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Abstract

Let k ∈ C(R+), A be a closed linear densely defined operator in the Banach space X
and {R(t)}t≥0 be an exponentially bounded k-regularized resolvent operator families
generated by A. In this paper, we mainly study pseudo k-resolvent and duality theory
of k-regularized resolvent operator families. The conditions that pseudo k-resolvent
become k-resolvent of the closed linear densely defined operator A are given. The
some relations between the duality of the regularized resolvent operator families and
the generator A are gotten. In addition, the corresponding results of duality of k-
regularized resolvent operator families in Favard space are educed.
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1. Introduction

The notion of the regularized resolvent operator family was recently introduced by
Lizama[1] and it is a nature extension of resolvent operator family[2, 3]. For example,
the notions of C0-semigroup, integrated semigroup, strongly continuous cosine operator
function, integrated cosine function, integrated resolvent family and convolution semigroup
and so on may be unified under the frame of regularized resolvent operator family. Thus
it is a very significative thing that some problems of the regularized resolvent operator
family are studied. The main purpose of this paper is to study duality problem of k-
regularized resolvent operator families. We must first study the pseudo k-resolvent for the
sake of this goal. The conditions that pseudo k-resolvent become k-resolvent of the closed
linear densely defined operator A are given. The some relations between the duality of
the regularized resolvent operator families and the generator A are gotten. The results
that we obtain generalize and include the correspondingly case of the pseudo-resolvent
and the duality problem of the C0-semigroup and other operator families(see[4,5,8,9]).
In addition, the Favard class and its norm of the operator family are introduced. The
correlating problems between the Favard class of the operator family and the duality of
the generator A are studied.

Let C denote the complex plane. Let X be a complex Banach space with norm ‖ · ‖
and B(X) be the set of all bounded linear operators from X to itself. We will use that
X∗ denotes the dual space of the X and write that < x∗, x >= x∗(x) denotes the value
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of x∗ ∈ X∗ at x ∈ X. If A is a closed linear densely defined operator in X, we will write
D(A) for its domain, R(A) for its range and N (A) for its zero space, ρ(A) for its resolvent
set and A∗ for the adjoint operator of A.

Let R
+ = [0,∞). Consider the linear Volterra equation

u(t) = f(t) +
∫ t

0
a(t − s)Au(s)ds, (1.1)

where a ∈ L1
loc(R

+) is scalar kernel �= 0, f ∈ C(J,X) and J = [0, T ] (T > 0).

Definition 1.1 Let A be closed and densely defined operator on X and k ∈ C(R+) be a
scalar kernel. A family {R(t)}t≥0 is called a k-regularized resolvent family if the following
conditions are satisfied.

(a) R(t) is strongly continuous on R
+ and R(0) = k(0)I;

(b) R(t)x ∈ D(A) and AR(t)x = R(t)Ax for all x ∈ D(A) and t ≥ 0;

(c) the k-regularized resolvent equation holds

R(t)x = k(t)x +
∫ t

0
a(t − s)AR(s)xds, ∀x ∈ D(A), t ≥ 0.

In addition, if there exists constants M ≥ 1, ω ∈ R, such that ‖R(t)‖ ≤ Meωt (t ≥ 0),
then {R(t)}t≥0 is called an exponentially bounded regularized resolvent family. If k(t) ≡ 1,
then {R(t)}t≥0 is called a resolvent family (see [2, 3]).

If a ∈ L1
loc(R

+) and there exists constant ω > 0 such that
∫ ∞
0 e−ωs|a(s)|ds < ∞, then

the Laplace transform â(λ) exists for all Reλ > 0. Throughout this paper, we suppose
that the Laplace transform of a(t), k(t) and R(t) exists for all Reλ > 0. â(λ) and k̂(λ)
and R̂(λ) denote the Laplace transform of a(t), k(t) and R(t), respectively.

We will have the following assumption for a ∈ L1
loc(R

+) and k ∈ C(R+).

(H) There exists that εa,k > 0 and ta,k > 0 such that for all 0 < t < ta,k,

|
∫ t

0
a(t − s)k(s)ds| ≥ εa,k

∫ t

0
|a(t − s)k(s)|ds.

and 1
|k(t)|

∫ t
0 |a(s)|ds → 0 (t → 0+).

