1‖C1,δ(B̄) + ‖f2‖C1,δ(B̄)) (6.18)

Decompose w1 and w2 as

w1 = w̃1 + ∂1ϕ1 − ∂2ϕ2, w2 = w̃2 + ∂2ϕ1 + ∂1ϕ2.

Then ⎧⎪⎨
⎪⎩

∂1w̃1 + ∂2w̃2 = 0,

∂2w̃1 − ∂1w̃2 = 0,

x1w̃1 + x2w̃2 = g̃(x) on ∂B,

(6.19)

with g̃(x) = g(x) − x1(∂1ϕ1 − ∂2ϕ2) − x2(∂2ϕ1 + ∂1ϕ2).
Define

W1(x) = x1w̃1 + x2w̃2, W2(x) = x2w̃1 − x1w̃2.

Then ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂1W1 − ∂2W2 = 0,

∂2W1 + ∂1W2 = 0,

W1 = g̃(x) on ∂B,

W2(0, 0) = 0.
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Thus the standard estimates for Cauchy-Riemann equation yield

‖W1‖C2,δ(B̄) + ‖W2‖C2,δ(B̄) ≤ C‖g̃‖C2,δ(B̄),

which implies
‖w̃1‖L∞(B) + ‖w̃2‖L∞(B) ≤ C‖g̃‖C2,δ(B̃). (6.20)

By (6.19), we can assume w̃1 = ∂1ϕ and w̃2 = ∂2ϕ with ϕ(0, 0) = 0 such that⎧⎪⎨
⎪⎩

Δϕ = 0,

∂rϕ = g̃ on ∂B,

ϕ(0, 0) = 0.

As a consequence of the elliptic estimate and (6.20), one has

‖ϕ‖C3,δ(B̄) ≤ C(‖ϕ‖L∞(B) + ‖g̃‖C2,δ(B̄)) ≤ C(‖w̄1‖L∞(B) + ‖w̄2‖L∞(B̄) + ‖g̃‖C2,δ(B̄)) ≤ C‖g̃‖C2,δ(B̄). (6.21)

We are now ready to prove Theorem 1.2 in the 3-D case by modifying the ideas in §4.
Suppose that the problem (6.2)-(6.7) has the solution (P+, u+

1 , u+
2 , u+

3 , S+; ζ(y)) with the corresponding
regularities in Theorem 1.2.

Set

W1(y) = P+(y) − P̂+
0 (r̄(y)), Wi(y) = u+

i (y) − û+
i,0(r̄(y)), i = 2, 3, 4, W5 = S+(y) − S+

0 ,

Ξ(y) = ζ(y) −
√

r2
0 − (x̄2(y))2 − (x̄2(y))2

with r̄(y) =

√√√√ 3∑
i=1

(x̄i(y))2 and x̄(y) = (x̄1(y), x̄2(y), x̄3(y)) given by the following transformation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 = X0 +
x1 −

√
r2
0 − x2

2 − x2
3√

(X0 + 1)2 − x2
2 − x2

3 −
√

r2
0 − x2

2 − x2
3

,

yi = xi
x1tgα0

, i = 2, 3.

As in §4, making use of (6.3), Lemma 6.1, Remark 2.1 and the assumptions in Theorem 1.2, we can obtain

‖Ξ(y)‖C2,δ0 ≤ C(ε + δ(η0))‖(W1,W2,W5)‖C1,δ0 (Q+) + C‖(W3,W4)‖C1,δ0 (Q+), (6.22)

here δ(η0) > 0 is a generic constant and δ(η0) → 0 as η0 → 0.
Similarly, it follows from (6.2) , Lemma 6.1 and (6.22) that

‖W1‖C2,δ0 ≤ C(ε + δ(η0))
( 5∑

i=1

‖Wi‖C1,δ0 + ‖Ξ(y)‖C2,δ0 + ‖(W3,W4)(X0, ·, ·)‖C2,δ0 (B̄)

)

≤ C(ε + δ(η0))
( 5∑

i=1

‖Wi‖C1,δ0 + ‖(W3,W4)(X0, ·, ·)‖C2,δ0 (B̄)

)
. (6.23)

Next, W2 and W5 can be estimated by the characteristics method and the equations (6.4) and (6.5) as

‖W2‖C1,δ0 + ‖W5‖C2,δ0 ≤ C‖W1‖C2,δ0 + C(ε + δ(η0))
(
‖(W2,W3)‖C1,δ0 + ‖(W3,W4)(X0, ·, ·)‖C2,δ0 (B̄)

)
.

(6.24)
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In addition, by Lemma 6.2 and (6.6)-(6.7), one has

‖(W3,W4)(X0, ·, ·)‖C2,δ0 (B̄) ≤ C(ε + δ(η0))
4∑

i=2

‖Wi‖C1,δ0 + C‖(W1,W2)‖C2,δ0 , (6.25)

and

‖(W3,W4)‖C1,δ0 ≤ ‖(W3,W4)(X0, ·, ·)‖C1,δ0 (B̄) + C(ε + δ(η0))
( 4∑

i=2

‖Wi‖C1,δ0 + ‖W5‖C2,δ0

)
+ C‖W1‖C2,δ0 .

(6.26)
It follows from (6.22)-(6.26) that

‖(W1,W5)‖C2,δ0 +
4∑

k=2

‖Wk‖C1,δ0 ≤ C(ε + δ(η0))

(
‖(W1,W5)‖C2,δ0 +

4∑
k=2

‖Wk‖C1,δ0

)
.

Thus, for small ε and η0, we arrive at

W1 = W2 = W3 = W4 = W5 = 0.

This and (6.22) show
Ξ(y) = 0.

Therefore, P+(y) = P̂+
0 (r̄(y)), u+

1 (y) = û+
i,0(r̄(y))(i = 1, 2, 3), S+(y) = S+

0 and ζ(y) = r0. This completes
the proof of Theorem 1.2 for 3-D case.

§7. The reformulation of the dynamical problem

In this section, we start to reformulate the dynamical problem (1.14) with (1.11)-(1.13) and (1.15)-(1.16).
Since the system (1.14)− is hyperbolic with respect to r−direction and t−direction, then it follows from the
finite propagation property that (1.14)− has a global C2 solution (ρ−(t, r), U−(t, r)) in the domain Ω− =
{(t, r) : 0 ≤ t < ∞, X0 + 1

4 < r < r(t)}, especially (ρ−, U−) ≡ (ρ̂−0 (r), Û−
0 (r)) for t ≥ t0 (t0 > 0 is some fixed

constant) and |∇k
t,r(ρ

−− ρ−0 (r))|+ |∇k
t,r(U

−−U−
0 (r))| ≤ Cε for k = 0, 1, 2, here (ρ̂−0 (r), Û−

0 (r)) represents the
extension of (ρ−0 (r), U−

0 (r))) in [X0 + 1
4 , X0 + 1].

The system (1.14)+ has two eigenvalues λ1(ρ+, U+) = U+ − c(ρ+) and λ2(ρ+, U+) = U+ + c(ρ+). The
corresponding Riemann invariants are w1 = U+ − F (ρ+) and w2 = U+ + F (ρ+) with F ′(ρ) = c(ρ)

ρ . In this
case, it follows from (1.14)+, (1.11) and (1.13) that⎧⎪⎪⎨

⎪⎪⎩
∂twi + λi(w)∂rwi = (−1)i+1 (w1 + w2)c(w)

2r ,

wi(0, r) = w+
i,0(r) + wi,0(ε, r), i = 1, 2,

ρ+(w) = ρe on r = X0 + 1

(7.1)

with w+
i,0(r) = U+

0 (r) + (−1)iF (ρ+
0 (r)), wi,0(ε, r) = ε{U+

1 (r) + (−1)i
(∫ 1

0
F ′(ρ+

0 (r) + ε(1 − θ)ρ+
1 (r))dθ

)
ρ+
1 (r)},

i = 1, 2, c(w) = c(ρ+(w)), ρ+(w) = F−1(w2 − w1
2 ), and F−1 represents the inverse function of F (ρ+) =

w2 − w1
2 .

On the shock r = r(t), by use of (1.15), one has⎧⎨
⎩ r′(t) = [ρU ]

[ρ] =
(
ρ+(w)(w1 + w2) − 2ρ−U−)(t, r(t))

2(ρ+(w) − ρ−)(t, r(t))
,

r(0) = r0

(7.2)
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and
G(w) = [ρU ]2 − [ρ][ρU2 + P ] = 0. (7.3)

To simplify (7.3), we will use the following fact

(ρ̂−0 Û−
0 )(r(t)) = (ρ̂+

0 Û+
0 )(r(t)). (7.4)

Indeed, (1.14) implies that
rρ̂±0 Û±

0 = r0ρ
±
0 (r0)U±

0 (r0).

Thus it follows from the Rankine-Hugoniot condition ρ−0 (r0)U−
0 (r0) = ρ+

0 (r0)U+
0 (r0) that (7.4) holds.

