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Abstract

In this paper, we prove the global existence and asymptotic behavior, as time
tends to infinity, of solutions in H? (i = 1,2) to the initial boundary value problem
of the compressible Navier-Stokes equations of one-dimensional motion of a viscous
heat conducting gas in a bounded region with a non-autonomous external force and
a heat source. Some new ideas and more delicate estimates are used to prove these
results.
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1 Introduction

This paper is concerned with global existence and asymptotic behavior to the equations of
one-dimensional motion of a viscous heat conducting gas in a bounded region with a non-
autonomous external force and a heat source. The Lagrangian form of the conservation
laws of mass, momentum, and energy for a one-dimensional gas is (see, e.g., [1, 29, 30])

Uy — vy =0, (1.1)
Ut—o-x—i_f(/()CCUdy?t)u (12)
et = —Qu + 0oV, + g(/oz udy, t). (1.3)

Here subscripts indicate partial differentiations, u, v, o, e, ) and 6 denote specific volume,
velocity, stress, internal energy, heat flux and absolute temperature, respectively. f,g
denote the non-autonomous external force and the heat source, respectively.

For simplicity, we only consider the polytropic viscous ideal gas, i.e.,

0 0
e=cy, o= —p—i—,uv—x, Q=-k=, p=R— (1.4)
u u u

!This work will appear in Math. Meth. Appl. Sci.



with suitable positive constants c¢,, R, i and k.

We consider problem (1.1)—(1.3) in the region {0 < z < 1,¢ > 0} under initial condi-
tions

u(z,0) = up(x),v(x,0) = vo(x),0(x,0) = Oy(z) on [0,1] (1.5)

and the boundary conditions of the form
v(0,t) =v(1,t) = 0,Q(0,t) = Q(1,t) =0, Vt>0. (1.6)

Throughout the paper we suppose:

1
/ uo(z)dz = Ty, (1.7)
0
0<Cit<wup(z)<Cy, VO<z<1 (1.8)

where Cj is a positive constant. Furthermore, we assume that for any u(z,-) € L>*(R*, L'(0, 1])
with £(z, 1) = [Z u(y, t)dy and f(z,1) = [ (& uly, $)dy, s)ds) =

J3 f(&(x, s), s)ds, the non-autonomous external force f = f(&(x,t),t) and heat source

g = g(&(x,t),t) satisfy the following conditions

f(&(z,-),-) € L®(R", L*[0,1]) N L*(R*, L*>[0,1]) n L*(R*, L'[0, 1]),

fx,-) € LNRYL2[0,1)), fe(é(x,-), ) € LR, L7[0,1]),

felé(w,),-) € L*(R*, L*[0,1]), (1.9)
g(&:t) > 0,9(&(x,-),-) € L¥(RY, L?(0,1]) N L*(R*, L2[0, 1]) N LY (R, L™[0, 1]),
ge(€(x,-),-) € L*(RT, L*[0,1]). (1.10)

Before stating and proving our results, let us first recall the related results in the
literature.

For the case of ideal gas (1.4) or real gas with f = 0,9 = 0, the global existence
and asymptotic of smooth (generalized) solutions to the system have been investigated
by many authors, e.g., see [2-7, 9-15, 24] on the initial boundary value problems and
the Cauchy problem. Moreover, Zheng and Qin [28] obtained the existence of maximal
attractor for the problem (1.1)-(1.3) and (1.5),(1.6) for f = 0,9 = 0. Qin et al [24]
established the global existence and large-time behavior of solutions in H'(i = 2,4) for
the Cauchy problem. Qin [19] established the existence and exponential stability of a Cy-
semigroup in the subspace of H* x H* x H'(i = 1,2) for a viscous ideal gas in a bounded
domain in R and in a bounded annular domain G,, = {x € R"|0 < a < |z| < b}(n =2, 3)
in R" for a viscous spherically symmetric ideal gas. This result improved those in [13]
for an ideal gas and in [3] for the viscous spherically symmetric ideal gas in G,,. As it is
known, the constitutive equations of a real gas are well approximated within moderate
ranges of u and 6 by the model of an ideal gas. However, under very high temperatures,
it becomes inadequate.

For f # 0,9 = 0, when the temperature 6 is a constant, Qin and Zhao [23] have proved
the global existence and asymptotic behavior of solutions in H?, Piotr Boguslaw Mucha [8]



obtained the exponential stability under various boundary conditions. Shigemori Yanagi
[26] have proved the existence of classical solutions. Zhang and Fang [27] also obtained
the global existence, asymptotic behavior, exponential stability with the free boundary
condition for the isentropic compressible Navier-Stokes equations. Moreover, we would
like to refer the works in [16-30] for the related models.

The methods used in this paper come from those in Qin [16-24], in which the global
existence, asymptotic behavior, exponential stability and the existence of universal at-
tractor of solutions to equations for a nonlinear one-dimensional viscous heat-conducting
real gas were proved.

The notation in this paper will be as follows:

LP1 <5< 400, W™ me N, H = W2 H} =W, denote the usual (Sobolev) spaces
on (0, 1). In addition, [|-||z denotes the norm in the space B; we also put ||-|| = ||-||zz. We
denote by C*(I, B), k € Ny, the space of k-times continuously differentiable functions from
I C R into a Banach space B, and likewise by LP(I, B),1 < p < 400 the corresponding
Lebesgue spaces. Subscripts ¢ and x denote the (partial) derivatives with respect to ¢t and
x, respectively. We use C;(i = 1,2) to denote the generic positive constant depending
only on the H*-norm (i = 1,2) of the initial data and min,ej 1 6o(), minge 1] uo(x).

We now in a position to state our main theorems.

Theorem 1.1 Assume conditions (1.5)-(1.10) hold. Then for any (ug,vo,0y) € H'[0, 1] x
H[0,1] x H'[0,1] with 6y(x) > 0 for any x € [0,1], and that the compatibility conditions
hold. Then problem (1.1)-(1.4) admits a unique, uniformly bounded, global-in-time solu-
tion (u,v,0) € H'0,1] x H}[0,1] x H'[0,1] such that

0< Oyt <ufw,t) <O, Y(x,t) €[0,1] x [0, +00), (1.11)
t
w7 + o @)l + 10117 +/0 (el + Joa* + floel® +
[vzal* + 110217 + 16617 + 1022]1) (s)ds < C1, ¥t > 0. (1.12)
Moreover, as t — +o00, we have

lu(t) = allar — 0, [lo(@) [ — 0,
16(t) = 0llr — 0,[|6(2) = 0][e — 0 (1.13)

where @ = [y u(x,t)de = [y uo(z)dz,d = [} O(x,t)dx.
Theorem 1.2 Assume conditions (1.5)-(1.10) hold. Then for any (ug,vo,6y) € H?[0, 1] x
HZ[0,1] x H?[0,1], problem (1.1)-(1.4) admits a unique, uniformly bounded, global-in-time
solution (u,v,0) € H?[0,1] x HZ[0,1] x H?[0,1] such that
t

a7 + o) [72 + 10(t) |17 +/0 (luallzn + llvellze + llvellz +

1021772 + 110172 ) (s)ds < Cy, ¥t > 0. (1.14)
Moreover, as t — +o00, we have

u(t) = @l gz — 0, lv(@) ||z — 0, |6(t) — 0|2 — O (1.15)

where @ = [y u(x,t)de = [y uo(z)dx,d = [} O(x,t)dx.
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We organize our present paper as follows.We will complete the proofs of Theorem 1.1
in Section 2 and Section 3. In Section 4 and Section 5 we will complete the proof of
Theorem 1.2.