Lemma 1.2[7] A generates an exponentially bounded k-regularized resolvent family
{R(t)}t≥0, and

lim
t→0+

inf
‖R(t)‖
|k(t)| < ∞.

If the assumption (H) holds, then

(a) For x ∈ X, limt→0+ [(k ∗ a)(t)]−1
∫ t
0 a(t − s)R(s)xds = x,

(b) For all x ∈ D(A), Ax = limt→0+
R(t)x−k(t)x

(k∗a)(t) , where

D(A) = {x ∈ X : lim
t→0+

R(t)x − k(t)x
(k ∗ a)(t)

exists}
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.

Lemma 1.3 Let A be closed and densely defined operator in the Banach space X. If
the resolvent set ρ(A) of A contains R

+
ω = {λ ∈ R, λ > ω}, and there exists the constant

M > 0 such that for λ ∈ R
+
ω ,

‖(I − â(λ)A)−1‖ ≤ M(λ − ω)−1, (1.2)

then we have
lim

λ→∞
(I − â(λ)A)−1x = x. (1.3)

Proof. For all x ∈ D(A) and λ > ω, we have that

‖(I − â(λ)A)−1x − x‖ = ‖â(λ)A(I − â(λ)A)−1x‖
= ‖â(λ)(I − â(λ)A)−1Ax‖ ≤ M(λ − ω)−1‖Ax‖ → 0 (λ → ∞).

By (1.2), there exists the constant M ′, ω̃ > ω such that

‖(I − â(λ)A)−1‖ ≤ M ′,

for λ ∈ [ω̃,+∞). This show that (I − â(λ)A)−1 is the uniform bounded on λ ≥ ω̃. Thus,
by D(A) = X, (1.3) holds for all x ∈ X.

The following generation theorem of the k-regularized resolvent families will play an
important role in the latter proofs (see [1]).

Lemma 1.4 Let A be closed and densely defined operator in the Banach space X. Then
A generates an exponentially bounded k-regularized resolvent family {R(t)}t≥0 if and only
if

(a) â(λ) �= 0 and 1/â(λ) ∈ ρ(A), ∀λ > ω;

(b) H(λ,A) = k̂(λ)(I−â(λ)A)−1 calls the k-resolvent of A and it satisfies the estimates

‖H(n)(λ,A)‖ ≤ Mn!
(λ − ω)n+1

∀λ > ω, n ∈ N

The following Lemma may be found in [4].

Lemma 1.5 If S is a bounded operator on X, then S∗ is a bounded operator on X∗

and ‖S‖ = ‖S∗‖.

Lemma 1.6 Let A be closed and densely defined operator on X. If 1/â(λ) ∈ ρ(A),
then 1/â(λ) ∈ ρ(A∗) and H(λ,A∗) = H(λ,A)∗.

Proof. By the definition of the adjoint, we have

(I − â(λ)A)∗ = I∗ − â(λ)A∗,

where I∗ is an unit operator in X∗. Because H(λ,A) is a bounded operator, H(λ,A)∗ also
is a bounded operator in X∗ by Lemma 1.5. In the following, we will prove that H(λ,A∗)
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exists and is equal to H(λ,A)∗. We first prove that I∗ − â(λ)A∗ is one-to-one. In fact, if
(I∗ − â(λ)A∗)X∗ = 0 for some X∗ �= 0, then

< (I∗ − â(λ)A∗)x∗, x >=< (I − â(λ)A)x, x∗ >= 0, x ∈ D(A).

Because 1/â(λ) ∈ ρ(A),R(I − â(λ)A) = X, x∗ = 0 and (I∗ − â(λ)A∗) are one-to-one. For
x ∈ X, x∗ ∈ D(A), we have

< x∗, x >=< x∗, k̂(λ)−1(I − â(λ)A)H(λ,A)x >=< k̂(λ)−1(I∗ − â(λ)A∗)x∗,H(λ,A)x >

Thus,
H(λ,A)∗k̂(λ)−1(I∗ − â(λ)A∗)x∗ = x∗, ∀x∗ ∈ D(A∗). (1.4)

On the other hand, if x∗ ∈ X∗ and x ∈ D(A), then

< x∗, x >=< x∗, k̂(λ)−1(I − â(λ)A)H(λ,A)x >=< k̂(λ)−1(I∗ − â(λ)A∗)x∗,H(λ,A)x > .

