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Abstract

In this paper, solutions with nonvanishing vorticity are established for the
three dimensional stationary incompressible Euler equations on simply con-
nected bounded three dimensional domains with smooth boundary. A class
of additional boundary conditions for the vorticities are identified so that the
solution is unique and stable.
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1 Introduction and main results

Consider the stationary incompressible Euler equations

(v · ∇)v + ∇p = 0, x ∈ Ω, (1)

div v = 0, x ∈ Ω, (2)

with the boundary condition

n · v = f, x ∈ ∂Ω, (3)

where Ω(⊂ R3) is a bounded, simply connected domain, v ∈ C1(Ω, R3) de-
notes the velocity and p ∈ C1(Ω, R) the pressure of the flow, n denotes the
exterior unit vector field normal to the boundary ∂Ω. The given function
f is assumed to satisfy ∫

∂Ω
fdSx = 0. (4)

It is well known that for simply connected domains Ω problem (1)-(3) has
an irrotational solution (v, p), which is unique up to addition of constants
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to the pressure. Based on a solution (v0, p0) to the problem (1)-(3), H.
D. Alber [1] constructs solutions with nonvanishing vorticity to problem
(1)-(3). Under some assumptions, for suitable h and g, he proves that the
problem (1)-(3) has a unique steady solution in a neighborhood of (v0, p0)
satisfying the additional boundary conditions

n(x) · curl v(x) = h(x) + n(x) · curl v0(x)

and
1

2
|v(x)|2 + p(x) = g(x) +

1

2
|v0(x)|2 + p0(x)

for all x ∈ ∂Ω−, where

∂Ω− = {x ∈ ∂Ω | f(x) < 0}, ∂Ω+ = {x ∈ ∂Ω | f(x) > 0}.
In this paper, we will establish the well-posendess of the solution to the

problem (1)-(3) satisfying the following additional boundary conditions

curl v = av + b for all x ∈ ∂Ω−

with suitable given a and b.
Incompressible flows with nontrivial vorticity are important topics for

fluid dynamics [16, 17]. There exist huge literatures dealing with the sta-
tionary incompressible Euler equations, such as, exact solutions (see [19, 30]
and references therein), the existence of solutions (see [2, 3, 5, 6, 7, 11, 12,
14, 16, 20, 21, 22, 23, 24, 25, 27, 31, 32] and references therein), symme-
try of solutions (see [13] and references therein), stability of solutions (see
[15, 16] and references therein), topological properties of solutions ([10])
and numerical approximations of solutions (see [8, 9, 28, 35] and references
therein). For proving the existence of solutions, there are various meth-
ods, such as the variational methods (see [2, 3, 5, 12, 14, 20, 31, 32] and
references therein), the statistical mechanics methods ([6, 7]), the pseudo-
advection method ([22, 24, 25]), the magnetohydrodynamic approach (see
[21, 23]), the fixed points method (see [1]) and some other methods in
[29, 34]. Most of them can only be used to the two-dimensional or the
axisymmetric cases, except for [1, 4, 23, 36]. In [21], a measure-valued
solution is found for three-dimensional steady Euler equations with non-
trivial vorticity. While in [4, 34], the problem has been well studied in the
special case that v and curl v are parallel.

Motivated by the results in [1], we establish the well-posedness of clas-
sical solutions for problem (1)-(3) without any reference solutions. The
main result is the following theorem.

Theorem 1.1 Suppose that Ω is a bounded, simply connected domain
of R3 with C2 boundary ∂Ω. Assume that f ∈ H2(∂Ω, R) satisfying (4).
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Let v0 ∈ H3(Ω, R3) and α0, β0, γ0, L0 ∈ (0, +∞) satisfying that

div v0 = 0, x ∈ Ω,

n · v0 = f, x ∈ ∂Ω,

|v0(x)| ≥ 2α0 (5)

for all x ∈ Ω,

‖v0‖3,Ω ≤ 1

2
β0, (6)

v0 does not have closed stream lines, the length of all stream line of v0 in
Ω is less than L0, and

lim inf
t→0+

dist(∂Ω−, x + tv0(x))

t
> 0 (7)

uniformly for all x ∈ ∂∂Ω− and

lim inf
t→0+

dist(∂Ω+, x − tv0(x))

t
> 0

uniformly for all x ∈ ∂∂Ω+, where

∂∂Ω± = ∂Ω± ∩ (∂Ω \ ∂Ω±)

is the boundary of ∂Ω± in ∂Ω.
Then there exists a constant

γ0 = γ0(α0, β0, L0) > 0

and for every 0 < γ ≤ γ0, there exist constants

Ki = Ki(α0, β0, L0, γ) > 0, i = 1, 2, 3

such that for all a ∈ H2(∂Ω−, R), b ∈ H2(∂Ω−, R3) with

b · n = 0, ∀x ∈ ∂Ω−, (8)

div(fb) = 0, ∀x ∈ ∂Ω−, (9)

(where div(fb) is the divergence of the vector-valued function fb on ∂Ω−
defined as

div(fb) = lim
1

Δs

∫
l
(fb) · (n × dl)

where s is a surface lying on ∂Ω− with smooth boundary l) and v0 with

‖a‖ + ‖b‖ + ‖curl v0‖2,Ω ≤ K1, (10)

the problem (1)-(3) has a solution (v, p) ∈ H3(Ω, R3 × R) with

curl v(x) = a(x)v(x) + b(x) (11)
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for all x ∈ ∂Ω−, and
1

|Ω|
∫
Ω

p(x)dx = 1, (12)

where

‖a‖ = ‖|f |−2a‖L∞(∂Ω−) + ‖|f |−3a‖L2(∂Ω−)

+‖|f |−3∇Ta‖L2(∂Ω−) + ‖|f |−2∇2
Ta‖L2(∂Ω−),

‖b‖ = ‖|f |−2b‖L∞(∂Ω−) + ‖|f |−3b‖L2(∂Ω−)

+‖|f |−3∇Tb‖L2(∂Ω−) + ‖|f |−2∇2
T b‖L2(∂Ω−),

|Ω| is the Lebesgue measure of Ω, ∇Ta is the tangential gradient of the
function a and ∇2

Ta = ∇T (∇Ta).
Furthermore, v satisfies

‖v − v0‖3,Ω ≤ γ, (13)

and (v, p) is the only solution to (1)-(3), (11), (12) in H3(Ω, R3 × R) sat-
isfying (13).

In addition, if (a(1), b(1)) and (a, b) are two sets of boundary data on
∂Ω− both satisfying (10), and (v(1), p(1)), (v, p) are solutions of (1)-(3),
(11), (12) to the boundary data (a(1), b(1)) and (a, b), respectively, both
satisfying (13), then it holds that

‖v(1) − v‖1,Ω ≤ K2(‖a(1) − a‖0,∂Ω− + ‖b(1) − b‖0,∂Ω−), (14)

‖p(1) − p‖1,Ω ≤ K3(‖a(1) − a‖0,∂Ω− + ‖b(1) − b‖0,∂Ω−). (15)

Remark 1.1 Compared with the main results in [1], Theorem 1.1
in this paper has several advantages. First, we do not require that v0
be a velocity field of a solution to the problem (1)-(3) in contrast to [1].
Second, Theorem 1.1 requires less regularity on v0 that the ones required
in [1]. And finally, there is no requirement that ∂Ω− is a manifold with
Lipschitz boundary as in [1].
Remark 1.2 As motivated by the approach in [1], we prove Theorem
1.1 by a fixed point argument. The key in our analysis is to solve a bound-
ary value problem for a nonlinear first order transport system satisfied by
the vorticity field.

The rest of the paper is organized as follows. In §2, we give the proof
of Theorem 1.1 by the contraction mapping principle provided that we can
solve a boundary value problem for a linear first system. The solvability
the necessary estimates, and properties of the solutions for this linearized
problem are carried out in details in §2 - §6.
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2 Proof of Theorem 1.1

Let Ω ⊂ Rm be an open set and k be any nonnegative integer. Denote by
Hk(Ω) = Hk(Ω, Rm) the usual Sobolev space of functions from Ω into Rm

with the norm

‖u‖k,Ω =

⎛
⎜⎝ ∑
|β|≤k

∫
Ω
|Dβu(x)|2dx

⎞
⎟⎠

1
2

,

where β = (β1, · · · , βl) is a multi-index. Set

‖u‖k,r,Ω =

⎛
⎜⎝ ∑
|β|≤k

∫
Ω
|Dβu(x)|rdx

⎞
⎟⎠

1
r

, r ≤ 1.

