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Abstract

In this paper, we consider the existence of multiple nontrivial solutions for some

fourth order quasilinear elliptic boundary value problems. The weak solutions are

sought by using variational methods.
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1. Introduction

Let Ω be a bounded smooth open set in Rn. In this paper, we are concerned with

the existence of multiple nontrivial solutions to the fourth order quasilinear elliptic

boundary value problem⎧⎪⎪⎨⎪⎪⎩
Δ (g1 ((Δu)2) Δu) + c div (g2 (|∇u|2)∇u) = f(x, u) in Ω,

u = 0, Δu = 0 on ∂Ω,

(1.1)

where c ∈ R, g1, g2 ∈ C(R, R) and f : Ω × R → R is a Carathéodory’s function and

satisfies the local superlinearity and sublinearity condition.

0E-mail address: zhangjihui@njnu.edu.cn(J. Zhang)
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Papers [16-18] considered the fourth order semilinear elliptic boundary value prob-

lem ⎧⎪⎪⎨⎪⎪⎩
Δ2u + c Δu = f(x, u) in Ω,

u = 0, Δu = 0 on ∂Ω,

(1.2)

where Δ2 denotes the biharmonic operator, and the fourth order quasilinear elliptic

boundary value problem⎧⎪⎪⎨⎪⎪⎩
Δ (g1 ((Δu)2) Δu) + c div (g2 (|∇u|2)∇u) = f(x, u) in Ω,

u = 0, Δu = 0 on ∂Ω,

(1.3)

where h1 and h2 ∈ C(R, R).

In problem (1.2), let f(x, u) = b[(u + 1)+ − 1], then we get the following Dirichlet

problem ⎧⎪⎪⎨⎪⎪⎩
Δ2u + c Δu = b[(u + 1)+ − 1] in Ω,

u = 0, Δu = 0 on ∂Ω,

(1.4)

where u+= max {u, 0}.
There are many results about problems (1.1) -(1.4) (cf. [1, 2, 5-7, 16-19]). For

problem (1.4), Lazer and McKenna in [2] proved the existence of 2k − 1 solutions

when Ω ⊂ R is an interval and b > λk(λk − c) by the global bifurcation method. In

[5] Tarantello obtained a negative solution when b ≥ λ1(λ1 − c) by the degree theory.

For problem (1.2) when f(x, u) = bg(x, u), Micheletti and Pistoia in [6, 7] proved

that there exist two solutions or three solutions for a more general nonlinearity g by

variational method. Papers [16-19] proved the existence of weak solutions of problems

(1.2) and (1.3) for a more general nonlinearity f by means of variational method,

Morse theory and local linking.

In paper [19], it was studied that the existence of positive solutions for the fourth
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order semilinear elliptic boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ2u + c Δu = f(x, u) in Ω,

u ≥ 0, u �≡ 0 in Ω,

u = 0, Δu = 0 on ∂Ω,

(1.5)

where f satisfies the local superlinearity and sublinearity.

In the problem (1.1), let f(x, u) = λa(x)(u+)q + b(x)(u+)p, then we get the fol-

lowing fourth order quasilinear elliptic boundary value problem⎧⎪⎪⎨⎪⎪⎩
Δ (g1 ((Δu)2)Δu) + c div (g2 (|∇u|2)∇u) = a(x)(u+)q + b(x)(u+)p in Ω,

u = 0, Δu = 0 on ∂Ω,

(1.6)

where u+ = max {u, 0}, λ > 0 is a parameter and the exponents p and q satisfy

0 ≤ q < 1 < p with p < 2∗−1 if N ≥ 3, p < +∞ if N = 1 or 2, here 2∗ = 2N/(N −2).

In the problem (1.1), let f(x, u) = λa(x)|u|q + b(x)|u|p, then we get the following

fourth order quasilinear elliptic boundary value problem⎧⎪⎪⎨⎪⎪⎩
Δ (g1 ((Δu)2) Δu) + c div (g2 (|∇u|2)∇u) = a(x)|u|q + b(x)|u|p in Ω,

u = 0, Δu = 0 on ∂Ω,

(1.7)

where λ > 0 is a parameter and the exponents p and q satisfy 0 ≤ q < 1 < p with

p < 2∗ − 1 if N ≥ 3, p < +∞ if N = 1 or 2, here 2∗ = 2N/(N − 2).

