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Abstract. This paper concerns with Cauchy problems for the one-dimensional
compressible Navier-Stokes equations with density-dependent viscosity coeffi-

cients. Two cases are considered here, first, the initial density is assumed to

be integrable on the whole real line. Second, the deviation of the initial den-
sity from a positive constant density is integrable on the whole real line. It

is proved that for both cases, weak solutions for the Cauchy problem exist

globally in time and the large time asymptotic behavior of such weak solutions
are studied. In particular, for the second case, the phenomena of vanishing

of vacuum and blow-up of the solutions are presented, and it is also shown

that after the vanishing of vacuum states, the globally weak solution becomes
a unique strong one. The initial vacuum is permitted and the results apply to

the one-dimensional Saint-Venant model for shallow water.

1. Introduction. Consider the one-dimensional (1D) compressible Navier-Stokes
equations with density-dependent viscosity coefficients

ρt + (ρu)x = 0, (1.1)
(ρu)t + (ρu2 + P (ρ))x = (μ(ρ)ux)x. (1.2)

Here ρ(x, t), u(x, t) and P (ρ) = ργ(γ ≥ 1) stand for the fluid density, velocity and
pressure respectively. For simplicity, the viscosity coefficient μ(ρ) is assumed to be
μ(ρ) = ρα with α > 1

2 . The initial data is imposed as

(ρ, ρu)|t=0 = (ρ0,m0). (1.3)
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When the viscosity μ(ρ) is a positive constant, there has been a lot of investigations
on the compressible Navier-Stokes equations, for smooth initial data or discontinu-
ous initial data, one-dimensional or multidimensional problems (see [15, 12, 10, 11,
19, 17, 7] and the references therein). However, the studies in [12, 25, 18] show that
the compressible Navier-Stokes equations with constant viscosity coefficients behave
singularly in the presence of vacuum. By some physical considerations, Liu, Xin
and Yang in [18] introduced the modified compressible Navier-Stokes equations with
density-dependent viscosity coefficients for isentropic fluids. As presented in [18], in
deriving the compressible Navier-Stokes equations from the Boltzmann equations
by the Chapman-Enskog expansions, the viscosity depends on the temperature,
and correspondingly depends on the density for isentropic cases. Meanwhile, an
one-dimensional viscous Saint-Venant system for shallow water, which is derived
rigorously by Gerbeau-Perthame recently (see [8]), is expressed exactly as (1.1)-
(1.2) with μ(ρ) = ρ and γ = 2.

There are many literatures on mathematical studies on (1.1)-(1.2). If the initial
density is assumed to be connected to vacuum with discontinuities, Liu, Xin and
Yang first obtained in [18] the local existence of weak solutions. The global existence
of weak solutions was obtained later by [13], [14], [22], [26] respectively. If the initial
density connects to vacuum continuously, new difficulty is encountered since no
positive lower bound for the density is available. This case is studied by [6],[24],[26]
and [27] respectively. Most of these results concern with free boundary problems.
Recently, initial-boundary-value problems for one-dimensional equations (1.1)-(1.2)
with μ(ρ) = ρα(α > 1/2) was studied by Li, Li and Xin recently in [16] and
the phenomena of vacuum vanishing and blow-up of solutions were found there.
The global existence of weak solutions for the initial-boundary-value problems for
spherically symmetric compressible Navier-Stokes equations with density-dependent
viscosity was proved by Guo, Jiu and Xin in [9]. It should be noted that the results
in [16] and [9] are valid for the viscous Saint-Venant system for shallow water.

A new entropy estimate was found in [1]-[3], when the authors studied the L1 sta-
bility of weak solutions for the Korteweg’s system (with the Korteweg stress tensor
kρ∇�ρ on the right hand side of the momentum equations) and the viscous shallow
water equations (with an quadratic friction term rρ|U|U on the left hand side of the
momentum equations) respectively. Their results were later improved by Mellet and
Vasseur [20] to the case of more general compressible Navier-Stokes equations. The
new entropy estimate provides some high regularity for the density but needs some
more restrictions on the viscosity (see [20] for more details). Meanwhile, although
L1 stability guarantee the compactness arguments on the approximate solutions
and is considered as one of the main steps to prove existence of weak solutions, the
global existence of weak solutions of the compressible Navier-Stokes equations with
density-dependent viscosity is still open in the multi-dimensional cases. The key
issue now is how to construct approximate solutions satisfying the a priori estimates
required in the L1 stability analysis. It seems highly non-trivial to do so due to the
degeneracy of the viscosities near vacuum and the additional entropy inequality to
be hold in the construction of approximate solutions. Further and recent studies in
this direction are referred to [4], [5].

This paper is concerned with the global existence, asymptotic behavior, the van-
ishing of the vacuum and the blow-up phenomena of the weak solutions to the
Cauchy problem of (1.1)-(1.2). Two cases will be considered here. The first case is
that the initial density ρ0 belongs to L1(R); the other is that there exists a positive
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constant ρ̄ such that ρ0 − ρ̄ ∈ L1(R). We will construct a class of approximate so-
lutions satisfying the required estimates in the L1 stability of weak solutions in [20]
and furthermore prove the global existence of weak solutions for Cauchy problem
of (1.1)-(1.2). This is motivated by the approach of [14], in which one-dimensional
free boundary problem is considered, [9] and [16] in which the initial-boundary-value
problem is considered. Moreover, the asymptotic behaviors of the weak solutions
are investigated in this paper. More precisely, if the initial density ρ0 ∈ L1(R),
then we will prove that the density tends to 0 as t → ∞. If there exists a positive
constant ρ̄ such that ρ0 − ρ̄ ∈ L1(R), then we will prove that the density tends to ρ̄
as t → ∞. As a consequence, there exists a time T0 > 0 such that when t > T0, the
vacuum states vanish and any global weak solution become a unique strong one.
These will generalize the corresponding results for initial-boundary value problem
in [16]. It should be noted that the initial vacuum is permitted in our results. Very
recently, if the initial density is bounded away from zero (no vacuum), Mellet and
Vasseur proved the existence and uniqueness of global strong solution to (1.1)-(1.2)
in [21] for 0 < α < 1/2.