It follows from Sobolev imbedding theorem and Sobolev’s trace theorem
that there exists a positive constant M such that

‖v‖i,4,Ω ≤ M‖v‖i+1,Ω; ‖v‖i,∂Ω ≤ M‖v‖i+1,Ω, i = 0, 1, 2,
‖v̂‖Ci

B(R3,R3) ≤ M‖v̂‖i+2,R3; ‖v‖Ci(Ω,R3) ≤ M‖v‖i+2,Ω i = 0, 1
(16)

for all v ∈ H3(Ω, R3) and v̂ ∈ H3(R3, R3). Define

L2
σ(Ω, R3)


= {u ∈ L2(Ω, R3) | div u = 0, x ∈ Ω; n · u = 0, x ∈ ∂Ω},

V = L2
σ(Ω, R3) ∩ H3(Ω, R3),

and
Vγ = {u ∈ V | ‖u‖3,Ω ≤ γ}

for γ > 0.
For given v ∈ v0 +Vr, a ∈ H2(∂Ω−, R), and b ∈ H2(∂Ω−, R3) satisfying

(8) and (9), we consider the following boundary value problem

(v · ∇)z = (z · ∇)v, x ∈ Ω, (17)

z = av + b, x ∈ ∂Ω−. (18)

The keys in the proof of Theorem 1 are the following lemmas which
yield the solvability of the problem (17) and (18) and necessary estimate.

Lemma 2.1 There exists γ0 > 0 such that for every 0 < γ ≤ γ0 and
every v ∈ v0 + Vγ, problem (17) and (18) has a unique solution z denoted
by Av = A[a, b](v).

The proof of this lemma will be given in Section 3.

Lemma 2.2 For 0 < γ < γ0, there exists K = K(γ) > 0 such that

‖Av‖0,Ω ≤ K(‖a‖0,∂Ω− + ‖b‖0,∂Ω−) (19)

‖Av‖2,Ω ≤ K(‖a‖ + ‖b‖) (20)

‖Av(1) − Av‖0,Ω ≤ K(‖a‖ + ‖b‖)‖v(1) − v‖1,Ω (21)
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for all v, w ∈ v0 + Vγ.
The next lemma shows that the solution to (17)-(18) is divergence free.

Lemma 2.3 For every v ∈ v0 + Vγ, one has

div Av = 0, x ∈ Ω.

The proof of the two lemmas will be given in Section 6. We also need
the following two lemmas.

Lemma 2.4 [26, 33] For every z ∈ H2(Ω, R3) with

div z = 0, x ∈ Ω,

there exists a unique w ∈ V such that

z = curl w.

Moreover, there exists a constant M1 > 0, only depending on Ω, such that

‖w‖3,Ω ≤ M1‖z‖2,Ω.

Lemma 2.5 [36] There exists a constant M2 > 0 such that

‖u‖1,Ω ≤ M2‖curl u‖0,Ω

for all u ∈ L2
σ(Ω, R3) ∩ H1(Ω, R3).

We now assume that Lemmas 2.1-2.3 hold and proceed to prove The-
orem 1.1.

Proof of Theorem 1.1 Let

K1 = min

⎧⎨
⎩

γ

M1(K + 1)
,

1

2M2K

⎫⎬
⎭ .

For v ∈ v0 + Vγ, it follows from Lemma 2.3 that

div (Av − curl v0) = 0. (22)

Moreover, by Lemma 2.4, there exists a unique w ∈ V such that

Av − curl v0 = curl w. (23)

Define
Bv = B[a, b](v) = v0 + w. (24)

We shall prove that B : v0 + Vγ(⊂ H1(Ω, R3)) → v0 + Vγ, is a contraction.
In fact, by (24), (23), (22), Lemma 2.4, (20) and (10), one may obtain

‖Bv − v0‖3,Ω = ‖w‖3,Ω

≤ M1‖curl w‖2,Ω

= M1‖Av − curl v0‖2,Ω

≤ M1(‖Av‖2,Ω + ‖curl v0‖2,Ω)

≤ KM1(‖a‖ + ‖b‖) + M1‖curl v0‖2,Ω

≤ γ,
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which implies that B is into. Next, it follows from (24), (23), (22), Lemma
2.5, (21) and (10) that

‖Bv(1) − Bv‖1,Ω = ‖w(1) − w‖1,Ω

≤ M2‖curl w(1) − curl w‖0,Ω

= M2‖Av(1) − Av‖0,Ω

≤ M2K(‖a‖ + ‖b‖)‖v(1) − v‖1,Ω

≤ 1

2
‖v(1) − v‖1,Ω

Hence B is a contraction on v0+Vγ(⊂ H1(Ω, R3)). It follows from Banach’s
fixed point theorem that B has a unique fixed point v in v0 + Vγ. By (24),
we have

v = Bv = v0 + w,

for some w ∈ V satisfying (23), which implies that

curl v = curl v0 + curl w = Av.

Due to the definition of A,

(curl v · ∇)v = (v · ∇)curl v, x ∈ Ω, (25)

curl v = av + b, x ∈ ∂Ω−.

Noting

curl (v × z) = v div z − z div v + (z · ∇)v − (v · ∇)z (26)

and (25), one obtains

curl (v × curl v) = 0, x ∈ Ω,

which implies that there exists a function g ∈ C1(Ω, R) such that

v × curl v = ∇g, x ∈ Ω

since Ω is simply connected. Set

p(x) = g(x)− 1

|Ω|
∫
Ω

g(x)dx− 1

2
|v(x)|2 +

1

2|Ω|
∫
Ω
|v(x)|2dx+1, x ∈ Ω,

where |Ω| denotes the Lebesgue measure of Ω. Then one has

1

|Ω|
∫
Ω

p(x)dx = 1,

and

v(x) × curl v(x) = ∇
(
p(x) +

1

2
|v(x)|2

)
, x ∈ Ω,

7



which implies that

(v · ∇)v + ∇p = 0, x ∈ Ω

due to the relation that

(v · ∇)v = ∇
(
1

2
|v|2

)
− v × curl v, x ∈ Ω. (27)

Hence (v, p) is a solution of problem (1)-(3) with v ∈ v0 + Vγ satisfying
conditions (11) and (12).

Next, we prove the uniqueness of the solution to the problem (1)-(3)
with v ∈ v0 + Vγ satisfying conditions (11) and (12). Assume that (ṽ, p̃)
is another solution to the problem (1)-(3) with ṽ ∈ v0 + Vγ satisfying
conditions (11) and (12). Then it follows from (1) and (27) that

ṽ × curl ṽ = ∇(
1

2
|ṽ|2 + p̃),

which implies that
curl (ṽ × curl ṽ) = 0.

Moreover, by (26) and (2), it holds that

(curl ṽ · ∇)ṽ = (ṽ · ∇)curl ṽ.

This, together with (11), shows that

Aṽ = curl ṽ.

By the definition of B, one has

Bṽ = ṽ.

It follows from the uniqueness of the fixed point of B in v0 + Vγ that

ṽ = v.

Hence
∇p̃ = ∇p,

which implies that
p̃ = p

by (12).
Finally, we prove the stability of the solutions. From (24), (23), Lemma

2.5, (21) and (19) we obtain

‖v(1) − v‖1,Ω = ‖B[a(1), b(1)]v(1) − B[a, b]v‖1,Ω

≤ ‖B[a(1), b(1)]v(1) − B[a(1), b(1)]v‖1,Ω

+‖B[a(1), b(1)]v − B[a, b]v‖1,Ω
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≤ M2(‖A[a(1), b(1)](v(1) − v)‖0,Ω

+‖A[a(1) − a, b(1) − b]v‖0,Ω)

≤ M2(K(‖a(1)‖ + ‖b(1)‖)‖v(1) − v‖1,Ω

+K(‖a(1) − a‖0,∂Ω− + ‖b(1) − b‖0,∂Ω−))

≤ M2KK1‖v(1) − v‖1,Ω + M2K(‖a(1) − a‖0,∂Ω− + ‖b(1) − b‖0,∂Ω−)

≤ 1

2
‖v(1) − v‖1,Ω + M2K(‖a(1) − a‖0,∂Ω− + ‖b(1) − b‖0,∂Ω−)

which implies that

‖v(1) − v‖1,Ω ≤ K2(‖a(1) − a‖0,∂Ω− + ‖b(1) − b‖0,∂Ω−),

where K2 = 2M2K. Hence (14) holds. It follows from (1) that

|∇p(1) −∇p| ≤ |(v(1) · ∇)v(1) − (v · ∇)v|
≤ |((v(1) − v) · ∇)v(1)| + |(v · ∇)(v(1) − v)|
≤ |v(1) − v||v(1)|1 + |v||v(1) − v|1
≤ (β0 + γ) (|v(1) − v| + |v(1) − v|1)

which implies that

‖∇p(1) −∇p‖0,Ω ≤ (β0 + γ) ‖v(1) − v‖1,Ω

≤ (β0 + γ)K2(‖a(1) − a‖0,∂Ω− + ‖b(1) − b‖0,∂Ω−),(28)

where one has used the notation

|v|1 = |v|1(x) =

⎛
⎜⎝ 3∑

i=1

∑
|β|=1

|Dβvi(x)|2
⎞
⎟⎠

1
2

.