This implies that

k̂(λ)−1(I∗ − â(λ)A∗)H(λ,A)∗x∗ = x∗, ∀x∗ ∈ X∗. (1.5)

By (1.4) and (1.5), we obtain that 1/â(λ) ∈ ρ(A∗) and H(λ,A∗) = H(λ,A)∗.

In the following, we give out an exponential representation formula of the k-regularized
resolvent families {R(t)}t≥0(see [6]).

Lemma 1.7 Let A generate an exponentially bounded k-regularized resolvent family
{R(t)}t≥0. Then for x ∈ X, uniformly for t in bounded intervals of R

+ we have

R(t)x = lim
n→∞J(

n

t
,A) = lim

n→∞

n∑
k=0

∑(
n
k

)
k!m!(−1)n+m

n!i!j! · · · h!
(ẏ(

n

t
)/1!)i(ÿ(

n

t
)/2!)j · · ·

(y(l)(
n

t
)/l!)hy−m−1(

n

t
)x(n−k)(

n

t
)(

n

t
)n+1(I − â(

n

t
)A)−m−1x, (1.6)

where x(λ) = k̂(λ)
â(λ) , y(λ) = 1

â(λ) ,i + 2j + · · · + lh = k ; i + j + · · · + h = m.

2. Pseudo-k-resolvent

Definition 2.1 Let Δ be a subset of the complex plane C, a ∈ L1
loc(R

+) and k ∈
C(R+). If the bounded linear operator families L(λ) = k̂(λ)J(λ) (λ ∈ Δ) on X and J(λ)
satisfies

â(λ)J(λ) − â(μ)J(μ) = (â(λ) − â(μ))J(λ)J(μ), (2.1)

then L(λ) is called a pseudo k-resolvent on Δ.

The main aim in this section is to determine conditions under which there exists a
densely defined closed linear operator A such that L(λ) is the k-resolvent family of A.

Lemma 2.2. Let Δ be a subset of the complex plane C. If L(λ) is a pseudo k-resolvent
on Δ, then L(λ)L(μ) = L(μ)L(λ). The null space N (L(λ)) and the range R(L(λ)) are
independent of λ ∈ Δ, and N (L(λ)) is a closed subspace of X.
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Proof. It is evident from (2.1) that L(λ) and L(μ) commute for λ, μ ∈ Δ and

â(λ)J(λ) = J(μ)[â(μ) + (â(λ) − â(μ))J(λ)].

Hence R(L(μ)) ⊂ R(L(λ)) and R(L(μ)) = R(L(λ)). Similarly, we may prove that
N (L(μ)) = N (L(λ)). The closedness of N (L(λ)) is evident.

Theorem 2.3. Let Δ be a subset of the complex plane C. If L(λ) is a pseudo
k-resolvent on Δ and limλ→∞ J(λ)x = x for any x ∈ X, then L(λ) is the k-resolvent of a
unique densely defined closed linear operator A if and only if N (L(λ)) = {0} and R(L(λ))
is dense in X.

Proof. We first prove the necessity. If L(λ) is a k-resolvent of the closed densely
defined linear operator A, then x = limn→∞ yn for any x ∈ X, where yn = J(n)x ∈
R(L(n)). Let L(λ)x = 0 for λ ∈ Δ. Then x = limλ→∞ J(λ)x = 0 for any x ∈ X. This
means that R(L(λ)) is dense in X and N (L(λ)) = {0}.

Now we assume that N (L(λ)) = {0} and R(L(λ)) is dense in X. From N (L(λ)) = {0}
we see that L(λ) is one-to-one. Let λ0 ∈ Δ and set

A = â(λ0)−1(I − J(λ0)−1).

Then A is linear, closed and D(A) = R(L(λ0)) is dense in X. Further, we have

(I − â(λ0)A)J(λ0) = J(λ0)(I − â(λ0)A) = I.

Thus L(λ0) = k̂(λ0)(I − â(λ0)A)−1. If λ ∈ Δ, then

â(λ0)(I − â(λ)A)â(λ)J(λ)
= [(â(λ0) − â(λ) + â(λ)(I − â(λ0)A)]J(λ0)[â(λ0) − (â(λ0) − â(λ))J(λ)]
= â(λ0)â(λ) + (â(λ0) − â(λ))[â(λ0)J(λ0) − â(λ)J(λ) − (â(λ0) − â(λ))J(λ0)J(λ)]
= â(λ0)â(λ).