2 Global Existence in H!

The proof of global existence of a solution in Theorem 1.1 is based on a priori estimates
that can be used to continue a local solution globally in time. The existence and unique-
ness of local solutions (with positive u and ) can be obtained by the linearization of the
problem (1.1)-(1.6), and by use of the Banach contraction mapping theorem (cf. [24]). In
this section, we assume that assumptions in Theorem 1.1 hold.

We begin with the following lemma.

Lemma 2.1 The following estimates hold,
O(x,t) >0, Y(x,t) €0,1] x [0,00), (2.1)
1 1
/ u(z, t)de = / uo(z)dr = 1wy, Vt >0, (2.2)
0 0

1
/ (v2+cv(8—log9 — 1)+ R(u —logu — 1)>dx+
0

t ol 2 f
LGt

2
52 + %)dxds < e, Vt>0. (2.3)
Proof Inequality (2.1) is a consequence of the generalized maximum principle applied to
the following equation, which is equivalent to (1.3),

0,.  Rov, 2 z
ey — k[z]m e Py g(/o udy, t) (2.4)

u u

by considering the positivity of 6y and ¢ in (1.10).

Integrating (1.1) with respect to x and ¢, by conditions (1.6)-(1.7), we can easily get
(2.2).

Multiplying (1.2) by v, combining with (1.3) and integrating the resultant over [0, 1],
we can get

1 1 0,
/O (00, + o) dx = /0 (020 + 00, + k(=) + fv + g)da. (2.5)
That is,
d [l v? L6, 1
f/ (CUQ—l——)dx:/ (k(—)z+(av)w—|—fv+g)dx:/ (fv + g)da. (2.6)
dt Jo 2 0 u 0
Multiplying (1.3) by =1 and integrating the resultant over [0, 1], we can get
Vb, ot 0,01 ov, g
/0 cygdx—/o [k()ag + 757 + Fdr. (2.7)
That is,
D etog 0+ Rloguda = [ (k22 + u2 4 9)q 2.8
= | (e logb + Rlogu)de = [ (k-2 4 pot + Sd. (28)
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Adding (2.6) and (2.8) up, we get

02 02 2
dt/ cv9—|- —cvloge Rlogu) d:v—l—/ Tf—l-uf:;—i-%)d
:/0 (fv —l—g)d:v. (2.9)
Integrating (2.9) over [0,¢] x [0,1], and using (2.2) and estimates
0—1—logd > 0, for >0, (2.10)
u—1—logu > 0, for u>0, (2.11)
we have
11
/ [20% + (0 — log§ — 1) + R(u — logu — 1)|dz
0
1 k92 pw g
/ / u92 g]dmds
< +/ / (fv—l—g)d:rds
0 Jo
1t 1 ) t
<Gt [ [ Il +Dds + [ lgllziouds
1 gt
< Cit+ 5 [ Il llvl®ds. (2.12)

Applying the Gronwall inequality to (2.12) and using (1.9) yields the desired estimate
(2.3). O

The next lemma was given when f = g = 0 in [2, 14-17] for a viscous heat-conducting
real gas and in [6] for a viscous polytropic ideal gas.

Lemma 2.2 For any t > 0, there exists one point ©1 = x1(t) € [0,1] such that the
solution u(x,t) to problem (1.1)-(1.6) possesses the following expression:

u(z,t) = D(z,t)Z(t) [1 + f /Ot Dé}i’)?(s)dsl (2.13)

where

1 T T 1 1 T
D(xz,t) = wp(z) exp{ﬁ [/x . vdy—/o vody—l—u:/o (uo/o vody)dx]

-I—ulo /t /1 v(z, s) /S f(/om u(z,7)dz, T)drdxds
_/ / / z,8)dz s)dsdy} (2.14)

Z(t) = exp[ MUO// v? + RO) dmds]. (2.15)



Proof Let N .
h(z,t) = / vol(y)dy + / o, s)ds. (2.16)
0 0
Then we infer from (1.1)-(1.2)

t t T
hy = vo(x)+/ o.(x,8)ds = v(z,t) —/ f(/ u(y, 7)dy, T)ds, (2.17)
0 0o o

hy = o(z,t)=—-p+ ,u%x. (2.18)

By (1.1) and (2.18), we get
(uh); = uth + uhy = v.h — up + pv,. (2.19)
Integrating (2.19) over [0, 1] x [0,¢], by (1.6), we can conclude
1 1 t 1
/ uhdr = / ughodx —i—/ / (vh — up + pv,)dxds
0 0 0 Jo

/01 uphodx — /Ot /01[1)2 + up — v/os fdr)(x, s)dxzds. (2.20)

Applying the mean value theorem to (2.20) and using (2.2), we derive that there exists
one point z; = x1(t) € [0, 1] such that

/0 “uhdz = (1), 1) /0 () da = (s (1), ) (2.21)

with @5 = [ uo(x)dx. Thus it follows from (2.16) and (2.21) that

:El(t)

/0 "o(a1(t), 5)ds = Bz (£), ) — [ vty

0
1

1 Il(t)
= — [ bt tyue,tyde — [ vo(y)dy
0

:1[/ wo(z)ho(z dx—// v? + up)(z, s)dzds

—|—/ / (z,s / /Ox u(z, 7)dz, T)drdxds] — /0061(15) vo(y)dy. (2.22)

By (1.1) and (1.4), we can rewrite (1.2) as

v = plloguly = —(—)a + . (2.23)