Motivated by the above works, it is the purpose of this paper to use variational

methods for the fourth order quasilinear problem (1.1) when nonlinearity f satisfies

the local superlinearity and sublinearity condition and the fourth order quasilinear

problems (1.6) and (1.7).

The plan of the following sections are as follows. In Section 2 we give some

notations and main results. The main results are proved in Section 3.
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2. Notations and main results

In this paper we use the following definitions.

Definition 2.1. Problem (1.1) is said to be sublinear (superlinear) at 0 if there

exist α > 0 and t0 > 0 such that

f(x, t) ≥ (≤)α|t| (2.1)

for a.e. x ∈ Ω and all 0 ≤ |t| ≤ t0.

Problem (1.1) is said to be superlinear (sublinear) at ∞ if there exist β > 0 and

t1 > 0 such that

f(x, t) ≥ (≤)β|t| (2.2)

for a.e. x ∈ Ω and all |t| ≥ t1. Let V be a real Banach space and let E ∈ C1(V, R)

be a functional.

Definition 2.2. We say that E satisfies the (PS) condition if for every sequence

{un} in V with E(un) bounded and limn→∞ E ′(un) = 0, there exists a convergent

subsequence.

Let 0 < λ1 < λ2 < λ3 < · · · < λk < · · · be the sequence of distinct eigenvalues of

the eigenvalue problem ⎧⎪⎪⎨⎪⎪⎩
Δu + λu = 0 in Ω,

u = 0 on ∂Ω.

(2.3)

The eigenvalue problem ⎧⎪⎪⎨⎪⎪⎩
Δ2u + c Δu = μu in Ω,

u = 0, Δu = 0 on ∂Ω

(2.4)

has infinitely many eigenvalues μk = λk(λk − c), k = 1, 2, · · · .
We will always assume N ≥ 3, c < λ1(Ω), denote by σ′ the Holder conjugate of σ

, by λ1(Ω) the first eigenvalue of −Δ on H1
0 (Ω) and by λ1(Ω1) the first eigenvalue of
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−Δ on H1
0 (Ω1). Let V denote the Hilbert space H2(Ω)∩H1

0 (Ω) is equipped with the

inner product

〈u, v〉V =
∫
Ω
[ΔuΔv − c ∇u∇v]dx. (2.5)

We denote by ‖ u ‖p the norm in Lp(Ω), by ‖ u ‖0,1 the norm in H1
0 (Ω), and by ‖ u ‖

the norm in V is given by

‖ u ‖2 = 〈u, u〉V . (2.6)

Let V ′ denote the dual of V and let 〈 , 〉 be the duality pairing between V ′ and V .

Now we give the following assumptions:

Let g1, g2 : R → R be two functions and satisfy the following conditions:

(ig) g1 is a continuous and nondecreasing function;

(iig) cg2 is a continuous and nonincreasing function, where c ∈ R;

(iiig) There exist α1, α2, β1 and β2 ∈ R such that

0 < α1 ≤ g1(t) ≤ β1,

cα2 ≤ cg2(t) ≤ cβ2

for all t ∈ R

Let f : Ω ×R → R be a Carathéodory’s function and satisfy the following condi-

tions:

(if ) There exist 1 ≤ σ < 2∗, d1 ∈ Lσ
′
(Ω), d2 > 0 such that

|f(x, t)| ≤ d1(x) + d2|t|σ−1

for a.e. x ∈ Ω and all t ∈ R;

(iif ) There exist θ > 2, 1 ≤ r < 2, d ∈ L( 2∗
r

)
′
(Ω), with d ≥ 0 a.e. in Ω , t0 ≥ 0,

such that

θF (x, t) ≤ tf(x, t) + d(x)|t|r

for a.e. x ∈ Ω and all |t| > t0, where F (x, t) =
∫ t
0 f(x, s)ds;