The subsequent contents of the paper are organized as follows. In Section 2 we
will present the main results of this paper. In Section 3 we will show various a priori
estimates of the solutions. Based on these and using similar approaches in [9] and
[16], we obtain the global existence of weak solutions. In Section 4, the asymptotic
behaviors of weak solutions will be discussed. In Section 5, we will focus on the
case ρ̄ > 0 and present the results on the vanishing of vacuum states and blow-
up phenomena of the solutions. It will be shown that after vanishing the vacuum
states, the global weak solution becomes a unique strong one.

2. Main results. We start with the assumptions on the initial data. The initial
data is assumed to satisfy{

ρ0 ≥ 0; m0 = 0 a.e.on {x ∈ R|ρ0(x) = 0};
(ρα− 1

2
0 )x ∈ L2(R) ∩ L1(R), |m0|2

ρ0
∈ L1(R), |m0|2+δ

ρ1+δ
0

∈ L1(R), (2.1)

where α > 1
2 and0 < δ < 1 is permitted to be small. Moreover, we assume that

there exists a constant ρ̄ ≥ 0 such that

ρ0 − ρ̄ ∈ L1(R) ∩ L∞(R). (2.2)

Before stating the main results, we give the definition of weak solutions to (1.1)-
(1.2).

Definition 2.1. A pair (ρ, u) is said to be a weak solution to (1.1)-(1.2) provided
that

(1) ρ ≥ 0 a.e., and

ρ − ρ̄ ∈ L∞(0, T ; L1(R) ∩ Lγ(R)) ∩ C([0,∞); W 1,∞(R)∗),

(ρα− 1
2 )x ∈ L∞(0, T ; L2(R)),

√
ρu ∈ L∞(0, T ; L2(R)),

where W 1,∞(R)∗ is the dual space of W 1,∞(R);
(2) For any t2 ≥ t1 ≥ 0 and any ζ ∈ C1(R × [t1, t2]), the mass equation (1.1)

holds in the following sense:∫
R

ρζdx|t2t1 =
∫ t2

t1

∫
R

(ρζt + ρu · ζx)dxdt; (2.3)
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(3) For any ψ ∈ C∞
0 (R × [0, T )), it holds that∫

R

m0ψ(0, ·)dx +
∫ T

0

∫
R

[
√

ρ(
√

ρu)ψt + ((
√

ρu)2 + ργ)ψx]dxdt

+ < ραux, ψx >= 0, (2.4)

where the diffusion term makes sense when written as

< ραux, ψ >= −
∫ T

0

∫
R

ρα− 1
2
√

ρuψxdxdt

− 2α

2α − 1

∫ T

0

∫
R

(ρα− 1
2 )x

√
ρuψdxdt. (2.5)

We remark that in the definition of the weak solution, (2.5) implies ραux ∈
L2(0, T ; W−1,1(R)), which follows from the fact that (ρα− 1

2 )x ∈ L∞(0, T ; L2(R),
√

ρu ∈
L∞(0, T ; L2(R)).

Our main results read as

Theorem 2.1. Let γ > 1. Suppose that (2.1) and (2.2) hold. If ρ̄ = 0, then the
Cauchy problem (1.1)-(1.3) admits a global weak solution (ρ(x, t), u(x, t)) satisfying

ρ ∈ C(R × (0, T )), (2.6)

sup
t∈[0,T ]

∫
R

ρdx + max
(x,t)∈R×[0,T ]

ρ ≤ C, (2.7)

sup
t∈[0,T ]

∫
R

(|√ρu|2 + (ρα− 1
2 )2x +

1
γ − 1

ργ)dx

+
∫ T

0

∫
R

([(ρ
γ+α−1

2 )x]2 + Λ(x, t)2)dxdt ≤ C, (2.8)

where C is an absolute constant depending on the initial data and Λ(x, t) ∈ L2(R×
(0, T )) is a function satisfying∫ T

0

∫
R

Λϕdxdxt = −
∫ T

0

∫
R

ρα− 1
2
√

ρuϕxdxdt

− 2α

2α − 1

∫ T

0

∫
R

(ρα− 1
2 )x

√
ρuϕdxdt. (2.9)

Theorem 2.2. Let γ > 1 and γ ≥ α− 1
2 . Suppose that (2.2) and (2.1) hold. If ρ̄ >

0, then the Cauchy problem (1.1)-(1.3) admits a global weak solution (ρ(x, t), u(x, t))
satisfying

ρ ∈ C(R × (0, T ))., (2.10)

sup
t∈[0,T ]

∫
R

|ρ − ρ̄|dx + max
(x,t)∈R×[0,T ]

ρ ≤ C, (2.11)

sup
t∈[0,T ]

∫
R

(|√ρu|2 + (ρα− 1
2 )2x +

1
γ − 1

(ργ − (ρ̄)γ − γ(ρ̄)γ−1(ρ − ρ̄))dx

+
∫ T

0

∫
R

([(ρ
γ+α−1

2 )x]2 + Λ(x, t)2)dxdt ≤ C, (2.12)

where C is an absolute constant depending on the initial data and Λ(x, t) ∈ L2(R×
(0, T )) is same as in (2.9).
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Theorem 2.3. Suppose that (ρ(x, t), u(x, t)) is a weak solution of the Cauchy prob-
lem (1.1)-(1.3) satisfying (2.6),(2.7) and (2.8). Then we have

lim
t→∞ sup

x∈R
ρ = 0. (2.13)

Theorem 2.4. Suppose that (ρ(x, t), u(x, t)) is a weak solution of the Cauchy prob-
lem (1.1)-(1.3) satisfying (2.10),(2.11) and (2.12). Then we have

lim
t→∞ sup

x∈R
|ρ − ρ̄| = 0. (2.14)

Based on Theorem 2.4, it is easy to deduce that under assumption of ρ̄ > 0,
there exists a time T0 > 0 after which the density has a positive lower bound and
the vacuum states vanish. Moreover, it will be shown that after the time t = T0,
the weak solution becomes a unique strong one. Precisely, we have

Theorem 2.5. Suppose that the assumptions of Theorem 2.2 hold. Let (ρ(x, t), u(x, t))
be a weak solution of the Cauchy problem (1.1)-(1.3) satisfying (2.10),(2.11) and
(2.12). Then for any 0 < ρ1 < ρ̄, there exists a time T0 such that

0 < ρ1 ≤ ρ(x, t) ≤ C, (x, t) ∈ R × [T0,∞), (2.15)

where C is a constant same as in (2.11). Moreover, for t ≥ T0, the weak solution
becomes a unique strong solution to (1.1)-(1.3), satisfying

ρ − ρ̄ ∈ L∞(T0, t; H1(R)), ρt ∈ L∞(T0, t; L2(R)),
u ∈ L2(T0, t; H2(R)), ut ∈ L2(T0, t; L2(R))

and

sup
x∈R

|ρ − ρ̄| + ‖ρ − ρ̄‖Lp(R) + ‖u‖L2(R) → 0 (2.16)

as t → ∞, where 1 < p ≤ ∞.