Integrating (2.23) over [z1(t), x| x [0,t], we can infer

x t
plog u— R/ —ds = ,uloguo—i—/ o(xq(t ds+/ —Uo)dy—/ ()/ fdsdy. (2.24)
x1(t) JO



Inserting (2.22) in (2.24), we obtain

t g 1 st gt 1 /1
,ulogu—R/ fds:uloguo—:/ / (02+up)dxds+u:/ ughodx
0 /0

+u0/ / / / u(z,7)dz T)deSde—i—/ v, t)dy

—/ Uo(y)dy—/ / fdsdy. (2.25)
0 z1(t) JO
With the definitions of D(z,t) and Z(t), we infer from (2.25) that
Z(t) 1 R t0(x,s)
= — ds|. 2.26
B(z,t)  u(x,t) eXp[u/o u(zx, s) d (2.26)

Multiplying (2.26) by Rf/u, and integrating the result with respect to t, we have

R t0(z,s) o = R t0(x,s)Z(s) .
eXp[,u/ou(x,s)d] 1+,LL/O D(z,s) d

which along with (2.26) gives (2.13). O

Lemma 2.3

0<Ct <wu(w,t) <Oy, Y(z,t) €]0,1] x [0, +00). (2.27)
Proof Let
M,(t) = =
(t) = mrél[%)ﬁu(x t), my(t) = xlél[(l)rhu@? t),
My(t) = 0 t) = O(x,1).
(t) = max 0(z,1), mo(t) = min 0(x,1)

It follows from (2.3) and the convexity of the function — logy that

1 1 1
/ de—log/ 9d$—1§/(9—10g9—1)dx§01
0 0 0

which implies that there exist a point b(t) € [0, 1] and two positive constants ry, ry such
that )
0<r < / B(x, t)dx = O(b(t),1) < 7 (2.28)
0

with 71,79 being two positive roots of the equation y —logy — 1 = C}.
By Young’s inequality, Holder’s inequality, (1.7), (1.9) and Lemma 2.1, we have

T T 1 1 T
/ vdy—/ vody + :/ (uo/ vody)dx
o1 0 o Jo 0

< l[vllzro,) + 2llvoll 1oy < Ch, (2.29)
/zl(t)/ / u(z,s)dz s)dsdy’ < | fllzrrt prpy) < Ch, (2.30)
T t ~

:/ / v(x,s)/ f(/ w(z, 7)dz, 7)drdzds gcl/ oz, ||| f(z, 5)||ds

Up Jo Jo 0 0 0
t .

< cl/ 1f(z, s)||ds < Ch. (2.31)

0



Thus we easily deduce from Lemmas 2.1-2.2, (2.28)-(2.30) that
0<C;t < D(x,t) <Cy, Y(x,t) €10,1] x [0, +00). (2.32)

On the other hand, we readily infer from (2.3), (2.28) that for 0 < s <,

t 1 t 1
Rri(t —s) < R/ / Odxdr < / / (v? + RO)(x, 7)dzdT
s JO s JO

§/:[||v||2+/01 Rodz)()dr
< (eo + Rry)(t — s)

which, combined with (2.15), implies that for any 0 < s < ¢,

1 st o/l
Crle =9 < Z()Z71(s) = exp [—/ / (v + R@)davds]
s JO

Hlo

< Cremut=9) (2.33)

with a; = £ and a, = 2fiteo
Huo Hpuo

We have from (2.28)

@ 192 5l .

102 (2, 1) = 0"2(b(t),8)] < C| | 67?0,dx| < C(/ ”;dx> (/ uf*dzx)?
b(t) 0 u 0

< CVE)ME()
where V(t) = [§ %dm satisfies [;° V(s)ds < 400, by (2.3) in Lemma 2.1, which gives
Cit— CLV ()M, (t) < 0(x,t) < CL + CV(t) M, (t). (2.34)

Thus we conclude from Lemma 2.2 and (2.28)-(2.34)

w(z,t) = D(x,1) [Z(t)+f /Ot(e(x,S)D—l(x,sm(t)z—l(s)ds}
< [e—a1t+ / t(l+V(S)Mu(s))e_“1(t_5)ds}
< Ci+C /Ot M,(s)V(s)ds

whence

Myft) £ Cr+Cy [ My()V (s)ds
which, by using Gronwall’s inequality and (2.3), implies
M,(t) < Ch. (2.35)
So, from (2.34)-(2.35),

Cit—CV(t) <Oz, t) < C,+ CLVA(1). (2.36)
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Similarly, noting that as t — +oo,

¢ t/2 t
/ V(s)e 2t9)ds < e"”tﬂ/ V(s)ds+ [ V(s)ds — 0,
0 0

t/2

we infer from (2.31)-(2.36) and Lemma 2.2 that there exists a large time t, > 0 such that
as t > ty, Vo € [0, 1],

u(z,t) = D(z,t)

Z(t) + f / oD \(a, s)Z(t)Z_l(s)ds]
> cyl{emﬂ—%jﬁical—-cavxs)yzae@@ds]
> C&l—CH%rV@kz”“SMsz(ﬂl)l. (2.37)
Noting that D(z,t) > 1,Z(t) > 1 and 6(z,t) > 0, we infer from Lemma 2.2 that
u(z,t) > D(x,t)Z(t) > Cyle ™ > Oy te ™2 Y(x,t) € [0,1] x [0, 1]

which with (2.37) and (2.35) gives (2.27). O

Corollary 2.1 There holds that for any t > 0,

t
[ 10w < O (2.33)

Proof By Lemmas 2.1-2.4, we can derive
t 9 t 1 9
Lo Eeonds < [ ([ loaldr)?ds

t 1l g2 1
< / / —xdaz/ Odxds < C.
0oJo 6 0

Lemma 2.4 The following estimate holds
t
10N + 1o ()| zs0,y +/0 (62117 + llvve ) (s)ds < G, ¥t > 0. (2.39)

Proof Multiplying (2.5) by ¢,0 + %, and integrating the resulting equation by parts, we
arrive at

1d v? 19?2 v2?
S0+ L / koot 4 202y
g lcf t 5 I7+ | (ke ® + p—F)de
1 N CpUUL 0, 0,0, v?
= /0 [cvpvﬁx +pUtv, — p— k + (vf +g)(c,f + 5) dr. (2.40)



Integrating (2.40) over [0,t], by Lemma 2.3 and Young’s inequality, we can obtain

v? t
|c,0 + 5H2 +/O (lvvell® + [162]1%)(s)ds

t rl
< | [ [ Upoi6al + fovsl) + [ousbel + 10651+ 0]+ 98] + [0 )dads
t t
< [ 10s)Pds + C [ ol + 1001 + AP + llglhceto (IOl o)) ds

t
+ [P0l o + 017 (s)ds. (2.41)

Thus, by (1.7)-(1.9) and Corollary 2.1, for £ > 0 small enough,
t
1O + llo ()l a0,y +/0 102 (s)||*ds
t
<G+ Cl/o llvvall® + 101710l Zoe 0.1 + 1 [ Zoeo 0l 200 1] (5)ds. (2.42)