(iiif ) There exist 0 ≤ q < 1 < p < 2∗ − 1, a0 ∈ Lσq (Ω), with σq = ( 2∗
q+1

)
′

and

a0 ≥ 0 a.e. in Ω, b0 ∈ Lσp(Ω), with σp = ( 2∗
p+1

)
′
and b0 ≥ 0 a.e. in Ω such that

f(x, t) ≤ a0|t|q + b0|t|p
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for a.e. x ∈ Ω and all t ∈ R;

(ivf ) There exist a nonempty subdomain Ω1 ⊂ Ω, θ1 > λ1(Ω1)(λ1(Ω1)β1−cα2)/2,

t1 > 0, such that

F (x, t) ≥ θ1t
2

for a.e. x ∈ Ω1 and all 0 ≤ t ≤ t1;

(vf ) There exist a nonempty open subset Ω2 ⊂ Ω, θ2 > 0, t2 ≥ 0, such that

F (x, t) ≥ θ2t
2

for a.e. x ∈ Ω2 and all t ≥ t2, with the additional requirement that the function d(x)

appearing in (iiif ) is bounded on Ω2.

Remark 2.1. The hypothesis (ivf ) implies that f satisfies the local sublinearity

condition at 0, the hypothesis (vf ) implies that f satisfies the local superlinearity

condition at ∞.

Let us define the mapping Bg : V → V ′ by

〈Bgu, v〉 =
∫
Ω

[
g1

(
(Δu)2

)
ΔuΔv − c g2

(
|∇u|2

)
∇u∇v

]
dx, (2.7)

foy any u, v ∈ V .

Definition 2.3. We say that u ∈ V is the weak solution of problem (1.1) if the

identity

〈Bgu, v〉 =
∫
Ω

f(x, u)vdx (2.8)

holds for any v ∈ V . Let E denote the associated energy:

Eu =
∫
Ω

[
G1

(
(Δu)2

)
− c G2

(
|∇u|2

)
− F (x, u)

]
dx, (2.9)

where G1(t) = 1
2

∫ t
0 g1(s)ds, G2(t) = 1

2

∫ t
0 g2(s)ds, F (x, t) =

∫ t
0 f(x, s)ds.

Under the above assumptions, we shall give the existence of weak solutions, by

means of Mountain Pass theorem and local minimization, for the quasilinear problem

(1.1), (1.6) and (1.7). The main results of this paper are the following theorems.

Theorem 2.1. Assume that (ig)-(iiig) and (if -(vf) hold. Suppose in addition that
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θα1 − 2β1 > 0, if 0 ≤ c < λ1(Ω), α1 ≥ β2 and θα1 − 2β1 ≥ θβ2 − 2α2 , or if c ≤ 0,

α1 ≤ β2 and θα1 − 2β1 ≤ θβ2 − 2α2. Then there exists η = η(p, q, n) > 0 such that

for a0 and b0 :

‖a0‖p−1
σq

‖b0‖1−q
σp

< η,

problem (1.1) has at least two solutions v and w which satisfy E(v) > 0 and E(w) < 0,

where E denotes the associated energy in (2.9). In addition if f varies in such a way

that the coefficients in (iiif) satisfy

a0 → 0 in Lσq (Ω) and b0 bounded in Lσp(Ω),

then the solution w = wf can be constructed such that wf → 0 in V .

Theorem 2.2. Assume that (ig)-(iiig) and (if)-(vf ) hold. Suppose in addition that

θβ2−2α2 > 0, α1 ≥ β2 and θα1−2β1 ≥ θβ2−2α2. Then there exists η = η(p, q, n) > 0

such that for a0 and b0 :

‖a0‖p−1
σq

‖b0‖1−q
σp

< η,

problem (1.1) has at least two solutions v and w which satisfy E(v) > 0 and E(w) < 0,

where E denotes the associated energy in (2.9). In addition if f varies in such a way

that the coefficients in (iiif) satisfy

a0 → 0 in Lσq (Ω) and b0 bounded in Lσp(Ω),

then the solution w = wf can be constructed such that wf → 0 in V .