Due to ∫
Ω
(p(1) − p)dx =

∫
Ω

p(1)dx −
∫
Ω

pdx = |Ω| − |Ω| = 0,

one has √
μ2‖p(1) − p‖0,Ω ≤ ‖∇p(1) −∇p‖0,Ω, (29)

where μ2 > 0 is the first positive eigenvalue of the eigenvalue problem

− u = μu in Ω,
∂u

∂n
= 0 on ∂Ω.

It follows from (28) and (29) that

‖p(1) − p‖1,Ω ≤ K3(‖a(1) − a‖0,∂Ω− + ‖b(1) − b‖0,∂Ω−),

where K3 = 1√
μ2

K2 (β0 + γ). Hence (15) holds. Thus we have completed

the proof of Theorem 1.1.
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3 Solvability of (17)-(18)

We now prove Lemma 2.1 in this section. First, we give the following
lemma, which shows that the conditions (5) and (6) in Theorem 1.1 are
invariant for small perturbations.

Lemma 3.1 Under assumptions of Theorem 1.1, there exists a constant
γ1 > 0 such that

|v(x)| ≥ α0 (30)

for all x ∈ Ω, and
‖v‖3,Ω ≤ β0 (31)

for all v ∈ v0 + Vγ1
.

Proof Set

γ1 = min

{
α0

M
,
β0

2

}
. (32)

Then for v ∈ v0 + Vγ1
, it holds that

|v(x)| ≥ |v0(x)| − |v(x) − v0(x)|
≥ 2α0 − ‖v − v0‖C1(Ω,R3)

≥ 2α0 − M‖v − v0‖3,Ω

≥ 2α0 − Mγ1

≥ α0

for all x ∈ Ω by (5), (16) and (32), which proves (30). It follows from (6)
and (32) that

‖v‖3,Ω ≤ ‖v0‖3,Ω + ‖v − v0‖3,Ω ≤ β0

2
+ γ1 ≤ β0

for all v ∈ v0 + Vγ1
. Hence (31) holds. This complete the proof of this

lemma. �

We will solve the boundary value problem (17)-(18) by the charac-
teristic method. Thus we consider the following initial value problem for
ordinary differential equations

d

dt
ω(t, x, v) = v(ω(t, x, v)),

ω(0, x, v) = x,

where x ∈ Ω, v ∈ C1(Ω, R3). By the theory of the ordinary differential
equations, this equations has a unique solution ω(t, x, v) which is contin-
uously differentiable in (x, v) ∈ Ω × C1(Ω, R3). Let [0, T (x, v)) be the
maximal existence interval of ω(t, x, v) to right. Define

T (v) = sup
x∈Ω

T (x, v)
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for v ∈ C1(Ω, R3).
By Calderó’s extension theorem there exists a constant M3 > 0 such

that, for every w ∈ H3(Ω, R3) there exists an extension to ŵ ∈ H3(R3, R3)
satisfying

‖ŵ‖3,R3 ≤ M3‖w‖3,Ω. (33)

Then ω(t, x, v) can be extended to ω̂(t, x, v̂) which is defined on [0, +∞).
To show that each stream line going through a point in Ω must exit Ω

is finite time, we need the following Lemma.

Lemma 3.2 Let Lγ be the least super bound of the length of all stream
line of v in Ω with v ∈ v0 + Vγ. Then there exists a constant γ2 ∈ (0, γ1]
such that

Lγ2
< +∞.

Proof We first prove the continuity of the mapping (x, v) → ω̂(t, x, v̂)
at v0. By the mean value theorem, (16), (33) and (31), one can get

d

dt
|ω̂(t, x, v̂) − ω̂(t, x0, v̂0)| ≤ | d

dt
(ω̂(t, x, v̂) − ω̂(t, x0, v̂0))|

= |v̂(ω̂(t, x, v̂)) − v̂0(ω̂(t, x0, v̂0))|
≤ |v̂(ω̂(t, x, v̂)) − v̂0(ω̂(t, x, v̂))|

+|v̂0(ω̂(t, x, v̂)) − v̂0(ω̂(t, x0, v̂0))|
≤ ‖v̂0‖C1

B(R3,R3)|ω̂(t, x, v̂) − ω̂(t, x0, v̂0)|
+‖v̂ − v̂0‖CB(R3,R3)

≤ M‖v̂0‖3,R3|ω̂(t, x, v̂) − ω̂(t, x0, v̂0)|
+M‖v̂ − v̂0‖3,R3

≤ MM3‖v0‖3,Ω|ω̂(t, x, v̂) − ω̂(t, x0, v̂0)|
+MM3‖v − v0‖3,Ω

≤ MM3β0|ω̂(t, x, v̂) − ω̂(t, x0, v̂0)|
+MM3‖v − v0‖3,Ω

which implies that

|ω̂(t, x, v̂) − ω̂(t, x0, v̂0)| ≤ eMM3β0t(|ω̂(0, x, v̂) − ω̂(0, x0, v̂0)|
+MM3‖v − v0‖3,Ωt) (34)

≤ eMM3β0t(|x − x0| + MM3‖v − v0‖3,Ωt).(35)

Let l(ω(·, x, v0)) be the length of the stream line ω(·, x, v0) starting at
x. Then (30) yields

L0 ≥ l(ω(·, x, v0))
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=
∫ T (x,v0)

0

∣∣∣∣∣
d

dt
ω(t, x, v0)

∣∣∣∣∣ dt

=
∫ T (x,v0)

0
|v0(ω(t, x, v0))| dt

≥ T (x, v0)α0

which leads to

T (v0) ≤ L0

α0
. (36)

Then we claim that for every ε > 0, there exists a positive constant
γε ≤ γ1 such that

T (v) ≤ T (v0) + ε (37)

for all ‖v − v0‖3,Ω < γε. Indeed, it follows from the definition of T (v0) that
there exists t0 = t0(ε, x0) ∈ (0, T (v0) + ε) such that

ω̂(t0, x0, v̂0) �∈ Ω.

By (35), there exists δx0
> 0 such that

ω̂(t0, x, v̂) �∈ Ω

for all x ∈ Ω with |x − x0| < δx0
and ‖v − v0‖3,Ω < δx0

, which implies that

T (x, v) ≤ T (v0) + ε

for all x ∈ Ω with |x − x0| < δx0
and ‖v − v0‖3,Ω < δx0

. It follows from the
compactness of Ω that there exist finite x1, x2, · · · , xk and positive constants
δ1, δ2, · · · , δk such that

T (x, v) ≤ T (v0) + ε

for all x ∈ Ω with |x − xj| < δj and ‖v − v0‖3,Ω < δj for some 1 ≤ j ≤ k,
and

Ω ⊂ ∪k
j=1B(xj; δj),

where B(xj; δj) is the open ball in R3 with center xj and radius δj. Set

γε = min{δ1, δ2, · · · , δk}.
Then

T (x, v) ≤ T (v0) + ε

for all x ∈ Ω and ‖v − v0‖3,Ω < γε. Hence one has

T (v) ≤ T (v0) + ε

for all ‖v − v0‖3,Ω < γε, which verifies (37).
It follows from (37) that there exists a positive constant γ2 ≤ γ1 such

that
T (v) ≤ T (v0) + 2 (38)
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for all ‖v − v0‖3,Ω < γ2. Let l(ω(·, x, v)) be the length of the stream line
ω(·, x, v) starting at x. Then

l(ω(·, x, v)) =
∫ T (x,v)

0

∣∣∣∣∣
d

dt
ω(t, x, v)

∣∣∣∣∣dt

≤
∫ T (x,v)

0
|v(ω(t, x, v))|dt

≤ T (x, v)‖v‖C1(Ω,R3)

≤ (T (v0) + 2)M‖v‖3,Ω

≤
(
L0

α0
+ 2

)
Mβ0 < +∞

by (38), (16), (36) and (31). Hence the lemma holds. �

We are now ready to show

Lemma 3.3 There exists a positive constant γ3 ≤ γ2 such that, for
every v ∈ v0 + Vγ

3
, every integral curve of v that passes over a point in Ω

meets the boundary in exactly two different points, one point in ∂Ω−, the
starting point of the integral curve, and another point in ∂Ω+, the endpoint
of this integral curve.

Proof Assume that x0 ∈ ∂Ω. Set ω̂(t) = ω̂(t, x0, v̂). It follows from
the continuously differential property of ω̂ and the implicit function theo-
rem that the equations

ω̂(t) − x = −ρn(x)

has a unique continuously differentiable solution (x, ρ) from a suitable
neighborhood of 0 to ∂Ω × R such that

x(0) = x0, ρ(0) = 0.

Hence,
ω̂(t) − x(t) = −ρ(t)n(x(t)).

It follows that

v̂(ω̂(t)) − d

dt
x(t) = −ρ′(t)n(x(t))− ρ(t)

d

dt
(n(x(t))).