Multiplying (1.2) by v3, and integrating it over [0, 1], we can conclude

4 1U—4d —/1(32 (RQ— =)+ fo*)d (2.43)
dt Jo 40T Jo U T v '

Integrating (2.43) over [0,¢] and by Young’s inequality, we can get
t t 1
[l + [ vl (s)ds < Cr+Cr [ [ (00%0] + |fo?)dads
<o+l 2(s)ds + Cy [ [llo]2 0]
< Gty [ lvvel(s)ds + Cr | [l[vllZepy 9]
H e pllvlzap,ay + 10]17)(s)ds

whence
t t
lo(t) [ 740, +/0 love||*(s)ds < Cy + 01/0 [0llZe0 0,101 + 111 2o o,y 10l 2spo, 1) () s
(2.44)
Multiplying (2.44) by a large constant and adding it to (2.42) yields
t
1O + o)l 7a0, +/0 (11021 + [lovz %) (s)ds
t
<Ci+ 01/0 [1ollZeo 0,1 + I zoeo, (1011 + [0l 7410,17)ds. (2.45)

Applying the Gronwall inequality to (2.45), and using Corollary 2.1, (1.7) and the follow-
ing estimates,

t
|11 s

IA

C [AFNLD+ 112 ds < € [ AUF12 + 141
t
C [+ 157 < 0o,
[ gll~onds < € [ ol gl +alds < € [ (gl + 1)

t
0
t
¢ [ (gl + lgel) < €.

IN

IN
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we can conclude (2.39). O

Lemma 2.5 The following estimates holds

t 1
| ()2 +/ / OuZdrds < Cy, Yt > 0. (2.46)
0 Jo
Proof By (1.2), we get
(v - uu) ~ R — —RZE 4. (2.47)
u /)y u u

Multiplying (2.47) by v — u%* and integrating over [0, 1] x [0,%], by Lemmas 2.1-2.4 and
Corollary 2.1, we obtain

1 Uy y [P [1 20
§||v—u I +/O/OuRu3da:ds
T CATE /t/1<%91} ~ry - )
= Slvo—p—=I" + B +(f =R ) =ty ) drds
t 1 t
< 01+01/ / o( 5u2+C(5)02)da:ds+Cl/ (162117 + |[v]|?) dads
+€//9u2dwds+(] // ;dxds—l—// (v — p—)dxds
< Cl+015/ / Huxdxds%—C’l/ HUHLOO[OH/ Odxds
0 JO 0 ’ 0

b2 '
v [ G v edads + 0 [P + olPds
t
e sup [lua(s)]| [ 1 l1eods
0<s<t

< O+ Ce / Ouldrds + ¢ sup [|ug(s)|
0

0<s<t

which with (2.2) yields

sup |lug(s)|)* < Cy +C’15/ / Oudrds + ¢ sup. [l (5)]|2. (2.48)
0<s<t 0<s<
Thus taking € > 0 sufficiently small in (2.48) gives (2.46). O
Lemma 2.6 The following estimates hold,
t
(0|2 +/ oa(s)[|2ds < Cy, ¥t >0, (2.49)
0

t
0w + [ (ol + o) (s)ds < Co(1+ sup 66z ), ¥ > 0. (2:50)
0 0<s<t

11



Proof Multiplying (1.2) by v, v,, and v, respectively, and then integrating the resultants

over [0, 1] x

VAN

IN

<

<

[0,¢], using Lemmas 2.1-2.5 and Corollary 2.1, we deduce

) t rl g2
lo(t)]] —I—2,u/ / —~dzds
0oJo w

t o1 0, Ou,
<O+ Cl/ / (—-RZ% 4+ RZY  fo)dads
0 JO u u

t 1 1
< Co [ IO+ 0l + [ Oude 4 loleggyy [ O+ [11]%)ds
<, (251)

1“% t ||2 —I—u/t/l @dxds

*“001”2"‘/ / ( — )V + Iuvxzzgvm —fvm>d:vds
c +01/0 /O <|vxuxvm| + |R(a)xvm| + |fvm|>dxds
Coote [ owalPds +Co [ (oalmposlusl+ 16212
=020l + 1712 s

t t
[ oaelds + Co [ (ol el )ds + C:(1 + sup [6(5)]1<)
0 0 0<s<t

t t
2 [ fvas(®)Pds + Cu [ llowlds +C1(1+ sup [10(5)]|~01)
0 0 0<s<t

i.e., for sufficiently small € > 0,

and

t
||vx(t)||2+/ [vaa ()| *ds < Cy(1+ sup [0(s)lzfo,n) (2.52)
0 0<s<t

2 ! 2
o + [ lu(s)]ds
t
< Cot o [ (el + 1P + s l3) ()

t
< Cut o [ (100l 4 100 + ol |72 + [1£]%)ds

t 1
<Ci+Cy [ [sup Bl [ ulde+ 16,7 + I1£]%)ds
0 0<s<t 0

t 3/4 t 1/4
O ([ el %ds) ([ oaalds)
0 0
t /2
< (1 s 105) + s el ([ enlas) + e [ welias)
0<s<t 0<s<t 0

< Cy(1+ sup 10~ ) + sup p Il

0<s<t

12



which along with (2.52) yields estimate (2.49). Here we have used the following interpo-
lation inequalities,

oz ()| o) < Clloa I s ()2,
loz(@)l|7s < CllvaONP 2oz ()12 + Cllos ) < Clloa 1P lvaa(OII?,

1
Uy :/ vydr = 0.
0

Lemma 2.7 The following estimates hold
t 2
1601 + [ 1102ePds < 01<1+ sup ||9(s)||Lw> L V>0, (2.53)
0 0<s<t

Proof Multiplying (1.3) by 6, integrating the resulting equation over [0, 1] x [0, ¢], we get

1 Lo
fch@IH2+/ / k—"2dzds
2 0oJo u
1 t 1 t 1
- fcv||90x||2+/ / I{;eluxemdxds—/ / (ovy + §)0rr)dads
2 0 Jo u? 0 Jo
t t 1
< 01+5/ ||9m|]2ds+01/ / (022 + 0202 + v} + g?)dads.
0 0 Jo
That is, for small € > 0,
t
1681 + [ 11022 (s) ds
t
C o [ (08Bl + 1802 + e ) ()

t t
+Cy sup [0() e [ ua(s)lPds + [ lglds
0<s<t 0 0

IN

IN

1 ft t
Ci(1+ sup HH(S)HLw)Q‘%EijC Hﬁxx(S)szs‘%(71jﬁ 162 ()1 (et |* + lluaI*)(5)ds