We apply these theorems to the quasilinear problem (1.6), we have

Theorem 2.3. Assume that (ig)-(iiig) hold. Suppose that θα1 − 2β1 > 0, if 0 ≤
c < λ1(Ω), α1 ≥ β2 and θα1 − 2β1 ≥ θβ2 − 2α2 , or if c ≤ 0, α1 ≤ β2 and

θα1 − 2β1 ≤ θβ2 − 2α2 and that in (1.6) λ > 0, 0 ≤ q < 1 < p < 2∗ − 1, a ∈ Lτq (Ω)

with τq > σq, b ∈ Lτp(Ω) with τp > σp, with in addition a(x) ≥ 0 a.e. in Ω in case

q = 0. Suppose in addition that

(vif ) there exists a nonempty open subset Ω1 ⊂ Ω such that, on Ω1, a(x) ≥ ε1 for

some ε1 > 0 and b(x) is bounded from below;
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(viif ) there exists a nonempty open subset Ω2 ⊂ Ω such that, on Ω2, b(x) ≥ ε2

for some ε2 > 0 and a(x) is bounded from above and from below.

Then there exists η̃ = η̃(p, q, n) > 0 for

λ <
η̃

‖a+‖σq‖b+‖(1−q)(p−1)
σp

,

problem (1.6) has at least two solutions v and w which satisfy J(v) > 0 and J(w) < 0,

where J denotes the energy functional associated to (1.6). Moreover, if λ → 0, the

solution w = wf can be constructed such that wf → 0 in V .

Theorem 2.4. Assume that (ig)-(iiig) hold. Suppose that θβ2−2α2 > 0, α1 ≥ β2 and

θα1−2β1 ≥ θβ2−2α2 and that in (1.6) λ > 0, 0 ≤ q < 1 < p < 2∗−1, a ∈ Lτq(Ω) with

τq > σq, b ∈ Lτp(Ω) with τp > σp, with in addition a(x) ≥ 0 a.e. in Ω in case q = 0.

Suppose in addition that (vif ) and (viif ) hold. Then there exists η̃ = η̃(p, q, n) > 0

for

λ <
η̃

‖a+‖σq‖b+‖(1−q)(p−1)
σp

,

problem (1.6) has at least two solutions v and w which satisfy J(v) > 0 and J(w) < 0,

where J denotes the energy functional associated to (1.6). Moreover, if λ → 0, the

solution w = wf can be constructed such that wf → 0 in V .

We apply Theorem 2.1 and 2.2 to the quasilinear problem (1.7), we have

Theorem 2.5. Assume that hypotheses in Theorem 2.3 hold. Then there exists

η̃ = η̃(p, q, n) > 0 for

λ <
η̃

‖a+‖σq‖b+‖(1−q)(p−1)
σp

,

problem (1.7) has at least two solutions v and w which satisfy J(v) > 0 and J(w) < 0,

where J denotes the energy functional associated to (1.7). Moreover, if λ → 0, the

solution w = wf can be constructed such that wf → 0 in V .

Theorem 2.6. Assume that hypotheses in Theorem 2.4 hold. Then there exists

η̃ = η̃(p, q, n) > 0 for

λ <
η̃

‖a+‖σq‖b+‖(1−q)(p−1)
σp

,
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problem (1.7) has at least two solutions v and w which satisfy J(v) > 0 and J(w) < 0,

where J denotes the energy functional associated to (1.7). Moreover, if λ → 0, the

solution w = wf can be constructed such that wf → 0 in V .

Remark 2.2. Theorem 2.1-2.6 are includes an interesting interplay between the be-

havior of the functions g1, g2, f and the potential function E and J . On the other

hand, Theorem 2.1-2.6 deal with some fourth order quasilinear elliptic problems.