Next we analyze the boundary condition (7.3) for t ≥ t0.
(7.3) can be rewritten as

[ρU2 + P ] =
[ρU ]2

[ρ]
. (7.5)

Note that

[ρU2 + P ] =
(
ρ+(U+)2 + P+

)
(t, r(t)) − (

ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(r(t))

+
(
ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(r(t)) − (

ρ̂−0 (Û−
0 )2 + P̂−

0

)
(r(t))

and(
ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(r(t)) − (

ρ̂−0 (Û−
0 )2 + P̂−

0

)
(r(t)) =

(
ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(r(t)) − (

ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(r0)

− (
ρ̂−0 (Û−

0 )2 + P̂−
0

)
(r(t)) +

(
ρ̂−0 (Û−

0 )2 + P̂−
0

)
(r0)

=
(∫ 1

0

{∂r(ρ̂+
0 (Û+

0 )2 + P̂+
0 )(θr0 + (1 − θ)r(t)) − ∂r(ρ̂−0 (Û−

0 )2 + P̂−
0 )(θr0 + (1 − θ)r(t))}dθ

)
(r(t) − r0)

=
(∫ 1

0

(
ρ̂−0 Û−

0 (Û−
0 − Û+

0 )
r

)
(θr0 + (1 − θ)r(t))dθ

)
(r(t) − r0)

= B0(r(t) − r0) + B1(t)(r(t) − r0)2 (by the second equations in (1.14))

with

B0 =
(ρ−0 U−

0 (U−
0 − U+

0 ))(r0)
r0

> 0,

B1(t) =
∫ 1

0

(1 − θ)dθ

∫ 1

0

∂r

(
ρ̂−0 Û−

0 (Û−
0 − Û+

0 )
r

)(
(1 − θ1 + θ1θ)r0 + θ1(1 − θ)r(t)

)
dθ1.

It follows from (7.4), (7.5) and Taylor’s formula that on r = r(t)

ρ+ − ρ̂+
0 = − 2ρ̂+

0 Û+
0

c2(ρ̂+
0 ) + (Û+

0 )2
(U+ − Û+

0 ) − B0

c2(ρ̂+
0 ) + (Û+

0 )2
(r(t) − r0)

+ f((ρ+ − ρ̂+
0 )2, (U+ − Û+

0 )2, (ρ+ − ρ̂+
0 )(U+ − Û+

0 ), (r(t) − r0)2), (7.6)

here f(0, 0, 0, 0) = 0 and f ∈ C2 on its arguments.
Hence, due to (7.6), it holds that on r = r(t)

w2−ŵ+
2,0 = A0(w1−ŵ+

1,0)−B̃0(r(t)−r0)+f1((w1−ŵ+
1,0)

2, (w2−ŵ+
2,0)

2, (w1−ŵ+
1,0)(w2−ŵ+

2,0), (r(t)−r0)2), (7.7)

here f1(0, 0, 0, 0) = 0, f1 ∈ C2 on its arguments, ŵ+
i,0(r) = Û+

0 (r) + (−1)iF (ρ̂+
0 (r)), i = 1, 2,
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A0 =
(

U+
0 (r0) − c(ρ+

0 (r0))
U+

0 (r0) + c(ρ+
0 (r0))

)2

and B̃0 = 2c(ρ+
0 (r0))B0

ρ+
0 (r0)(c(ρ+

0 (r0)) + U+
0 (r0))2

.

Obviously,
0 < A0 < 1. (7.8)

Thanks to (7.4) and (7.6), (7.2) can be rewritten as

r′(t) = A1(U+ − Û+
0 ) − B̄0(r(t) − r0) + f2

(
(w1 − ŵ+

1,0)
2, (w2 − ŵ+

2,0)
2, (w1 − ŵ+

1,0)(w2 − ŵ+
2,0),

(w1 − ŵ+
1,0)(r(t) − r0), (w2 − ŵ+

2,0)(r(t) − r0), (r(t) − r0)2
)

(7.9)

with A1 = ρ+
0 (r0)(c2(ρ+

0 (r0)) − (U+
0 (r0))2)

[ρ0](c2(ρ+
0 (r0)) + (U+

0 (r0))2)
, B̄0 = B0U

+
0 (r0)

[ρ0](c2(ρ+
0 (r0)) + (U+

0 (r0))2)
> 0 and f2(0, 0, 0, 0, 0, 0) = 0.

Here we emphasize that B̄0 > 0 will play a crucial role to derive the decay estimate on the solution
(ρ+ − ρ̂+

0 , U+ − Û+
0 ; r(t) − r0) in §8.

In addition, on the boundary r = X0 + 1,

w1 − w+
1,0 = w2 − w+

2,0 + f3(w2 − w+
2,0) + g0(t) (7.10)

with f3(0) = f ′
3(0) = 0 and g0(t) ∈ C2

0 (0,∞).
Hence in order to prove Theorem 1.4, by the local existence of solution in [18] (since (7.8) implies that

the boundary conditions (7.7) and (7.10) are dissipative), we need only to solve the problem (7.1) with (7.7),
(7.9), (7.10) and with the initial data (wi(t, r) − ŵ+

i,0(r))|t=t0(i = 1, 2) and (r(t) − r0)|t=t0 in the domain
{(t, r) : t ≥ t0, r(t) ≤ r ≤ X0 + 1}. Here the initial can be regarded as suitable small in the sense that∑

|α|≤1

sup
r(t0)≤r≤X0+1

|∇α
t,r(wi(t0, r) − ŵ+

i,0(r))| ≤ Cε, |r(t0) − r0| ≤ Cε, |r′(t0)| + |r′′(t0)| ≤ Cε, (7.11)

which can be derived from the results on the local existence and stability in [18].

§8. Global Dynamical Stability

To prove Theorem 1.4 for m = 2, we will give a uniform estimate on w and its derivatives.
Lemma 8.1. Set DT = {t0 ≤ t ≤ T, r(t) ≤ r ≤ X0 + 1} for any large T > t0. If w ∈ C2(DT )

satisfies (7.1),(7.7)- (7.11), then there exist two positive constants C0 and C̃0 independent of ε and T , such

that |wi − ŵ+
i,0(r)| + |∇t,r(wi − ŵ+

i,0(r))| ≤ C0ε
(1 + t)2

in DT for |α| ≤ 1, i = 1, 2, and |∂j
t (r(t) − r0)| ≤ C̃0ε

(1 + t)2
in [t0, T ] for 0 ≤ j ≤ 2.

Proof. We shall use the reflected characteristics method together with (7.9) to obtain the needed estimates
(the reflected characteristics method has been used in Lemma 2.1 of Chapter 5 of [18]). Because the background
solution (ρ+

0 (r), U+
0 (r)) is not a constant state, a more delicate treatment than that in [18] and [32] is needed

here. In addition, by the local existence result of the solution in [18] and the continuity induction, in order to
prove Lemma 8.1, it suffices to show that

For some positive constants C0, C̃0, C1, C2 and C3, if |wi − ŵ+
i,0(r)| ≤ C0ε

(1 + t)2
, |∂t(wi − ŵ+

i,0(r))| ≤ C1ε
(1 + t)2

and |∂r(wi − ŵ+
i,0(r))| ≤ C2ε

(1 + t)2
in DT , i = 1, 2; |r(t) − r0|, |r′(t)| ≤ C̃0ε

(1 + t)2
and |r′′(t)| ≤ C3ε

(1 + t)2
in [t0, T ],

then there exist positive constants C ′
0, C̃

′
0, C

′
1, C

′
2 and C ′

3 (C ′
i < Ci and C̃ ′

0 < C̃0) such that |wi − ŵ+
i,0(r)| ≤

C ′
0ε

(1 + t)2
, |∂t(wi − ŵ+

i,0(r))| ≤ C ′
1ε

(1 + t)2
and |∂r(wi − ŵ+

i,0(r))| ≤ C ′
2ε

(1 + t)2
in DT , i = 1, 2; |r(t) − r0|, |r′(t)| ≤

C̃ ′
0ε

(1 + t)2
and |r′′(t)| ≤ C ′

3ε
(1 + t)2

in [0, T ]. (8.1)
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Below we denote by C various strictly positive constants independent of ε, T,C0, C̃0 and X0. For (t, r) ∈
DT , t < T , let γ−

j (s, t, r) (j = 1, 2) be the backward j-th characteristic curve through (t, r), i.e.,⎧⎨
⎩

dγ−
j (s, t, r)

ds
= λj(w(s, γ−

j (s, t, r))), s ≤ t,

γ−
j (s, t, r)|s=t = r.

(8.2)

By the assumptions in (8.1) and the entropy condition (1.16), one has

|dγ−
j (s, t, r)

ds
− λj(ŵ+

0 (γ−
j (s, t, r)))| ≤ CC0ε

(1 + s)2
in DT . (8.3)

If {(s, γ−
2 (s, t, r))} ∩ {(s, r) : r = r(s)} = (Γ2(t, r), ξ2(t, r)), {(s, γ−

1 (s, t, r))} ∩ {(s, r) : r = X0 + 1} =
(Γ1(t, r), ξ1(t, r)), then it follows from (7.1) and Remark 2.1 that

|wi(t, r) − ŵ+
i,0(r)| ≤ |(wi − ŵ+

i,0)(Γi(t, r), ξi(t, r))| + Cδ(X0)
∫ t

Γi(t,r)

2∑
i=1

|wi(s, γ−
i (s, t, r)) − ŵ+

i,0(γ
−
i (s, t, r))|ds.