Taking the inner product of the above equation with n(x(t)) yields

ρ′(t) = −v̂(ω̂(t)) · n(x(t)). (39)

In the case that x0 ∈ ∂Ω−, it holds that

ρ′(0) = −v̂(ω̂(0)) · n(x(0)) = −v(x0) · n(x0) = −f(x0) > 0.

Hence, there exists a constant δ > 0 such that ρ(t) > 0 for all 0 < t < δ.
And so ω̂(t, x0, v̂) ∈ Ω for all 0 < t < δ.

13



Consider now the case that x0 ∈ ∂Ω \ ∂Ω−. Due to (39), one may have

ρ′(t) = −v̂(ω̂(t)) · n(x(t)) + v(x(t)) · n(x(t))− f(x(t))

= a(t)ρ(t) − f(x(t)),

where

|a(t)| =

∣∣∣∣∣∣
1

ρ(t)
(−v̂(ω̂(t)) · n(x(t)) + v(x(t)) · n(x(t)))

∣∣∣∣∣∣
≤ ‖v̂‖C1

B(R3,R3)

≤ M‖v̂‖3,R3

≤ MM3‖v‖3,Ω

≤ MM3β0

by the mean value theorem, (16), (33) and (31). Hence,

ρ(t) = −e
∫ t

0 a(τ)dτ
∫ t

0
e−

∫ τ

0 a(s)dsf(x(τ))dτ.

In the case that x0 ∈ ∂Ω \ ∂Ω−, by the continuity of x(t), there exists a
positive constant δ such that

x(t) ∈ ∂Ω \ ∂Ω−

for all 0 ≤ t < δ, which implies that

ρ(t) = −e
∫ t

0 a(τ)dτ
∫ t

0
e−

∫ τ

0 a(s)dsf(x(τ))dτ ≤ 0

for all 0 ≤ t < δ. Hence one has

ω̂(t, x0, v̂) �∈ Ω, ∀0 ≤ t < δ.

In the case that x0 ∈ ∂∂Ω−, by the fact that ẋ(0) = v(x0) and (16), one
has

dist (∂Ω−, x(t)) ≥ dist (∂Ω−, x0 + tv(x0)) − |x(t) − x0 − tv(x0)|
≥ dist (∂Ω−, x0 + tv0(x0)) − t|v(x0) − v0(x0)|

−|x(t) − x0 − tv(x0)|
≥ dist (∂Ω−, x0 + tv0(x0)) − t‖v − v0‖C(Ω)

−|x(t) − x0 − tẋ(0)|
≥ dist (∂Ω−, x0 + tv0(x0)) − tM‖v − v0‖3,Ω

−|x(t) − x0 − tẋ(0)|,
which leads

lim inf
t→0+

1

t
dist (∂Ω−, x(t)) ≥ lim inf

t→0+

1

t
dist (∂Ω−, x0 + tv0(x0)) − M‖v − v0‖3,Ω.
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Hence there exists a positive constant γ3 ≤ γ2 such that, for every v ∈
v0 + Vγ

3
and x0 ∈ ∂∂Ω−, one has

lim inf
t→0+

1

t
dist (∂Ω−, x(t)) > 0

by (7). Therefore, there exists a positive constant δ such that

x(t) ∈ ∂Ω \ ∂Ω−

for all 0 ≤ t < δ, which implies that

ρ(t) = −e
∫ t

0
a(τ)dτ

∫ t

0
e−

∫ τ

0
a(s)dsf(x(τ))dτ ≤ 0

for all 0 ≤ t < δ. Thus one has

ω̂(t, x0, v̂) �∈ Ω, ∀0 ≤ t < δ.

Hence every integral curve of v that passes through a point x ∈ Ω can
only start exactly one point in ∂Ω−, the starting point of the integral curve.
Similarly, every integral curve of v that passes through a point x ∈ Ω can
only end in exactly one point in ∂Ω+, the endpoint of this integral curve.
It follows from (38) that every integral curve of v that passes through a
point x ∈ Ω must start one point in ∂Ω−, the starting point of the integral
curve, and must end in one point in ∂Ω+, the endpoint of this integral
curve. Therefore Ω is completely covered by integral curves of v starting
at ∂Ω−. �

Let ω(s) = ω(s, y) = ω(s, y, v) be the solution of

d

ds
ω(s, y, v) =

1

|v(ω(s, y, v))|v(ω(s, y, v)), ω(0, y, v) = y ∈ ∂Ω−.

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1 Let γ0 be γ3 in Lemma 3.3. On one hand,
assume that z is a solution to (17) and (18). Set

z(s) = z(s, y) = z(s, y, v) = z(ω(s, y, v)).

Then,

d

ds
z(s) = (

d

ds
ω(s) · ∇)z(s)

=
1

|v(s)|(v(s) · ∇)z(s)

=
1

|v(s)|(z(s) · ∇)v(s)
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and
z(0, y) = av(0, y) + b.

That is, for every y ∈ ∂Ω−, z(s) = z(ω(s, y, v)) is a solution of the ini-
tial problem for the first order linear homogeneous ordinary differential
equations

d

ds
z(s) =

1

|v(s)|(z(s) · ∇)v(s), (40)

z(0) = av(0, y) + b. (41)

On the other hand, assume z(s) is a solution of the initial problem for
the first order linear homogeneous ordinary differential equations (40) and
(41). Then ∀x ∈ Ω, by Lemma 3.3, there exists unique (t, y) = (s(x), y(x))
such that w(s, y, v) = x. Set

z(x) = z(s(x), y(x)).

Then
z(s, y) = z(ω(s, y, v)).

It follows that

d

ds
z(s) = (

d

ds
ω(s) · ∇)z(s)

=
1

|v(s)|(v(s) · ∇)z(s).

Moreover, by (40), it holds that

(v(s) · ∇)z(s) = (z(s) · ∇)v(s),

that is,

(v(x) · ∇)z(x) = (z(x) · ∇)v(x).

Hence z(x) = z(s(x), y(x)) is a solution to (17) and (18). Therefore z(x)
is a solution to (17) and (18) if and only if z(s) is a solution to the ini-
tial problem for the first order linear homogeneous ordinary differential
equations (40) and (41).

By the theory of the ordinary differential equations, the problem (40)
and (41) has a unique solution. Hence the problem (17) and (18) has a
unique solution. This completes the proof of Lemma 2.1. �
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4 Estimates of solutions to (17) and (18)

For easy presentation, we use the following notations. For a function q =
(q1, · · · , qm) : Ω(⊂ R3) → Rm, set

|q|k(x) =

⎛
⎜⎝ m∑

i=1

∑
|β|=k

|Dβqi(x)|2
⎞
⎟⎠

1
2

,

q|i(x) =
∂

∂xi
q,

q|ij(x) =
∂2

∂xi∂xj
q,

and
q(s) = q(s, y) = q(ω(s, y, v)).

First we estimate solutions to (17) and (18).

Lemma 4.1 Suppose that v ∈ v0 + Vγ with γ ≤ γ0. Assume that z is
a solution to (17) and (18). Then it holds that

|z(s)| ≤ C1|z(0)|
for some positive constant C1 = C1(α0, β0, γ0, L0).

Proof It follows from (17), (30), (31) and (16) that

d

ds
|z(s)| ≤

∣∣∣∣∣
d

ds
z(s)

∣∣∣∣∣
≤ |v(s)|−1|(z(s) · ∇)v(s)|
≤ α−1

0 |z(s)||v|1(s)
≤ α−1

0 |z(s)|‖v‖C1(Ω,R3)

≤ α−1
0 |z(s)|M‖v‖3,Ω

≤ α−1
0 Mβ0|z(s)|,

which implies that

|z(s)| ≤ eα−1
0 Mβ0s|z(0)|

≤ eα−1
0 Mβ0Lγ0 |z(0)|


= C1|z(0)|.

�

Next, we estimate the first derivatives of the solution to (17) and (18).
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Lemma 4.2 Suppose that z is a solution of (17) and (18). Then

|z|1(s) ≤ C2

(
|z|1(0) + |z(0)|

∫ s

0
|v|2(τ)|dτ

)

for some positive constant C2 = C2(α0, β0, γ0, L0).

Proof Differentiating (17) yields

(v · ∇)z|i + (v|i · ∇)z = z|i · ∇)v + (z · ∇)v|i. (42)

Hence,

d

ds
|z|1 ≤

⎛
⎝ 3∑

i=1

∣∣∣∣∣
d

ds
z|i
∣∣∣∣∣
2⎞⎠

1
2

=

⎛
⎝ 3∑

i=1

∣∣∣|v|−1(v · ∇)z|i
∣∣∣2
⎞
⎠

1
2

= |v|−1
⎛
⎝ 3∑

i=1

∣∣∣(z|i · ∇)v + (z · ∇)v|i − (v|i · ∇)z
∣∣∣2
⎞
⎠

1
2

≤ |v|−1(|z|1|v|1 + |z||v|2 + |z|1|v|1)
= |v|−1(2|z|1|v|1 + |z||v|2)
≤ 2α−1

0 Mβ0|z|1 + α−1
0 C1|z(0)||v|2

which implies that

|z|1(s) ≤ e2α−1
0 Mβ0s

(
|z|1(0) + α−1

0 C1|z(0)|
∫ s

0
|v|2(τ)dτ

)

≤ e2α−1
0 Mβ0Lγ0

(
|z|1(0) + α−1

0 C1|z(0)|
∫ s

0
|v|2(τ)dτ

)

≤ C2

(
|z|1(0) + |z(0)|

∫ s

0
|v|2(τ)dτ

)
.