0<s<t

t t
+C1 [ Noaa(s)]Pds + C1 [ loa(s)]%ds

t 1 t
Ci(1+ sup [10()[12)2 4+ C1 [ vwa(s)lPds + 5 [ 110sa(s)]ds
0 0

0<s<t

IN

t t
+C1sup (gl + [ual?) [ 16:()|2ds + Cosup [[oa())* [ [lva(s)]ds
0<s<t 0 0<s<t 0

Ci(1+ sup [10(s)]lzp0,1)*.
0<s<t

IN

13



Lemma 2.8 The following estimates hold

t
162 (O1* + lloa (B + [lua(®)]* + /0 (16a® + llvvall® + llus |
Hvall* + [0ell* + va* + 1617 + 1020 [1*) (s)ds < C1, ¥E>0. (2.55)

Proof With the help of the Gagliardo-Nirenberg interpolation inequality, Young’s in-
equality and Lemmas 2.1-2.7, we derive

16Ol < ClBOI216) i,y + CIO oy < CUUBN® +1)
< C(1+ sup [0(s)]172 00
0<s<t

< e sup ||0(s)||zep, + Ch- (2.56)
0<s<t

Taking the supremum on the right-hand side of (2.56), and picking ¢ sufficiently small,
and we can get the inequality (2.54).

Multiplying (1.3) by 6;, and then integrating the resultants over [0, 1] x [0, ], using
Lemmas 2.1-2.7, we infer

1 H2 t ol
/ k22 d / / cof2dds
0 u 0 JO

1 p2 t pl 62 - [ -
= / k2T dy + / / ( _ el + (—R—+ uvf)'uxet + g9t> dxds
0 U 0 Jo U u

u2

IN

t 1
cl+01/0 /0 (02]0s] + O020,] + v2|6:| + g16:|)dads

IA

Gt e [ 16)Pds +Cr [ (el + 16l

OB ool + el o + gl ()

Cote [ 10)1Pds +Cr [ (10 IP6a]l + 16211

O o el + sl + g 2) )

Cre [ IlPds+Cr sup (10.1 +16.1°) [ 10.(5)ds

IN

IN

t t
+C sup. Hvx(8)|!4/0 lva () *ds + 01/0 (0aall® + Nzl + llvzall* + lgl*)(s)ds

t
< O+ 5/0 16:(5)|12ds

whence, for small ¢ > 0,
t
6017+ [ 6u(s)]*ds < €
which, combined with Lemmas 2.1-2.7 and (2.54), gives the estimate (2.56). O
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3 Asymptotic Behavior in H!

In this section we will complete the proof of (1.13) and assume that the assumptions in
Theorem 1.1 are valid. We begin with the following lemma.

Lemma 3.1 Suppose that y and h are nonnegative functions on [0,+00), v is locally
integrable, and y and h satisfy

vt >0, y'(t) < Ay’(t) + As + h(t),
T T

VT >0, / y(s)ds < As, / h(s)ds < Ay
0 0

where Ay, As, A3, Ay are positive constants independent of t and T. Then for any r >
0,t>0,

A
y(t+1r) < (73 + Agr + Ay) - M2,

Moreover,
tiiglooy(t) = 0.
Proof. See, e.g., [23]. O
Lemma 3.2 There holds that
lim ||u(t) — @l g = 0. (3.1)

t—+4o0

Proof Differentiating (1.1) with respect to z, multiplying the result by w,, then integrat-
ing it over [0, 1], by Young’s inequality, we can deduce

d 1 1
Az < lvaa @I + lua @I < 5 + 5 llue @1 + vz ()]
dt 2 2
which along with (1.12) and Lemma 3.1 gives
. 2
i fus(0)2 = 0 (32)

On the other hand, by (2.2) and the imbedding theorem, we can deduce

[u(t) —all < Cyf|ua ()]

which with (3.2) gives (3.1). O
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Lemma 3.3 There holds that
lim |[v(¢)||z = 0.

t—-+o0

Proof Equation (1.2) can be rewritten as

o (g [ ) (),

Denote
. 0 e
p=px,t)=R- —/ fdy,
u 0
. 0 @ Uy
6=0(x,t)=—R— +/ fdy + p—.
u 0 u
Then
L .
Ut = (_p+ﬂ> =0y
U/
Put
A A A 1 A
5 =0 t) = ple.t) = [ ple)da
1
fza%uﬂzﬂmﬂ—/&@iﬂx
0
Then

Noting (3.5) and integrating by parts, we see that

5 = ) = (= [ i)

A~ r Ak UI r Ak
= (—px,/ p dy) = <Ut_,u()x>/ P dy)
0 u 0

_ (vt,/omﬁ*dy> - (u(ff)x,/oxﬁ*dy)

IA

<
< (G4 Dellp™* + Crllloell* + lval*)

where (-, -) denotes the inner product on L?[0, 1].

1 1 1/2 1y,
(/ U?dm)l/Q(/ (/ ﬁ*dy)drc> +u/ —p*da
0 0o Jo 0 U

ellp I + C@)llvell* + Cilellp™|* + Cle)lval®)

(3.3)

(3.8)

Taking € > 0 small enough in (3.8) and integrating it over [0,¢], combining the result

with (1.12), we can deduce
t
| 15 (s)ds < .

16
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On the other hand, noting that % = fev + fi, we arrive at

Ak — 2 Ak Ak :2 Ak _ /\*d
SItlE = 2650 =2(55.— [ pidy)

2(%/ ptdy) +2u( 3”,152‘)
Cr(llvel® + llva]1? + 1197 117)
Cr(l|lvel? + llug]1? + 101> + H || )

IN A

IN

which combined with (3.9), Lemma 3.1 and (1.12), we can get

lim _{|p*(#)]* = 0.

t——+o0

By (3.9) and (1.12), we have

t
[ 15 s < Cy [ U2 + e ) )ds < ©.

Noting (3.5) and integrating by parts, we see that

d A* Ak AX Ak xA*
SIoP = 206767 =2(o5 - [ ardy)

= 2<Ut7 —/ (Af;:dy)
0

T 2
< ai(lul?+ | [ o))

where N N .
[Catay= [ (o= [ auenie)ay
0 0 0
and
R 0 e Uy
oz, t) = (—R—i—/ fdy—i—u)
t
0 . 2
= R RT [ g
0 0 . — U2
- Rt+Rﬂ+/ ftdy—i—u( ) 4ot
Noting

Ut(O,t) = 'Ut(l,t) = 0, Vt > 0,

17

* Ak Vg r Ak
2(%/ ptdy) —2<u(u)x,/0 ptdy)

Crlloel*llvall® + 116:]1” + ||f£H2 +[1£01%)

u2

(3.10)

(3.11)

(3.12)

(3.13)



we deduce that for any z € [0, 1],
[ audy| < CL18N + el + 1 Fll oy + ol + el

1
[ audy] < Gl + lleall + 1 fill oy + lodl + )