(8.4)
If {(s, γ−

1 (s,Γ2(t, r), ξ2(t, r))} ∩ {(s, r) : r = X0 + 1} = (π1(t, r), η1(t, r)) and {(s, γ−
2 (s, Γ1(t, r), ξ1(t, r))} ∩

{(s, r) : r = r(s)} = (π2(t, r), η2(t, r)), then by the characteristics method (7.7), and (7.10), we get for small
ε > 0

|w1(t, r) − ŵ+
1,0(r)| ≤ |(w2 − ŵ+

2,0)(Γ1(t, r), ξ1(t, r))| + |f3(w2 − ŵ+
2,0)(Γ1(t, r), ξ1(t, r)))|

+ Cδ(X0)
∫ t

Γ1(t,r)

2∑
i=1

|wi(s, γ−
1 (s, t, r)) − ŵ+

i,0(γ
−
1 (s, t, r))|ds

≤ (1 + Cε)
(

Cδ(X0)
2∑

i=1

∫ Γ1(t,r)

π2(t,r)

|wi(s, γ−
2 (s, Γ1(t, r), ξ1(t, r))) − ŵ+

i,0(γ
−
2 (s, Γ1(t, r), ξ1(t, r)))|ds

+ |(w2 − ŵ+
2,0)(π2(t, r), η2(t, r))|

)
+ Cδ(X0)

∫ t

Γ1(t,r)

2∑
i=1

|wi(s, γ−
1 (s, t, r)) − ŵ+

i,0(γ
−
1 (s, t, r))|ds

≤ (1 + Cε)|A0(w1 − ŵ+
1,0)(π2(t, r), η2(t, r))| + (1 + Cε)B̃0|r(π2(t, r)) − r0| + Cδ(X0)C0ε

(1 + t)2

≤ (1 + Cε)B̃0|r(π2(t, r)) − r0| + (A0 + Cδ(X0) + CC0ε)C0ε

(1 + t)2
, (8.5)

here we have used the following relations (for large t)

1 − C(1 + δ(X0) + ε)
1 + t

≤ Γi(t, r)
t

≤ 1 +
C(1 + δ(X0) + ε)

1 + t
(8.6)

and

1 − C(1 + δ(X0) + ε)
1 + t

≤ πi(t, r)
t

≤ 1 +
C(1 + δ(X0) + ε)

1 + t
. (8.7)

Similarly, one can obtain

|w2(t, r) − ŵ+
2,0(r)| ≤ A0|(w1 − ŵ+

1,0)(Γ2(t, r), ξ2(t, r))| + C(δ(X0) + (C0 + C̃0)ε)(C0 + C̃0)ε
(1 + t)2

+ B̃0|r(Γ2(t, r)) − r0|

≤ B̃0|r(π1(t, r)) − r0| +
(

A0 +
C(C0 + C̃0)(δ(X0) + (C0 + C̃0)ε)

C0

)
C0ε

(1 + t)2
. (8.8)
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If {(s, γ−
1 (s, t, r))}∩{(s, r) : r = X0+1} = ∅, or {(s, γ−

2 (s, t, r))}∩{(s, r) : r = r(s)} = ∅, or {(s, γ−
1 (s, Γ2(t, r),

ξ2(t, r)))} ∩ {(s, r) : r = X0 + 1} = ∅, or {(s, γ−
2 (s,Γ1(t, r), ξ1(t, r)))} ∩ {(s, r) : r = r(s)} = ∅, then by (8.3),

(1.19) and the initial data (7.8) we can conclude

t ≤ C and |wi(t, r) − ŵ+
i,0(r)| ≤ Cε. (8.9)

In addition, it follows from (7.9) and (8.1) that

|(eB̄0t(r(t) − r0))′| ≤ A1(C0 + C(C0 + C̃0)2ε)ε
eB̄0t

(1 + t)2
.

Thus, for large t and small ε, one has

|r(t) − r0| ≤ Cεe−B̄0t + A1(C0 + C(C0 + C̃0)2ε)ε
∫ t

t0

e−B̄0(t−s)

(1 + s)2
ds

≤ Cεe−B̄0t + A1(C0 + C(C0 + C̃0)2ε)ε
∫ t

0

e−B̄0τ

(1 + t − τ)2
dτ

≤ Cεe−B̄0t + A1(C0 + C(C0 + C̃0)2ε)ε
(∫ ηt

0

e−B̄0τ

(1 + t − τ)2
dτ +

∫ t

ηt

e−B̄0τ

(1 + t − τ)2
dτ

)

≤ Cε
(
e−B̄0t + e−B̄0ηt

)
+

A1(C0 + C(C0 + C̃0)2ε)ε
B̄0(1 + (1 − η)t)2

≤ Cε

(1 + t)3
+

A1(C0 + C(C0 + C̃0)2ε)ε
B̄0(1 + (1 − η)t)2

, (8.10)

here η ∈ (0, 1) is a suitably small constant.
Collecting (8.5)-(8.7) and (8.10)

|w1(t, r)− ŵ+
1,0(r)| ≤ (1+Cε)B̃0

(
Cε

(1 + t)3
+

A1(C0 + C(C0 + C̃0)2ε)ε
B̄0(1 + (1 − η)t)2

)
+

(A0 + Cδ(X0) + CC0ε)C0ε

(1 + t)2
. (8.11)

In order to show (8.1), for large t, X0 and small ε, η, we require

B̃0A1

B̄0
+ A0 < 1. (8.12)

In fact, (8.12) holds if and only if
c2(ρ+

0 (r0)) < 3(U+
0 (r0))2. (8.13)

For the weak transonic shock (namely, U−
0 (r0) ∼ c(ρ−0 (r0)) and U+

0 (r0) ∼ c(ρ+
0 (r0)) although U−

0 (r0) >

c(ρ−0 (r0)) and U+
0 (r0) < c(ρ+

0 (r0))), then (8.13) obviously holds (in fact, we only need U+
0 (r0) >

√
3

3 c(ρ+
0 (r0))).

In this case, it follows from (8.11) that for large t, X0 and small ε,

|wi(t, r) − ŵ+
i,0(r)| <

C0ε

(1 + t)2
, i = 1, 2. (8.14)

Thus, (8.14), together with (7.9) and (8.10), implies that there exists a constant C̃0 > 0 independent of ε
and T such that

|r(t) − r0| <
C̃0ε

(1 + t)2
, |r′(t)| <

C̃0ε

(1 + t)2
. (8.15)
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Next we estimate |∇t,r(wi(t, r) − ŵ+
i,0(r))|.

Set w̄i = ∂t(wi − ŵ+
i,0), i = 1, 2. Then (7.1) yields

∂tw̄i + λi(w)∂rw̄i = gi, i = 1, 2, (8.16)

where

gi = (−1)i ∂t(λi(w) − λi(ŵ+
0 ))

λi(w)

(
(w1 + w2)c(w)

2r
− (ŵ+

1,0 + ŵ+
2,0)c(ŵ

+
0 )

2r
(−1)i

(
(λi(w) − λi(ŵ+

0 ))∂rŵ
+
i,0 + w̄i

))

− ∂t

(
(λi(w) − λi(ŵ+

0 ))∂rŵ
+
i,0

)
+ (−1)i+1∂t

(
(w1 + w2)c(w)

2r
− (ŵ+

1,0 + ŵ+
2,0)c(ŵ

+
0 )

2r

)
, i = 1, 2.

It follows from (7.10) that
w̄1 = w̄2 + f ′

3(w2 − ŵ+
2,0)w̄2 + g1(t) (8.17)

with g1(t) ∈ C2
0 (0,∞).

To get the boundary condition of w̄ on r = r(t), one should notice that the vector field V = ∂t + r′(t)∂r

tangent to r = r(t) can be expressed as follows

V =
1

λi(w)
{(λi(w) − r′(t))∂t + r′(t)(∂t + λi(w)∂r)}.