â(λ0)−1â(λ)−1 is multiplied in above two side and we obtain that (I − â(λ)A)L(λ) = k̂(λ).
Similarly, we may prove that L(λ)(I− â(λ)A) = k̂(λ). Thus we have that L(λ) = k̂(λ)(I −
â(λ)A)−1 for every λ ∈ Δ. In particular, A is independent of λ0 and is uniquely by L(λ).

In the following, we give out two useful sufficient conditions for a pseudo k-resolvent
to be a k-resolvent.

Theorem 2.4. Let Δ be an unbounded subset of the complex plane C and let L(λ) be
pseudo k-resolvent on Δ. If R(L(λ)) is dense in X and there is a sequence λn ∈ Δ such
that |λn| → ∞ and

‖J(λn)‖ ≤ M (2.2)

for some constant M , then L(λ) is the k-resolvent of a unique densely defined closed linear
operator A.

Proof. From (2.2) it follows that ‖J(λn)‖ → 0 as n → ∞. Let μ ∈ Δ. From (2.1) we
have that

‖â(λ0)(J(λn) − I)J(μ)‖ → 0 as n → ∞.
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Therefore if x is in the range of L(μ),then we obtain that

J(λn)x → x as n → ∞. (2.3)

Since R(L(λn)) is dense in X and J(λn) are uniformly bounded, we see that (2.3) holds
for every x ∈ X. If x ∈ N (L(λ)), then J(λn)x = 0 and from (2.3) we deduce that x = 0.
Thus N (L(λ)) = {0} and L(λ) is the k-resolvent of a densely defined closed operator A
by Theorem 2.3.

Corollary 2.5. Let Δ be an unbounded subset of the complex plane C and let L(λ)
be pseudo k-resolvent on Δ. If there is a sequence λn ∈ Δ such that |λn| → ∞ as n → ∞
and

lim
n→∞J(λn)x = x ∀x ∈ X, (2.4)

then L(λ) is the k-resolvent of a unique densely defined closed operator A.

Proof. From the uniform boundedness theorem and (2.4) it follows that (2.2) holds.
From Lemma 2.2 we know that R(L(λ)) is independent of λ ∈ Δ and from (2.4) we deduce
that R(L(λ)) is dense in X. Thus, the conditions of Theorem 2.4 hold and L(λ) is the
k-resolvent of an operator A.

Remark: In above theorem 2.3 and 2.4, if we take that k(t) ≡ 1 and a(t) ≡ 1, then
we obtain taht the corresponding results on the C0−semigroup (see [4]).

3. The adjoint of the k-regularized resolvent families

Let {R(t)}t≥0 be a k-regularized resolvent family on a Banach space X. Its adjoint
{R∗(t)}t≥0 is the k-regularized resolvent family on the dual space x∗ which is obtained
from {R(t)}t≥0 by taking pointwise in t the adjoint operators R∗(t) ≡ (R(t))∗. It is easy
to see that {R∗(t)}t≥0 is also a k-regularized resolvent family. In general, if {R(t)}t≥0 be
a k-regularized resolvent family, then

| < x,R∗(t)x∗ − k(t)x∗ > | = | < (R(t)x − k(t)x, x∗ > | ≤ ‖x∗‖‖R(t)x − k(t)x‖
shows that R∗(t) is weak∗-continuous but it needn’t be strongly continuous. It is well-
known that if A is closed and densely defined, then A∗ is a weak∗-densely defined, weak∗-
closed operator (see[10]). But we have the following results.

Proposition 3.1 If A generate an exponentially bounded k-regularized resolvent family
{R(t)}t≥0 on X and {R∗(t)}t≥0 be its dual operator on x∗, then {R∗(t), t ≥ 0} is the
strongly continuous on D(A∗) and R∗(0) = k(0)I∗.

Proof. Let x∗ ∈ D(A∗). Then by Definition 1.1(c) we have

| < x,R∗(t)x∗ − k(t)x∗ > | = | < (a ∗ R)(t)x,A∗x∗ > |.
Because a(t) and R(t) are the exponentially bounded and strongly continuous, {R∗(t), t ≥
0} is the strongly continuous on D(A∗) and R∗(0)x∗ = k(0)I∗.