Thus it follows from Fubini’s theorem and (3.13)-(3.15) that
T T 1
[atay = [ (o= [ atevnie)ay
0 0 0
T 1 r1
/ Grdy — / / Gy dyde
0 0 Jx

< CL([0c]] + [Jvz |l + 1 fell 2o, + |ve| + [lvell)

|} o

0

By (3.12) and (3.16), we deduce
d

21671 < CrllOll® + e + ILfoll® + el 1?)

which implies

2
< Crll0* + Nlva* + 1 fellZego 1) + vell®).

which with (3.11), Lemma 3.1 and (1.12) yields

: K 2 _
i 6° (1) = o

1
/ <U> dr =0,
0 \u/z

Noting that

we have

Vg v\ * Lo, 1, .. . 1 vu,
=(> —i—/ —dr =—(0 +p)+/ S-dx
U U ) W 0 U

which with Lemma 2.4 gives
UCL‘ Ak Ak
loall < Cull= =l < Cilllo™[] + 1511 + Nlolllue1)-

By (3.18), (3.17), (3.10) and Lemma 3.2, we derive

Jim_ o (1) =0

By (1.6) and the Poincaré inequality, we deduce
o)l < Chllva(D)]]

which, together with (3.19), gives (3.3).
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Lemma 3.4 The following estimates hold,
dim[6(t) — Bl =0, lim_[|8() — 6]~ = 0. (3.20)

Proof Multiplying (1.3) by 6;, and then integrating the resultant over [0, 1], we get

d g2 1
L ey / 0%d
dt/o U T 0 Gl At

(%

Lo f, 0
/ ( k% R 0,0, + th>dx
0 u u Uu

1
< [ Bl + lubr] + 2101] + 9161 da
< el + Calllvall? + 10alEs + 1003wt ll0al + a1, + g1
< <0112+ Crl18 I N8l + 1Bl + 101w 0 + P foel] + i)
< 2l + CrllBall + 102 + o + o |2 + 1))

which, by taking e > 0 small enough, along with (1.12) and Lemma 3.1, we derive
Jim[6,()] = 0. (3.21)
By the Poincaré inequality, we deduce
10(t) = Ol < C1l|0:(D), 10(2) — Ol o,y < Culla(1)]
which, together with (3.21), gives (3.20). O

4 Global Existence in H?

In this section we will complete the proof of (1.14) and assume that the assumptions in
Theorem 1.2 are valid. We begin with the following lemma. The first lemma concerns
the uniform global (in time) positive lower bound (independent of t) of the absolute
temperature 6.

Lemma 4.1 If (ug,vg,0) € H', then the generalized global solution (u(t),v(t),0(t)) to
the problem (1.1)-(1.6) satisfies

0<Cyt <O(z,t), Y(z,t)€]0,1] x [0, +00). (4.1)

Proof We use the idea in [20] to prove (4.1). If (4.1) is not true, that is, inf, y)cf0,1]x[0,400)
O(z,t) = 0, then there exists a sequence (x,,t,) € [0,1] x [0, +00) such that

0(zn,t,) — 0, asn — +oo. (4.2)

If the sequence t, has a subsequence, denoted also by t,, converging to +o00, then by the
asymptotic behavior results in Lemma 3.4, we know that

O(zp,tn) — 0 >0, asn — +oo
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which contradicts with (4.2).

If the sequence t,, is bounded, i.e., there exists a constant M > 0, independent of
n, such that for any n = 1,2,3,---,0 < t, < M, then there exists a point (z*,t*) €
[0,1] x [0, M] such that (x,,t,) — (2*,t*) as n — +00. On the other hand, by (4.2) and
the continuity of solutions, we conclude that 6(x,,t,) — 6(z*,t*) = 0 as n — +o0, which
contradicts with (2.1). Thus the proof is complete. O

Lemma 4.2 There holds that

t
Joe®F + [ ve(s)]Pds < G, vt >0, (43)
e ()] < Ca, ¥t > 0. (4.4)

Proof Differentiating (1.2) with respect to ¢, multiplying the result by v;, then integrating
it over [0, 1] and integrating by part, by (1.1), (1.7) and Young’s inequality, we can derive

Do+ [

2dt
1 0, Qut v? df
— . e e d
/ovt<Ru R 'uu2 o dt dy)dz
< ellonl® + C2(H9t!|2 + [lval® + [zl Zoo 021 + H o H )
< ellvwl® + Coall0ul® + lloall® + llveell® + 1A + 1 fell?). (4.5)

Integrating (4.5) over [0, ¢], by (1.12) and (1.9), we can derive (4.3).
Equation (1.2) can be written as

o Z(vt + Rﬂ - RQ“I =2 ). (4.6)
By (4.6), (4.3) (1.12) and (1.9), we can get
L/t 0, qu VU 1/2
ol = ([ i+ R = R 4 e — )
< Gy(lJoll + 116l + [[6ue || + H%HLooHuxH + A1)
< ellvea ()] + Calllve®I] + lva (O + 10O + Nua (O] + £ @)
< elloaa ()]l + C; (4.7)
which gives (4.4). O

Lemma 4.3 The following estimates hold
t
ltaa )2+ [Nz (s)|[2ds < Ca, 2 >0, (48)
0

t
/ [vawa()||2ds < Ca, Yt > 0. (4.9)
0
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Proof Differentiating (1.2) with respect to z, using (1.1) (tpe = Vgzs), We can deduce

(%

2

u VW VU
u t U u

- _puuu2 — Pulgy — 2pu90 Uy — p99‘9m - p@ex:p

+u<u> —2u +2u° ”E+fx,
t

1.e.

Ugy
ﬂ( ) — Dullgy = Vg + puuui + 2pu00:cua: + p@@ei + Peem
t

—|—2,U,U za Uy

(4.10)

Multiplying (4.10) by wu,./u, and by Young’s inequality Lemma 4.1, we can deduce

that
d || U
Yoz md Yoz /R
dtl + / _dt U uu2
< g +01(||Utw|’2+/0 (0%ut + w262 + 02,
V2 u? —l— viud + fg )dz)
ux.',t
< e, +Cl(||vm|!2+HuxHioo[o,l](HuxHQJrH9x||2)
1O |* A+ a1 10z * + |02l 700 o112 oo, 1y 1w P =+ 11 fel1?)
2
u.’[’l’
< el + Col[veal® + ual® + [t | |taell + 11022 ]1” + 1] fel1?)
2
uxl'
< 25’ =N+ Colllveal® + lluall® + 10221 + 11 fell?) (4.11)

which, by taking ¢ > 0 small enough and using Lemmas 2.1-2.8, Lemmas 4.1-4.2, gives
(4.8).
Differentiating (1.2) with respect to x, by (1.1), we can derive