So on the shock r = r(t), due to (7.1), (7.7) and the assumptions in (8.1), it holds that

w̄2 =
A0λ2(ŵ+

0 )(λ1(ŵ+
0 ) − r′(t))

λ1(ŵ+
0 )(λ2(ŵ+

0 ) − r′(t))
w̄1 − B̃0r

′(t) + f̄1(w̄1, r
′(t)) on r = r(t) (8.18)

with f̄1(0, 0) = 0 and |f̄1(z1, z2)| ≤ C̄ε
(1+t)2 |z1| + C̄(δ(X0) + ε

(1+t)2 )|z2|, here and below the generic constant C̄

may depend on C0 and C̃0 but is independent of ε, T and X0.
By the assumptions in (8.1),

|gi(t, r)| ≤ C1ε

(1 + t)2

(
C̄ε

(1 + t)2
+ C̄δ(X0)

)
. (8.19)

Using the notations above, if γ−
1 (s, t, r) and γ−

2 (s, t, r) both intersect with fixed boundary and shock front,
then by the characteristics method, (8.19), the boundary conditions (8.17), (8.18) and (8.15), as in (8.9)-(8.13),
one can arrive at

|w̄1(t, r)| ≤ |((1 + f ′
3(w2 − ŵ+

2,0))w̄2

)
(Γ1(t, r), ξ1(t, r))| + C̄(δ(X0) + ε)

∫ t

Γ1(t,r)

C1ε

(1 + s)2
ds

≤ (1 + C̄ε)|A0w̄1(π2(t, r), η2(t, r))| + (1 + C̄ε)B̃0|r′(π2(t, r))| + C̄(δ(X0) + ε)
C1ε

(1 + t)2
+

C̄(ε + δ(X0))ε
(1 + t)2

≤ ( B̃0A1

B̄0
+ A0 + C̄δ(X0) + C̄ε

) C1ε

(1 + t)2
+

C̄(δ(X0) + ε)ε
(1 + t)2

.

Similarly,

|w̄2(t, r)| ≤
( B̃0A1

B̄0
+ A0 + C̄δ(X0) + C̄ε

) C1ε

(1 + t)2
+

C̄(δ(X0) + ε)ε
(1 + t)2

.

Thanks to (8.12), (8.1) holds for |∂t(wi(t, r) − ŵ+
i,0(r))| (i = 1, 2).
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Since for i = 1, 2,

∂r(wi − ŵ+
i,0) =

(−1)i

λi(w)

(
(w1 + w2)c(w)

2r
− (ŵ+

1,0 + ŵ+
2,0)c(ŵ

+
0 )

2r
+ (−1)i

(
(λi(w) − λi(ŵ+

0 ))∂rŵ
+
i,0 + w̄i

))
,

then a direct computation yields

|∂r(w1 − ŵ+
1,0)| + |∂r(w2 − ŵ+

2,0)| ≤
C ′

2ε

(1 + t)2
,

here C ′
2 > 0 can be determined by C0, C̃0 and C1.

Thus for the appropriately chosen large constant C2 > C ′
2 we can obtain

|∇t,r(w1 − ŵ+
1,0)| + |∇t,r(w2 − ŵ+

2,0)| <
C2ε

(1 + t)2
.

Since |r′′(t)| ≤ C

2∑
i=1

(|∇t,r(wi −w+
i,0)|+ |(wi −w+

i,0)|)+ Cδ(X0)(|r′(t)|+ |r(t)− r0|) on r = r(t), then by the

estimates on wi − w+
i,0, ∇t,r(wi − w+

i,0), |r(t) − r0| and |r′(t)|, it is easy to conclude

|r′′(t)| ≤ C3ε

(1 + t)2
,

here C3 > 0 depends on C0, C̃0, C1 and C2.
Therefore (8.1) and Lemma 8.1 are proved.
Proof of Theorem 1.4. Since the local well-posedness of the solution is achieved in [18], while for any

given t, the solution of (7.1) with the initial data (7.11) given on t = t0 and the boundary conditions (7.7),
(7.9) and (7.10) in [t0, t0 + C

ε ] can be obtained by use of the characteristics method. Therefore, by Lemma
8.1, we can get a smaller initial data for w − w+

0 and r(t) − r0 on t = C
ε , then the solution can be extended

continuously to the whole domain. Thus, Theorem 1.3 is proved in the case m = 2. The case m = 3 can be
treated similarly.

§9. Dynamical Instability

We now treat the instability of a transonic shock in a converging nozzle. To simplify the notations, we
will neglect the notation “∼” on (ρ̃±, Ũ±) in (1.17)-(1.22). By the hyperbolicity with respect to r̃−direction
and t−direction, (1.20)− has a global C2 solution (ρ−(t, r̃), U−(t, r̃)) in the domain Ω̃− = {(t, r̃) : 0 ≤ t <

∞,−X0 − 3
4 < r̃ < r̃(t)}, especially (ρ−, U−) ≡ (ρ̂−0 (−r̃), Û−

0 (−r̃)) for t ≥ t0 (t0 > 0 is some fixed constant)
and |∇k

t,r̃(ρ
− − ρ̂−0 (−r̃))| + |∇k

t,r̃(U
− − Û−

0 (−r̃))| ≤ Cε for k = 0, 1, 2, here (ρ̂−0 (−r̃), Û−
0 (−r̃)) represents the

extension of (ρ−0 (r), U−
0 (r))) in [X0, X0 + 1]. As in §7, we can reformulate the problem (1.20)+ with (1.17),

(1.19) and (1.21)-(1.22) as follows:

⎧⎪⎪⎨
⎪⎪⎩

∂twi + λi(w)∂r̃wi = (−1)i+1 (w1 + w2)c(w)
2r̃ ,

wi(0, r̃) = w+
i,0(r̃) + wi,0(ε, r̃), i = 1, 2,

ρ+(w) = ρe + ρ̃+
2 (t) on r̃ = −X0

(9.1)

with wi,0(0, r̃) = 0 (i = 1, 2).
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On the shock r̃ = r̃(t), by (1.21), one has ⎧⎨
⎩ r̃′(t) = [ρU ]

[ρ] ,

r̃(0) = −r0

(9.2)

and
G(w) = [ρU ]2 − [ρ][ρU2 + P ] = 0. (9.3)

Since

[ρU2 + P ] =
(
ρ+(U+)2 + P+

)
(t, r̃(t)) − (

ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(−r̃(t))

+
(
ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(−r̃(t)) − (

ρ̂−0 (Û−
0 )2 + P̂−

0

)
(−r̃(t))

and(
ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(−r̃(t)) − (

ρ̂−0 (Û−
0 )2 + P̂−

0

)
(−r̃(t)) =

(
ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(−r̃(t)) − (

ρ̂+
0 (Û+

0 )2 + P̂+
0

)
(r0)

− (
ρ̂−0 (Û−

0 )2 + P̂−
0

)
(−r̃(t)) +

(
ρ̂−0 (Û−

0 )2 + P̂−
0

)
(r0)

= −B0(r̃(t) + r0) + B1(t)(r̃(t) + r0)2,

with the constant B0 and the function B1(t) being defined in §7. Then as in §7, on r̃ = r̃(t) and for t ≥ t0,
the boundary condition (9.3) can be reduced to

ρ+ − ρ̂+
0 = − 2ρ̂+

0 Û+
0

c2(ρ̂+
0 ) + (Û+

0 )2
(U+ − Û+

0 ) +
B0

c2(ρ̂+
0 ) + (Û+

0 )2
(r̃(t) + r0)

+ f̃((ρ+ − ρ̂+
0 )2, (U+ − Û+

0 )2, (ρ+ − ρ̂+
0 )(U+ − Û+

0 ), (r̃(t) + r0)2), (9.4)

here f̃(0, 0, 0, 0) = 0 and f̃ ∈ C2 on its arguments.
Analogously, on r̃ = r̃(t),

w2−ŵ+
2,0 = A0(w1−ŵ+

1,0)+B̃0(r̃(t)+r0)+f̃1((w1−ŵ+
1,0)

2, (w2−ŵ+
2,0)

2, (w1−ŵ+
1,0)(w2−ŵ+

2,0), (r̃(t)+r0)2), (9.5)

and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r̃′(t) = A1(U+ − Û+
0 ) + B̄0(r̃(t) + r0) + f̃2

(
(w1 − ŵ+

1,0)
2, (w2 − ŵ+

2,0)
2, (w1 − ŵ+

1,0)(w2 − ŵ+
2,0),

(w1 − ŵ+
1,0)(r̃(t) + r0), (w2 − ŵ+

2,0)(r̃(t) + r0), (r̃(t) + r0)2
)

,

(r̃(t) + r0)|t=0 = 0,

(9.6)

here f̃1(0, 0, 0, 0) = 0, f̃2(0, 0, 0, 0, 0, 0) = 0, f̃1, f̃2 ∈ C2 on its arguments, and A0, B̃0, A1 and B̄0 are given in
§7.

Here it should be emphasized that the equation (9.6) on r̃(t) and the equation (7.9) on r(t) are very different
because the coefficient of r̃(t) + r0 in (9.6) is positive meanwhile it is negative in (7.9). This difference yields
that (7.9) has a global decay solution but the solution of (9.6) blows up in general.