Proposition 3.2 Let A generate a k-regularized resolvent family {R(t)}t≥0 on X and
{R∗(t)}t≥0 be its dual operator on x∗. Then the following results hold.
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(a) R∗(t)x∗ ∈ D(A∗) and A∗R∗(t)x∗ = R∗(t)A∗x∗, ∀x∗ ∈ D(A∗), t ≥ 0;

(b) For all t > 0 and x∗ ∈ X∗, ω∗ − ∫ t
0 a(t − s)R∗(s)x∗ds ∈ D(A∗) and

A∗(ω∗ −
∫ t

0
a(t − s)R∗(s)x∗ds) = R∗(t)x∗ − k(t)x∗. (3.1)

In addition, if x∗ ∈ D(A∗), then

A∗(ω∗ −
∫ t

0
a(t − s)R∗(s)x∗ds) = ω∗ −

∫ t

0
a(t − s)R∗(s)A∗x∗ds. (3.2)

Proof.(a) If ∀x∗ ∈ D(A∗), x ∈ D(A) and t ≥ 0, then by Definition 1.1(b) we obtain

< R∗(t)x∗, Ax > = < x∗, R(t)Ax >=< x∗, AR(t)x >

= < A∗x∗, R(t)x >=< R∗(t)A∗x∗, x > .

Hence R∗(t)x∗ ∈ D(A∗) and A∗R∗(t)x∗ = R∗(t)A∗x∗.
(b) ∀x ∈ D(A), by Definition 1.1(c) we have

< ω∗ −
∫ t

0
a(t − s)R∗(s)x∗ds,Ax > =

∫ t

0
< a(t − s)R∗(s)x∗, Ax > ds

=
∫ t

0
< x∗, a(t − s)R(s)Ax > ds

= < x∗,
∫ t

0
a(t − s)R(s)Axds >

= < x∗, A
∫ t

0
a(t − s)R(s)xds >

= < x∗, R(t)x − k(t)x >

= < R∗(t)x∗ − k(t)x∗, x > .

This means that ω∗ − ∫ t
0 a(t − s)R∗(s)x∗ds ∈ D(A∗) and (3.1) holds. Similarly, we may

prove that (3.2) holds.

It is simple to see that R∗(t) leaves D(A∗) invariant from Proposition 3.2(a).

Let U∗(t) be an exponentially bounded ω∗−k-regularized resolvent family on X∗. The
ω∗−generator of U∗(t) is the linear operator B on X∗ defined by⎧⎨

⎩
D(B) = {x∗ ∈ X∗, ω∗ − lim

t→0

U∗(t)x∗−k(t)x∗
(k∗a)(t) exist},

Bx∗ = ω∗ − lim
t→0

U∗(t)x∗−k(t)x∗
(k∗a)(t) ,∀x∗ ∈ D(B).

Theorem 3.2 Let {R(t), t ≥ 0} be an exponentially bounded k-regularized resolvent
family on X with the generator A and {R∗(t), t ≥ 0} be ω∗−k-regularized resolvent family
on x∗. If the assumption condition (H) holds, then A∗ is the ω∗−generator of R∗(t).
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Proof. Let B be the ω∗−generator of R∗(t) and for the fixed x∗ ∈ D(A∗) and any
x ∈ X. From Proposition 3.1 and Lemma 1.2 we have

lim
t→0

1
(k ∗ a)(t)

< R∗(t)x∗ − k(t)x∗, x >

= lim
t↓0

1
(k ∗ a)(t)

< A∗(ω∗ −
∫ t

0
a(t − s)R∗(s)x∗ds), x >

= lim
t↓0

1
(k ∗ a)(t)

< A∗x∗,
∫ t

0
a(t − s)R(s)xds >

=< A∗x∗, x > .

Hence ω∗−lim
t↓0

1
(k∗a)(t) (R

∗(t)x∗−k(t)x∗) exists and equals A∗x∗. This shows that x∗ ∈ D(B)

and Bx∗ = A∗x∗, and therefore A∗ ⊂ B. To prove the converse inclusion, for the fixed
x∗ ∈ D(B) and any x ∈ D(A),

< Bx∗, x >= lim
t→0

1
(k ∗ a)(t)

< R∗(t)x∗ − k(t)x∗, x >=< x∗, Ax > .

This shows that x∗ ∈ D(A∗) and A∗x∗ = Bx∗, and therefore B ⊂ A∗. Thus B = A∗.