09[:9[: 6) (9 T Ou?
Vpzx = u(vtm R . +2R u;
] u u
Uz U VaparUy Umui
U 2 = 2 +fx>-
U u (7

Thus

t t 1
/ |Vgaa (8)||Pds < C’g/ / (V2 + 02, + 0%uZ + 0%u2, + 0*u?
0
Fu? v? 4+ 02 u? + viul + fHdeds
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IA

t
02/0 (lveall® + Nluael® + llusl1* + (1 fell*)ds
t
+02/0 (ol Zoe (10211 |vas [1*)

0 etz 4 Mt e 2l
t
Co [ (veal® + [tz + a1+ 1 fel ) ds
t
+Cs [ (el + s lF)ds

Co
which gives (4.9). O

IN

IA

Lemma 4.4 The following estimates hold,

t
18:8)12 + [ 18ua]*ds < Ca, ¥t >0, (4.12)
0
t
/ HQmM(S)”z <y, Vt>DO0. (4.14)
0

Proof Differentiating (1.3) with respect to ¢ and multiplying the resultant by 6;, we can
derive

TNt ||2+/ k xtdx

2 dt
_/ ( 0 tavz _ Ret (U +260tvzt X R@U%Ht
U U
QUzvtht vii@t dg
th U T2 dt 6t>d$

1
< e]|6.? + 02/0 (0202 + [020,] + 100, (vt + )| + [vvale] + [030,] + |ﬁ9t|)
< e|0u]” + Cz(!lva:HzLooH&:H2 10l 2a 4 vzl 4+ 101 zoo ([oell® + [0zl za + 116:]])

Hl[ve T (lvaell” + 10:1%) + llvall o (lva s + 16:17) + llgell® + llgel* + ||9t|!2)

< ellfal? + ColllOall® + lvall® + llveall® + 16:l1%) + Calllve Iz + 16l11s)

+Co([lgel|* + [lgel1*)

< ellfaell* + Collla]* + llvall® + lveall” + [16:]1%)

+Co(|[vell*[val + l[vall + 110l 162l + 16:l1") + Colllgell* + llgell*)

< ell a1 + ColllOall® + llvall* + llveall* + 16el1*) + Colllgell* + llgell*)- (4.15)

Taking ¢ > 0 small enough, integrating (4.15) over [0,t], and using Lemmas 2.1-2.8,
Lemmas 4.1-4.3, we can get (4.12).
(1.3) can be rewritten as

0,u, Ov, v? )

0, = Z(cvet+k FREE g
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Thus

10aa(* < CollOl + 10zta ) + [10vall® + [zl Zago, 1y + ll*)

<
< Gl + 10z llZoe oy lluall® + 1O ooy lvzl® + lvall® + llva P llvzell + llg*)
< ellbaal® + ColllOel® + 1162 ]1” + llvall* + llgll*) (4.16)

which, combine with (4.12), implies

10za(®)] < Cof[|€:()]] +1) < Cs.

Differentiating (1.3) with respect to x, we can derive

u 0,1 0,1 Ov v2
k Colte + u? +( u? + U H U 9)
_ k(cvﬁwﬁ—k e gt
otz R ve OV + R +2uvv — e —i—gI). (4.17)
u3 U u? U u?

Integrating (4.17) over [0, 1] x [0, ], we get

t t
/0 1020z (5)[|ds < 02/0 0l + Ntz 7 10z I* + 11021700 N0z ]|
+||0a:||%00||ux||%00||u:v” + HU;BH%OOHGJC”Q + H@H%OOHUMHQ
101700 vz 1700 2] + 02|70 1022
+[val| oo [t 70 |02 ]* + Nl gelI?)ds
¢
< /0 0ell® + 1102z l|* + [ ttal®

+||ua:||2 + ”996”2 + “UﬂcﬂcH2 + “UwH2 + ||9§||2)d3

which, along with (4.8), (4.12), Lemmas 2.1-2.8, Lemmas 4.1-4.3, gives estimate (4.14).0

5 Asymptotic Behavior in H?

In this section we will complete the proof of (1.15) and assume that the assumptions in
Theorem 1.2 are valid.

Lemma 5.1 The following estimate holds

lim ||u(t) — @|lg2 =0 (5.1)

t—-4o00

where @ = [y u(x,t)dr = [y up(z)ds.
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Proof Differentiating (1.1) with respect to twice x, multiplying the result by w,,, then
integrating it over [0, 1], by Young’s inequality, we can deduce

1 1
|um|l2 < ||Umx”2 + Hum||2 5 5”“%”4 + ||U:cmH2

dt‘ 2

which, along with Lemmas 3.1 and 4.3, gives

2 _
i ()] 0. (52)
O
Lemma 5.2 The following estimate holds
lim ||v(¢)||z2 = 0. (5.3)

t——4o0

Proof Noting

=S [ par=o [ 1 Lar <P +1aP 115D 69

By (5.4), (1.9) and Lemma 3.1, we can conclude

. 2

i [£(0)] = 0. (55)
Similarly, we can get

. 2

Jim_[lg(t)]? = 0. (5.6)
By (3.4), (3.5), we have

0 0. 0 .

b= (RY) ~f=R= Ry
U/ x
Uy

Hence

D2 < Coll0all + lluwe | + 1F11)

which implies

. . 2
Jim 2.0 = . 5.9

Differentiating (5.7) with respect to ¢, multiplying the result by v;, then integrating it
over [0,1], and integrating by parts, using(1.1),(1.7)-(1.10), we can get

v2 vx
OAG ||2—|-/ ”dm /ptvmdx+/ 1 L

< ellvl® + llpel* + Hvxl\m

2dt|

< 6||vm||2+||«9t||2+|| ||2+||9||Loo||vz\|2+||vz|| lvaall + llve 1"
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Thus for small € > 0,

Hence we infer from (5.9), (1.14), (1.9) and Lemma 3.1,
. 2
Jim ()2 = 0.
By (5.7) and (1.14), we can conclude

[v22 ()| < Collloa@)]| + 122 (O] + vz (B)]])

which with (5.10), (5.8), (1.13) gives
. 2
im0 = 0.

t—

Thus (5.3) follows from (5.11) and (1.13).