In addition, on the boundary r̃ = −X0,

w1 − w+
1,0 = (w2 − w+

2,0) + f̃3(w2 − w+
2,0) + g̃0(t) (9.7)

with f̃3(0) = f̃ ′
3(0) = 0 and g̃0(t) ∈ C2

0 (0,∞).
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Now we prove Theorem 1.5 by contradiction. To this end, we assume that for large X0 > 0 and some
weak background transonic shock, there exists a small constant ε0 > 0 such that for ε < ε0 and any
smooth perturbations (ρ̃±1 (r̃), Ũ±

1 (r̃); ρ̃−2 (t), Ũ−
2 (t); ρ̃+

2 (t)) with supports in some fixed interval and satisfy-

ing
2∑

k=0

(
| dk

dr̃k
ρ̃±1 (r̃)| + | dk

dr̃k
Ũ±

1 (r̃)| + | dk

dtk
ρ̃−2 (t)| + | dk

dtk
Ũ−

2 (t)| + | dk

dtk
ρ̃+
2 (t)|

)
≤ 1, then there exists a uniform

constant C0 > 0 such that

2∑
k=0

(
|∇k

t,r̃(ρ
± − ρ̂±0 )| + |∇k

t,r̃(U
± − Û±

0 )| + | dk

dtk
(r̃(t) + r0)| ≤ C0ε holds for all t ≥ 0. (9.8)

For simplicity, we choose (ρ̃+
1 (r̃), Ũ+

1 (r̃), ρ̃+
2 (t)) ≡ 0. In addition, one can choose the perturbed initial-

boundary values (ρ̃−1 (r̃), Ũ−
1 (r̃), ρ̃−2 (t)) of the supersonic coming flow such that |r̃(t̄0) + r0| ≥ C̄0ε for some

fixed positive constants C̄0 and t̄0.
In a similar way as in §8, there exists a fixed T0 > 0 (independent of ε) such that for t ≥ T0

|wi(t, r) − ŵ+
i,0(r)| ≤ (1 + Cε)B̃0C0ε + (A0 + Cδ(X0) + CC0ε)C0ε, i = 1, 2, (9.9)

with a constant C > 0 independent of ε and X0.
If t ≤ T0, one has

|wi(t, r) − ŵ+
i,0(r)| ≤ C(C2

0ε2 + δ(X0)|r̃(t) + r0|) ≤ C(C0ε0 + δ(X0))C0ε. (9.10)

It follows from (9.6), (9.9) and (9.10) that

{ d
dt ((r̃(t) + r0)2) ≥ 2B̄0(r̃(t) + r0)2 − 2A1(B̃0 + A0 + Cδ(X0) + Cε)C2

0ε2,

(r̃(t) + r0)2|t=t̄0 ≥ C̄2
0ε2.

(9.11)

Hence,
(r̃(t) + r0)2 ≥ e2B̄0(t−t̄0)Bε2 (9.12)

with B = C̄2
0 − A1(B̃0 + A0 + Cδ(X0) + Cε)C2

0

B̄0
.

Next we claim that the constant A1(B̃0+A0)
B̄0

can be very small for the weak background transonic shock such

that B >
C̄2

0
2 holds.

Indeed, a direct computation yields

A1(B̃0 + A0)
B̄0

=
2c(ρ+

0 (r0))(c(ρ+
0 (r0)) − U+

0 (r0))
(c(ρ+

0 (r0)) + U+
0 (r0))U+

0 (r0)
+

r0(c(ρ+
0 (r0)) − U+

0 (r0))3

(U+
0 (r0))2(c(ρ+

0 (r0)) + U+
0 (r0))(U−

0 − U+
0 )(r0)

.

Denote by σ = (U−
0 − U+

0 )(r0) > 0. Then σ is small when the transonic shock is weak. Due to the
Rankine-Hugoniot condition on r = r0, one has

P (ρ+
0 (r0)) = P (ρ−0 (r0)) + (ρ−0 U−

0 )(r0)σ.

This gives

c(ρ+
0 (r0)) − c(ρ−0 (r0)) =

(ρ−0 U−
0 )(r0)

∫ 1

0
c′(θρ−0 (r0) + (1 − θ)ρ+

0 (r0))dθ∫ 1

0
c2(θρ−0 (r0) + (1 − θ)ρ+

0 (r0))dθ
σ
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and

c(ρ+
0 (r0)) − U+

0 (r0)
(U−

0 − U+
0 )(r0)

=
c(ρ−0 (r0)) − U−

0 (r0)
σ

+ 1 +
c(ρ+

0 (r0)) − c(ρ−0 (r0))
σ

=
c(ρ−0 (r0)) − U−

0 (r0)
σ

+ 1 +
(ρ−0 U−

0 )(r0)
∫ 1

0
c′(θρ−0 (r0) + (1 − θ)ρ+

0 (r0))dθ∫ 1

0
c2(θρ−0 (r0) + (1 − θ)ρ+

0 (r0))dθ
. (9.13)

Next we treat the term c(ρ−0 (r0)) − U−
0 (r0)

σ in (9.13).
Set U−

0 (r0) = c(ρ−0 (r0)) + μ and F (μ, σ) ≡ P (ρ+
0 (r0)) + ρ+

0 (r0)(U+
0 (r0))2 − P (ρ−0 (r0))− ρ−0 (r0)(U−

0 (r0))2 =

P (ρ−0 (r0)(c(ρ−0 (r0)) + μ)
c(ρ−0 (r0)) + μ − σ

) − P (ρ−0 (r0)) − ρ−0 (r0)
(
c(ρ−0 (r0)) + μ

)
σ, here μ > 0 will be estimated. A direct

computation yields

∂μF (μ, σ) < 0,

F (0, σ) =
(

ρ−0 (r0) +
P ′′(ρ−0 (r0))

2
( ρ−0 (r0)
c(ρ−0 (r0))

)2
)

σ2 + O(σ3) > 0,

F (
√

σ, σ) = −2ρ−0 (r0)σ
3
2 + O(σ2) < 0.

Therefore there exists a unique μ ∈ (0,
√

σ) such that F (μ, σ) = 0. Consequently, (c(ρ+
0 (r0)) − U+

0 (r0))2

(U−
0 − U+

0 )(r0)
is

bounded and A1(B̃0 + A0)
B̄0

> 0 is small enough if the transonic shock is sufficiently weak. This implies that

B >
C̄2

0
2 holds. Then it follows from (9.12) that lim

t→∞(r̃(t) + r0)2 = ∞. Obviously, this is contradictory with

(9.8), so we complete the proof of Theorem 1.7.

Appendix A.

In this appendix, the two nozzle walls Γ1 and Γ2 are assumed to be small perturbations of two straight line
segments x2 = −1 and x2 = 1 with −1 ≤ x1 ≤ 1. More precisely, the equations of Γ1 and Γ2 are given by

x2 = f1(x1) and x2 = f2(x1) (A.1)

respectively with

| dk

dxk
1

(f1(x1) + 1)| ≤ ε and | dk

dxk
1

(f2(x1) − 1)| ≤ ε for − 1 ≤ x1 ≤ 1, k ≤ 4, k ∈ N ∪ {0},
(A.2)

here ε > 0 suitably small.
Suppose that the supersonic coming flow (ρ−(x), u−

1 (x), u−
2 (x), S−(x)) in the nozzle satisfies

{
(ρ−(x), u−

1 (x), u−
2 (x)) ∈ C2(Ω), ∂2u

−
1 (x) ≡ ∂1u

−
2 (x), S−(x) ≡ S0,

|∇α
x(ρ−(x) − ρ0)| + |∇α

x(u−
1 (x) − q0)| + |∇α

xu−
2 (x)| ≤ Cε, |α| ≤ 2,

(A.3)

here Ω = {(x1, x2) : −1 < x1 < 1, f1(x1) < x2 < f2(x1)} and q0 > c(ρ0, S0). Namely, the assumption (A.3)
implies that the incoming flow is close to the uniform supersonic flow (ρ0, q0, 0, S0).

Across the shock Σ : x1 = ξ(x2), the flow field is denoted by (P+(x), u+
1 (x), u+

2 (x), S+(x)). Then we have
the following proposition which yields Remark 1.5.

Proposition. Under the assumptions (A.1)-(A.3), for small ε > 0, if the weak transonic shock solution
(P+(x), u+

1 (x), u+
2 (x), S+(x); ξ(x2)) has the following regularities and estimates
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(i). ξ(x2) ∈ C2[x1
2, x

2
2], here (xi

1, xi
2) with xi

2 = fi(xi
1)(i = 1, 2) stands for the intersection point of x1 = ξ(x2)

with x2 = fi(x1). Moreover
‖ξ(x2)‖C2[x1

2,x2
2]
≤ Cε.

(ii). Denote by Ω+ = {(x1, x2) : ξ(x2) < x1 < 1, f1(x1) < x2 < f2(x1)}, then (P+(x), u+
1 (x), u+

2 (x), S+(x))
∈ C1(Ω̄+) satisfies

‖P+(x) − P+
0 ‖C1(Ω̄+) + ‖u+

1 (x) − q+
0 ‖C1(Ω̄+) + ‖u+

2 (x)‖C1(Ω̄+) + ‖S+(x) − S+
0 ‖C1(Ω̄+) ≤ Cε,

here the constants (P+
0 , q+

0 , 0, S+
0 ) are determined by the following relations

⎧⎪⎨
⎪⎩

ρ0q0 = ρ(P+
0 , S+

0 )q+
0 , ρ0q

2
0 + P0 = ρ(P+

0 , S+
0 )(q+

0 )2 + P+
0 ,

(ρ0e0 + 1
2ρ0q

2
0 + P0)q0 = (ρ(P+

0 , S+
0 )e(P+

0 , S+
0 ) + 1

2ρ(P+
0 , S+

0 )(q+
0 )2 + P+

0 )q+
0 ;

P0 < P+
0 and q+

0 < c(P+
0 , S+

0 ).

