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Abstract. The diffraction of a planar rarefaction wave along a compressive corner is con-
sidered by using numerical experiments and generalized characteristic analysis method. We
have clarified that there are two patterns: regular reflection-like and Mach reflection-like
(something like the diffraction of a planar shock along a compressive corner). And the reflec-
tion wave is always a compressive simple wave (called von Neumann wave), which goes into
a critical transonic shock at last. The critical transonic shock is a special kind of transonic
shock. The flow at the back bank of the shock is just sonic. A supersonic region near the
corner appears in the second pattern.

1. Introduction

Diffraction of a planar shock along a compressive corner has long been an important

problem in gas dynamics. It was considered initially by Mach (1878), who found two patterns:

regular reflection and Mach reflection by experimental observation. von Neumann (1943)

proposed a transition criterion between regular reflection and Mach reflection, using the

method of shock polar. Bleakney and Taub (1949) delivered an analytical formulation of

this criterion. The formulation is very complicated and completed by Chang & Chen (1986)

and Sheng & Yin (to appear in ZAMP 2008) at last. Colella & Henderson (1990) and

Zakhrian, Brio, Hunter & Webb (2000) found a new reflected wave: von Neumann wave in

the diffraction of weak shock waves.
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Based on this problem, Zhang & Zheng (1990) proposed the two-dimensional Riemann

problem for the compressible Euler equations. It is an initial value problem with initial data

being constant in each quadrant and each jump in initial data outside of the origin projects

one planar simple wave of shocks, rarefaction waves or contact discontinuities. Just as the

diffraction of a planar shock along a compressive corner, the two-dimensional Riemann prob-

lem is self-similar. Their solutions are called pseudo-stationary flow. Using the generalized

characteristic analysis, i.e., the analysis of characteristic, shock, sonic curve and the law of

causality, they delivered a set of conjecture to the patterns of the solutions. The general-

ized characteristic analysis is a generalization of the classical characteristic analysis which

was used to discuss many problems in Courant, R. & Friedrichs, K. O. (1948). Since then,

numerical simulations for the two-dimensional Riemann problem have been performed by

Schulz-Rinne, Collins & Glaz (1993), Chang, Chen & Yang (1995), Lax & Liu (1996, 1998),

Li, Zhang & Yang (1998) and Kurganov & Tadmor (2002), among others. General patterns

of both shock reflection and rarefaction wave reflection have been revealed. Li et al. (2006)

proved that any wave adjacent to a constant state is a simple wave for the adiabatic Euler

system in pseudo-stationary flow.

Recently, Glimm et al. (2008) present numerical evidence and generalized characteristic

analysis to establish the existence of a transonic shock in such a 2-D Riemann problem,

defined by the interaction of four rarefaction waves.

As a continuation of the last paper mentioned above, we are concerned with diffraction of

a planar rarefaction wave along a compressive corner in the present paper.

We use the positive scheme (Lax & Liu 1996) which is a second order accurate for smooth

solutions and first order accurate near shock waves. According to the numerical solutions, we

draw pseudo characteristic curves, pseudo stream lines, pseudo sonic curves and shocks, and

then do some analysis on their relationships. We discover there are two kinds of reflections

in all including von Neumann waves and transonic shocks as follows:

1. Regular reflection-like (analogous to regular reflection in shock reflection).

The entire rarefaction wave strikes on and is reflected at the rigid wall. The reflected wave

is a compressive simple wave (called von Neumann wave) which goes into a critical transonic

shock.

2. Mach reflection-like (analogous to Mach reflection in shock reflection).

The entire rarefaction wave is divided into two parts. The former part ia the same as the

above, but the tail of it is sonic. From then on, the rest part hits a sonic curve before they

attach the rigid wall and is reflected at the sonic curve. The sonic curve plays the role of

the triple point in Mach reflection of shock. The reflected wave is the same as the former

one. Besides, a rarefactive supersonic region appears in the neighborhood of the corner. As
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the strength of the rarefaction wave is larger than a critical value, the supersonic region is

connected with the von Neumann wave.

