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Abstract. In this paper, we study a free boundary problem of one-dimensional

compressible Navier-stokes equations with a density-dependent viscosity, which

include, in particular, a shallow water model. Under some suitable assumptions

on the initial data, we obtain the global existence, uniqueness and the large time

behavior of weak solutions. In particular, it is shown that a stationary wave

pattern connecting a gas to the vacuum continuously is asymptotically stable for

small initial general perturbations.

1 Introduction

We study a free boundary problem of one-dimensional compressible Navier-

stokes equations with a density-dependent viscosity, which can be written in

Eulerian coordinates as
⎧⎨
⎩

ρτ + (ρu)ξ = 0,

(ρu)τ + (ρu2 + P (ρ))ξ = (μ(ρ)uξ)ξ − ρg,
(1)
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in a domain O := {(ξ, τ) : 0 < ξ < l(τ), τ > 0} with the boundary function l

satisfying

l′(τ) = u|ξ=l(τ), for τ > 0, (2)

where ρ, u, P (ρ) = Aρ2 and g are the density, velocity, pressure and gravitational

constant respectively, and the viscosity μ(ρ) is assumed to be μ(ρ) = Cρ, A and

C > 0 are constants.

In this paper, the initial conditions are

(ρ, u)|τ=0 = (ρ0, u0)(ξ), for ξ ∈ (0, l0), l|τ=0 = l0, (3)

and the boundary conditions are

u|ξ=0 = 0, ρ|ξ=l(τ) = 0, for τ > 0. (4)

These systems include, in particular, a simple model of the one-dimensional

shallow water system describeing vertically averaged flows in three–dimensional

shallow domains in term of the mean velocity u and the variation of the depth ρ

due to the free surface, which is widely used in geophysical flows [8]. Our main

concern here is the global existence, uniqueness and the large time behavior of

weak solutions to the above initial boundary value problem.

Let (ρ∞, 0) be a stationary solution to the equation (1) with the boundary

conditions (4). Then

(P (ρ∞))ξ = −ρ∞g, (5)

in an interval ξ ∈ (0, l∞) with the end l∞ satisfying

ρ∞(l∞) = 0, (6)

∫ l∞

0

ρ∞dξ = m :=

∫ l0

0

ρ0dξ. (7)

It follows from (5) that there exists a unique solution (ρ∞, l∞) to the stationary

system (5) − (7) satisfying (ρ∞)ξ < 0 and l∞ < +∞.
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When the viscosity μ(ρ) is a positive constant, there have been many in-

vestigations on the compressible Navier-Stokes equations for sufficiently smooth

data or discontinuous initial data, one-dimensional or multi-dimensional prob-

lems. For instance, the one-dimensional problem was addressed by Kazhikhov

in [15] for the sufficiently smooth data, and by Serre in [27] and Hoff [11] for

discontinuous initial data where the data were uniformly away from the vacuum.

In [21], Matsumura and Nishida showed the global existence and the large-time

behavior of solutions for sufficiently small data in multi-dimensional case if the

data were small perturbation of an uniform non-vacuum state. However, for large

data, many important problems, for example, the existence of global solution in

the case of heat-conducting gases and the uniqueness of weak solutions are still

open. The first general result was obtained by Lions in [17], in which he used the

method of weak convergence to obtain global weak solutions provided the specific

heat ratio γ is appropriately large, for example, γ ≥ 3N

N + 2
, N = 2, 3. There have

been many generalizations of this results, see [11, 17, 31] and references therein.

The free boundary problem for the one-dimensional compressible Navier-Stokes

equations were investigated in [1, 2, 24], where the global existence of weak solu-

tions was proved. In particular, in [19], Luo, Xin and Yang studied the regularity

and the behavior of solutions near the interfaces between the gas and vacuum,

and give a quite precise description on growth rate of the free boundary.

However, the studies in [12, 18, 30] showed that the compressible Navier-

Stokes equations with constant viscosity coefficients behave singularity in the

presence of vacuum. As pointed out in [18], one of the main reasons for this came

from the independence of the kinematic viscosity coefficient on the density. In

fact, if one derives the compressible Navier-Stokes equations from the Boltzmann

equation by exploiting Chapman-Enskog expansion up to the second order, as

in [9], one can find the viscosity is not constant but a function of the tempera-
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ture. For isentropic flows, this dependence is translated to the dependence on the

density by the law of Boyle and Gay-Lussac for ideal gas as discussed in Liu [18].

In recent years, there have been many studies for the compressible Navier-

Stokes equations with the density-dependent viscosity in both one-dimensional

and higher dimensional setting. Bresch, Desjardins, and Lin [3] showed the L1

stability of weak solutions for the Korteweg system with the Korteweg stress

tensor κρ∇�ρ, and their result was later improved in [4] to include the case

of vanishing capillarity (κ = 0) but with an additional quadratic friction term

rρ|u|u. In their papers, a new entropy estimate is established which provided

some high order regularity for the density [3, 4]. Recently, Mellet and Vasseuer

[22] proved the L1 stability results of [3, 4] for the case r = κ = 0. Never-

theless, the global existence of weak solutions of the compressible Navier-Stokes

equations with density-dependent viscosity is still open in the multi-dimensional

cases except for spherical symmetric case, see [10]. The key issue now is how to

construct approximate solutions satisfying the a priori estimates required in the

L1 stability analysis. It seems highly nontrivial to do so due to the degeneracy of

the viscosities near vacuum and the additional entropy inequality to be held in

constructions of approximate solutions.

In contrast to the higher dimensional case, there are fruitful studies in the one-

dimensional setting. Suppose that μ = cρθ with c and θ being positive constants.

When the initial density connects to vacuum with discontinuities, Liu, Xin and

Yang obtained the local existence of weak solutions to Navier-Stokes equations

with vacuum [20]. The global existence and uniqueness of weak solutions when

0 < θ < 1/3 was obtained by Okada in [25]. Later, it was generalized to the cases

for 0 < θ < 1/2 and 0 < θ < 1 in [32, 13] respectively. Very recently, if the initial

density is bounded away from zero (no vacuum), Mellet and Vasseur proved the

existence and uniqueness of global strong solutions in [23] for 0 < α < 1/2. One
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of the key estimates for all these results is the uniform positive lower bound for

densities in constructions of approximate solutions.