(A.4)

Then f ′′
i (xi

1) = 0 holds.
Remark A.1. The transonic shock is assumed to be weak in the sense that although q0 > c(P0, S0) and

q+
0 < c(P+

0 , S+
0 )), q0 − c(P0, S0) and c(P+

0 , S+
0 ) − q+

0 are small.
Remark A.2. All the assumptions in Proposition can be realized in some cases, one can see [28] for more

details.
Proof. First we show that the shock curve Σ is perpendicular to the fixed boundaries Γ1 and Γ2, namely,

ξ′(xi
2) = −f ′

i(x
i
1)(i = 1, 2) holds.

It follows from (1.7) and (1.3) that

[ρ(P, S)u1](xi
1, x

i
2)(1 − ξ′(xi

2)f
′
i(x

i
1)) = 0.

Thus by the “smallness” assumption in Proposition we have

[ρ(P, S)u1](xi
1, x

i
2) = 0. (A.5)

(A.5) together with the second equation in (1.3), yields

[P ](xi
1, x

i
2) = −(ρ(P+, S+)u+

1 [u1])(xi
1, x

i
2)(1 − ξ′(xi

2)f
′
i(x

i
1)). (A.6)

Additionally, (1.3) yields

ξ′(xi
2)[P ](xi

1, x
i
2) = f ′

i(x
i
1)(ρ(P+, S+)u+

1 [u1])(xi
1, x

i
2)(1 − ξ′(xi

2)f
′
i(x

i
1)). (A.7)

Noting that [P ](xi
1, x

i
2) 	= 0 and [u1](xi

1, x
i
2) 	= 0, then combining (A.6) with (A.7) yields

ξ′(xi
2) = −f ′

i(x
i
1). (A.8)

Next, we derive f ′′
i (xi

1) = 0.
By (A.5), (A.8) and the third equation in (1.3), one has

[
1
2
|u|2 + h(ρ, S)](xi

1, x
i
2)(ρ(P+, S+)u+

1 )(xi
1, x

i
2)(1 + (f ′

i(x
i
1))

2) = 0.

This implies

[
1
2
|u|2 + h(ρ, S)](xi

1, x
i
2) = 0. (A.9)
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Taking ∂τ = ξ′(x2)∂1 + ∂2 on two sides of the equations (1.3), and noting that (A.5), (A.8) and (A.9), then
at the points (xi

1, x
i
2) we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂τ [ρ(P, S)u1](xi
1, x

i
2) + f ′

i(x
i
1)∂τ [ρ(P, S)u2](xi

1, x
i
2) = 0,

(f ′
i(x

i
1))

2∂τ [P + ρ(P, S)u2
2](x

i
1, x

i
2) + 2f ′

i(x
i
1)∂τ [ρ(P, S)u1u2](xi

1, x
i
2)

+∂τ [P + ρ(P, S)u1)2](xi
1, x

i
2) = 0,

∂τ [
(
ρ(P, S)e(P, S) + 1

2ρ(P, S)|u|2 + P
)
u1](xi

1, x
i
2)

+f ′
i(x

i
1)∂τ [

(
ρ(P, S)e(P, S) + 1

2ρ(P, S)|u|2 + P
)
u2](xi

1, x
i
2) = 0.

(A.10)

Thus it follows from a direct computation that at the point (xi
1, x

i
2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τu+
1 + f ′

i(x
i
1)∂τu+

2 = 1
ρ(P+, S+)

{
∂τ (ρ−u−

1 ) + f ′
i(x

i
1)∂τ (ρ−u−

2 ) − (u+
1 + f ′

i(x
i
1)u

+
2 )∂τρ(P+, S+)

}
,

∂τu+
1 + f ′

i(x
i
1)∂τu+

2 = 1
2ρ(P+, S+)(u+

1 + f ′
i(x

i
1)u

+
2 )

{
(f ′

i(x
i
1))

2∂τ (P− + ρ−(u−
2 )2) + 2f ′

i(x
i
1)∂τ (ρ−u−

1 u−
2 )

+∂τ (P− + ρ−(u−
1 )2) −

((
1 + (f ′

i(x
i
1))

2
)
∂τP+ +

(
(f ′

i(x
i
1))

2(u+
2 )2 + 2f ′

i(x
i
1)u

+
1 u+

2 + (u+
1 )2

)
∂τρ+

}
,

∂τu+
1 + f ′

i(x
i
1)∂τu+

2 = 1
u+

1

{
∂τ (e− + 1

2 |u−|2 + P−
ρ− ) − ∂τ

(
e(P+, S+) + P+

ρ(P+, S+)
)}

.

(A.11)
Since

u−
2 (xi

1, x
i
2) = f ′

i(x
i
1)u

−
1 (xi

1, x
i
2)), u−

1 ∂τu−
1 + u−

2 ∂τu−
2 +

c2(P−, S0)
ρ−

∂τρ− ≡ 0,

∂τ (e− +
1
2
|u−|2 +

P−

ρ−
) ≡ 0,

then

(∂τ (ρ−u−
1 ) + f ′

i(x
i
1)∂τ (ρ−u−

2 ))(xi
1, x

i
2) =

(
(1 + (f ′

i(x
i
1))

2)u−
1 (xi

1, x
i
2) − (

c2(P−, S0)
u−

1

)(xi
1, x

i
2)
)

∂τρ−(xi
1, x

i
2)

and (
(f ′

i(x
i
1))

2∂τ (P− + ρ−(u−
2 )2) + 2f ′

i(x
i
1)∂τ (ρ−u−

1 u−
2 ) + ∂τ (P− + ρ−(u−

1 )2)
)

(xi
1, x

i
2)

= (1 + (f ′
i(x

i
1))

2)
(

(u−
1 )2 + (u−

2 )2 − c2(P−, S0)
)

(xi
1, x

i
2)∂τρ−(xi

1, x
i
2).

Substituting the above computations and the equation of state for the polytropic gas into (A.11) yields at
the point (xi

1, x
i
2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τu+
1 + f ′

i(x
i
1)∂τu+

2 = 1
ρ(P+, S+)

{(
(1 + (f ′

i(x
i
1))

2)u−
1 − c2(P−,S0)

u−
1

)
∂τρ− − (u+

1 + f ′
i(x

i
1)u

+
2 )

(
∂τ P+

c2(P+,S+)

+∂Sρ(P+, S+)∂τS+
)}

,

∂τu+
1 + f ′

i(x
i
1)∂τu+

2 = 1
2ρ(P+, S+)(u+

1 + f ′
i(x

i
1)u

+
2 )

{
(1 + (f ′

i(x
i
1))

2)
(
(u−

1 )2 + (u−
2 )2 − c2(P−, S0)

)
∂τρ−

−(1 + (f ′
i(x

i
1))

2)
(
1 − (1 + (f ′

i(x
i
1))

2)(u+
1 )2

c2(P+, S+)
)
∂τP+ − (u+

1 + f ′
i(x

i
1)u

+
2 )2∂Sρ(P+, S+)∂τS+

}
,

∂τu+
1 + f ′

i(x
i
1)∂τu+

2 = − 1
ρ(P+, S+)u+

1

(
∂τP+ − c2(P+, S+)

γ − 1 ∂Sρ(P+, S+)∂τS+

)
.

(A.12)
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Furthermore, (A.12) can be simplified at the point (xi
1, x

i
2) as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(1 + (f ′

i(x
i
1))

2)(u−
1 )2 − c2(P−, S0)

)
∂τ ρ−

u−
1

− (
(1 + (f ′

i(x
i
1))

2) u+
1

c2(P+,S+) − 1
u+

1

)
∂τP+

−
(

(1 + (f ′
i(x

i
1))

2)u+
1 + c2(P+,S+)

(γ−1)u+
1

)
∂Sρ(P+, S+)∂τS+ = 0,

(1 + (f ′
i(x

i
1))

2)
(
(1 + (f ′

i(x
i
1))

2)(u−
1 )2 − c2(P−, S0)

)
∂τ ρ−

u+
1

+ (1 + (f ′
i(x

i
1))

2)( (1+(f ′
i(x

i
1))

2)u+
1

c2(P+,S+) + 1
u+

1
)∂τP+

−(1 + (f ′
i(x

i
1))

2)
(

(1 + (f ′
i(x

i
1))

2)u+
1 + 2c2(P+,S+)

(γ−1)u+
1

)
∂Sρ(P+, S+)∂τS+ = 0.