2. Set-up the problem for diffraction of a planar rarefaction wave

along a compressive corner

2.1. Generalized characteristic analysis.

We consider the Euler equations⎧⎪⎪⎨⎪⎪⎩
ρt + ∇ · (ρU) = 0,

(ρU)t + ∇ · (ρU ⊗ U) + ∇p = 0,

(ρE)t + ∇ · ((ρE + p)U) = 0,

(2.1)

for the variables(ρ, U, E), where ρ is the density, U = (u, v) is the velocity, p is the pressure,

E = 1
2
|U |2+e is the specific total energy, and e is the specific internal energy. For a polytropic

gas, the pressure p is defined by the equation

e =
p

(γ − 1)ρ
,

where γ > 1 is a constant, and γ = 1.4 for air. In this paper, we take γ = 1.4.

Since system (2.1) is invariant under a dilation (t, x, y) → (kt, kx, ky)(k > 0), its solution

must be self-similar, that is (u, v, p, ρ)(t, x, y) = (u, v, p, ρ)(ξ, η), (ξ, η) = (x/t, y/t), called

pseudo-stationary flow.

At this moment, (2.1) reads⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ξρξ − ηρη + (ρu)ξ + (ρv)η = 0,

−ξ(ρu)ξ − η(ρu)η + (ρu2 + p)ξ + (ρuv)η = 0,

−ξ(ρv)ξ − η(ρv)η + (ρuv)ξ + (ρv2 + p)η = 0,

−ξ(ρE)ξ − η(ρE)η + (ρu(E +
p

ρ
))ξ + (ρv(E +

p

ρ
))η = 0.

(2.2)

Denote (U, V ) = (u − ξ, v − η), which is called pseudo-velocity. After simple calculation,

systems (2.2) can, for smooth solutions, be reduced to⎛⎜⎜⎜⎜⎝
U 0 ρ 0

0 1 ρU 0

0 0 0 ρU

0 U γp 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ρξ

pξ

Uξ

Vξ

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
V 0 0 ρ

0 0 ρV 0

0 1 0 ρV

0 V γp 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ρη

pη

Uη

Vη

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
2ρ

ρU

ρV

2γp

⎞⎟⎟⎟⎟⎠ = 0 (2.3)

The characteristic equation is

ρ2(V − λU)2[(V − λU)2 − c2(1 + λ2)] = 0, (2.4)

which gives either

λ0 =
V

U
=

v − η

u − ξ
(pseudo-stream characteristic) (2.5)
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ξ
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or

λ± =
(u − ξ)(v − η) ± c

√
(u − ξ)2 + (v − η)2 − c2

(u − ξ)2 − c2
(pseudo-wave characteristic) (2.6)

where c2 = γp/ρ is the sonic speed. The pseudo-Mach number

M =
√

(u − ξ)2 + (v − η)2/c. (2.7)

The flow is transonic and must be supersonic at infinity for bounded solutions.

For simplicity, “pseudo-” will be omitted in the following.

For the analysis of our numerical results in the following, we show the generalized charac-

teristic analysis for constant state, rarefaction wave and shock, which were proved by Zhang

& Zheng (1990).

(i) Constant states: (ρ, u, v, p) = (ρ0, v0, u0, p0).

Their sonic curve is a circle:

(ξ − u0)
2 + (η − v0)

2 = c2
0

The flow is subsonic inside the circle and supersonic outside the circle. The stream lines are

all rays starting from infinity and focusing at the center of the sonic circle.

The wave characteristic lines are straight lines. They are perpendicular to the stream lines

at the sonic circle and must be the tangent lines of the circle. They come from infinity and

end at the sonic circle (see Fig.2.3).

(ii) R+
12: connecting two constant states i© := (ui, vi, pi, ρi), i = 1, 2, (see Fig.2.4).