�

Now we estimate the second derivatives of the solution to (17) and (18).

Lemma 4.3 Let z be a solution of (17) and (18). Then

|z|2(s) ≤ C3(|z|2(0) + |z|1(0) + |z(0)|(
∫ s

0
|v|2(τ)dτ)2 + |z(0)|

∫ s

0
|v|3(τ)dτ)

for some positive constant C3 = C3(α0, β0, γ0, L0).

Proof Due to (42), one has

(v · ∇)z|ij + (v|ij · ∇)z + (v|i · ∇)z|j + (v|j · ∇)z|i = (z|ij · ∇)v + (z|i · ∇)v|j
+(z · ∇)v|ij + (z|j · ∇)v|i.
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It follows that

d

ds
|z|2 ≤

⎛
⎝ 3∑

i,j=1

∣∣∣∣∣
d

ds
z|ij

∣∣∣∣∣
2⎞⎠

1
2

=

⎛
⎝ 3∑

i,j=1

∣∣∣|v|−1(v · ∇)z|ij
∣∣∣2
⎞
⎠

1
2

≤ |v|−1(
3∑

i,j=1
|(z|ij · ∇)v|2) 1

2 + (
3∑

i,j=1
|(z|i · ∇)v|j|2)

1
2

+(
3∑

i,j=1
|(z · ∇)v|ij|2) 1

2 + (
3∑

i,j=1
|(z|j · ∇)v|i|2) 1

2

+(
3∑

i,j=1
|(v|ij · ∇)z|2) 1

2 + (
3∑

i,j=1
|(v|i · ∇)z|j|2)

1
2

+(
3∑

i,j=1
|(v|j · ∇)z|i|2) 1

2

≤ |v|−1(|z|2|v|1 + |z|1|v|2 + |z||v|3
+|z|1|v|2 + |v|2|z|1 + |v|1|z|2 + |v|1|z|2)

= |v|−1(3|z|2|v|1 + 3|z|1|v|2 + |z||v|3)
≤ α−1

0 (3Mβ0|z|2 + 3C2

(
|z|1(0) + |z(0)|

∫ s

0
|v|2(τ)dτ

)
|v|2

+C1|z(0)||v|3)
≤ 3Mα−1

0 β0|z|2 + 3C2α
−1
0 |z|1(0) + 3C2α

−1
0 |z(0)|

∫ s

0
|v|2(τ)dτ |v|2

+C1α
−1
0 |z(0)||v|3,

which leads to

|z|2(s) ≤ e3Mα−1
0 β0s(|z|2(0) + 3C2α

−1
0 |z|1(0)s

+3C2α
−1
0 |z(0)|

∫ s

0

∫ r

0
|v|2(τ)dτ |v|2(r)dr + C1α

−1
0 |z(0)|

∫ s

0
|v|3(r)dr)

≤ e3Mα−1
0 β0Lγ0(|z|2(0) + 3C2α

−1
0 |z|1(0)Lγ0

+3C2α
−1
0 |z(0)|(

∫ s

0
|v|2(τ)dτ)2 + C1α

−1
0 |z(0)|

∫ s

0
|v|3(τ)dτ)

≤ C3

(
|z|2(0) + |z|1(0) + |z(0)|(

∫ s

0
|v|2(τ)dτ)2 + |z(0)|

∫ s

0
|v|3(τ)dτ

)
.

�

In order to prove (21) we need the following lemma.

Lemma 4.4 Let

[z] = Av(1) − Av, [v] = v(1) − v,
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where v(1), v ∈ v0 + Vγ. Then one has

|[z](s)| ≤ C4(|[z](0)| +
∫ s

0
(|Av(1)||[v]|1 + |[v]||Av(1)|1)dτ)

for some positive constant C4 = C4(α0, β0, γ0, L0).

Proof By (17), one has

(v · ∇)[z] = (v(1) · ∇)Av(1) − ([v] · ∇)Av(1) − (v · ∇)Av

= (Av(1) · ∇)v(1) − ([v] · ∇)Av(1) − (Av · ∇)v

= (Av(1) · ∇)[v]− ([v] · ∇)Av(1) + ([z] · ∇)v.

Hence,

d

ds
|[z]| ≤

∣∣∣∣∣
d

ds
[z]

∣∣∣∣∣
≤ |v|−1|(v · ∇)[z]|
≤ α−1

0 (|Av(1)||[v]|1 + |[v]||Av(1)|1 + |[z]||v|1)
≤ α−1

0 Mβ0|[z]| + α−1
0 |Av(1)||[v]|1 + α−1

0 |[v]||Av(1)|1,
which implies that

|[z](s)| ≤ C4(|[z](0)| +
∫ s

0
(|Av(1)||[v]|1 + |[v]||Av(1)|1)dτ).

�

In order to obtain the L2 estimate we need the following lemmas.

Lemma 4.5 [1] Assume that q ∈ L1(Ω; Rm). Then it holds that

∫
Ω

q(x)dx =
∫
∂Ω−

∫ l(y)

0
q(s, y)

|f(y)|
|v(s, y)|dsdSy,

where l(y) is the exit time of w(s, y, v).

Lemma 4.6 Suppose that v ∈ v0 + Vγ with γ ≤ γ0. Then there exists
a positive constant C = C(α0, β0, γ0, L0) such that∥∥∥∥∥

∫ s(·)
0

q(τ, y(·))dτ

∥∥∥∥∥
0,Ω

≤ C‖q‖0,Ω, ∀q ∈ L2(Ω; Rm), (43)

∥∥∥∥∥
∫ s(·)
0

q(τ, y(·))dτ

∥∥∥∥∥
0,4,Ω

≤ C‖q‖0,4,Ω, ∀q ∈ L4(Ω; Rm),

‖q(0, y(·))‖0,Ω ≤ C‖q‖0,∂Ω−, ∀q ∈ L2(∂Ω−; Rm), (44)
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and
‖q(0, y(·))‖0,4,Ω ≤ C‖q‖0,4,∂Ω−, ∀q ∈ L4(∂Ω−; Rm).

Proof It follows from Lemma 4.5, (30), (16), (31) and Lemma 3.2 that∥∥∥∥∥
∫ s(·)
0

q(τ, y(·))dτ

∥∥∥∥∥
2

L2(Ω;Rm)
=

∫
Ω

∣∣∣∣∣
∫ s(x)

0
q(τ, y(x))dτ

∣∣∣∣∣
2
dx

=
∫
∂Ω−

∫ l(y)

0

∣∣∣∣
∫ s

0
q(τ, y)dτ

∣∣∣∣2 |f(y)|
|v(s, y)|dsdSy

≤
∫
∂Ω−

∫ l(y)

0
s
∫ s

0
|q(τ, y)|2dτ

|f(y)|
|v(s, y)|dsdSy

≤ α−1
0 L2

γ0

∫
∂Ω−

∫ l(y)

0
|q(τ, y)|2dτ |f(y)|dSy

≤ α−1
0 L2

γ0
Mβ0

∫
∂Ω−

∫ l(y)

0
|q(τ, y)|2 |f(y)|

|v(τ, y)|dτdSy

≤ C‖q‖2
L2(Ω;Rm)

for all q ∈ L2(Ω; Rm) and some

C = max{α−1
0 Mβ0L

2
γ0

, α−1
0 Mβ0L

4
γ0

, α−1
0 Mβ0Lγ0

, α−1
0 Mβ0Lγ0

}.
Similarly,∥∥∥∥∥
∫ s(·)
0

q(τ, y(·))dτ

∥∥∥∥∥
4

L4(Ω;Rm)
=

∫
Ω

∣∣∣∣∣
∫ s(x)

0
q(τ, y(x))dτ

∣∣∣∣∣
4
dx

=
∫
∂Ω−

∫ l(y)

0

∣∣∣∣
∫ s

0
q(τ, y)dτ

∣∣∣∣4 |f(y)|
|v(s, y)|dsdSy

≤
∫
∂Ω−

∫ l(y)

0
s3
∫ s

0
|q(τ, y)|4dτ

|f(y)|
|v(s, y)|dsdSy

≤ α−1
0 L4

γ0

∫
∂Ω−

∫ l(y)