Lemma 5.3 There holds that
lim [|6(t) — 0|2 = 0.

t——+o0

Proof By (4.15), we can get

d
ZNOOI + 10 ()1

IA

dg
Co([10217 + [lvall? + llveal® + [16:]%) + C‘zl@ll2

< G0 + e + o @1 + 10:(O1%) + Colllgell* + llgell®)

which combines with (1.14) and Lemma 3.1, we can conclude

lim_[10,(t)]| = 0.

t——+o0

By (4.16), we get
1622 (O11* < Co(llE I + 1621 + oo (01" + llgl*)
which with (5.6), (5.13), (1.13) gives

lim [0z, (t)[| = 0.

t——+o00

Thus (5.12) follows from (5.16) and (1.13).

d
— @1 + o1 < Co(l0: 1 + lva (1 + IFll* + 1 fell*)-

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

O

ACKNOWLEDGEMENTS This work was supported in part by grants of the NNSF of
China (No. 10571024) and of the Institute of Mathematical Sciences (IMS), The Chinese
University of Hong Kong. The authors also take this opportunity to thank the referee for

his/her helpful suggestions which have improved the original version of this paper.

25



References

1]

[10]

[11]

[12]

[13]

A. A. Amosov and A. A. Zlotnik, Global generalized solutions of the wquations of
the one-dimensional motion of a viscous heat-conducting gas, Soviet Math. Dokl.
Vol. 38, No. 1, (1989).

S. Jiang, on the asymptotic behavior of the motion of a viscous, heat-conducting,
one-dimensional real gas, Math. Z., 216(1994), 317-336.

S. Jiang, Large-time behavior of solutions to the equations of a viscous polytropic
ideal gas, Ann. Mat. Pura, Appl. CLXXV (1998), 253-275.

S. Kawashima, T.Nishida, Global solutions to the initial boundary value problems
for the equations of one-dimensional motion of viscous polytropic gases, J. Math.
Kyoto Univ. 21 (1981), 825-837.

A. V. Kazhikhov, Sur la solubilite globale des problemes mono dimensoinnels aux
valeurs initiales-limites pour les equations dun gaz visqueux et calorifre. C. R. Acad.
Sci. Paris Ser. A 284 (1977), 317-320.

A. V. Kazhikhov and V. V. Shelukhin , Unique global solution with respect to time
of initial boundary value problems for one-dimensional equations of a viscous gas,
J. Appl. Math. Mech. 41 (1977), 273-282.

A. V. Kazhikhov, To a theory of boundary value problems for equations of one-
dimensional nonstationary motion of viscous heat-conduction gases, in Boundary
Value Problems for Hydrodynamical Equations, No. 50, Institute of Hydrodynamics,
Siberian Branch Acad. USSR, 1981, 37-62 (in Russian).

P. B. Mucha, Compressible Navier-Stokes system in 1-D , Math. Meth. Appl. Sci.
24 (2001), 607-622.

T. Nagasawa , On the one-dimensional motion of the polytropic ideal gas non-fixed
on the boundary, J. Differential Equations 65 (1986), 49-67.

T. Nagasawa, On the outer pressure problem of the one-dimensional polytropic ideal
gas, Japan J. Appl. Math. 5 (1988), 53-85.

T. Nagasawa , Global asymptotics of the outer pressure problem with free boundary;,
Japan J. Appl. Math. 5 (1988), 205-224.

T. Nagasawa, On the asymptotic behaviour of the one-dimensional motion of the
polytropic ideal gas with stress-free condition, Quart. Appl. Math. 46 (1988), 665-
679.

M. Okada and S. Kawashima, On the equations of one-dimensional motion of com-
pressible viscous fluids, J. Math. Kyoto Univ. 23 (1983), 55-71.

26



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

2]

[27]

Y. Qin, Global existence and asymptotic behaviour of solutions to nonlinear
hyperbolic-parabolic coupled systems with arbitrary initial data, Ph.D. thesis, Fu-
dan University (1998).

Y. Qin, Global existence and asymptotic behaviour of solutions to a system of
equations for a nonlinear one-dimensional viscous, heat-conducting real gas, Chinese

Ann. Math. Ser. A 20 (1999), 343-354 (in Chinese).

Y. Qin, Global existence and asymptotic behavior for the solutions to nonlinear
viscous, heat-conductive,one-dimensional real gas, Adv. Math. Sci. Appl., 10 (2000),
129-148.

Y. Qin, Global existence and asymptotic behaviour for a viscous, heat-conducting

one-dimensional real gas with fixed and thermally insulated end points,Nonlinear
Analysis,44 (2001), 413-441.

Y. Qin, Global existence and asymptotic behavior of solution to the system in one-
dimensional nonlinear thermoviscoelastcity, Quart. Appl. Math., 59 (2001), 113-142.

Y. Qin, Global existence and asymptotic behaviour for a viscous, heat-conductive,
one-dimensional real gas with fixed and constant temperature boundary conditions,
Advances in Differential Equations, 7 (2002), 129-154.

Y. Qin, Exponential stability for a nonlinear one-dimensional heat conductive vis-
cous real gas, Journal of Mathematical Analysis and Applications, 272 (2002), 507-
535.

Y. Qin and J. E. M. Rivera, Universal attractor for a nonlinear one-dimensional
heat conductive viscous real gas, Proceedings of the Royal Society of Edinburgh A,
132 (2002), 685-709..

Y. Qin and J. E. M. Rivera, Exponential stshility and universal attractors for the
Navier-Stokes equations of compressible fluids between two horizontal parallel plates
in R*, Applied Numerical Mathematics, 47 (2) (2003), 249-256.

Y. Qin and Y. Zhao, Global existence and asymptotic behavior of compressible
Navier-Stokes equations for a 1-D isothermal viscous gas, Math. Mode. Meth. Appl.
Sci., 18(10) (2008), to appear.

Y. Qin, Y. Wu and F. Liu, On the Cauchy problem for a one-dimensional compress-
ible viscous polytropic ideal gas, Portugaliae Math, 64 (2007), 87-126.

A. Tani, On the first initial-boundary value problem of compressible viscous fluid
motion, Publ. Res. Inst. Math. Sci. 13 (1977), 193-253.

Shigenori Yanagi, Existence of periodic solutions for a one-dimensional isentropic
model system of compressible viscous gas, Nonlinear Analysis 46 (2001), 279-298.

Ting Zhang and Daoyuan Fang, Global behavior of compressible Navier-Stokes equa-
tions with denerate viscosity coefficient, Preprint.

27



[28] S. Zheng and Y. Qin, Maximal attractor for the system of one-dimensional polytropic
viscous ideal gas, Quart. Appl. Math. 59 (2001), 579-599.

[29] A. A. Zlotnik and Nguyen Zha Bao, Properties and asymptotic behavior of solutions
of some problems of one-dimensional of a viscous barotropic gas, Mathematical
Notes, Vol.55, No.5, 1994.

[30] A. A. Zlotnik and A. A. Amosov, On stability of generalized solutions of the equa-
tions of one-dimensional motion of a ciscous heat conducting gas, Siberian Mathe-
matical Journal, Vol. 38, No. 4, 1997.

28