R+
12(ξ) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ = u +

√
p′(ρ), (ξ2 = u2 + c2 ≤ ξ ≤ ξ1 = u1 + c1)

u = u1 +

∫ ρ

ρ1

√
p′ρ
ρ

dρ, (0 ≤ ρ2 ≤ ρ ≤ ρ1),

v = v1, ρ < ρ1, p1ρ
−γ
1 = pρ−γ .

(2.8)
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The sonic curve is a straight segment

η = v1 (ξ2 ≤ ξ ≤ ξ1)

which we call the sonic stem.

The sonic stem is located on the stream line η = v1 and is perpendicular to the λ±
characteristic lines there. The other stream lines are symmetric about it and all intersect at

point (u2, v2). The sonic curve is made of the sonic circle of state 2© and the sonic stem of

R+
12(ξ). The sonic circle of state 1© is located in ξ ≤ ξ1. Therefore, it is an imaginary one.

(iii) S±
12: connecting two constant states 1© and 2© (see Fig.2.5).

S±
12(ξ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ = σ12 = u2 +

√
ρ1

ρ2
p′12 = u1 +

√
ρ2

ρ1
p′12,

v2 = v1,

p2

p1
=

(γ + 1)ρ2 − (γ − 1)ρ1

(γ + 1)ρ1 − (γ − 1)ρ2
,

ρ2 > ρ1 ⇔ u2 > u1 (ρ2 < ρ1 ⇔ u2 < u1).

(2.9)

Obviously, u2 + c2 > σ12 > u1 + c1, σ+ > u2, which means that the sonic circle of state 1© is

located in ξ < σ12, and the sonic circle of state 2© is divided into parts by the shock. The

characteristic lines of state 1© and 2© are determined by these two sonic circles, respectively.

Remark 2.1. We call AB transonic shock, the points A and B critical transonic shock and

the rest of straight line AB supersonic shock, see Fig.2.5.
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2.2. Set-up the problem.

The problem for diffraction of a planar rarefaction wave along a compressive corner is an

initial boundary value problem (2.1) with the initial data

(u, v, p, ρ)
∣∣∣
t=0

=

{
(u1, v1, p1, ρ1), 0 < x < +∞, x tan θ < y < +∞
(u2, v2, p2, ρ2), −∞ < x < 0,

(2.10)

in region Ω with the boundary Γ = Γ1 ∪ Γ2, and the boundary condition{
(v − u tan θ)|Γ1 = 0, x > 0, t ≥ 0

v|Γ2 = 0, x < 0, t ≥ 0.
(2.11)

where ρ2 < ρ1, u2 > u1, θ is the angle of compressive corner and i© = (ui, vi, pi, ρi), i = 1, 2

are constants. See Fig.2.6.

For the compatibility of initial and boundary conditions, we have

u1 = 0, v1 = u1 tan θ, (2.12)

which implies

v1 = v2 = u1 = 0. (2.13)

The initial and boundary conditions (2.10) and (2.11) are invariant under the selfsimilar

transformation. Therefore, we may seek the selfsimilar solutions for our problem. Moreover,

the initial boundary value problem (2.1) with (2.10) and (2.11) are reduced to the boundary

value problem (2.2) (see Fig.2.7) with{
(v − u tan θ)|Γ1 = 0

v2|Γ2 = 0.
(2.14)

lim
ξ2+η2→+∞

(u, v, p, ρ)(ξ, η) =

{
(u1, v1, p1, ρ1),

(u2, v2, p2, ρ2),

ξ > 0, η > tan θ ξ,

ξ < 0, η > 0.
(2.15)
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From ρ2 < ρ1, u2 > 0, we obtain a forward planar rarefaction wave denoted by R+
12, connect-

ing 1© and 2©, satisfying:

R+
12 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p1ρ

−γ
1 = p2ρ

−γ
2 ,

u2 = u1 +
2
√

γ

γ − 1
(

√
ρ2

ρ1
−

√
p1

p2
),

v1 = v2, ρ2 < ρ1.

(2.16)

3. A critical transonic shock formed by a compressive simple wave in

regular reflection-like and Mach reflection-like

In this section, we do some numerical simulations to the problem and use generalized

characteristic analysis to study the numerical results.