In addition, similar to [16], we can obtain some result on the blow-up phenomena
of the solutions when the vacuum states vanish, which will be presented in Section 5.

3. Existence of weak solutions. The key to the proof of Theorem 2.1-2.2 is to
construct smooth approximate solutions satisfying the a priori estimates required
in the L1 stability analysis in [20]. The crucial issue is to obtain lower and upper
bounds of the density, as mentioned in the introduction. To this end, we study the
following system as an approximate system of (1.1)-(1.2).

ρt + (ρu)x = 0, (3.1)
(ρu)t + (ρu2 + P (ρ))x = (με(ρ)ux)x (3.2)

where με(ρ) = μ(ρ) + ερθ, ε > 0, θ ∈ (0, 1/2).
For any fixed M > 0, we will construct the smooth solution of (3.1)-(3.2) in the

truncated region ΩM = {x ∈ R| −M < x < M} with the following initial condition

(ρ, ρu)(x, 0) = (ρ0ε,m0ε), (3.3)

and boundary conditions

u(x, t)|x=±M = 0, (3.4)
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where the initial data ρ0ε,m0ε ∈ C∞(ΩM ) satisfy⎧⎨
⎩

ρ0ε → ρ0 in L1(ΩM ), (ρα−1/2
0ε )x → (ρα−1/2

0 )x in L2(ΩM );
(m0ε)2(ρ0ε)−1 → m2

0ρ
−1
0 , (m0ε)2+δ(ρ0ε)−1−δ

→ (m0)2+δ(ρ0)−1−δ in L1(ΩM )
(3.5)

as ε → 0, where δ > 0 is same as in (2.1), and

ρ0ε ≥ C0ε
1/2α−2θ (3.6)

for some constant C0 independent of ε. The initial data can be regularized in various
ways (for more details, please see [9] and [16]).

To make a priori estimates on the solutions of the approximate system (3.1)-(3.2),
we transform (3.1)-(3.2) into Lagrangian. Set

ξ =
∫ x

−M

ρ(t, y)dy, τ = t,

where x ∈ [−M, M ], t > 0. Then (3.1)-(3.2) become

ρτ + ρ2uξ = 0, (3.7)
uτ + (P (ρ))ξ = (ρμε(ρ)uξ)ξ, (3.8)

where ξ ∈ ΩL = (0,
∫ M

−M
ρ(t, y)dy).

Two cases will be considered respectively in the following.

3.1. Case I: ρ̄ = 0, ρ0 ∈ L1(R). Since
∫ M

−M
ρ(t, y)dy is invariant along with time t,

in this case the volume |ΩL| is uniformly bounded. We denote L =
∫ M

−M
ρ(t, y)dy.

The system (3.7)-(3.8) is implemented with the following initial condition

(ρ, ρu)(ξ, 0) = (ρ0ε,m0ε), (3.9)

and boundary condition

u|ξ=0 = 0, u|ξ=L = 0. (3.10)

Then, we have

Lemma 3.1. (Energy Estimates) Suppose that (ρε, uε) are smooth solutions of
(3.7)-(3.10). Then

1
2

d

dτ

∫
ΩL

u2
εdξ +

1
γ − 1

d

dτ

∫
ΩL

ργ−1
ε dξ +

∫
ΩL

(ρμε(ρ))u2
εξdξ = 0. (3.11)

Transform back into the Eulerian coordinates, we have
1
2

d

dt

∫
ΩM

ρu2
εdx +

1
γ − 1

d

dt

∫
ΩM

ργ
εdx +

∫
ΩM

με(ρ)u2
εxdx = 0. (3.12)

Lemma 3.2. (Entropy Estimates) Suppose that (ρε, uε) are smooth solutions of
(3.7)-(3.10) with ρε > 0. Then∫

ΩL

[u2
ε + (ρα

ε )2ξ + ε2(ρθ
ε)

2
ξ +

1
γ − 1

ργ−1
ε ]dξ +

∫ t

0

∫
ΩL

ρεμε(ρε)(uεξ)2dξdt

+
∫ t

0

∫
ΩL

(ργ+α−2
ε + εργ+θ−2

ε )(ρεξ)2dξdt

≤
∫

ΩL

[u2
0ε + (ρα

0ε)
2
ξ + ε2(ρθ

0ε)
2
ξ +

1
γ − 1

ργ−1
0ε ]dξ. (3.13)
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Transforming into Eulerian coordinates, we have∫
ΩM

(|√ρεuε|2 + [
α

2α − 1
(ρα− 1

2
ε )x]2 + ε2[

θ

2θ − 1
(ρθ− 1

2
ε )x]2 +

1
γ − 1

ργ
ε )dx

+
∫ t

0

∫
ΩM

(με(ρε)|uεx|2 + (ργ+α−3
ε + εργ+θ−3

ε )(ρεx)2)dxdt

≤ C

∫
ΩM

(|√ρ0εu0ε|2 + |μ(ρ0ε)x√
ρ0ε

|2 +
1

γ − 1
ργ
0ε)dx. (3.14)

Proof. It follows from (3.7) that

1
α

(ρα
ε )τ + ρ1+α

ε uεξ = 0.