(A.13)
Thus it follows from (A.13) and the assumptions in Proposition that at the point (xi

1, x
i
2)

(q2
0 − c2(P0, S0))

(
1 − q+

0

q0
+

c2(P+
0 , S+

0 )(q0 − 2q+
0 )

(γ − 1)q0(q+
0 )2

+ O(ε)
)

∂τρ−

+
(

2(q+
0 )2

c2(P+
0 , S+

0 )
+

3
γ − 1

− c2(P+
0 , S+

0 )
(γ − 1)(q+

0 )2
+ O(ε)

)
∂τP+ = 0. (A.14)

In addition, ∂τρ−(xi
1, x

i
2) = −

(
ρ−(u−

1 )2

c2(P−, S0)

)
(xi

1, x
i
2)f

′′
i (xi

1) and ∂τP+(xi
1, x

i
2) = −(

ρ+(u+
1 )2

)
(xi

1, x
i
2)f

′′
i (xi

1)

hold, thus by use of (A.14) we obtain
(A0 + O(ε))f ′′

i (xi
1) = 0, (A.15)

here A0 = ρ+
0 (q+

0 )2
(

2(q+
0 )2

c2(P+
0 ,S+

0 )
+ 3

γ−1 − c2(P+
0 ,S+

0 )

(γ−1)(q+
0 )2

)
+ (q2

0 − c2(P0, S0))
(

1 − q+
0

q0
+ c2(P+

0 ,S+
0 )(q0−2q+

0 )

(γ−1)q0(q
+
0 )2

)
ρ0q2

0
c2(P0,S0)

.

For the weak transonic shock solution, one can easily derive that A0 > 0 holds. Then we have from (A.15)
that

f ′′
i (xi

1) = 0.

Hence, the Proposition is proved.
Remark A.3. It follows from the proof above that the weak transonic shock assumption in Proposition can

be removed as long as A0 	= 0 holds.

Appendix B.

Now we give some explanations on the regularity assumption of the solution (P+(x), u+
1 (x), u+

2 (x), u+
3 (x),

S+(x); ξ(x2, x3)) in Theorem 1.2, see Remark 1.2.
For the C1 solution, the energy equation in (5.9) can be rewritten as

U+
1 ∂rS

+ +
1

r sin α
S+∂θU

+
3 − 1

r
U+

3 ∂αS+ = 0. (B.1)

Set D = U+
1 ∂r + 1

r sin αU+
2 ∂θ − 1

r U+
3 ∂α. Then for any C2(Ω+) solution, one can derive from (B.1) and (5.9)

that

D2ρ+ + ρ+

(
∂rDU+

1 +
1

r sin α
∂θDU+

2 − 1
r
∂αDU+

3

)
+ρ+

(
[D, ∂r]U+

1 + [D,
1

r sin α
∂θ]U+

2 − [D,
∂α

r
]U+

3

)

+ Dρ+

(
∂rU

+
1 +

1
r sinα

∂θU
+
2 − 1

r
∂αU+

3

)
+ D

(
2ρ+U+

1

r
− ρ+U+

3

r
ctgα

)
= 0 (B.2)

with the standard notation of commutator [A,B] = AB − BA.
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It follows from (B.1) and the equation of state that

Dρ+ =
DP+

c2(P+, S+)
, D2ρ+ =

D2P+

c2(P+, S+)
+ DP+D

(
1

c2(P+, S+)

)
. (B.3)

Substituting the momentum equations in (5.9) and (B.3) into (B.2) yields

(
(U+

1 )2

c2(P+, S+)
− 1

)
∂2

rP+ +
1

r2 sin2 α

(
(U+

2 )2

c2(P+, S+)
− 1

)
∂2

θP+ +
1
r2

(
(U+

3 )2

c2(P+, S+)
− 1

)
∂2

αP++

+
2U+

1 U+
2

r sin αc2(P+, S+)
∂2

rθP
+ − 2U+

2 U+
3

r2 sin2 αc2(P+, S+)
∂2

θαP+ − 2U+
1 U+

3

rc2(P+, S+)
∂2

rαP+

+ F (r, θ, α, U+,∇U+, P+,∇P+, S+,∇S+) = 0 (B.4)

with

F (r, θ, α, U+,∇U+, P+,∇P+, S+,∇S+) = ρ+∂r

(
(U+

2 )2 + (U+
3 )2

r

)
− ρ+

r sin α
∂θ

(
U+

1 U+
2

r
− U+

2 U+
3

r
ctgα

)

+
ρ+

r
∂α

(
U+

1 U+
3

r
+

(U+
2 )2

r
ctgα

)
+ ρ+

(
∂rDU+

1 +
1

r sin α
∂θDU+

2 − 1
r
∂αDU+

3

)

+ ρ+

(
[D, ∂r]U+

1 + [D,
1

r sin α
∂θ]U+

2 − [D,
∂α

r
]U+

3

)
+ Dρ+

(
∂rU

+
1 +

1
r sin α

∂θU
+
2 − 1

r
∂αU+

3

)

+ D

(
2ρ+U+

1

r
− ρ+U+

3

r
ctgα

)
+ DP+D

( 1
c2(P+, S+)

)− ρ(P+, S+)
(

∂rP
+∂r

( 1
ρ(P+, S+)

)
+

1
r2 sin2 α

∂θP
+∂θ

( 1
ρ(P+, S+)

)
+

1
r2

∂αP+∂α

( 1
ρ(P+, S+)

))
+

1
c2(P+, S+)

(
DU+

1 ∂rP
+ + D

( U+
2

r sin α

)
∂θP

+

− D
(U+

3

r

)
∂αP+

)
. (B.5)

It follows from the boundary condition (5.10) and Lemma 6.1 that U+
2 = U+

3 = 0 on the intersection curve l,
the shock surface r = r̃(θ, α) is perpendicular to the fixed boundaries α = α0, and the compatibility condition
holds on l. In this case, the principal part of second order elliptic equation (B.4) on l is

−
(

1 − (U+
1 )2

c2(P+, S+)

)
∂2

rP+ − 1
r2 sin2 α

∂2
θP+ − 1

r2
∂2

αP+,

which can be transformed into the Laplacian −∂2
r̄ − ∂2

θ̄
− ∂2

ᾱ on l by a dilation as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r̄ = c(P+(r̃0), S+(r̃0))√
c2(P+(r̃0), S+(r̃0)) − (U+

1 )2(P+(r̃0), S+(r̃0))
r,

θ̄ = r̃0 sin α0θ,

ᾱ = r̃0α,

here we have used the facts that the intersection curve l is represented by r = r̃0 and (P+(x), U+
1 (x), U+

2 (x),
U+

3 (x), S+(x)) depends only on r̃0 on l in Lemma 6.1.
Thus by the compatibility condition on l in Lemma 6.1 and the results in [3], we can assert the validity of

the assumption of P+(x) ∈ C2,δ0(Ω̄) in Remark 1.2. The C1,δ0(Ω̄)−regularity of (u+
1 (x), u+

2 (x), u+
3 (x)) and

C2,δ0(Ω̄)−regularity of S+(x) near the intersection curve l can be obtained from (5.13), (5.18), (5.19) and
(5.14).
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Appendix C.

In this appendix, we sketch the proof of the existence in Theorem 1.3. Although the existence proof is very
similar to that on Theorem 1.1, we still give a detailed proof for the reader’s convenience. Without loss of
generality, we consider only the 2-D isentropic flow in Theorem 1.3.

Proof of Theorem 1.3
On two hand sides of the shock r = r0 (X0 ≤ r0 ≤ X0 + 3

4 ), the supersonic incoming flow (ρ−0 (r), U−
0 (r))

and the subsonic flow (ρ+
0 (r), U+

0 (r)) satisfy respectively

{ d
dr (rρ±0 U±

0 ) = 0,
1
2 (U±

0 )2 + h(ρ±0 ) = 1
2 (U±

0 (r0))2 + h(ρ±0 (r0)),
(C.1)

here h(ρ±0 ) is the enthalpy with h′(ρ±0 ) = c2(ρ±0 )
ρ±0

.

The corresponding Rankine-Hugoniot conditions across the shock r = r0 are

{
[ρ0U0] = 0,

[ρ0U
2
0 + P0] = 0.

(C.2)

As in the proof of Theorem 1.1, the proof can be divided into four steps.
Step 1. For the supersonic incoming flow (ρ−0 (r0), U−

0 (r0)), it follows from (C.2) that there exists a unique
subsonic flow (ρ+

0 (r0), U+
0 (r0)), see [11, 27].

Step 2. For any given supersonic state (ρ−0 (X0 + 3
4 ), U−

0 (X0 + 3
4 )), (C.1) has a unique supersonic solution

(ρ−0 (r), U−
0 (r)) for r ∈ [X0, X0 + 3

4 ] for large X0.
In fact, it follows from (C.1) that

{
f1(ρ−0 , U−

0 , r) ≡ rρ−0 (r)U−
0 (r) − C0 = 0,

f2(ρ−0 , U−
0 , r) ≡ 1

2 (U−
0 (r))2 + h(ρ−0 (r)) − C−

1 = 0

with C0 = (X0 + 3
4 )ρ−0 (X0 + 3

4 )U−
0 (X0 + 3

4 ) and C−
1 = 1

2 (U−
0 (X0 + 3

4 ))2 + h(ρ−0 (X0 + 3
4 )).