If the density function connects to vacuum continuously, there is no positive

lower bound for the density function and the viscosity coefficient vanishes at

vacuum. This degeneracy in the viscosity coefficient gives rise to new difficulties

in the analysis. A local existence result was obtained in [33] with θ > 1/2, global

existence results were studied by [6, 26, 28, 29, 34]. In [28], Zhang and Fang

obtained the global existence and uniqueness of weak solution when the initial

data is a small perturbation to the stationary solution as long as θ ∈ (0, γ −
1)

⋂
(0, γ/2], where γ > 1 is the adiabatic constant of polytropic gas and also

proved the weak solution tended to the stationary one. For μ(ρ) = ρθ (θ > 1/2),

Li, Li and Xin in [16] studied this case for both bounded spatial domains or

periodic domains and showed that for any global entropy weak solution, any

(possibly existing) vacuum state must vanish within finite time, and furthermore,

after the vanishing of vacuum states, the global entropy weak solution becomes a

strong solution. These results were generalized in [14] to the Cauchy problem for

one-dimensional compressible flows, where two cases were considered: the initial

density assumed to be integrable on the whole real line and the deviation of the

initial density from a positive constant density being integrable on the whole real

line.

In this paper, we study the free boundary value problem (1)− (4) and obtain

the upper and lower bounds of the density function uniformly in time. Also we

show that the upper bound of the velocity function is finite, and obtained one of

the important features of this problem, that is, the interface separating the gas

and vacuum propagates with finite speed. For the large time behavior, we can

show that the solution tends to the stationary one as time tends to infinity. One

of the key new ingredient is a new global space-time square estimate.
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The rest of this paper is organized as follows. In section 2, we convert the

free boundary problem to a fixed boundary problem by using Lagrangian trans-

formation, then give the definition of weak solutions and state the main result in

this paper. In section 3, we give a series of a prior estimates which will be used

to obtain the global existence of weak solutions. In section 4, we will prove the

uniqueness of the weak solution. Large time behavior of solutions is studied in

section 5, where we show that the solution to the free boundary problem tends

to a stationary one as time goes to infinity.

2 Formulation and main result

Since the free boundary l(τ) is a particle path, it can be converted to a fixed

boundary in the lagrangian coordinates.

Introduce the following coordinates transformation

x =

∫ ξ

0

ρ(y, τ)dy, t = τ.

Set

X(τ) = x(l(τ), τ) =

∫ l(τ)

0

ρ(y, τ)dτ.

It follows from (1)1, (3) and (4) that

dX(τ)

dτ
= 0, (8)

i.e., X(τ) is independent of τ.

Set

X =

∫ l0

0

ρ(y, 0)dy, (9)

where
∫ l0
0

ρ(y, 0)dy is the total mass.
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Rescaling if necessary, the problem(1), (3) and (4) can be transformed to the

following fixed boundary problem:

⎧⎨
⎩

ρt + ρ2ux = 0, t > 0,

ut + (ρ2)x = (ρ2ux)x − g, 0 < x < 1,
(10)

with the boundary conditions

u(0, t) = ρ(1, t) = 0, t ≥ 0, (11)

and the initial data

(ρ, u)(x, 0) = (ρ0(x), u0(x)), x ∈ [0, 1]. (12)

Let ρ∞(x) be the solution of the following stationary problem,

⎧⎨
⎩

(ρ2
∞)x = −g,

ρ∞(1) = 0
(13)

Then

ρ∞(x) = [g(1 − x)]1/2. (14)

Throughout this paper, the initial data will be assumed to satisfy:

(A1): [N1(1−x)]1/2 ≤ ρ0 ≤ [N2(1−x)]1/2, with some positive constant 0 < N1 ≤
N2 and (1 − x)1/2(ρ0)

2
x ∈ L1([0, 1]);

(A2): u0 ∈ H1([0, 1]), u0(0) = 0 ;

(A3): (ρ2
0(x)u0x)x ∈ L2([0, 1]).

Under assumptions (A1) − (A3), we will prove the existence of a global weak

solution to the initial boundary value problem (10)-(12). The weak solution is

defined bellow:

Definition 2.1 A pair (ρ(x, t), u(x, t)) is called a global weak solution to the

initial boundary value problem (10) − (12) if for any large T > 0,

ρ, u ∈ L∞([0, 1] × [0, T ])
⋂

C1([0, T ]; L2(0, 1)), (15)

7



ρ2ux ∈ L∞([0, 1] × [0, T ])
⋂

C1/2([0, T ]; L2(0, 1)), (16)

furthermore, the following equalities hold:

ρt + ρ2ux = 0, a.e. (17)

and∫ ∞

0

∫ 1

0

(uφt + (P (ρ) − μ(ρ)ρux)φx − gφ)dxdt +

∫ 1

0

u0(x)φ(x, 0)dx = 0, (18)

for and test function φ(x, t) ∈ C∞
0 (Ω) with Ω = {(x, t) : 0 < x ≤ 1, t > 0}.

In what follows, C(C(T )) will be used to denote a generic positive constant

depending only on initial data (or the given time T ).

The main result in this paper can be stated as follows:

Theorem 2.1 Let (A1) − (A3) hold. There is a constant ε0 > 0, such that if

‖u0‖L2 ≤ ε,

∫ 1

0

(1 − x)−1/2(ρ0 − ρ∞)2dx ≤ ε, (19)

for all ε ∈ [0, ε0], the free boundary problem (10)−(12) has a unique weak solution

(ρ(x, t), u(x, t)) satisfying

C1[(1 − x)]1/2 ≤ ρ(x, t) ≤ C2[(1 − x)]1/2, (x, t) ∈ Q, (20)

sup
t≥0

(‖u‖L2) ≤ C, (21)

sup
t≥0

‖(1 − x)1/2(ρx)
2‖L1 ≤ C(T ), (22)

‖u‖L2(Q) + ‖ρux‖L2(Q) ≤ C, (23)

‖u‖L∞(Q) ≤ C(T ), (24)

where Q = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} , C1 and C2 are independent of t > 0.

Furthermore, it holds that

lim
t→∞

∫ 1

0

[
1

2
u2(x, t) + (ρ2(x, t) − ρ2

∞(x))2]dx = 0, (25)

lim
t→∞

‖ρ − ρ∞(·, t)‖Lq = 0, ∀q ∈ [1,∞). (26)
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3 Some a priori estimates

In this section, we will use a standard finite difference approximation to obtain

the existence of the weak solution. For this purpose, we first derive some a priori

estimates to obtain the desired estimates on the solution. The key point is to

obtain the uniform lower bound of the density function ρ(x, t).