That is

ρ1+α
ε uεξ = − 1

α
(ρα

ε )τ . (3.15)

Similarly, one has

ρ1+θ
ε uεξ = −1

θ
(ρθ

ε)τ . (3.16)

Denote γε(ρε) = 1
αρα

ε + ε
θ ρθ

ε. It follows from (3.15), (3.16) and (3.8) that

uετ + (P (ρε))ξ + (γε(ρε))τξ = 0. (3.17)

Multiplying (3.17) by (γε(ρε))ξ and integrating the resulting equations over ΩL,
we get ∫

ΩL

uετ (γε(ρε))ξdξ +
∫

ΩL

(P (ρε))ξ(γε(ρε))ξdξ

+
∫

ΩL

(γε(ρε))τξ(γε(ρε))ξdξ = 0. (3.18)

Noticing that ρεγ
′
ε(ρε) = με(ρε), one has∫

ΩL

uετ (γε(ρε))ξdξ = (
∫

ΩL

uε(γε(ρε))ξdξ)τ −
∫

ΩL

uε(γε(ρε))τξdξ

= (
∫

ΩL

uε(γε(ρε))ξdξ)τ +
∫

ΩL

uεξ(γε(ρε))τdξ

= (
∫

ΩL

uε(γε(ρε))ξdξ)τ −
∫

ΩL

γ′
ε(ρε)ρ2

ε(uεξ)2dξ

= (
∫

ΩL

uε(γε(ρε))ξdξ)τ −
∫

ΩL

ρεμε(ρε)(uεξ)2dξ. (3.19)

Substituting (3.18) into (3.19) yields

d

dτ

∫
ΩL

(γε(ρε))2ξdξ + 2
d

dτ

∫
ΩL

uε(γε(ρε))ξdξ

+2
∫

ΩL

P ′(ρε)γ′
ε(ρε)(ρεξ)2dξ = 2

∫
ΩL

ρεμε(ρε)(uεξ)2dξ. (3.20)
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It follows from (3.11) and (3.20) that (multiplying 10 on both sides of (3.11) and
multiplying 2 on both sides of (3.20) and then summing over the resulting equations)

d

dτ
[
∫

ΩL

(2uε + γε(ρε)ξ)2dξ +
∫

ΩL

(u2
ε + (γε(ρε)ξ)2)dξ +

10
γ − 1

∫
ΩL

ργ−1
ε dξ]

+4
∫

ΩL

P ′(ρε)γ′
ε(ρε)(ρεξ)2dξ + 6

∫
ΩL

ρεμε(ρε)(uεξ)2dξ = 0. (3.21)

Noting that

(ρ2α−2
ε + ε2ρ2θ−2

ε )(ρεξ)2 ≤ (γε(ρε)ξ)2 ≤ 2(ρ2α−2
ε + ε2ρ2θ−2

ε )(ρεξ)2, (3.22)

thanks to (3.21), we have

∫
ΩL

[u2
ε + (ρα

ε )2ξ + ε2(ρθ
ε)

2
ξ +

1
γ − 1

ργ−1
ε ]dξ +

∫ t

0

∫
ΩL

ρεμε(ρε)(uεξ)2dξdt

+
∫ t

0

∫
ΩL

(ργ+α−2
ε + εργ+θ−2

ε )(ρεξ)2dξdt

≤ C

∫
ΩL

[u2
0ε + (ρα

0ε)
2
ξ + ε2(ρθ

0ε)
2
ξ +

1
γ − 1

ργ−1
0ε ]dξ.

(3.13) is proved. Transforming into Eulerian, we get (3.14). The proof of the lemma
is finished.

The following lemma is about the upper and lower bound of the density.

Lemma 3.3. There exist an absolutely constant C and a positive constant C(ε)
depending on ε such that

0 < C(ε) ≤ ρε ≤ C. (3.23)

Proof. Note that ∫
ΩL

ρ−1
ε dξ = |ΩM | = 2M.

By continuity of ρε, there exists a ξ0(t) ∈ ΩL such that

ρε(ξ0(t), t) =
|ΩL|
|ΩM | =

|ΩL|
2M

.

Applying (3.13), one has

ρα
ε (ξ, t) = ρα

ε (ξ0(t), t) +
∫ ξ

ξ0(t)

(ρα
ε )ξdξ

≤ (
|ΩL|
2M

)α + CEε(0) + |ΩL|, (3.24)

where Eε(0) is defined by Eε(0) =
∫
ΩL

[u2
0ε +(ρα

0ε)
2
ξ +ε2(ρθ

0ε)
2
ξ + 1

γ−1ργ−1
0ε ]dξ. There-

fore, the density is bounded by an absolute constant. To prove the lower bound of
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the density, we let vε = ρ−1
ε . Then we have

vε(ξ, t) ≤
∫

ΩL

vεdξ +
∫

ΩL

(vε)2|ρεξ|dξ

≤ |ΩM | + C

∫
ΩL

(vε)1+θ|(ρθ
ε)ξ|dξ

≤ 2M + C max
ξ∈ΩL

v
θ+ 1

2
ε ‖(ρθ

ε)ξ‖L2(ΩL)(
∫

ΩL

vε(ξ, t)dξ)
1
2

≤ 2M +
1
2

max
ξ∈ΩL

vε + Cε−
1

1−2θ ‖(ρθ
ε)ξ‖

2
1−2θ

L2(ΩL),

which implies

max
ξ∈ΩL

vε(ξ, t) ≤ C̃(ε), (3.25)

where C̃(ε) is some constant depending on ε. Hence there exists a constant C(ε) > 0
such that ρ(ε) ≥ C(ε). The proof of the lemma is finished.

3.2. Case II: ρ̄ > 0, ρ0 − ρ̄ ∈ L1(R). Multiplying γ
γ−1 (ργ−1 − ρ̄γ−1) on both sides

of (3.1), noting that
γ

γ − 1
uρ((ργ−1 − ρ̄γ−1))x = u(ργ)x, (3.26)

we can rewrite (3.1) as

1
γ − 1

∂

∂t
(ργ − ρ̄γ − γρ̄γ−1(ρ − ρ̄)) +

γ

γ − 1
(uρ(ργ−1 − ρ̄γ−1))x

= u(ργ)x. (3.27)

Let

jγ(f) = fγ − ρ̄γ − γρ̄γ−1(f − ρ̄). (3.28)

The following lemma will be needed later, of which proof is referred to [17] and
we omit it here.