We will write that

X� = {x∗ ∈ X∗, lim
t→0

||R∗(t)x∗ − k(t)x∗|| = 0}.

It follows trivially from this definition that X� is R∗(t)-invariant, which by above definition
means that R∗(t)X� ⊂ X� holds for all t ≥ 0. Also, X� is a closed subspace of X∗.

Theorem 3.3 Let {R(t), t ≥ 0} be an exponentially bounded k-regularized resolvent
family on X with the generator A and {R∗(t), t ≥ 0} be its adjoint operator family. If the
assumption condition (H) holds, then X� = D(A∗).

Proof. Let x∗ ∈ D(A∗). Then for any x ∈ X we have from (3.2)

< R∗(t)x∗ − k(t)x∗, x > =
〈
A∗(ω∗ −

∫ t

0
a(t − s)R∗(s)x∗ds), x

〉

=
∫ t

0
< a(t − s)R∗(s)A∗x∗, x > ds.

Hence

‖R∗(t)x∗ − k(t)x∗‖ = sup{| < R∗(t)x∗ − k(t)x∗, x > |;x ∈ X, ||x|| ≤ 1}
= sup{|

∫ t

0
< a(t − s)R∗(s)A∗x∗, x > ds|;x ∈ X, ||x|| ≤ 1}

≤ t( sup
0≤s≤t

||a(t − s)R(s)||)||A∗x∗|| → 0 (t → 0)

which shows that D(A∗) ⊂ X�. Since X� is the closed subset of X∗, D(A∗) ⊂ X�.
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For the converse inclusion, let x� ∈ X�. Then for the sufficiently small ε > 0 and
t ∈ (0, 1) we have ||R∗(t)

k(t) x� − x�|| < ε. Thus for any x ∈ X we have

〈 1
(k ∗ a)(t)

∫ t

0
a(t−s)R∗(s)x�ds−x�, x

〉
=

1
(k ∗ a)(t)

∫ t

0
a(t−s)k(s)

〈R∗(s)
k(s)

x�−x�, x
〉
ds.

Hence by the assumption condition (H) we obtain

|| 1
(k ∗ a)(t)

∫ t

0
a(t − s)R∗(s)x�ds − x�|| ≤ ε

|(k ∗ a)(t)|
∫ t

0
|a(t − s)k(s)|ds <

ε

εa,k
.

Thus by Proposition 3.1 we have show that x� ∈ D(A∗).
Let A� = A∗|X� denotes the part of A∗ in X� and D(A�) = {x∗ ∈ D(A∗), A∗x∗ ∈

X�}. We will write that R�(t) = R∗(t)|X�

Theorem 3.4 Let {R(t), t ≥ 0} be an exponentially bounded k-regularized resolvent
family on X with the generator A, {R∗(t)}t≥0 be its adjoint operator on X∗ and A∗ is the
adjoint of A. If the assumption condition (H) holds and ρ(A) �= Φ, then {R�(t), t ≥ 0} is
a k-regularized resolvent family on X�, and A� is its generator.

Proof. By the known condition and Lemma 1.4, there are constants ω and μ such
that for all λ > ω, 1

â(λ) ∈ ρ(A) and

||H(n)(λ,A)|| ≤ Mn!(λ − ω)−(n+1), n = 0, 1, 2, · · · (3.3)

Also, from Lemma 1.5 and Lemma 1.6 and (3.3) it follows that if λ > ω, 1
â(λ) ∈ ρ(A∗) and

||H(n)(λ,A∗)|| ≤ Mn!(λ − ω)−(n+1), n = 0, 1, 2, · · · (3.4)

Let H(λ,A�) is the part of H(λ,A∗) in X�. Thus from (3.4) we have

||H(n)(λ,A�)|| ≤ Mn!(λ − ω)−(n+1), n = 0, 1, 2, · · · (3.5)

where H(λ,A�) = k̂(λ)(I − â(λ)A�)−1. Also,a direct computation show that for λ, μ > ω

â(λ)k̂(λ)−1H(λ,A�) − â(μ)k̂(μ)−1H(μ,A�)
= [â(λ) − â(μ)]k̂(λ)−1k̂(μ)−1H(λ,A�)H(μ,A�) (3.6)