First, we derive some elementary equalities which follow from the equation

directly. These equalities will be used frequently later.

Lemma 3.1 Under the condition of Theorem 2.1, it holds that for 0 < x < 1,

t > 0,

ρt = −ρ2ux(x, t), (27)

(ρ2ux)(x, t) = ρ2(x, t) − g(1 − x) −
∫ 1

x

ut(y, t)dy, (28)

and

ρ(x, t) = ρ0(x) + g(1 − x)t +

∫ t

0

∫ 1

x

ut(y, s)dyds−
∫ t

0

ρ2(x, s)ds. (29)

Proof: (27) and (28) follow from (10) and (11) directly, where (29) is obtained

by integrating (27) and then using (28).

Lemma 3.2 (Uniform Energy estimate) Under the condition of Theorem 2.1,

one has

∫ 1

0

(
1

2
u2 +

∫ ρ

ρ∞

h2 − ρ2
∞

h2
dh)dx +

∫ t

0

∫ 1

0

ρ2ux
2dxds ≤ Cε, (30)

where C is independent of t ≥ 0 .

Proof: Multiplying (10)2 by u, integrating the resulting equation over [0, 1]×[0, t],

and using integration by parts, one can obtain

d

dt

∫ 1

0

(
1

2
u2 + ρ)dx +

∫ 1

0

ρ2ux
2dx +

∫ 1

0

gudx = 0, (31)
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where the boundary condition (11) is used.

Set r(x, t) =
∫ x

0
ρ−1(y, t)dy. Then rt = u. Hence (31) becomes

d

dt

∫ 1

0

(
1

2
u2 + ρ + gr)dx +

∫ 1

0

ρ2ux
2dx = 0, (32)

and
d

dt

∫ 1

0

(
1

2
u2 + ρ − 2ρ∞ + gr)dx +

∫ 1

0

ρ2ux
2dx = 0. (33)

Due to (14), one has

∫ 1

0

grdx =

∫ 1

0

g

∫ x

0

ρ−1(y, t)dydx

= g

∫ 1

0

∫ 1

y

ρ−1(y, t)dxdy

=

∫ 1

0

ρ2
∞
ρ

dx,

and so
∫ 1

0

(ρ − 2ρ∞ + gr)dx =

∫ 1

0

(ρ − 2ρ∞ +
ρ2
∞
ρ

)dx

=

∫ 1

0

∫ ρ

ρ∞

h2 − ρ2
∞

h2
dhdx ≥ 0,

this yields

∫ 1

0

(
1

2
u2 +

∫ ρ

ρ∞

h2 − ρ2
∞

h2
dh)dx +

∫ t

0

∫ 1

0

ρ2ux
2dxds

=

∫ 1

0

(
1

2
u0

2 + ρ0 − 2ρ∞ + gr0)dx.

It follows from (A1) and (14) that

∫ ρ0

ρ∞

h2 − ρ2
∞

h2
dh

≤ C(1 − x)−1(ρ0 − ρ∞)(ρ2
0 − ρ2

∞)

≤ C(1 − x)−
1
2 (ρ0 − ρ∞)2.
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Taking into account (19), we have

|
∫ 1

0

(ρ0 − 2ρ∞ + gr0)dx|

= |
∫ 1

0

∫ ρ0

ρ∞

h2 − ρ2
∞

h2
dhdx|

≤ C

∫ 1

0

(1 − x)−
1
2 (ρ0 − ρ∞)2 ≤ Cε.

Hence, we obtain

∫ 1

0

(
1

2
u2 +

∫ ρ

ρ∞

h2 − ρ2
∞

h2
dh)dx +

∫ t

0

∫ 1

0

ρ2ux
2dxds ≤ Cε.

This concludes the proof. �
The uniform energy estimate yields also the smallness of sup

t≥0
‖u‖L2(0,1). Based

on this result, we will get the uniform lower bound for density function ρ(x, t).

To this end, one needs the following lemma:

Lemma 3.3 Let f ∈ C(R) and y, b ∈ W 1,1(0, T ). Let y satisfy the following

equation

Dty = f(y) + Dtb, on R
+ (34)

and moreover, |b(t2) − b(t1)| ≤ N0 for any 0 ≤ t1 < t2. Then

(1) if f(z) ≥ 0, for z ≤ z,

min{y(0), z} − N0 ≤ y(t) on R
+. (35)

(2) if f(z) ≤ 0, for z ≥ z̄, then

y(t) ≤ max{y(0), z̄} + N0 on R
+. (36)

Now we can derive some uniform lower and upper bounds for ρ(x, t).

Lemma 3.4 Under the conditions in Theorem 2.1, we have

C1[(1 − x)]1/2 ≤ ρ(x, t) ≤ C2[(1 − x)]1/2, (37)
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where (x, t) ∈ Q := {(x, t) : 0 ≤ x ≤ 1, t ≥ 0}, C1 and C2 are independent of

t ≥ 0.

Proof: Due to (27) and (28),

ρt = g(1 − x) − ρ2(x, t) +

∫ 1

x

ut(y, t)dy.

Let Y (x, t) = ρ(x, t)(1 − x)−1/2. Then

Yt(x, t) = g(1 − x)1/2 − Y 2(1 − x)1/2 + (1 − x)−1/2

∫ 1

x

utdy. (38)

Let b(x, t) = (1 − x)−1/2
∫ 1

x
udy. Then for any 0 < t1 < t2,

|b(x, t2) − b(x, t1)| = |(1 − x)−1/2

∫ 1

x

u(y, t2) − u(y, t1)dy|

≤ 2(1 − x)−1/2(1 − x)1/2 sup
t≥0

(

∫ 1

0

u2dy)1/2

≤ 2(Cε)
1
2 ,

Let f(Y ) = g(1 − x)1/2 − Y 2(1 − x)1/2. Then f(Y ) ≥ 0 if Y (x, t) ≤ g1/2.

Then (35) in Lemma 3.3 yields

Y (x, t) ≥ min{Y0, g
1/2} − 2(Cε)1/2,

with Y0 = ρ0(1 − x)−1/2 ≥ N1. Hence there exists ε0 such that for ε ∈ (0, ε0),

Y (x, t) ≥ C1 > 0.