Lemma 3.4. Let f = f(x), x ∈ R be a measurable function. Then jγ(f) ∈ L1(R)
if and only if (f − ρ̄)1{|f−ρ̄|≤δ} ∈ L2(R) and (f − ρ̄)1{|f−ρ̄|≥δ} ∈ Lγ(R) for any
δ ∈ (0, ρ̄), where 1{|f−ρ̄|≤δ} and 1{|f−ρ̄|≥δ} are the characteristic functions of {|f −
ρ̄| ≤ δ} and {|f − ρ̄| ≥ δ} respectively.

Applying Lemma 3.4 and the assumption (2.2), we obtain that jγ(ρ0) ∈ L1(R)
and hence jγ(ρ0ε) ∈ L1(R).

The following energy estimate is usual.

Lemma 3.5. (Energy Estimates) Suppose that (ρε, uε) are smooth solutions of
(3.1)-(3.4). Then

1
2

d

dt

∫
ΩM

ρu2dx +
1

γ − 1
d

dt

∫
ΩM

(ργ
ε − ρ̄γ − γρ̄γ−1(ρε − ρ̄))dx

+
∫

ΩM

με(ρε)u2
εxdx = 0. (3.29)
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Proof. By (3.1), (3.2), it is easy to get

1
2

d

dt

∫
ΩM

ρu2dx +
∫

ΩM

(ργ)xudx = −
∫

ΩM

με(ρ)u2
xdx. (3.30)

Using (3.27), we get (3.29) and the proof of the lemma is finished.

Based on Lemma 3.5, similar to Lemma 3.2, we have

Lemma 3.6. (Entropy Estimates) Suppose that (ρε, uε) are smooth solutions of
(3.1)-(3.4) with ρε > 0. Then∫

ΩM

(|√ρεuε|2 + [
α

2α − 1
(ρα− 1

2
ε )x]2 + ε2[

θ

2θ − 1
(ρθ− 1

2
ε )x]2)dx

+
∫

ΩM

1
γ − 1

(ργ
ε − ρ̄γ

ε − γρ̄γ−1(ρε − ρ̄))dx

+
∫ t

0

∫
ΩM

(με(ρε)|uεx|2 + (ργ+α−3
ε + εργ+θ−3

ε )(ρεx)2)dxdt (3.31)

≤ C

∫
ΩM

(|√ρ0εu0ε|2 + |με(ρ0ε)x√
ρ0ε

|2 +
1

γ − 1
(ργ

0ε − ρ̄γ − γρ̄γ−1(ρ0ε − ρ̄))dx,

Proof. Similar to the proof of (3.2), we get (3.20). Transforming (3.20) into Euler-
ian, we get

d

dt

∫
ΩM

ρ−1
ε (γε(ρε))2xdx + 2

d

dt

∫
ΩM

uε(γε(ρε))xdx

+2
∫

ΩM

ρ−1
ε P ′(ρε)γ′

ε(ρε)(ρεx)2dx = 2
∫

ΩM

μ(ρε)(uεx)2dξ. (3.32)

Multiplying 10 on both sides of (3.29) and multiplying 2 on both sides of (3.32)
and then summing over the resulting equations, we have

d

dt

∫
ΩM

(ρεu
2
ε + ρ−1

ε (γε(ρε)x)2)dx +
10

γ − 1
dt

dt

∫
ΩM

(ργ
ε − ρ̄γ − γρ̄γ−1(ρε − ρ̄))dx

+
d

dt

∫
ΩM

ρε(2uε + ρ−1
ε (γε(ρε))x)2dx

+4
∫

ΩM

ρ−1
ε P ′(ρε)γ′

ε(ρε)(ρεx)2dx + 6
∫

ΩM

με(ρε)(uεx)2dx = 0, (3.33)

which implies (3.32). The proof of the lemma is finished.

Now we can prove the upper and lower bound of the approximate solutions as
follows.

Lemma 3.7. Let γ > 1 and γ ≥ α − 1
2 . There exist an absolutely constant C and

a positive constant C(ε) depending on ε such that

0 < C(ε) ≤ ρε ≤ C. (3.34)

Proof. The approximate solutions satisfy

(ρε)t + (ρεuε)x = 0, x ∈ [−M, M ], (3.35)

which can be rewritten as

(ρε − ρ̄)t + ((ρε − ρ̄)uε)x + (ρ̄uε)x = 0, x ∈ [−M, M ]. (3.36)
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The boundary conditions are imposed as

uε|x=±M = 0.

Thus we have ∫
ΩM

|ρε − ρ̄|dx ≤
∫

R

|ρ0 − ρ̄|dx ≤ C. (3.37)

Now we prove the upper bound of the density. By continuity of ρε, there exist
x1, x̄1 ∈ ΩM such that

ρε(x1, t) =
1

|ΩM |
∫

ΩM

ρεdx

=
1

|ΩM |
∫

ΩM

ρ0ε(x)dx = ρ0ε(x̄1). (3.38)

For δ ∈ (0, ρ̄), if |ρε − ρ̄| ≤ δ, then |ρε| ≤ ρ̄ + δ. If |ρε − ρ̄| ≥ δ, then there exists a
constant C = C(δ) such that

|ρs
ε − ρ̄s| ≤ C|ρε − ρ̄|s, s > 0. (3.39)

In fact, since

|ρs − ρ̄s|
|ρ − ρ̄|s → 1, ρ → ∞,

|ρs − ρ̄s|
|ρ − ρ̄|s → 1, ρ → 0,

we obtain that there exist ρ̄1, ρ̄2 satisfying 0 < ρ̄1 < ρ̄2 < ∞ such that

|ρs
ε − ρ̄s| ≤ 2|ρε − ρ̄|s, ρε ∈ [0, ρ̄1] ∪ [ρ̄2,∞). (3.40)

When ρε ∈ [ρ̄1, ρ̄2], we have

|ρs
ε − ρ̄s| ≤ C|ρε − ρ̄|s (3.41)

for some constant C since |ρε − ρ̄| ≥ δ. (3.40) and (3.41) show that (3.39) holds
true.