Figueiredo, Gossez and Ubilla in [12] studied second semilinear elliptic problems, as

well as of another paper by Xu and Zhang [19] considered some fourth order semilinear

elliptic problems of the local superlinearity and sublinearity conditions.

3. Some lemmas and proofs of main results

Let Ω be a bounded smooth open subset of Rn and let V = H2(Ω) ∩ H1
0 (Ω). In

this section we give the proofs of Theorem 2.1-2.6. For this we need the following

lemmas.

Let G1(t) = 1
2

∫ t
0 g1(s)ds, G2(t) = 1

2

∫ t
0 g2(s)ds and let the energy E : V → R be

given by

Eu =
∫
Ω

[
G1

(
(Δu)2

)
− c G2

(
|∇u|2

)
− F (x, u)

]
dx, (3.1)

for any u ∈ V .

Lemma 3.1. Assume that (if ) holds, let F ′ : V → V ′ be given by

〈F ′u, v〉 =
∫
Ω

f(x, u)vdx, (3.2)

for any u, v ∈ V . Then F ′ is completely continuous.

Proof. Let I : V → Lσ(Ω) be given by Iu = u, since for σ < 2∗ by Rellich’s theorem

the space H1
0 (Ω) embeds into Lσ(Ω) compactly, then I is a compact mapping. From

[19]. Let K : Lσ(Ω) → Lσ′
(Ω) (1/σ + 1/σ′ = 1) be given by K(u) = f(x, u) and let

I ′ : Lσ′ → V ′ be given by I ′v = v, then K and I ′ are continuous. Hence F ′ = I ′KI

is a completely continuous mapping from V to V ′.
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Lemma 3.2. Let that (ig)-(iiig) and (if ) hold. Then E ∈ C1(V, R).

Proof. Let Gu =
∫
Ω [G1 ((Δu)2) − c G2 (|∇u|2)] dx, by (ig) and (iig), it is easy to

check that G is a continuous. From Lemma 3.1 we know that F ′ is completely con-

tinuous.

Thus by combining assumptions (ig)-(iiig) and (if), it follows that E ∈ C1(V, R)

and

〈E ′u, v〉 =
∫
Ω

[
g1

(
(Δu)2

)
ΔuΔv − c g2

(
|∇u|2

)
∇u∇v − f(x, u)v

]
dx

= 〈Bgu, v〉 − 〈F ′u, v〉. (3.3)

Remark 3.1. By Lemma 3.1 and 3.2, E ′u = 0 implies that

〈Bgu, v〉 =
∫
Ω

f(x, u)vdx.

Therefore critical points of E are weak solutions of problem (1.1).

Lemma 3.3. Assume that (ig)-(iiig) and (if)-(iif) hold. Let θα1 − 2β1 > 0, if

0 ≤ c < λ1, θα1 − 2β1 ≥ θβ2 − 2α2 , or if c ≤ 0, θα1 − 2β1 ≤ θβ2 − 2α2. Then

E satisfies the (PS) condition on V .

Proof. By Lemma 3.1 and 3.2, E is a C1 functional on V . To see that E satis-

fies (PS) condition, at first we show that any (PS)-sequence {un} for E is bounded

in V . Let {un} be a (PS) sequence, i.e. E(un) bounded and E
′
(un) → 0. So, for θ as

in (iiif) and for some εn → 0 and some constant C,

θE(un) − 〈E ′
(un), un〉 ≤ C + εn‖un‖. (3.4)

When 0 ≤ c < λ1, by combining (iiig), (3.1), (3.2) and (3.3) we have

θE(un) − 〈E ′
(un), un〉 = θ

∫
Ω

[
G1

(
(Δun)

2
)
− c G2

(
|∇un|2

)]
dx

−
∫
Ω

[
g1

(
(Δun)

2
)

(Δun)2 − c g2

(
|∇un|2

)
|∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx
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≥ θ

2

∫
Ω

[
α1(Δun)2 − c β2|∇un|2

]
dx

−
∫
Ω

[
β1(Δun)2 − c α2|∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

=
∫
Ω

[
(
θ

2
α1 − β1)(Δun)