On the other hand , if Y (x, t) ≥ g1/2, then f(Y ) ≤ 0, so by using (36) in

Lemma 3.3, we have

Y (x, t) ≤ max{Y0, g
1/2} + 2(Cε)1/2,

here Y0 = ρ0(1 − x)−1/2 ≤ N2. Hence Y (x, t) ≤ C2. �
Based on this, the desired global space-time square estimate can be obtained.

Corollary 3.5 Under the conditions of Theorem 2.1, it holds that
∫ t

0

∫ 1

0

u2(x, t)dxdt ≤ C, (39)
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where C is independent of t ≥ 0.

Proof: ∀x ∈ (1 − 1
2n , 1 − 1

2n+1 ), since u(0, t) = 0, we have

|u(x, t)| ≤
∫ x

0

|uy(y, t)|dy.

Using Hölder inequality, (37) and 0 ≤ x ≤ 1, we obtain

|u(x, t)|2 ≤
∫ x

0

|uy(y, t)|2dy · x

≤
n+1∑
i=1

∫ 1− 1
2i

1− 1
2i−1

|uy(y, t)|2ρ2(y, t)dy · 2i.

(40)

Integrating (40) over [0, 1] yields

∫ 1

0

|u(x, t)|2dx =

∞∑
n=0

∫ 1− 1
2n+1

1− 1
2n

|u(x, t)|2dx

≤
∞∑

n=0

n+1∑
i=1

∫ 1− 1
2n+1

1− 1
2n

∫ 1− 1
2i

1− 1
2i−1

|uy(y, t)|2ρ2(y)dy · 2idx

≤
∞∑

n=0

n+1∑
i=1

2i−(n+1)

∫ 1− 1

2i

1− 1
2i−1

|uy(y, t)|2ρ2(y)dy

=

∞∑
i=1

∞∑
n=i−1

2i−(n+1)

∫ 1− 1

2i

1− 1
2i−1

|uy(y, t)|2ρ2(y)dy

≤ C

∞∑
i=1

∫ 1− 1

2i

1− 1
2i−1

|uy(y, t)|2ρ2(y)dy

= C

∫ 1

0

|uy(y, t)|2ρ2(y)dy.

This together with (30) shows

∫ ∞

0

∫ 1

0

|u(x, t)|2dxdt ≤ C

∫ ∞

0

∫ 1

0

ρ2ux
2dxdt ≤ Cε, (41)

where C is independent of t ≥ 0. �

Lemma 3.6 Under the same condition as in Theorem 2.1, it holds that

∫ 1

0

(1 − x)
1
2 (ρx)

2dx ≤ C(T ), (42)
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∫ t

0

∫ 1

0

(ρx)
2dxds ≤ C(T ). (43)

Proof: it follows from (10)1 that

ρxt = −(ρ2ux)x = −g − (ρ2)x − ut. (44)

Multiplying (44) by ρx(1 − x)
1
2 and then integrating the resulting equality with

respect to x over [0, 1], one gets

d

dt

∫ 1

0

1

2
(1 − x)

1
2 (ρx)

2dx

= −
∫ 1

0

g(1 − x)
1
2 ρxdx − 2

∫ 1

0

(ρx)
2(1 − x)

1
2 ρdx

−
∫ 1

0

utρx(1 − x)
1
2 dx.

(45)

Integrating (45) with respect to t over [0, t], and integrating by parts, one obtains

by using (10)1 that
∫ 1

0

1

2
(1 − x)

1
2 (ρx)

2dx =

∫ 1

0

1

2
(1 − x)

1
2 (ρ0x)

2dx −
∫ t

0

∫ 1

0

g(1 − x)
1
2 ρxdxds

− 2

∫ t

0

∫ 1

0

(ρx)
2(1 − x)

1
2 ρdxds −

∫ t

0

∫ 1

0

utρx(1 − x)
1
2 dxds

=

∫ 1

0

1

2
(1 − x)

1
2 (ρ0x)

2dx −
∫ t

0

∫ 1

0

g(1 − x)
1
2 ρxdxds

− 2

∫ t

0

∫ 1

0

(ρx)
2(1 − x)

1
2 ρdxds +

∫ t

0

∫ 1

0

(1 − x)
1
2 ρ2ux

2dxds

− 1

2

∫ t

0

∫ 1

0

(1 − x)−
1
2 ρ2uxudx +

∫ 1

0

u0ρ0x(1 − x)
1
2 dx −

∫ 1

0

uρx(1 − x)
1
2 dx.

Hence, ∫ 1

0

1

2
(1 − x)

1
2 (ρx)

2dx + 2

∫ t

0

∫ 1

0

(ρx)
2(1 − x)

1
2 ρdxds

=

∫ 1

0

1

2
(1 − x)

1
2 (ρ0x)

2dx −
∫ t

0

∫ 1

0

g(1 − x)
1
2 ρxdxds

+

∫ t

0

∫ 1

0

(1 − x)
1
2 ρ2ux

2dxds − 1

2

∫ t

0

∫ 1

0

(1 − x)−
1
2 ρ2uxudxds

−
∫ 1

0

(1 − x)
1
2 uρxdx +

∫ 1

0

u0ρ0x(1 − x)
1
2 dx.

(46)
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Using Young’s inequality, we have
∫ 1

0

1

2
(1 − x)

1
2 (ρx)

2dx + 2

∫ t

0

∫ 1

0

(ρx)
2(1 − x)

1
2 ρdxds

≤
∫ 1

0

1

2
(1 − x)

1
2 (ρ0x)

2dx +
1

2

∫ t

0

∫ 1

0

g2dxds

+
1

2

∫ t

0

∫ 1

0

(1 − x)
1
2 ρx

2dxds +

∫ t

0

∫ 1

0

(1 − x)
1
2 ρ2ux

2dxds

+
1

4

∫ t

0

∫ 1

0

(1 − x)−1ρ2u2dxds +
1

4

∫ t

0

∫ 1

0

ρ2ux
2dxds

+

∫ 1

0

u2dx +
1

4

∫ 1

0

(1 − x)
1
2 (ρx)

2dx +
1

2

∫ 1

0

u0
2dx +

1

2

∫ 1

0

ρ2
0x(1 − x)

1
2 dx,

which together with (30), (37) and (39) shows

1

4

∫ 1

0

(1 − x)
1
2 (ρx)

2dx + 2

∫ t

0

∫ 1

0

(ρx)
2(1 − x)

1
2 ρdxds

≤ C(T ) +
1

2

∫ t

0

∫ 1

0

(1 − x)
1
2 (ρx)

2dxds.