For β > 0 which is to be determined later, applying Hölder inequality and the
entropy estimate (3.33), we have the following estimates:

(ρα− 1
2

ε − ρ̄α− 1
2 )2β = (ρα− 1

2
ε (x1, t) − ρ̄α− 1

2 )2β +
∫ x

x1

((ρα− 1
2

ε − ρ̄α− 1
2 )2β)xdx

= (ρα− 1
2

ε (x1, t) − ρ̄α− 1
2 )2β + 2β

∫ x

x1

(ρα− 1
2

ε − ρ̄α− 1
2 )2β−1(ρα− 1

2
ε )xdx

≤ C + 2β(
∫ x

x1

|(ρα− 1
2

ε − ρ̄α− 1
2 )|2(2β−1)dx)

1
2 (

∫ x

x1

[(ρα− 1
2

ε )x]2dx)
1
2

≤ (2β + 1)C +
∫ x

x1

|(ρα− 1
2

ε − ρ̄α− 1
2 )|2(2β−1)[1|{|ρε−ρ̄|< ρ̄

2 } + 1|{|ρε−ρ̄|≥ ρ̄
2 }]dx

≡ (2β + 1)C + I1(t) + I2(t). (3.42)

Here t ∈ [0, T ] is any fixed time. Noting that when |ρε − ρ̄| < ρ̄
2 , that is, ρ̄

2 < |ρε| <
3
2 ρ̄, one has

|ρα− 1
2

ε − ρ̄α− 1
2 | ≤ C|ρε − ρ̄|,
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where C = C(ρ̄). Hence,

I1(t) ≤ C

∫ x

x1

|ρε − ρ̄|2(2β−1)1|{|ρε−ρ̄|< ρ̄
2 }dx. (3.43)

When |ρε − ρ̄| ≥ ρ̄
2 , due to (3.39), one has

|ρα− 1
2

ε − ρ̄α− 1
2 | ≤ C|ρε − ρ̄|α− 1

2 ,

where C = C(ρ̄). Hence,

I2(t) ≤ C

∫ x

x1

|ρε − ρ̄|2(2β−1)(α− 1
2 )1|{|ρε−ρ̄|≥ ρ̄

2 }dx. (3.44)

Choose β such that 2(2β − 1) = 1, i.e. β = 3
4 . Then

I1(t) ≤ C

∫
ΩM

|ρε − ρ̄|dx ≤ C, (3.45)

and

I2(t) ≤ C

∫ x

x1

|ρε − ρ̄|(α− 1
2 )1|{|ρε−ρ̄|≥ ρ̄

2 }dx. (3.46)

Now we estimate I2. Two cases are considered respectively in the following.
I.0 < α − 1

2 ≤ 1.
Noting that yα− 1

2 ≤ Cy if y ≥ ρ̄
2 . Thus

I2(t) ≤ C

∫
ΩM

|ρε − ρ̄|dx ≤ C. (3.47)

II.1 < α − 1
2 ≤ γ

In this case, using the interpolation inequality, one has

I2(t) ≤ C(
∫

ΩM

|ρε − ρ̄|dx)(α− 1
2 )θ(

∫
ΩM

|ρε − ρ̄|γ1|{|ρε−ρ̄|≥ ρ̄
2 }dx)(α− 1

2 )(1−θ)/γ ≤ C,

(3.48)

where
1

α − 1
2

= θ +
1 − θ

γ
.

In the last inequality of (3.48), Lemma 3.4 has been used. It should be noted that
in this case we need that γ ≥ α − 1

2 .
It follows from (3.45), (3.47), (3.48) that

(ρα− 1
2

ε − ρ̄α− 1
2 )2β ≤ C, (3.49)

which implies that

|ρε| ≤ C. (3.50)

The upper bound of the approximate solutions is proved. The proof of lower bound
estimates is similar to Lemma 3.3 and we omit it here.

Based on a priori estimates of Lemma 3.1-Lemma 3.7, applying similar ap-
proaches in [9], [16],[20] and the references therein, we can obtain that for any
T > 0 there exists a unique global smooth solutions of (3.1)-(3.4) satisfying

ρε, ρεx, ρεt, uε, uεx, uεt, uεxx ∈ Cβ, β
2 ([−M, M ] × [0, T ])

for some 0 < β < 1, and ρε ≥ C(ε) > 0 on [−M, M ]×[0, T ]. Moreover, the estimates
of Lemma 3.1-Lemma 3.3 and Lemma 3.5-Lemma 3.7 hold true for {ρε, uε}.
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We are ready to give sketch of proof of Theorem 2.1 and Theorem 2.2.

Sketch of proof of Theorem 2.1. For any fixed M > 0, completely similar to [9],
[16], we can obtain that (up to a subsequence)

ρε → ρ in C([0, T ] × [−M, M ]), (3.51)

(ρα− 1
2

ε )x ⇀ (ρα− 1
2 )x weakly in L2((0, T ) × [−M, M ]), (3.52)

ρα
ε uεx ⇀ Λ weakly in L2((0, T ) × [−M, M ]), (3.53)

as ε → 0, for some functions ρ ∈ C([0, T ]× [−M, M ]) and Λ ∈ L2((0, T )× [−M, M ])
which satisfies ∫ T

0

∫ M

−M

Λϕdxdxt = −
∫ T

0

∫ M

−M

ρα− 1
2
√

ρuϕxdxdt

− 2α

2α − 1

∫ T

0

∫ M

−M

(ρα− 1
2 )x

√
ρuϕdxdt. (3.54)

To get the convergence of the term
√

ρεuε, we apply similar approaches in [9], [16],
[20]. More precisely, we have ρεuε converges strongly in L1((0, T ) × [−M, M ]) and
L2(0, T ; L1+ζ(−M, M)) and almost everywhere to some function m(x, t), where
ζ > 0 is some small positive number. Also, we can prove that

√
ρεuε converges

strongly in L2((0, T )× [−M, M ]) to m√
ρ which is defined to be zero when m = 0 and

there exists a function u(x, t) such that m(x, t) = ρ(x, t)u(x, t). Moreover, we have

ρ ∈ C([−M, M ] × (0, T )), (3.55)

sup
t∈[0,T ]

∫ M

−M

ρdx + max
(x,t)∈[−M,M ]×[0,T ]

ρ ≤ C, (3.56)

sup
t∈[0,T ]

∫ M

−M

(|√ρu|2 + (ρα− 1
2 )2x +

1
γ − 1

ργ)dx

+
∫ T

0

∫ M

−M

([(ρ
γ+α−1

2 )x]2 + Λ(x, t)2)dxdt ≤ C, (3.57)

where C is an absolute constant depending on the initial data.
Using a diagonal procedure, we obtain that the above converges (up to a subse-

quence) remain true for any M > 0 and the existence of weak solutions of (1.1)-(1.3)
can be directly proved. Moreover, (2.6)-(2.9) hold true due to (3.55)-(3.57). The
proof of Theorem 2.1 is finished.