It follows that from Lemma 1.3

lim
λ→∞

k̂(λ)−1H(λ,A�)x∗ = x∗, ∀x∗ ∈ X�. (3.7)

From (3.6), (3.7) and Corollary 2.5 we see that H(λ,A�) is a k−resolvent of the closed
densely defined operator A� in X�. From (3.5) and Lemma 1.4 it follows that A� is
the generator of a k-regularized resolvent family {R�(t), t ≥ 0} in X�. For x ∈ X and
x∗ ∈ X� we have

< x∗, (I − â(
n

t
)A)−m−1x >=< (I − â(

n

t
)A�)−m−1x∗, x >, (3.8)
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Let n → ∞ in (3.8) and by Lemma 1.7 we obtain

< x∗, R(t)x >=< R�(t)x∗, x > .

Thus for x∗ ∈ X�, R∗(t)x∗ = R�(t)x∗ and R�(t) = R∗(t)|X� .

In the following, we will prove that A� = A∗|X� . Let x� ∈ D(A�). Then we have

lim
t→0

1
(k ∗ a)(t)

(R∗(t)x� − k(t)x�) = lim
t→0

1
(k ∗ a)(t)

(R�(t)x� − k(t)x�) = A�x�,

where the limit is the strongly sense. Hence these limits exist also in the weak∗-sense. By
Theorem 3.2, we see that x� ∈ D(A∗) and A∗x� = A�x� ∈ X�. Thus A� ⊂ A∗|X� .

To prove the converse inclusion, let x∗ ∈ D(A∗|X�). Then we have x∗ ∈ D(A∗) and
A∗x∗ ∈ X�. But this implies that

1
(k ∗ a)(t)

(R�(t)x∗ − k(t)x∗) =
1

(k ∗ a)(t)
(R�(t)x∗ − k(t)x∗)

=
1

(k ∗ a)(t)
A∗(ω∗ −

∫ t

0
a(t − s)R∗(s)x∗ds)

=
1

(k ∗ a)(t)
(ω∗ −

∫ t

0
a(t − s)R∗(s)A∗x∗ds)

=
1

(k ∗ a)(t)

∫ t

0
a(t − s)R∗(s)A∗x∗ds.

Since A∗x∗ ∈ X�, letting t → 0 in the above integrand of the last integral, we obtain from
Theorem 3.3,

lim
t→0

(k ∗ a)−1(t)(R�(t)x∗ − k(t)x∗) = A∗x∗.

This show that x∗ ∈ D(A�) and A�x∗ = A∗x∗. Thus A∗|X� ⊂ A�.

By Lemma 1.5, if X is reflexive, then A∗ is a closed densely defined operator in X∗.
Thus we have the following corollary.

Corollary 3.5. Let X is a reflexive Banach space and Let {R(t), t ≥ 0} be an
exponentially bounded k-regularized resolvent family on X with the generator A. Then
{R∗(t)}t≥0 is an exponentially bounded k-regularized resolvent family on X∗ whose the gen-
erator is A∗ the adjoint of A, where {R∗(t)}t≥0 is the adjoint operator family of {R(t)}t≥0.

From Corollary 3.5 we know that if X is a reflexive, then X� = X∗, A� = A∗ and
R�(t) = R∗(t).

Remark 1. If we take that k(t) ≡ 1 and a(t) ≡ 1a(t) ≡ t in Theorem 3.4, then we may
obtain the dual theorems of the C0-semigroup (see [4])and the strongly continuous cosine
function. If k(t) ≡ 1 or tn/n!, then we may obtain the dual theorems of the resolvent
operator family or n-times integral resolvent family (see [5]).

4. The Favard class of R(t) and R∗(t)
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Definition 4.1. Let {R(t), t ≥ 0} be an exponentially bounded k-regularized resolvent
family on X and {R∗(t), t ≥ 0} be its adjoint operator family X∗. Their Favard class are
defined by

Fav(R) = {x ∈ X; lim supt→0[(k ∗ a)(t)]−1‖R(t)x − k(t)x‖ < ∞}
and

Fav(R∗) = {x∗ ∈ X∗; lim supt→0[(k ∗ a)(t)]−1‖R∗(t)∗x∗ − k(t)x∗‖ < ∞}.
If we introduce the norm on Fav(R)

‖x‖Fav(R) = ‖x‖ + limt→0[(k ∗ a)(t)]−1‖R(t)x − k(t)x‖, ∀x ∈ Fav(R).

then [Fav(R)] = (Fav(R), ‖ · ‖Fav(R)) become a Banach space. Similarly, we may define
the space [Fav(R∗)].