2 − c (
θ

2
β2 − α2)|∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

= (
θ

2
α1 − β1)

∫
Ω

[
(Δun)2 − θβ2 − 2α2

θα1 − 2β1
c |∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

≥ (
θ

2
α1 − β1)

∫
Ω

[
(Δun)2 − c |∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

≥ (
θ

2
α1 − β1) ‖ un ‖2

−
∫
Ω
(θF (x, un) − unf(x, un))dx. (3.5)

When c < 0, by combining (iiig), (3.1), (3.2), (3.3) and (3.5), similarly, from (3.5) we

have

θE(un) − 〈E ′
(un), un〉 ≥ θ

2

∫
Ω

[
α1(Δun)2 − c β2|∇un|2

]
dx

−
∫
Ω

[
β1(Δun)2 − c α2|∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

= (
θ

2
α1 − β1)

∫
Ω

[
(Δun)2 − θβ2 − 2α2

θα1 − 2β1
c |∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

≥ (
θ

2
α1 − β1)

∫
Ω

[
(Δun)2 − c |∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

≥ (
θ

2
α1 − β1) ‖ un ‖2
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−
∫
Ω
(θF (x, un) − unf(x, un))dx. (3.6)

by combining (3.4), (3.5) and (3.6), it implies that

(
θ

2
α1 − β1)‖un‖2 −

∫
Ω
(θF (x, un) − unf(x, un)) ≤ C + εn‖un‖. (3.7)

By (3.7) and assumption (iif), we get

(
θ

2
α1 − β1)‖un‖2 ≤ C

′
+

∫
Ω

d(x)|un|rdx + εn‖un‖, (3.8)

where C
′
is another constant. Since r < 2, we deduces that ‖un‖ remains bounded.

Next, we show that E satisfies the (PS) condition. From assumptions (ig), (iig)

and (iiig), it follows that

〈Bg(u − v), (u − v)〉 =
∫
Ω

[(
g1

(
(Δu)2

)
Δu − g1

(
(Δv)2

)
Δv

)
Δ(u − v)

+
(
−c g2

(
|∇u|2

)
∇u + c g2

(
|∇v|2

)
∇v

)
∇(u − v)

]
dx

=
1

2

∫
Ω

[(
g1

(
(Δu)2

)
+ g1

(
(Δv)2

))
(Δ(u − v))2

+
(
g1

(
(Δu)2

)
− g1

(
(Δv)2

))
((Δu)2 − (Δv)2)

]
dx

+
1

2

∫
Ω

[(
−cg2

(
|∇u|2

)
− cg2

(
|∇v|2

))
|∇(u − v)|2

+
(
−cg2

(
|∇u|2

)
+ cg2

(
|∇v|2

))
(|∇u|2 − |∇v|2)

]
dx

≥ α1 ‖ u − v ‖2 (3.9)

for any u, v ∈ V . Thus, by combining assumptions (ig)-(iiig), (3.9), Lemma 3.1 and

3.2, this implies that Bg : V → V ′ is an homeomorphism.

Let {un} in V be a (PS)-sequence for E, from (3.8) we know that {un} is bounded

in V , assume after passing to a subsequence that un → u0 weakly in V , strongly in

L2(Ω). Since

un = B−1
g (E ′(un) − F ′(un)), (3.10)

by Lemma 3.1, we know that F ′ : V → V ′ is is a completely continuous mapping.

Thus there exists a convergent subsequence, hence E satisfies the (PS) condition.

This completes the proof of Lemma 3.3.
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Lemma 3.4. Assume that (ig)-(iiig) and (if)-(iif) hold. Let θβ2−2α2 > 0, θα1−2β1 ≥
θβ2 − 2α2, Then E satisfies the (PS) condition on V .

Proof. As in the proof of Lemma 3.3, we know that E is a C1 functional on V .