The proof of Theorem 2.2 is completely similar and we omit it here.

4. Asymptotic behavior of weak solutions. In this section, we will study the
asymptotic behavior of the weak solutions. We assume that the solutions are smooth
enough. The rigorous proof can be obtained by using the usual regularization
procedure. It suffices to prove Theorem 2.4, since Theorem 2.3 can be proved in a
completely similar way if we set ρ̄ = 0 in the following proof.

Proof of Theorem 2.4. For any s ≥ 1, since |ρ| ≤ C, we have

|ρs − ρ̄s| ≤ C|ρ − ρ̄|.
Hence ∫

R

|ρs − ρ̄s|dx ≤ C

∫
R

|ρ − ρ̄|dx ≤ C. (4.1)
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Similarly, we have ∫
R

|ρs − ρ̄s|λdx ≤ C

∫
R

|ρ − ρ̄|λdx ≤ C (4.2)

for any λ ≥ 1. Moreover, one has∫
R

|[(ρs − ρ̄s)λ]x|dx = λs

∫
R

|(ρs − ρ̄s)λ−1ρs−1ρx|dx

≤ λs(2α − 1)
2

(
∫

R

(ρs − ρ̄s)2(λ−1)ρ2s+1−2αdx)
1
2 (

∫
R

[(ρα− 1
2 )x]2dx)

1
2 ≤ C.

Combining the fact that (ρs − ρ̄s)λ ∈ L1(R) due to (4.2), we have, for any fixed t,
that

ρs − ρ̄s → 0 (4.3)

as |x| → ∞. By (2.7) (see also (3.14)), it holds that∫ t

0

∫
R

[(ρ
γ+α−1

2 )x]2dxdt ≤ C, (4.4)

where C is an absolute constant depending only on the initial data. Denote b =
γ+α−1

2 . Then ∫ t

0

∫
R

[(ρb)x]2dxdt ≤ C. (4.5)

Choosing s > b + 1, one has

(ρs − ρ̄s)2 =
∫ x

−∞
[(ρs − ρ̄s)2]xdx = 2

∫ x

−∞
(ρs − ρ̄s)(ρs)xdx

= 2s

∫ x

−∞
(ρs − ρ̄s)ρs−1ρxdx =

2s

b

∫ x

−∞
(ρs − ρ̄s)(ρb)xρs−bdx

≤ C‖ρs − ρ̄s‖L2(R)‖(ρb)x‖L2(R).

Consequently,∫ t

0

sup
x∈R

(ρs − ρ̄s)4dt ≤ C sup
t

‖ρs − ρ̄s‖2
L2(R)

∫ t

0

‖(ρb)x‖2
L2(R)dt ≤ C. (4.6)

Moreover, applying (4.2), one has∫ t

0

∫
R

(ρs − ρ̄s)4(ρs − ρ̄s)2ldxdt

≤
∫ t

0

[sup
x∈R

(ρs − ρ̄s)4
∫

R

(ρs − ρ̄s)2ldx]dt

≤ sup
t

∫
R

(ρs − ρ̄s)2ldx

∫ t

0

sup
x∈R

(ρs − ρ̄s)4dt ≤ C, (4.7)

where l ≥ 1 is any real number. Hence∫ t

0

∫
R

(ρs − ρ̄s)4+2ldxdt ≤ C. (4.8)
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Denote f(t) =
∫

R
(ρs − ρ̄s)4+2ldx. Then f ∈ L1(0,∞) ∩ L∞(0,∞). Furthermore,

direct calculations show that
d

dt
f(t) = (4 + 2l)

∫
R

(ρs − ρ̄s)3+2lsρs−1ρtdx

= −(4 + 2l)s
∫

R

(ρs − ρ̄s)3+2lρs−1(ρu)xdx

= (4 + 2l)(3 + 2l)s
∫

R

(ρs − ρ̄s)2+2l(ρs)xρs−1ρudx

+(4 + 2l)s
∫

R

(ρs − ρ̄s)3+2l(s − 1)ρs−2ρxρudx

=
(4 + 2l)s2(3 + 2l)

b

∫
R

(ρs − ρ̄s)2+2l(ρb)xρ2s−b−1udx

+
(4 + 2l)s(s − 1)

b

∫
R

(ρs − ρ̄s)3+2lρs−b(ρb)xudx

≤ C‖√ρu‖L2(R)‖(ρb)x‖L2(R). (4.9)

Hence
d

dt
f ∈ L2(0,∞). (4.10)

Combining the obtained fact that f ∈ L1(0,∞) ∩ L∞(0,∞), one has

f(t) → 0, t → ∞. (4.11)

Letting m ≥ 1 be any real number to be determined later, we have

|(ρs − ρ̄s)m| = |
∫ x

−∞
[(ρs − ρ̄s)m]xdx| = |m

∫ x

−∞
(ρs − ρ̄s)m−1(ρs)xdx|

=
2ms

2α − 1
|
∫ x

−∞
(ρs − ρ̄s)m−1(ρα− 1

2 )xρs−α− 1
2 dx|

≤ C‖(ρα− 1
2 )x‖L2(R)|

∫ x

−∞
(ρs − ρ̄s)2(m−1)dx| 12 . (4.12)

Choose 2(m − 1) = 4 + 2l to get

sup
x∈R

|(ρs − ρ̄s)m| ≤ Cf
1
2 (t) → 0 (4.13)

as t → ∞. Therefore, limt→∞ supx |ρs−ρ̄s| = 0. Now we prove that limt→∞ supx |ρ−
ρ̄| = 0. Using the fact that

|ρs − ρ̄s|
|ρ − ρ̄|s → 1, ρ → 0,

we have that there exists a δ > 0 such that

|ρ − ρ̄|s1{|ρ|≤δ} ≤ 2|ρs − ρ̄s|1{|ρ|≤δ}. (4.14)