Since ⎧⎪⎪⎨
⎪⎪⎩

dρ−0
dr

= − ρ−0 (U−
0 )2

r2((U−
0 )2 − c2(ρ−0 ))

,

dU−
0

dr
= U−

0 c2(ρ−0 )
r2((U−

0 )2 − c2(ρ−0 ))

and
d((U−

0 )2 − c2(ρ−0 ))
dr

=

(
2P ′(ρ−0 ) + ρ−0 P ′′(ρ−0 )

)
(U−

0 )2

r2((U−
0 )2 − c2(ρ−0 ))

then for large X0, one has

(U−
0 (r))2 − c2(ρ−0 (r)) ≥ 1

2

(
(U−

0 (X0 +
3
4
))2 − c2(ρ−0 (X0 +

3
4
))
)

> 0 for X0 ≤ r ≤ X0 +
3
4
. (C.3)

In addition ∂(f1, f2)
∂(ρ−0 , U−

0 )
= r

(
(U−

0 (r))2 − c2(ρ−0 (r))
)

and ∂(f1, f2)
∂(ρ−0 , U−

0 )
∣∣
ρ−
0 (X0+

3
4 ),U−

0 (X0+
3
4 ),X0+

3
4

> 0. This,

together with the implicit function theorem and (C.3), yields that (C.1) has a unique supersonic solution
(ρ−0 (r), U−

0 (r)) for r ∈ [X0, X0 + 3
4 ].

Step 3. (C.1) has a unique subsonic solution (ρ+
0 (r), U+

0 (r)) for r ∈ [X0, X0 + 3
4 ] and large X0.

Since the proof is very similar to that in Step 2, we omit it.
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Step 4. The shock position r0 is a continuously decreasing function of Pe when the end pressure Pe lies in
an appropriate scope.

In fact, from (C.1) and (C.2) we arrive at for r ∈ [X0, X0 + 3
4 ]

{
rρ±0 (r)U±

0 (r) ≡ C0,
1
2 (U±

0 (r))2 + h(ρ±0 (r))) ≡ C±
1 ,

(C.4)

here C±
1 are the Bernoulli’s constants. We note that C−

1 and C+
1 may be different in general, moreover, C+

1

depends on the end pressure Pe = P+
0 (X0).

Especially, {
X0ρ

±
0 (X0)U±

0 (X0) ≡ C0,
1
2 (U±

0 (X0))2 + h(ρ±0 (X0)) ≡ C±
1 .

(C.5)

Next we derive the dependence of r0 on the end pressure Pe = P+
0 (X0).

It follows from the first equation in (C.4) and the second equation in (C.5) that

⎧⎪⎪⎨
⎪⎪⎩

d(ρ±0 (r0)U±
0 (r0))

dρ+
0 (X0)

= −ρ±0 (r0)U±
0 (r0) dr0

r0dρ+
0 (X0)

,

U+
0 (r0)

dU+
0 (r0)

dρ+
0 (X0)

+ c2(ρ+
0 (r0))

dρ+
0 (r0)

dρ+
0 (r0)

ρ+
0 (X0)

= dC+
1

dρ+
0 (X0)

.

(C.6)

In addition, due to C+
1 = C2

0

2X2
0 (ρ+

0 (X0))2
+ h(ρ+

0 (X0)), the second equation in (C.2) and (C.6), one gets

[ρ0U
2
0 ]

dr0

r0dρ+
0 (X0)

= ρ+
0 (r0)

dC+
1

dρ+
0 (X0)

=
ρ+
0 (r0)(c2

0(X0) − (U+
0 (X0))2)

ρ+
0 (X0)

. (C.7)

Since [ρ0U
2
0 ] < 0 holds by use of [ρ0U

2
0 + P0] = 0 and [P0] > 0, we conclude that r0 is a continuous and

strictly decreasing function of the end pressure P+
0 (X0).

Now, the existence result in Theorem 1.3 can be proved in the same as that for Theorem 1.1. Furthermore,
the uniqueness in Theorem 1.3 can be shown in a similar way as in §3 and §4 (even much simpler). Thus, the
proof of Theorem 1.3 is considered complete.

References

1. F.Asakura, Global solutions with a single transonic shock wave for quasilinear hyperbolic systems, Methods Appl. Anal. 4,
no. 1, 33–52 (1997).

2. A.Azzam, On Dirichlet’s problem for elliptic equations in sectionally smooth n-dimensional domains, SIAM. J. Math. Anal.
Vol.11, No. 2, 248-253 (1980).

3. A.Azzam, Smoothness properties of mixed boundary value problems for elliptic equations in sectionally smooth n-dimensional
domains, Ann. Polon. Math. 40, 81-93 (1981).

4. L.Bers, Partial differential equations and generalized analytic functions, Proc.Nat.Acad.Sc.USA, 36, No.2, 130-136(1950);
Proc.Nat.Acad.Sc.USA, 37, No.1, 42-47(1951).

5. S.Canic, B.L.Keyfitz, G.M.Lieberman, A proof of existence of perturbed steady transonic shocks via a free boundary problem,
Comm. Pure Appl. Math., Vol.LIII, 484-511 (2000).

6. Guiqiang Chen, M.Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed
type, J.A.M.S.,Vol.16, No.3, 461-494 (2003).

7. Shuxing Chen, Stability on transonic shock fronts in two-dimensional Euler systems, Trans. Amer. Math. Soc., 357, no.1,
287-308 (2005).

8. Shuxing Chen, Hairong Yuan, Transonic shock in compressible flow passing a duct for three-dimensional Euler systems,
Preprint (2005).

9. Shuxing, Chen; Zhouping, Xin; Huicheng, Yin, Global shock waves for the supersonic flow past a perturbed cone, Comm.
Math. Phys. 228, no. 1, 47–84 (2002).

10. Shuxing, Chen; Zhouping, Xin; Huicheng, Yin, Unsteady supersonic flow past a wedge, IMS preprint (2001).
11. R.Courant, K.O.Friedrichs, Supersonic flow and shock waves, Interscience Publishers Inc., New York, 1948.

49



12. P.Embid, J. Goodman, A. Majda, Multiple steady states for 1-D transonic flow. SIAM J. Sci. Statist. Comput. 5, no. 1,
21–41 (1984).

13. D.Gilbarg, L.Hörmander, Intermediate Schauder estimates, Arch. Rational Mech. Anal. 74, No.4, 297-318 (1980).
14. D.Gilbarg, N.S.Tudinger, Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathema-

tischen Wissenschaften, 224, Springer, Berlin-New York,1983.
15. H.M.Glaz; Liu, Tai-Ping, The asymptotic analysis of wave interactions and numerical calculations of transonic nozzle flow,

Adv. in Appl. Math. 5, no. 2, 111–146 (1984).
16. F.John, Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math., 27, 377-405

(1974).
17. A.G.Kuz’min, Boundary-Value problems for transonic flow, John Wiley & Sons, LTD (2002).
18. Li, T.S, Global classical solutions for quasilinear hyperbolic systems, Research in Applied Mathematics 34, Wiley, Masson,

New York, Paris (1994).
19. G.M.Lieberman, Mixed boundary value problems for elliptic and parabolic differential equation of second order, J. Math.

Anal. Appl. 113, No.2, 422-440 (1986).
20. G.M.Lieberman, Oblique derivative problems in Lipschitz domains II, J. reine angew. Math.389, 1-21 (1988).
21. Liu Taiping, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys. 83, no. 2, 243–260

(1982).
22. Liu Taiping, Transonic gas flow in a duct of varying area, Arch. Rational Mech. Anal. 80, no. 1, 1–18 (1982).
23. A.Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41, no. 275, (1983).
24. A.Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43, no. 281, (1983).
25. C.S.Morawetz, Potential theory for regular and Mach reflection of a shock at a wedge, Comm. Pure Appl. Math. 47, 593-624

(1994).
26. C.S.Morawetz, On the nonexistence of continuous transonic flows past profiles, I, II, III, Comm. Pure Appl. Math. 9(1956),

45-68; 10(1957), 107-131; 11(1958), 129-144.
27. J.A.Smoller, Shock waves and reaction-diffusion equations, Berlin-Heiderberg-New York, Springer-Verlag, New York, 1984.
28. Zhouping Xin, Wei Yan, Huicheng Yin, Transonic shock problem for the Euler system in a nozzle, Arch.Rat.Mech.Anal.,

2008(in press).
29. Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math., Vol. LVIII, 999-1050 (2005).
30. Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle, 3-D case, Pacific Journal of Math., to appear (2008).
31. Zhouping Xin, Huicheng Yin, Global multidimensional shock wave for the steady supersonic flow past a three-dimensional

curved cone, Analysis and Applications, Vol.4, No.2, 1-32 (2006).
32. Huicheng Yin, Global existence of a shock for the supersonic flow past a curved wedge, Acta Math. Sinica, No.3 (2006).
33. Huicheng Yin, Formation and construction of a shock wave for 3-D compressible Euler equations with the spherical initial

data. Nagoya Math. J. 175, 125–164 (2004).
34. H.Yuan, A remark on determination of transonic shocks in divergent nozzles for steady compressible Euler flows, Nonlinear

Anal.Real Word Appl.9, 316-325 (2008).
35. Yuxi Zheng, Two-dimensional regular shock reflection for the pressure gradient system of conservation laws, Preprint (2005).

50