(47)

By using Gronwall’s inequality, we obtain
∫ 1

0

(1 − x)
1
2 (ρx)

2dx ≤ C(T ), (48)

∫ t

0

∫ 1

0

(ρx)
2dxds ≤ C(T ). � (49)

Lemma 3.7 Under the same assumptions as in Theorem 2.1, we have
∫ 1

0

ut
2dx +

∫ t

0

∫ 1

0

ρ2u2
xtdxds ≤ C(T ). (50)

Proof: It follows from (10)2 that

utt + (ρ2)xt = (ρ2ux)xt. (51)

Multiply (51) by 2ut and integrate over [0, 1] × [0, t] to get

∫ 1

0

(ut)
2dx +

∫ t

0

∫ 1

0

2(ρ2)xtutdxds

=

∫ t

0

∫ 1

0

2(ρ2ux)xtutdxds +

∫ 1

0

(u0t)
2dx.

(52)
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Due to u0t = (ρ2
0u0x)x +g−(ρ2

0)x, and from the initial assumptions (A2) and (A3),

∫ 1

0

(u0t)
2dx ≤ C, (53)

then we get

∫ 1

0

(ut)
2dx +

∫ t

0

∫ 1

0

2(ρ2)xtutdxds ≤
∫ t

0

∫ 1

0

2(ρ2ux)xtutdxds + C. (54)

Integrating by parts, and using (10)1 and (11), one obtains

∫ t

0

∫ 1

0

(ρ2ux)xtutdxds = −
∫ t

0

∫ 1

0

(ρ2ux)tuxtdxds +

∫ t

0

(ρ2ux)tut|10ds

= −
∫ t

0

∫ 1

0

ρ2u2
xtdxds − 2

∫ t

0

∫ 1

0

ρtρuxuxtdxds

= −
∫ t

0

∫ 1

0

ρ2u2
xtdxds + 2

∫ t

0

∫ 1

0

ρ3u2
xuxtdxds.

(55)

Similarly,

∫ t

0

∫ 1

0

2(ρ2)xtutdxds = −2

∫ t

0

∫ 1

0

(ρ2)tuxtdxds + 2

∫ t

0

(ρ2)tut|10ds

=

∫ t

0

∫ 1

4ρ3uxuxtdxds.

(56)

It follows from (54), (55), (56), and the Cauchy-Schwartz inequality that

∫ 1

0

(ut)
2dx + 2

∫ t

0

∫ 1

0

ρ2u2
xtdxds

≤ C + 4

∫ t

0

∫ 1

0

ρ3u2
xuxtdxds − 4

∫ t

0

∫ 1

0

ρ3uxuxtdxds

≤ C +
1

2

∫ t

0

∫ 1

0

ρ2u2
xtdxds + 8

∫ t

0

∫ 1

0

ρ4u4
xdxds

+
1

2

∫ t

0

∫ 1

0

ρ2u2
xtdxds + 8

∫ t

0

∫ 1

0

ρ4u2
xdxds,

(57)

which, together (30) and (37), yields

∫ 1

0

(ut)
2dx +

∫ t

0

∫ 1

0

ρ2u2
xtdxds ≤ C + 8

∫ t

0

∫ 1

0

ρ4u4
xdxds. (58)
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Since ∫ t

0

∫ 1

0

ρ4u4
xdxds ≤

∫ t

0

max
[0,1]

(ρ2u2
x(·, s))V (s)ds, (59)

here

V (s) =

∫ 1

0

ρ2u2
x(x, s)dx,

and

ρ2u2
x = (ρ2ux)

2ρ−2

= ρ−2[

∫ 1

x

(−g − (ρ2)x − ut(y, t)dy)]2

≤ Cρ−2[g2(1 − x)2 + ρ2 + (1 − x)

∫ 1

0

u2
tdx].

(60)

Thus,

max
[0,1]

(ρ2u2
x(·, s)) ≤ C + C

∫ 1

0

u2
tdx, (61)

due to (37). Hence,

∫ 1

0

u2
tdx +

∫ t

0

∫ 1

0

ρ2u2
xtdxds ≤ C + 8

∫ t

0

(C + C

∫ 1

0

u2
tdx)V (s)ds

≤ C + C

∫ t

0

V (s)ds + C

∫ t

0

V (s)

∫ 1

0

u2
tdxds.

(62)

The uniform energy estimate (30) implies

∫ t

0

∫ 1

0

ρ2u2
xdxds ≤ C,

and so

∫ 1

0

u2
tdx +

∫ t

0

∫ 1

0

ρ2u2
xtdxds ≤ C(1 +

∫ t

0

V (s)(

∫ 1

0

u2
tdx)ds). (63)

Then using Gronwall’s inequality yields that

∫ 1

0

u2
tdx ≤ C(T ) exp(C(T )

∫ t

0

V (s)ds) ≤ C(T ). � (64)

Remark 3.8 It follows from the proof of Lemma 3.7 that

‖ρ2u2
x‖L∞((0,1)×[0,T ]) ≤ C(T ). (65)
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Lemma 3.9 Under the conditions of Theorem 2.1, the following estimates hold

true ∫ 1

0

|ρx(x, t)|dx ≤ C(T ), (66)

‖ρ2ux‖L∞[0,1]×[0,T ] ≤ C(T ), (67)

and ∫ 1

0

|(ρ2ux)x|dx ≤ C(T ). (68)

Proof: Since ∫ 1

0

(1 − x)1/2|ρx|2dx ≤ C(T ), (69)

due to (42), one can get that

∫ 1

0

|ρx|dx ≤ (

∫ 1

0

(1 − x)
1
2 |ρx|2dx)

1
2 (

∫ 1

0

(1 − x)−
1
2 dx)

1
2

≤ C(

∫ 1

0

(1 − x)
1
2 |ρx|2dx)

1
2 ≤ C(T ).