Analogous to [10], the computational domain is a rectangle [−1.0, 0.75]× [0, 0.75] and dis-

crete time is t = T0. Firstly, we discuss the algorithm for characteristics. The characteristic

curves starting at the top boundary of rectangle belong to the family λ+. Starting at the top

boundary, we solve for λ+ to obtain the pseudo characteristic curves, using a second order

accurate Runge-Kutta scheme. The solution for λ+ is continued to the sonic curve or the

rigid wall. For the reflected characteristics λ− at the sonic curve or the rigid wall, we repeat

the above processes.

In all numerical calculations, we fix the computational time T0 = 0.25, the mesh grid

dx = dy = 1/800, λx = λy = 0.25, the angle of the compressive corner θ = 45◦, using

positive scheme (Lax & Liu 1996) which involves two limits α and β set to be 0.9 and 0.1

and let the initial values be p1 = 1.0, ρ1 = 1.0, u1 = v1 = 0, v2 = 0.

The numerical results show that there are two kinds of reflections to the problem.

3.1. Regular reflection-like.

Denote p1/p2 the strength of the planar rarefaction wave. In this case, we take p2 = 0.7045.

Our numerical results are shown in Fig.3.1.(a)-(e).

All the λ+ characteristics of rarefaction wave R+
12 coming from infinity attach the rigid

wall A1A2 and are reflected to form a simple wave (von Neumann wave) which is located

between straight λ− characteristics PB1 and A2B2, The λ− characteristics of the simple

wave hit ̂B1B2 of the sonic curve ̂B1D.

Some of the λ+ characteristics of constat state 2© coming from infinity penetrate the von

Neumann wave and attach the rigid wall A2C, where the point C is sonic. The neighboring

λ+ characteristics of constat state 2© coming from infinity penetrate the von Neumann wave

and hit the sonic curve ĈD before attaching the rigid wall. Both the rest λ+ characteristics

and λ− characteristics, which are reflected at the rigid wall A1C and the sonic curve ĈD, are
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Fig.3.1.(a) Characteristic curves (light, arrow),
Mach number contours (light) with M = 1.0,M = 0.96 and rigid wall (bold).
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Fig.3.1.(b) Enlarged view from Fig.3.1.(a) shows the non parallel termination
of characteristics on the M = 1.0 contour and shock existence at the point B.

incoming to the sonic curve ̂B1D, not tangentally (Fig.3.1.(a)-(b)). The numerical results in

Fig.3.1.(c) show that at a arbitrary point B of the sonic curve ̂B1D , λ+(B) �= λ−(B), which

means that B is supersonic. The contradiction indicates that ̂B1D is a transonic shock. The

transonic shock is different from the common transonic shock as at back bank of shock is

sonic curve. This is a critical situation of transonic shock. We call it critical transonic shock.

The theoretical foundation of conception of the critical transonic shock may refer to remark

2.1 and Fig.2.5 in Section 2.
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meet at B, note that λ+ �= λ+ at the point B.
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Fig.3.1.(d) Contour curves of density (light) and stream lines (bold, arrow).

There is another test for existence of a shock as follows. We notice the fact that

t
dρ(t, x, y)

dt
= t(1, u, v) · (∂t, ∂x, ∂y) = (u − ξ, v − η) · (∂ξ, ∂η) =

dρ(ξ, η)

ds
,

where dρ(t,x,y)
dt

and dρ(ξ,η)
ds

are the directional derivative of the density ρ along the trajectories

of gas particles in the (t, x, y)-space and along the pseudo-stream line, respectively([19], [10]).

Therefore, dρ
ds

> 0 means a compression and the jump indicates a shock. The von Neumann

wave is compressive and a critical transonic shock is formed, see Fig.3.1.(d)-(e).
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3.2. Mach reflection-like.