Moreover, when |ρ| ≥ δ, we have

|ρ − ρ̄|1{|ρ|≥δ} ≤ sC(δ, ρ̄)|ρs − ρ̄s|1{|ρ|≥δ}. (4.15)

It follows from (4.14) and(4.15) that

|ρ − ρ̄|s = |ρ − ρ̄|s1{|ρ|≤δ} + |ρ − ρ̄|s1{|ρ|≥δ}
≤ 2|ρs − ρ̄s|1{|ρ|≤δ} + ss[C(δ, ρ̄)]s|ρs − ρ̄s|s1{|ρ|≥δ}.
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Therefore, we have

sup
x∈R

|ρ − ρ̄|s ≤ 2 sup
x∈R

|ρs − ρ̄s|1{|ρ|≤δ} + C(s, δ, ρ̄) sup
x∈R

|ρs − ρ̄s|s1{|ρ|≥δ} → 0,

as t → ∞, which implies that limt→∞ supx |ρ − ρ̄| = 0. The proof of the lemma is
finished.

5. Vanishing of vacuum states and blow-up phenomena. In this subsection,
we focus on the case ρ̄ > 0. We first give a sketch of proof of Theorem 2.5 and then
give some remarks on the blow-up phenomena of the solutions when the vacuum
states vanish. These results are similar to those in [16] in which the initial-boundary
value problem and periodic problem are studied.

Sketch of proof of Theorem 2.5. From Theorem 2.2, it is easy to deduce that for
any 0 < ρ1 < ρ̄, there exists a time T0 > 0 such that

0 < ρ1 ≤ ρ(x, t) ≤ C, (x, t) ∈ R × [T0,∞). (5.1)

Therefore, for t ≥ T0, the density is bounded away from the zero and the vacuum
states vanish. Using estimates of (2.12) and standard linear parabolic theory, we
can obtain that for t ≥ T0, the weak solution becomes a unique strong solution to
(1.1)-(1.3), satisfying{

ρ − ρ̄ ∈ L∞(T0, t; H1(R)), ρt ∈ L∞(T0, t; L2(R)),
u ∈ L2(T0, t; H2(R)), ut ∈ L2(T0, t; L2(R)). (5.2)

The detail of the proof is referred to [16] and we omit it here. Furthermore, the
asymptotic behaviors limt→∞ supx∈R |ρ − ρ̄| = 0 and limt→∞ ‖ρ − ρ̄‖Lp = 0 for
1 < p ≤ ∞ follow directly from (2.14) and the estimate ‖ρ − ρ̄‖L1 ≤ C. The
asymptotic behavior on the velocity limt→∞ ‖u‖L2 = 0 follows from the standard
arguments, see [23] for instance.

It should be remarked that we also have finite blow-up phenomena for the weak
solutions of the Cauchy problem (1.1)-(1.3) at the time when the vacuum states
vanish if the density contains vacuum states at least at one point. These are similar
as in [16] in which the 1D initial-boundary value problem and periodic problem
are investigated. To be more precise, we note that, if the density contains vacuum
states at least at one point, due to the facts that ρ ∈ C(R × [0, T ]) for any T > 0
and limt→∞ supx∈R |ρ − ρ̄| = 0, there exists some critical time T1 ∈ [0, T0) with
T0 > 0 given by (5.1) and a nonempty subset Ω0 ⊂ R such that⎧⎨

⎩
ρ(x, T1) = 0, ∀x ∈ Ω0,
ρ(x, T1) > 0, ∀x ∈ R\Ω0,
ρ(x, t) > 0, ∀(x, t) ∈ R × (T1, T0].

(5.3)

From (5.2), it is easy to know that for any δ > 0,∫ T0

T1+δ

‖ux‖L∞ds < ∞.

However, one has the following blow-up result of the solution.

Theorem 5.1. Let (ρ, u) be any global weak solution, which contains vacuum states
at least at one point for some time, to the Cauchy problem (1.1)-(1.2) satisfying
(2.11)-(2.12) with ρ̄ > 0. Let T0 > 0 and T1 ∈ [0, T0) be the time such that (5.1)
and (5.3) holds respectively.
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Then, the solution (ρ, u) blows up as vacuum states vanish in the following sense:
for any η > 0, it holds

lim
t→T+

1

∫ T1+η

t

‖ux‖L∞ds = ∞. (5.4)

On the other hand, if there exists some T2 ∈ (0, T0) such that the weak solution
(ρ, u) satisfies

‖u‖L1(0,T2;W 1,∞(R)) < ∞,

then, there is a time T3 ∈ [T2, T0) such that

lim
t→T−

3

∫ t

0

‖ux‖L∞ds = ∞. (5.5)

The proof of Theorem 5.1 is completely similar to that in [16]. For completeness,
we just give a sketch of proof here.

Proof. It suffices to prove (5.4) since the proof of (5.5) is similar. If (5.4) is not
true, then there exists a fixed constant η > 0, such that∫ T1+η

T1

‖ux‖L∞ds < ∞. (5.6)

Thanks to (5.2) and (5.6), the particle path x(s) = X(s; t, x) through (x, t) ∈
R × (T1, T1 + η] can be well defined by solving{

∂
∂sX(s; t, x) = u(X(s; t, x), s), T1 ≤ s < T1 + η,
X(t; t, x) = x, T1 ≤ t < T1 + η, x ∈ R.

(5.7)

Then by the continuity equation (1.1), one has

ρ(x, t) = ρ(X(T1; t, x), T1) exp{−
∫ t

T1

uy(y, s)|y=X(s;t,x)ds} (5.8)

for any (x, t) ∈ R × (T1, T1 + η]. It follows from (5.6) and (5.7) that for x1 ∈ Ω0

defined by (5.3), which satisfies ρ(x1, T1) = 0, there exists a trajectory x = x1(t) ∈ R
for t ∈ [T1, T1 + η] so that X(T1; t, x1(t)) = x1. Thus, due to (5.8) and (5.6), one
has that ρ(x1(t), t) = 0 for all t ∈ (T1, T1 + η], which is a contradiction to (5.3).
(5.4) is then proved and the proof of the theorem is finished.
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