(70)

Note that

(ρ2ux(x, t)) =

∫ 1

x

[−g − (ρ2)x − ut(y, t)]dy. (71)

It follows from (37) and (50) that

|ρ2ux(x, t)| ≤ g + C + (

∫ 1

0

u2
tdx)

1
2 (1 − x)

1
2 ≤ C(T ). (72)

Integrating

(ρ2ux)x = g + (ρ2)x + ut, (73)

with respect to x over [0, 1], using (37), (50) and (66), one can obtain

∫ 1

0

|(ρ2ux)x|dx ≤
∫ 1

0

|g + (ρ2)x + ut|dx

≤ g + (

∫ 1

0

|ut|2dx)
1
2 + 2

∫ 1

0

ρ|ρx|dx

≤ C(T ). �

(74)
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Lemma 3.10 Under the conditions of Theorem 2.1, it holds that

∫ 1

0

|ux(x, t)|dx ≤ C(T ), (75)

‖u(x, t)‖L∞([0,1]×[0,T ]) ≤ C(T ). (76)

Proof: (28) yields

ux(x, t) = −g(1 − x)ρ−2 + 1 − ρ−2

∫ 1

x

ut(y, t)dy. (77)

It follows from this, (37), (50) and Hölder inequality that

∫ 1

0

|ux(x, t)|dx ≤ C +

∫ 1

0

g(1 − x)ρ−2dx +

∫ 1

0

ρ−2

∫ 1

x

|ut(y, t)|dydx

≤ C +

∫ 1

0

ρ−2(

∫ 1

x

|u2
t |dx)

1
2 (1 − x)

1
2 dx

≤ C + C(T )

∫ 1

0

(1 − x)−
1
2 dx

≤ C(T ).

(78)

On the other hand, by using Sobolev’s embedding theorem W 1,1[0, 1] ↪→
L∞[0, 1] and Cauchy-Schwartz inequality, one has

‖u(x, t)‖L∞([0,1]×[0,T ]) ≤
∫ 1

0

|u(x, t)|dx +

∫ 1

0

|ux(x, t)|dx ≤ C(T ),

where (30) and (78) have been used. �

Lemma 3.11 Under the conditions of Theorem 2.1, we have for 0 < s < t ≤ T,

∫ 1

0

|ρ(x, t) − ρ(x, s)|2dx ≤ C|t − s|, (79)

∫ 1

0

|u(x, t) − u(x, s)|2dx ≤ C(T )|t− s|, (80)

∫ 1

0

|(ρ2ux)(x, t) − (ρ2ux)(x, s)|2dx ≤ C(T )|t − s|. (81)
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Proof: First, it follows from equation (10)1 and Hölder inequality that

∫ 1

0

|ρ(x, t) − ρ(x, s)|2dx =

∫ 1

0

|
∫ t

s

ρt(x, η)dη|2dx

=

∫ 1

0

|
∫ t

s

(ρ2ux)(x, η)dη|2dx

≤ |t − s|
∫ t

s

∫ 1

0

(ρ4u2
x)(x, η)dxdη

≤ |t − s|
∫ t

0

max
[0,1]

ρ2

∫ 1

0

ρ2u2
xdxdη ≤ C|t − s|,

which implies (79).

Second, Hölder inequality and (50) give

∫ 1

0

|u(x, t) − u(x, s)|2dx =

∫ 1

0

|
∫ t

s

ut(x, η)dη|2dx

≤ |t − s|
∫ t

s

∫ 1

0

u2
t (x, η)dxdη ≤ C(T )|t− s|.

Finally, since
∫ 1

0

|(ρ2ux)(x, t) − (ρ2ux)(x, s)|2dx =

∫ 1

0

|
∫ t

s

(ρ2ux)t(x, η)dη|2dx

≤ |t − s|
∫ t

s

∫ 1

0

((ρ2ux)t(x, η))2dxdη,

and

(ρ2ux)t(x, t)) = ρ2uxt + 2ρρtux(x, t) = ρ2uxt − 2ρ3u2
x(x, t)

due to (10)1, thus it follows from (50), (65) and Cauchy-Schwartz inequality that

∫ t

s

[

∫ 1

0

(ρ2ux)t]
2dxdη

≤ C

∫ t

0

∫ 1

0

ρ4u2
xtdxdη + C

∫ t

0

∫ 1

0

ρ6u4
xdxdη

≤ C(T ). �

(82)

Now we are in a position to prove the existence of weak solutions. Indeed

based on Lemma 3.1–3.11 and Corollary 3.5, following the similar argument in
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[19, 25, 34], we can construct a weak solution to the initial boundary value prob-

lem (10)− (12) by using a finite difference method. Since the details are standard

, so will be omited. This complete the proof of the existence part of Theorem 2.1.

4 Uniqueness of weak solution

In the above section, under the assumptions (A1)−−(A3), we obtained a global

weak solution (ρ(x, t), u(x, t)) to (10) such that for any T > 0, (ρ(x, t), u(x, t))

satisfies (10)– (12) and the estimate

C1[(1 − x)]1/2 ≤ ρ(x, t) ≤ C2[(1 − x)]1/2, ‖ρux‖L∞([0,1]×[0,T ]) ≤ C(T ). (83)

In this section, we will use the energy method to prove the uniqueness of such

a weak solution in Theorem 2.1.

Theorem 4.1 Assume (A1), (A2) and (A3). Let both (ρ1(x, t), u1(x, t)) and

(ρ2(x, t), u2(x, t)) be solutions of (10) satisfying (10), (11) and (12) for any T > 0.

Then ρ1 = ρ2, u1 = u2, a.e. .

Proof: In the following, we may assume that (ρ1, u1)(x, t) and (ρ2, u2)(x, t) are

suitably smooth since the following estimates are valid for the solutions by using

the Friedrichs mollifier.

From (10)2, we have

(u2 − u1)t + ((ρ2)
2 − (ρ1)

2)x = (ρ2
2u2x − ρ2

1u1x) (84)

Multiplying the above equation by u2 − u1 and integrating it with respect to x,

using integration by parts, we get

1

2

∫ 1

0

d

dt
(u2 − u1)

2dx

=

∫ 1

0

(u2 − u1)x(ρ
2
2 − ρ2

1) − (u2 − u1)x(ρ
2
2 − ρ2

1)u2xdx

−
∫ 1

0

(u2 − u1)
2
xρ

2
1dx,

(85)
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Set

u2 − u1 = w, ρ2 − ρ1 = ρ.