0
|q(τ, y)|4dτ |f(y)|dSy

≤ α−1
0 L4

γ0
Mβ0

∫
∂Ω−

∫ l(y)

0
|q(τ, y)|4 |f(y)|

|v(τ, y)|dτdSy

≤ C‖q‖4
L4(Ω;Rm)

for all q ∈ L4(Ω; Rm). For q ∈ L2(∂Ω−; Rm), one may get

‖q(0, y(·))‖2
L2(Ω;Rm) =

∫
Ω
|q(0, y(x))|2dx

=
∫
∂Ω−

∫ l(y)

0
|q(0, y)|2 |f(y)|

|v(s, y)|dsdSy

≤ α−1
0 Lγ0

Mβ0‖q‖2
L2(∂Ω−;Rm)

≤ C‖q‖2
L2(∂Ω−;Rm).
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Similarly,

‖q(0, y(·))‖4
L4(Ω;Rm) =

∫
Ω
|q(0, y(x))|4dx

=
∫
∂Ω−

∫ l(y)

0
|q(0, y)|4 |f(y)|

|v(s, y)|dsdSy

≤ α−1
0 Lγ0

Mβ0‖q‖4
L4(∂Ω−;Rm)

≤ C‖q‖4
L4(∂Ω−;Rm)

for q ∈ L4(∂Ω−; Rm). �

Next, we estimate the solution of (17) and (18) and its derivatives in
terms of their boundary values.

Lemma 4.7 Suppose that v ∈ v0 + Vγ with γ ≤ γ0. Assume that z is
a solution of (17) and (18). Then one has

‖z‖0,Ω ≤ C1C‖z‖0,∂Ω−,

‖|z|1‖0,Ω ≤ K4(‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−)

and

‖|z|2‖0,Ω ≤ K5(‖|z|2‖0,∂Ω− + ‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−).

Proof It follows from Lemma 4.2 and Lemma 4.6 that

‖|z|1‖0,Ω ≤ C2

(
‖|z|1(0)‖0,Ω + ‖z‖0,∞,∂Ω−‖

∫ s

0
|v|2(τ)|dτ‖0,Ω

)

≤ C2C
(‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−‖|v|2‖0,Ω

)
≤ C2C

(‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−‖v‖2,Ω
)

≤ C2C
(‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−‖v‖3,Ω

)
≤ C2C

(‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−β0
)

≤ K4(‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−).

Similarly, one deduces from Lemma 4.3 and Lemma 4.6 that

‖|z|2‖0,Ω ≤ C3(‖|z|2(0)‖0,Ω + ‖|z|1(0)‖0,Ω

+‖z‖0,∞,∂Ω−(‖(
∫ s

0
|v|2(τ)dτ)2‖0,Ω + ‖

∫ s

0
|v|3(τ)dτ‖0,Ω))

≤ C3(‖|z|2(0)‖0,Ω + ‖|z|1(0)‖0,Ω

+‖z‖0,∞,∂Ω−(‖
∫ s

0
|v|2(τ)dτ‖2

0,4,Ω + ‖
∫ s

0
|v|3(τ)dτ‖0,Ω)))

≤ C3C(‖|z|2‖0,∂Ω− + ‖|z|1‖0,∂Ω−

+‖z‖0,∞,∂Ω−(‖|v|2‖2
0,4,Ω + ‖|v|3‖0,Ω))
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≤ C3C(‖|z|2‖0,∂Ω− + ‖|z|1‖0,∂Ω−

+‖z‖0,∞,∂Ω−(‖v‖2
2,4,Ω + ‖v‖3,Ω))

≤ C3C(‖|z|2‖0,∂Ω− + ‖|z|1‖0,∂Ω−

+‖z‖0,∞,∂Ω−(M2‖v‖2
3,Ω + ‖v‖3,Ω))

≤ C3C(‖|z|2‖0,∂Ω− + ‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−(M2β2
0 + β0))

≤ K5(‖|z|2‖0,∂Ω− + ‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−).

Thus Lemma 4.7 is proved.

5 Boundary Estimates

In this section, we give the boundary estimates for solution to (17) and
(18). For q = (q1, · · · , qm): ∂Ω− → Rm, set

ql|T i = ei · (∇Tql)

for all 1 ≤ l ≤ m, 1 ≤ i ≤ 3, where {e1, e2, e3} is the standard orthogonal
basis of R3. Moreover, we will use the following notations in this section:

ql|T ij = ej · (∇Tql|T i)

for all 1 ≤ l ≤ m, 1 ≤ i, j ≤ 3,

q|T i = (q1|T i, · · · , qm|T i)

for all 1 ≤ i ≤ 3,
q|T ij = (q1|T ij, · · · , q1|T ij)

for all 1 ≤ l ≤ m, 1 ≤ i, j ≤ 3,

∇Tq = (∇Tq1, · · · ,∇Tqm),

∇2
Tql = (∇Tql|T 1, · · · ,∇Tql|T 3)

for all 1 ≤ l ≤ m,
∇2

Tq = (∇2
Tq1, · · · ,∇2

Tqm),

|∇Tq| =

⎛
⎝ 3∑

i=1
|q|T i|2

⎞
⎠

1
2

and

|∇2
Tq| =

⎛
⎝ 3∑

i=1

3∑
j=1

|q|T ij|2
⎞
⎠

1
2

.

First, we have the following elementary facts:
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Lemma 5.1 The tangential gradient ∇T has the following properties:

|∇T (aq)| ≤ |∇Ta||q| + |a||∇T q|, ∀y ∈ ∂Ω−, (45)

|∇T (q · r)| ≤ |∇Tq||r| + |q||∇Tr|, ∀y ∈ ∂Ω−, (46)

|∇2
T (aq)| ≤ |∇2

Ta||q| + 2|∇Ta||∇T q| + |a||∇2
T q|, ∀y ∈ ∂Ω−, (47)

|∇T ((vT · ∇)z)| ≤ 2(|∇v| + |v||∇Tn|)|∇Tz| + |v||∇2
Tz|, ∀y ∈ ∂Ω−, (48)

and
|∇T ((z · ∇)v)| ≤ |v|1|∇Tz| + |z||v|2, ∀y ∈ ∂Ω−. (49)

Proof First we prove (45). By the multiplication formula of tangential
gradient and Minkowski inequality, one has

|∇T (aq)| =

⎛
⎝ m∑

l=1
|∇T (aql)|2

⎞
⎠

1
2

≤
⎛
⎝ m∑

l=1
|ql∇Ta|2

⎞
⎠

1
2

+

⎛
⎝ m∑

l=1
|a∇Tql|2

⎞
⎠

1
2

= |∇Ta||q| + |a||∇T q|
which shows (45).

Next we prove (46). Due to

∇T (q · r) =
m∑

l=1
∇T (qlrl) =

m∑
l=1

ql∇Trl +
m∑

l=1
rl∇Tql, (50)

and Cauchy inequality, one can obtain

|∇T (q · r)| ≤
m∑

l=1
|ql||∇Trl| +

m∑
l=1

|rl||∇Tql|

≤
⎛
⎝ m∑

l=1
|ql|2

⎞
⎠

1
2
⎛
⎝ m∑

l=1
|∇Trl|2

⎞
⎠

1
2

+

⎛
⎝ m∑

l=1
|rl|2

⎞
⎠

1
2
⎛
⎝ m∑

l=1
|∇Tql|2

⎞
⎠

1
2

= |∇Tq||r| + |q||∇Tr|
which is just (46).

To prove (47), we apply Minkowski inequality, (46) and Cauchy in-
equality to get

|∇2
T (aq)| =

⎛
⎝ m∑

l=1
|∇2

T (aql)|2
⎞
⎠

1
2

≤
⎛
⎝ m∑

l=1
|∇T (ql∇Ta)|2

⎞
⎠

1
2

+

⎛
⎝ m∑

l=1
|∇T (a∇Tql)|2

⎞
⎠

1
2

24



≤
⎛
⎝ m∑

l=1
(|∇Tql||∇Ta|)2

⎞
⎠

1
2

+

⎛
⎝ m∑

l=1
(|ql||∇2

Ta)|)2

⎞
⎠

1
2

+

⎛
⎝ m∑

l=1
(|∇Ta||∇T ql|)2

⎞
⎠

1
2

+

⎛
⎝ m∑

l=1
(|a||∇2

Tql)|)2
⎞
⎠

1
2

= |∇2
Ta||q| + 2|∇Ta||∇T q| + |a||∇2

T q|.
Thus (47) follows.