Starting from the k-regularized resolvent family R�(t), the duality construction can
be repeated. We define R�∗(t) to be the adjoint of R�(t) and write X�� for (X�)�. X
is isometrically isomorphic to a subspace (X�)�. We identify it with X. If this subspace
is all of (X�)�, we call X -reflexive.

Theorem 4.2. If the assumption condition H holds, then we have the following as-
sertions.

(a) Fav(R) = {x ∈ X;∃ M ′ > 0 and xn ∈ D(A), s.t. ‖Axn‖ ≤ M ′ and xn → x}.
(b)Fav(R�∗) = D(A∗). In particular, if X is reflexive, then Fav(R) = D(A).
(c)Fav(R) = D(A�∗)∩X. In particular, if X is -reflexive, then Fav(R) = D(A�∗).

Proof. (a) If x ∈ Fav(R), then by Lemma 1.2, the assumption condition H and
Definition 4.1 we have xn ∈ D(A) and

xn =
1

(k ∗ a)( 1
n)

∫ 1
n

0
a(

1
n
− s)R(

1
n

)xds → x (n → +∞).

Hence

‖Axn‖ = ‖A 1
(k ∗ a)( 1

n)

∫ 1
n

0
a(

1
n
− s)R(

1
n

)xds‖

= ‖ 1
(k ∗ a)( 1

n)
[R(

1
n

)x − k(
1
n

)x]‖

= ‖ 1
(k ∗ a)( 1

n)
O(

1
n

)‖

≤ 1

εa,k

∫ t
0 |a(t − s)k(s)|ds

O(
1
n

) = M ′.

Conversely, if xn ∈ D(A) and xn → x, ‖Axn‖ ≤ M ′, then for t → 0

‖R(t)x − k(t)x‖ = lim
n→∞ ‖R(t)xn − k(t)xn‖

= ‖
∫ t

0
a(t − s)AR(s)xnds‖

≤ M ′
∫ t

0
M2e2ωsds

= O(t).
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(b) If x∗ ∈ D(A∗) and x ∈ X, then we have

|〈x,R(t)∗ − k(t)x∗〉| = |〈(a ∗ R)(t)x,A∗x∗〉|
≤ M |

∫ t

0
a(t − s)eωtds|‖x‖‖A∗x∗‖.

Therefore ‖R(t)∗x∗ − k(t)x∗‖ = O(t) as t → 0, i.e. x∗ ∈ Fav(R∗).
Conversely, if x∗ ∈ Fav(R∗), then from Lemma 1.2 we have 1

(k∗a)(t)

∫ t
0 a(t−s)R(t)xds →

x for t → 0+. Hence we obtain that |〈Ax, x∗〉| ≤ M‖x‖ for x ∈ D(A). Therefore x∗ ∈
D(A∗). If X is reflexive, then we have that A∗∗ = A and R∗∗(t) = R(t) and hence
Fav(R) = D(A).

(c) If x ∈ D(A�∗) ∩ X, then if for any y ∈ D(A∗) we have

|〈x,R(t)∗y − k(t)y〉| = |〈x,R(t)�∗y − k(t)y〉|
= ‖A�∗x‖

∫ t

0
|a(t − s)|‖R(s)‖‖y‖ds.

Hence

‖R(t)x − k(t)x‖ ≤ Mx|
∫ t

0
a(t − s)ds|,

i.e. x ∈ Fav(R).

Conversely, if x ∈ Fav(R), then from Lemma 1.2 we have

|〈x,A�y∗〉| ≤ ‖y∗‖ sup
0<t<1

{(k ∗ a)(t)}−1‖R(t)x − k(t)x‖

for any y∗ ∈ D(A�). Thus |〈x,A�y∗〉| ≤ Mx‖y∗‖, i.e. x ∈ D(A�∗). If X is reflexive, then
we see from (b) that Fav(R(t)) = D(A�∗).

Remark 2. If we take that k(t) ≡ 1 and a(t) ≡ 1 or a(t) ≡ t in Theorem 4.2, then we
obtain the correlative result of the Favard class on C0-semigroup (see [8,9]) and strongly
continuous cosine function.
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