Let p2 decrease, i.e., the strength of the planar rarefaction wave R+
12 increase. Numerical

results show that there exists a critical pressure p2 = pc , the λ+ characteristic corresponding

to pc attaches the rigid wall just at sonic point C. After that, the λ+ characteristics hit the

sonic curve ĈA2 and are reflected as λ− characteristics, see Fig.3.2.(a). Similar to regular

reflection-like, all the λ− characteristics go into critical transonic shock ̂A2B1.

Besides, a rarefactive supersonic region appears in the neighborhood of the corner. The

boundary of the supersonic region consists of sonic curve and transonic shock, see Fig.3.2.(a)-

(d).
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Fig.3.2.(a) Characteristic curves (light, arrow),

Mach number contours (light) with M = 1.0, 0.96 and rigid wall (bold).
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Fig.3.2.(b) Enlarged view from Fig.3.2.(a) shows the non parallel termination

of characteristics on the M = 0.96 contour and shock existence at the point E.

Let us compare the diffraction of rarefaction wave with shock. In the regular reflection of

shock, the incident shock is reflected at the rigid wall, and in the Mach reflection, the shock

is reflected at the triple point separating from the rigid wall. While in regular reflection-like

of the diffraction of rarefaction wave, the entire rarefaction wave is reflected at the rigid wall.

In Mach reflection-like, part of the rarefaction wave is reflected at the rigid wall and the rest

is reflected at the sonic curve separating from the rigid wall. That is why we call the two

reflection regular reflection-like and Mach reflection-like of rarefaction wave.
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Fig.3.2.(c) Contour curves of density (light) and stream lines (bold, arrow).
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3.3. The supersonic regions near and outside the corner join together.

Numerical results show that as the strength of the rarefaction wave R+
12 increases, the

supersonic region becomes larger and larger. At last, it attaches point A2 and the two

supersonic regions join together. The critical pressure p2 is denoted as p
T
.

As an example of this case, we deliver the numerical results for the case p2 = 0.2058.

Analogous to Mach reflection-like, there exists a unique λ+ characteristic, which attaches

the rigid wall just at a sonic point C. The λ+ characteristics located right to it attach the

rigid wall A1C and the rest ones hit the sonic curve ĈA2, then all the λ+ characteristics are

reflected to form a compressive von Neumann wave and end up to a critical transonic shock.

Besides, the supersonic region in the neighborhood of the corner and the upper supersonic

region are joined together, see Fig.3.3.(a)-(c).
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Fig.3.3.(b) Contour curves of density (light) and stream lines (bold, arrow).
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4. Conclusions

In this paper, we present numerical solutions of the Euler equations for the diffraction of a

rarefaction wave along a compressive corner by use of positive scheme (Liu & Lax 1996, Lax

& Liu 1998), which involves two limits α and β set to be 0.9 and 0.1, the space mesh size

dx = dy = 1/800 and CFL number λ = 0.25. And then we deliver generalized characteristic

analysis according to numerical solutions. To demonstrate numerical results, we select the

following angle of the compressive corner: 15◦, 30◦, 45◦, 60◦, 75◦. Keeping among angles

invariable, we increase the strength of the rarefaction wave R+
12 and find that there are two

kinds of reflections above mentioned, i.e., regular reflection-like, Mach reflection-like. The

critical pressure value pc between the regular reflection-like and the Mach reflection-like are
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Fig.4.1. The critical pressures pc (left) and pT (right) at different angles θ.
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shown in Fig.4.1 (left) according to numerical calculations. From Fig.4.1 (left), we may see

that pc is larger near θ = 45◦ than other angles. Numerical evidences show that the strength

of the compressible simple reflected is the weaker near θ = 45◦ than any other angle keeping

other parameters invariable. When the pressure p2 is smaller than the pc , there appears a

supersonic region in the neighborhood of the corner. Furthermore, the critical angle p
T

is

shown in Fig.4.1 (right). p
T

is larger near θ = 45◦ than other angles.

A critical transonic shock, at the back bank of which is just sonic is observed. There

appears a von Neumann wave, which is a compressive simple wave and goes into the critical

transonic shock at last, in diffraction of a planar rarefaction wave along a compressive corner.
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