Then it follows from (37), (65) and (85) that

1

2

∫ 1

0

d

dt
w2dx +

∫ 1

0

w2
xρ

2
1dx

=

∫ 1

0

ρ(ρ2 + ρ1)wxdx −
∫ 1

0

ρ(ρ2 + ρ1)u2xwxdx

≤ 1

8

∫ 1

0

ρ2
1w

2
xdx + 2

∫ 1

0

ρ2(ρ2 + ρ1)
2ρ−2

1 dx

+ 2

∫ 1

0

ρ2(ρ2 + ρ1)
2u2

2xρ
−2
1 dx +

1

8

∫ 1

0

ρ2
1w

2
xdx

≤ 1

4

∫ 1

0

ρ2
1w

2
xdx + C

∫ 1

0

ρ−2
2 ρ2dx{sup

x
[(ρ2 + ρ1)

2ρ−2
1 ρ2

2 + (ρ2 + ρ1)
2ρ−2

1 ρ2
2u

2
2x]}

≤ 1

4

∫ 1

0

ρ2
1w

2
xdx + C(1 + ‖ρ2

2u
2
2x‖L∞(0,1))

∫ 1

0

ρ−2
2 ρ2dx

≤ 1

4

∫ 1

0

ρ2
1w

2
xdx + C(T )

∫ 1

0

ρ−2
2 ρ2dx.

(86)

On the other hand,

ρit = ρ2
i uix ⇒ (

1

ρi
)t = uix, i = 1, 2. (87)

Thus,

(
1

ρ1

− 1

ρ2

)t = u1x − u2x = wx, (88)

and so

[
ρ

ρ1ρ2

]t + wx = 0. (89)

Multiplying (89) by ρ1ρ
−1
2 ρ yields

(ρ−1
1 ρ−1

2 ρ)tρ1ρ
−1
2 ρ + wxρ1ρ

−1
2 ρ = 0, (90)

which can be rewritten as

(ρ−2
2 ρ2)t + 2ρ1ρ

−2
2 ρ2u1x + 2ρ1ρ

−1
2 ρwx = 0. (91)
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Integrating (91) with respect to x over [0, 1] leads to

d

dt

∫ 1

0

ρ−2
2 ρ2dx + 2

∫ 1

0

ρ1ρ
−2
2 ρ2u1xdx + 2

∫ 1

0

ρ1ρ
−1
2 ρwxdx = 0. (92)

It follows from (92) and (37) that

d

dt

∫ 1

0

ρ−2
2 ρ2dx ≤ C

∫ 1

0

ρ−2
2 ρ2|ρ1u1x|dx +

1

4

∫ 1

0

ρ2
1w

2
xdx +

∫ 1

0

ρ−2
2 ρ2dx

≤ C(T )

∫ 1

0

ρ−2
2 ρ2dx +

1

4

∫ 1

0

ρ2
1w

2
xdx.

(93)

Combining (86) with (93) yields

d

dt

∫ 1

0

ρ−2
2 ρ2dx +

∫ 1

0

1

2
w2dx +

∫ 1

0

1

2
ρ2

1w
2
xdx

≤ C(T )

∫ 1

0

ρ−2
2 ρ2dx

≤ C(T )

∫ 1

0

(ρ−2
2 ρ2 + w2)dx.

By Gronwall’s inequality, we conclude that

w = 0, ρ = 0. (94)

Thus we finish the proof of the uniqueness. �

5 Asymptotic behavior

In this section, we will consider the asymptotic behavior of the solution to the

free boundary problem (10). We will show that the solution to the free boundary

problem tends to a stationary solution as t → ∞.

In order to obtain the result, we need a lemma.

Lemma 5.1 Suppose that y ∈ W 1,1
loc (R+) satisfies

y = y1 + y2,
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and

|y2| ≤
n∑

i=1

αi, |y′| ≤
n∑

i=1

βi, on R
+

where y1 ∈ W 1,1
loc (R+), lim

s→+∞
y1(s) = 0 and αi, βi ∈ Lpi(R+) for some pi ∈

[1,∞), i = 1, · · ·n. Then

lim
s→+∞

y(s) = 0.

Proof: Now by Sobolev’s embedding theorem W 1,1 ↪→ L∞, and using the fact

that

‖y‖W 1,1 � |
∫

y(s)ds| +
∫

|y′(s)|ds,

we have

|y(t)| ≤ |
∫ t+1

t

yds| +
∫ t+1

t

|y′|ds

≤ |y1(t + 1) − y1(t)| +
n∑

i=1

∫ t+1

t

(αi + βi)ds

≤ |y1(t + 1) − y1(t)| +
n∑

i=1

(‖αi‖Lpi (t,t+1)) + ‖βi‖Lpi(t,t+1)) → 0,

as t → ∞. �

Proposition 5.2 Under the conditions of Theorem 2.1, the total kinetic energy

E(t) :=

∫ 1

0

1

2
u2(x, t)dx → 0, as t → ∞.

Proof: First, E(t) ≥ 0. It follows from (39) and (30) that∫ ∞

0

E(t)dt =
1

2

∫ ∞

0

∫ 1

0

u2(x, t)dxdt ≤ C, (95)

and

|E ′(t)| = | −
∫ 1

0

ρ2u2
xdx +

∫ 1

0

ρ2uxdx −
∫ 1

0

gudx|

≤
∫ 1

0

ρ2u2
xdx + (

∫ 1

0

ρ2u2
xdx)

1
2 · (

∫ 1

0

ρ2)
1
2 − g(

∫ 1

0

u2(x, t)dx)
1
2

≤
∫ 1

0

ρ2u2
xdx + C(

∫ 1

0

ρ2u2
xdx)

1
2 + g(

∫ 1

0

u2(x, t)dx)
1
2 .

(96)

24



Using Hölder inequality and Sobolev’s embedding theorem W 1,1 ↪→ L∞, one has

E(τ) ≤
∫ τ+1

τ

E(t)dt +

∫ τ+1

τ

|E ′(τ)|dt

≤ 1

2

∫ τ+1

τ

∫ 1

0

u2(x, t)dxdt +

∫ τ+1

τ

∫ 1

0

ρ2u2
xdxdt

+ C

∫ τ+1

τ

(

∫ 1

0

ρ2u2
xdx)

1
2 dt + g

∫ τ+1

τ

(

∫ 1

0

u2(x, t)dx)
1
2 dt

≤
∫ τ+1

τ

∫ 1

0

u2(x, t)dxdt +

∫ τ+1

τ

∫ 1

0

ρ2u2
xdxdt

+ C(

∫ τ+1

τ

∫ 1

0

ρ2u2
xdxdt)

1
2 + g(

∫ τ+1

τ

∫ 1

0

u2(x, t)dxdt)
1
2 ,

for all τ ≥ 0.