Next, it follows from (47) and Minkowski inequality that

|∇T ((vT · ∇)z)| =

⎛
⎝ 3∑

l=1
|∇T ((vT · ∇)zl)|2

⎞
⎠

1
2

=

⎛
⎝ m∑

l=1
|∇T (vT · ∇Tzl)|2

⎞
⎠

1
2

≤
⎛
⎝ 3∑

l=1
|∇TvT |2|∇Tzl|2

⎞
⎠

1
2

+

⎛
⎝ 3∑

l=1
|vT |2|∇2

Tzl|2
⎞
⎠

1
2

= |∇TvT ||∇Tz| + |vT ||∇2
T z|. (51)

Moreover, (45) and (46) imply that

|∇TvT | ≤ |∇Tv| + |∇T ((v · n)n)|
≤ |∇v| + |∇T (v · n)| + |v · n||∇Tn|
≤ |∇v| + |∇Tv| + |v||∇Tn| + |v||∇Tn|
≤ 2(|∇v| + |v||∇Tn|).

Then (48) follows from (51) and (52).
Finally, we prove (49). From (46) and Minkowski inequality, one ob-

tains

|∇T ((z · ∇)v)| =

⎛
⎝ 3∑

l=1
|∇T ((z · ∇)vl)|2

⎞
⎠

1
2

≤
⎛
⎝ 3∑

l=1
(|∇Tz||∇vl| + |z||∇T∇vl|)2

⎞
⎠

1
2

≤
⎛
⎝ 3∑

l=1
|∇Tz|2|∇vl|2

⎞
⎠

1
2

+

⎛
⎝ 3∑

l=1
|z|2|∇T∇vl|2

⎞
⎠

1
2

= |∇Tz||∇v| + |z||∇T∇v|
≤ |∇Tz||v|1 + |z||v|2.

Hence (49) holds. So the proof of this lemma is complete. �
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Lemma 5.2 Suppose that z is a solution of (17)-(18). Then it holds
that

|z|1(0, y) ≤ C5|1/f |(|z| + |∇Tz|), ∀y ∈ ∂Ω− (52)

for some positive constant C5.

Proof Note that for any y ∈ ∂Ω−,

(z · ∇)v = (v · ∇)z = ((vT + (n · v)n) · ∇)z = (vT · ∇)z + f∂nz.

Thus

f∂nz = ((v · n)n · ∇)z

= (v · ∇)z − (vT · ∇)z

= (z · ∇)v − (vT · ∇)z.

Hence one has

|f ||∂nz| ≤ |z||v|1 + |vT ||∇Tz|
≤ |z||v|1 + |v||∇Tz|,

which implies that

|∂nz| ≤ |1/f |(|z||v|1 + |v||∇Tz|). (53)

It follows that

|z|1 =

⎛
⎝ 3∑

l=1
|∇zl)|2

⎞
⎠

1
2

≤
⎛
⎝ 3∑

l=1
|∇Tzl)|2

⎞
⎠

1
2

+

⎛
⎝ 3∑

l=1
|∂nzl)|2

⎞
⎠

1
2

= |∇Tz| + |∂nz|
≤ |∇Tz| + |1/f |(|z||v|1 + |v||∇Tz|)
≤ |∇Tz| + |1/f |(|z|Mβ0 + Mβ0|∇Tz|)
≤ C5|1/f |(|z| + |∇Tz|),

which leads to (52) with C5 = Mβ0 + ‖f‖∞. �

Lemma 5.3 Assume that that z is a solution to the problem (17)-(18).
Then

|z|2(0, y) ≤ C6|1/f |3(|z| + |∇Tz|) + C6|1/f |2(|z||v|2 + |∇2
Tz|), ∀y ∈ ∂Ω−

(54)
for some positive constant C6.
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Proof It follows from (48), (49), the proofs of (51) and (53), and (53)
that

|f∇T∂nz| ≤ |∇T (f∂nz)| + |∇Tf ||∂nz|
≤ |∇T (z · ∇)v| + |∇T (vT · ∇)z| + M4|∂nz|
≤ |∇Tz||∇v| + |z||∇T∇v| + |∇TvT ||∇Tz|

+|vT ||∇2
Tz| + M4|∂nz|

≤ |∇Tz||v|1 + |z||v|2 + M5|∇Tz|
+|v||∇2

Tz| + M4|∂nz|
≤ |z||v|2 + M6|∇2

Tz| + M6|1/f |(|z| + |∇Tz|),
where one has used the estimates

|∇Tf | = |∇Tn · v0|
≤ |∇Tn||v0| + |∇Tv0|
≤ |∇Tn||v0| + |v0|1
≤ M4

and

|∇TvT | = |∇Tv| + |∇T (fn)|
≤ |v|1 + |∇Tf | + |f ||∇Tn|
≤ |v|1 + M4 + |f ||∇Tn|
≤ M5.

Hence,

|∇T∂nz| ≤ M7|1/f |(|z||v|2 + +|∇2
Tz|) + M7|1/f |2(|z| + |∇Tz|). (55)

Note that

∇Tz|i = ∇T ((ei · ∇)z)

= ∇T ((eiT · ∇)z) + ∇T (ni∂nz).

We obtain

|∇Tz|i| ≤ |∇T (eiT · ∇z)| + |∇T (ni∂nz)|
≤ |∇TeiT |∇Tz| + |eiT ||∇2

Tz| + |∇Tni||∂nz| + |ni||∇T∂nz|.
Hence,

⎛
⎝ 3∑

i=1
|∇Tz|i|2

⎞
⎠

1
2

≤
⎛
⎝ 3∑

i=1
|∇TeiT |2|∇Tz|2

⎞
⎠

1
2

+

⎛
⎝ 3∑

i=1
|eiT |2|∇2

Tz|2
⎞
⎠

1
2

+

⎛
⎝ 3∑

i=1
|∇Tni|2|∂nz|2

⎞
⎠

1
2

+

⎛
⎝ 3∑

i=1
|ni|2|∇T∂nz|2

⎞
⎠

1
2
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= |∇Tz|
⎛
⎝ 3∑

i=1
|∇TeiT |2

⎞
⎠

1
2

+ |∇2
Tz|

⎛
⎝ 3∑

i=1
|eiT |2

⎞
⎠

1
2

+|∂nz|
⎛
⎝ 3∑

i=1
|∇Tni|2

⎞
⎠

1
2

+ |∇T∂nz|
⎛
⎝ 3∑

i=1
|ni|2

⎞
⎠

1
2

≤ M8(|∇Tz| + |∇2
Tz| + |∂nz| + |∇T∂nz|). (56)

By (42), it holds that

f∂nz|i = f(n · ∇)z|i
= ((v · n)n · ∇)z|i
= (v · ∇)z|i − (vT · ∇)z|i
= (z · ∇)v|i + (z|i · ∇)v − (v|i · ∇)z − (vT · ∇)z|i

which implies that

|f ||∂nz|i| ≤ |(z · ∇)v|i| + |(z|i · ∇)v| + |(v|i · ∇)z| + |(vT · ∇)z|i|
≤ |z||v|i|1 + |z|i||v|1 + |v|i||z|1 + |vT ||∇Tz|i|.

Moreover, it follows from Minkowski inequality that

|f |
⎛
⎝ 3∑

i=1
|∂nz|i|2

⎞
⎠

1
2

≤
⎛
⎝ 3∑

i=1
|z|2|v|i|21

⎞
⎠

1
2

+

⎛
⎝ 3∑

i=1
|z|i|2|v|21

⎞
⎠

1
2

+

⎛
⎝ 3∑

i=1
|v|i|2|z|21

⎞
⎠

1
2

+

⎛
⎝ 3∑

i=1
|vT |2|∇Tz|i|2

⎞
⎠

1
2

= |z||v|2 + |v|1|z|1 + |z|1|v|1 + |vT |
⎛
⎝ 3∑

i=1
|∇Tz|i|2

⎞
⎠

1
2

≤ |z||v|2 + M9(|z|1 +

⎛
⎝ 3∑

i=1
|∇T z|i|2

⎞
⎠

1
2

). (57)

Therefore by Minkowski inequality, (56), (57), (55), (53) and (52), we have

|z|2(0, y) =

⎛
⎝ 3∑

l=1

3∑
i=1

|∇zl|i|2
⎞
⎠

1
2

≤
⎛
⎝ 3∑

l=1

3∑
i=1

|∇Tzl|i|2
⎞
⎠

1
2

+

⎛
⎝ 3∑

l=1

3∑
i=1

|∂nzl|i|2
⎞
⎠

1
2

=

⎛
⎝ 3∑

i=1
|∇Tz|i|2

⎞
⎠

1
2

+

⎛
⎝ 3∑

i=1
|∂nz|i|2

⎞
⎠

1
2

≤ M10|1/f |(|∇Tz| + |∇2
Tz| + |∂nz| + |∇T∂nz| + |z||v|2 + |z|1)

≤ C6|1/f |3(|z| + |∇Tz|) + C6|1/f |2(|z||v|2 + |∇2
Tz|).
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Lemma 5.4 Let z be a solution to (17)-(18). Then the following
estimates hold:

|z|(0, y) ≤ C7|a| + |b|, ∀y ∈ ∂Ω−, (58)

|z|1(0, y) ≤ C7|1/f |(|a| + |b| + |∇Ta| + |∇T b|), ∀y ∈ ∂Ω−, (59)

|z|2(0, y) ≤ C7|f |−3(|a| + |b| + |∇Ta| + |∇T b|)
+C7|f |−2(|∇2

Ta| + |∇2
T b| + (|a| + |b|)|v|2), ∀y ∈ ∂Ω−.(60)

Proof Set

C7 = 2(C5 + C6 + 1)(M2β2
0 + Mβ0 + 1).