Hence, it follows from (30), (37), (39) and Lemma 5.1 that the right hand side

of the last estimate converges to zero as τ → ∞, thus

lim
τ→∞

E(τ) = 0. �

In order to show that the density function ρ tends to the stationary state ρ∞,

we also need some uniform estimate with respect to time. The following lemma

is essential to obtain the desired conclusion.

Lemma 5.3 Under the condition of theorem 2.1, it holds that

∫ t

0

∫ 1

0

(ρ2 − ρ2
∞)2dxds ≤ C, (97)

where C is independent of t ≥ 0.

Proof: Note that

ρ2 = −ρt +

∫ 1

x

utdy + g(1 − x),

then

ρ2 − ρ2
∞ = −ρt +

∫ 1

x

utdy. (98)
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We have
∫ t

0

∫ 1

0

(ρ2 − ρ2
∞)2dxds =

∫ t

0

∫ 1

0

(ρ2 − ρ2
∞)(ρ2 − ρ2

∞)dxds

=

∫ t

0

∫ 1

0

(ρ2 − ρ2
∞)(−ρt +

∫ 1

x

utdy)dxds

=

∫ t

0

∫ 1

0

(ρ2 − ρ2
∞)(

∫ 1

x

utdy)dxds +

∫ t

0

∫ 1

0

(−ρ2ρt + ρtρ
2
∞)dxds

=

∫ t

0

∫ 1

0

(ρ2 − ρ2
∞)(

∫ 1

x

utdy)dxds +

∫ t

0

∫ 1

0

(−1

3
ρ3 + ρ2

∞ρ)tdxds

= I1 + I2,

where

I1 =

∫ t

0

∫ 1

0

(ρ2 − ρ2
∞)(

∫ 1

x

utdy)dxds

=

∫ 1

0

∫ t

0

(ρ2 − ρ2
∞)(

∫ 1

x

udy)tdsdx,

I2 =

∫ t

0

∫ 1

0

(−1

3
ρ3 + ρ2

∞ρ)tdxds.

(99)

Integrating by parts and using (10)1 lead to

I1 = −
∫ t

0

∫ 1

0

2ρρt(

∫ 1

x

udy)dxds +

∫ 1

0

(ρ2 − ρ2
∞)(

∫ 1

x

udy)dx

−
∫ 1

0

(ρ2
0 − ρ2

0∞)(

∫ 1

x

u0dy)dx

=

∫ t

0

∫ 1

0

2ρ3ux(

∫ 1

x

udy)dxds +

∫ 1

0

(ρ2 − ρ2
∞)(

∫ 1

x

udy)dx

−
∫ 1

0

(ρ2
0 − ρ2

∞)(

∫ 1

x

u0dy)dx.

It follows from Hölder inequality, (30), (37), (39) and the initial conditions that

I1 ≤ C

∫ t

0

∫ 1

0

ρ2u2
xdxds

+ C

∫ t

0

∫ 1

0

u2(x, t)dxds + C(

∫ 1

0

u2(x, t)dx)
1
2 · (

∫ 1

0

(1 − x)
3
2 dx) + C

≤ C.
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Similarly, integrating by parts, from (37) and the initial condition, we have

I2 =

∫ t

0

∫ 1

0

(−1

3
ρ3 + ρ∞ρ)tdxds

=

∫ 1

0

(−1

3
ρ3 + ρρ2

∞)dx −
∫ 1

0

(−1

3
ρ3

0 + ρ0ρ
2
∞)dx)

≤ C

∫ 1

0

(1 − x)
3
2 dx

≤ C.

Now (97) holds. �

Proposition 5.4 Under the conditions of Theorem 2.1, we have

∫ 1

0

(ρ2 − ρ2
∞)2(x, t)dx → 0, (100)

and

‖(ρ − ρ∞)(·, t)‖Lq → 0, q ∈ [1,∞), (101)

as t → ∞.

Proof: Lemma 5.3 shows that

∫ 1

0

(ρ2 − ρ2
∞)2dx ∈ L1(R+).

On the other hand, by (10), (37) and Hölder inequality, one has

| d

dt

∫ 1

0

(ρ2 − ρ2
∞)2dx|

= |
∫ 1

0

2(ρ2 − ρ2
∞)2ρρtdx|

≤ 4

∫ 1

0

|ρ2 − ρ2
∞|ρ3|ux|dx

≤ 4(

∫ 1

0

ρ2u2
xdx)

1
2 (

∫ 1

0

ρ4|ρ2 − ρ2
∞|2dx)

1
2

≤ C(

∫ 1

0

ρ2u2
xdx)

1
2 .
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Taking into account the uniform energy estimates (30), and using the same

method as in Proposition 5.2 and Lemma 5.1, we have (100).

To prove (101), we note that

∫ 1

0

(ρ − ρ∞)4(x, t)dx

=

∫ 1

0

(ρ − ρ∞)4

(ρ2 − ρ2∞)2
((ρ2 − ρ2

∞)2)dx

≤ C

∫ 1

0

(ρ2 − ρ2
∞)2dx → 0,

as t → ∞, where (37) and (100) have been used.

This and Hölder inequality imply that for q ∈ [1, 4),

∫ 1

0

(ρ − ρ∞)q(x, t)dx

≤ C(

∫ 1

0

(ρ − ρ∞)4dx)
q
4 → 0.

On the other hand, for q ∈ (4,∞), we have from (37) that

∫ 1

0

(ρ − ρ∞)q(x, t)dx

=

∫ 1

0

(ρ − ρ∞)4(ρ − ρ∞)q−4dx

≤ C

∫ 1

0

(ρ − ρ∞)4(1 − x)
q−4
2 dx

≤ C

∫ 1

0

(ρ − ρ∞)4dx → 0.

So (101) follows. �
Thus, we finish the proof of Theorem 2.1.
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