By (18), (16) and (31), one has

|z|(0, y) ≤ |a||v| + |b| ≤ Mβ0|a| + |b| ≤ C7|a| + |b|, ∀y ∈ ∂Ω−.

Then (58) holds. It follows from (18), (45), (16) and (31) that

|∇Tz| ≤ |∇T (av)| + |∇T b|
≤ |∇Ta||v| + |a||v|1 + |∇T b|
≤ (Mβ0 + 1)(|∇Ta| + |a| + |∇T b|).

Hence by (52), one has

|z|1(0, y) ≤ C5|1/f |(|z| + |∇Tz|)
≤ C5|1/f |(Mβ0|a| + |b| + (Mβ0 + 1)(|∇Ta| + |a| + |∇T b|))
≤ C7(|a| + |b| + |∇Ta| + |∇T b|)

for all y ∈ ∂Ω−, which shows (59). Due to (18), (47), (16) and (31), one
can obtain

|∇2
Tz| ≤ |∇2

T (av)| + |∇2
T b|

≤ |∇2
Ta||v| + 2|∇Ta||∇Tv| + |a||∇2

Tv| + |∇2
T b|

≤ |∇2
Ta||v| + 2|∇Ta||v|1 + |a||∇2

Tv| + |∇2
T b|

≤ Mβ0(|∇2
Ta| + 2|∇Ta|) + |a||v|2 + |∇2

T b|.
Then by (54) we have

|z|2(0, y) ≤ C6|1/f |3(|z| + |∇Tz|) + C6|1/f |2(|z||v|2 + |∇2
Tz|)

≤ C6|1/f |3(Mβ0|a| + |b| + (Mβ0 + 1)(|∇Ta| + |a| + |∇T b|))
+C6|1/f |2((Mβ0|a| + |b|)|v|2 + Mβ0(|∇2

Ta|
+2|∇Ta|) + |a||v|2 + |∇2

T b|)
≤ C7|1/f |3(|a| + |b| + |∇Ta| + |∇T b|)

+C7|1/f |2(|∇2
Ta| + |∇2

T b| + (|a| + |b|)|v|2),
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where we have used the fact that

‖f‖∞ ≤ ‖v0‖ ≤ M‖v0‖ ≤ Mβ0.

So the proof of this lemma is complete. �

Based on these estimates, we have the following desired boundary es-
timates.

Lemma 5.5 Suppose that v ∈ v0 +Vγ with γ ≤ γ0. Let z be a solution
to (17)-(18). Then the following estimates hold:

‖z‖0,∂Ω− ≤ C8(‖a‖0,∂Ω− + ‖b‖0,∂Ω−), (61)

‖z‖0,∞,∂Ω− ≤ C8(‖a‖ + ‖b‖), (62)

‖|z|1‖0,∂Ω− ≤ C8(‖a‖ + ‖b‖), (63)

‖|z|2‖0,∂Ω− ≤ C8(‖a‖ + ‖b‖). (64)

Proof Set
C8 = C7(M

2β2
0 + Mβ0 + 1).

Then (61) and (63) are obtained easily from (58) and (59). It follows from
(58) that

‖z‖0,∞,∂Ω− ≤ C7‖a‖0,∞,∂Ω− + ‖b‖0,∞,∂Ω−

≤ C7‖f‖2
∞‖a‖ + ‖f‖2

∞‖b‖
≤ C7M

2β2
0‖a‖ + M2β2

0‖b‖
≤ C8(‖a‖ + ‖b‖).

Then (62) holds. Finally, by (60), (16) and (31), one can obtain

‖|z|2‖0,∂Ω− ≤ C7(‖a‖ + ‖b‖)(1 + ‖|v|2‖0,∂Ω−)

≤ C7(‖a‖ + ‖b‖)(1 + ‖v‖2,∂Ω)

≤ C7(‖a‖ + ‖b‖)(1 + M‖v‖3,Ω)

≤ C7(1 + Mβ0)(‖a‖ + ‖b‖)
≤ C8(‖a‖ + ‖b‖),

which proves (64). Thus Lemma 5.5 is proved.

6 Proof of Lemmas 2.2 and 2.3

Based on the preparations in previous two sections, we are now ready to
prove Lemmas 2.2 and 2.3. We start with the proof of Lemma 2.2.
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Proof of Lemma 2.2 It follows from Lemmas 4.7 and 5.5 that

‖z‖0,Ω ≤ C1C‖z‖0,∂Ω−

≤ C1CC8(‖a‖0,∂Ω− + ‖b‖0,∂Ω−).

Hence (19) holds.
Applying Lemmas 4.7 and 5.5 again shows that

‖z‖2,Ω ≤ C1C‖z‖0,∂Ω− + K4(‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−)

+K5(‖|z|2‖0,∂Ω− + ‖|z|1‖0,∂Ω− + ‖z‖0,∞,∂Ω−)

≤ C1C(C8(‖a‖0,∂Ω− + ‖b‖0,∂Ω−)) + 2K4C8(‖a‖ + ‖b‖)
+3K5C8(‖a‖ + ‖b‖)

≤ C8(CC1M
3β3

0 + 2K4 + 3K5)(‖a‖ + ‖b‖),
which implies (20).

By (44), (11), Sobolev’s embedding theorem and Sobolev’s trace theo-
rem (see (16)), we have

‖[z](0, y(·))‖0,Ω ≤ C‖[z](0, y)‖0,∂Ω−

≤ C‖|a||[v]‖0,∂Ω−

≤ C‖a‖∞‖[v]‖0,∂Ω−

≤ CM3β2
0‖a‖‖[v]‖1,Ω.

It follows from (43) and Sobolev’s embedding theorem that

‖
∫ s(·)
0

(|Av(1)||[v]|1)(τ, y(·)))dτ‖0,Ω ≤ C‖|Av(1)||[v]|1‖0,Ω

≤ C‖Av(1)‖∞‖|[v]|1‖0,Ω

≤ CM‖Av(1)‖2,Ω‖[v]‖1,Ω

and

‖
∫ s(·)
0

((|[v]||Av(1)|1)(τ, y(·)))dτ‖0,Ω ≤ C‖|[v]||Av(1)|1‖0,Ω

≤ C‖[v]‖0,4,Ω‖|Av(1)|1‖0,4,Ω

≤ CM2‖[v]‖1,Ω‖Av(1)‖2,Ω.

Combining these estimates with Lemma 4.4 and (20) leads to

‖(Av(1) − Av)(s)‖0,Ω ≤ C4(‖[z](0)‖0,Ω + ‖
∫ s

0
(|Av(1)||[v]|1dτ‖0,Ω

+‖
∫ s

0
|[v]||Av(1)|1)dτ‖0,Ω)

≤ C4(CM3β2
0‖a‖‖[v]‖1,Ω + CM‖Av(1)‖2,Ω‖[v]‖1,Ω

+CM2‖[v]‖1,Ω‖Av(1)‖2,Ω)

≤ C4(CM3β2
0 + CM(M + 1)C8(CC1M

3β3
0

+2K4 + 3K5))(‖a‖ + ‖b‖)‖[v]‖1,Ω,
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which implies (21). �

We now turn to the proof of Lemma 2.3.
Proof Lemma 2.3 Due to (8), it holds that

n × (b × n) = (n · n)b − (n · b)n = b.

This, together with (18), yields

z = av + n × (b × n).

Hence,

v × z = v × (n × (b × n))

= (v · (b × n))n − (v · n)(b × n)

= (v · (b × n))n − (fb) × n. (65)

It follows from (17), (26), and div v = 0, that

curl (v × z) = v div z.

This, together with (9), implies

f div z = (n · v) div z

= n · curl (v × z)

= limS→0

1

S

∫
l
(v × z) · dl

= limS→0

1

S

∫
l
((fb) × n) · dl

= limS→0

1

S

∫
l
(fb) · dr

= div (fb)

= 0

where S is a smooth surface lying in ∂Ω− with smooth boundary l. Thus
we have

div z = 0 on ∂Ω−. (66)

Note that

div ((v · ∇)z) =
3∑

i=1
Di(

3∑
j=1

vjDjzi)

=
3∑

i=1

3∑
j=1

DivjDjzi + (v · ∇) div z.
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This, together with (17), implies

(v · ∇) div z = (z · ∇) div v = 0, x ∈ Ω.

Hence div z is a constant on the stream line of v. It follows from this and
(66) that div z = 0, x ∈ Ω. So the proof of Lemma 2.3 is completed. �
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