At first we show that any (PS)-sequence {un} for E is bounded in V . Let {un} be a

(PS) sequence, i.e. E(un) bounded and E
′
(un) → 0. Thus, for θ as in (iiif ) and for

some εn → 0 and some constant C,

θE(un) − 〈E ′
(un), un〉 ≤ C + εn‖un‖. (3.11)

From (3.1), (3.2) and (3.3) we have

θE(un) − 〈E ′
(un), un〉 = θ

∫
Ω

[
G1

(
(Δun)

2
)
− c G2

(
|∇un|2

)]
dx

−
∫
Ω

[
g1

(
(Δun)

2
)

(Δun)2 − c g2

(
|∇un|2

)
|∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

≥ θ

2

∫
Ω

[
α1(Δun)2 − c β2|∇un|2

]
dx

−
∫
Ω

[
β1(Δun)2 − c α2|∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

=
∫
Ω

[
(
θ

2
α1 − β1)(Δun)

2 − c (
θ

2
β2 − α2)|∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

= (
θ

2
β2 − α2)

∫
Ω

[
θα1 − 2β1

θβ2 − 2α2
(Δun)2 − c |∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

≥ (
θ

2
β2 − α2)

∫
Ω

[
(Δun)2 − c |∇un|2

]
dx

−
∫
Ω
(θF (x, un) − unf(x, un))dx

≥ (
θ

2
β2 − α2) ‖ un ‖2

−
∫
Ω
(θF (x, un) − unf(x, un))dx. (3.12)
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By (3.11) and (3.12), it follows that

(
θ

2
β2 − α2)‖un‖2 −

∫
Ω
(θF (x, un) − unf(x, un)) ≤ C + εn‖un‖. (3.13)

From (3.13) and assumption (iif ), we have

(
θ

2
β2 − α2)‖un‖2 ≤ C

′′
+

∫
Ω

d(x)|un|rdx + εn‖un‖, (3.14)

where C
′′

is another constant. Since r < 2, we deduces that ‖un‖ remains bounded.

Next, we show that E satisfies the (PS) condition. By combining (3.9), (3.15),

assumptions (ig)-(iiig), Lemma 3.1 and 3.2, , we know that

〈Bg(u − v), (u − v)〉 ≥ α1 ‖ u − v ‖2 (3.15)

for any u, v ∈ V and that Bg : V → V ′ is an homeomorphism.

Let {un} in V be a (PS)-sequence for E, from (3.14) we know that {un} is bounded

in V , assume after passing to a subsequence that un → u0 weakly in V , strongly in

L2(Ω). Since

un = B−1
g (E ′(un) − F ′(un)), (3.16)

by Lemma 3.1, we know that F ′ : V → V ′ is is a completely continuous mapping.

Thus there exists a convergent subsequence, hence E satisfies the (PS) condition.

This completes the proof of Lemma 3.4.

Lemma 3.5.[12,19] Let 0 ≤ q < 1 < p, A > 0, B > 0, and consider the function

ΨA,B(t) = t2 − Atq+1 − Btp+1

for t ≥ 0. Then max {ΨA,B(t) : t ≥ 0} is > 0 if and only if

Ap−1Bq−1 <
(p − 1)p−1(1 − q)1−q

(p − q)p−q
= η1(p, q). (3.17)

Moreover, for t = tB := [ 1−q
B(p−q)

]
1

p−1 , one has

ΨA,B(tB) = t2B[
p − 1

p − q
− AB

1−q
p−1 (

p − q

1 − q
)

1−q
p−1 ]. (3.18)
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Proof of Theorem 2.1. By means of Lemma 3.3, we know that the associated

energy E in (2.9) satisfies the (PS) condition. At first, we will show the existence of

the first solution by the Mountain Pass theorem. Thus, recalling (iiif), using Hölder

inequality and Sobolev inequality, when 0 ≤ c < λ1, by combining (iiig) and (3.1) we

have

E(u) =
∫
Ω

[
G1

(
(Δu)2

)
− c G2

(
|∇u|2

)]
dx −

∫
Ω

F (x, u)dx

≥ 1

2

∫
Ω

[
α1(Δu)2 − c β2|∇u|2

]
dx −

∫
Ω

[
a0|u|q+1

q + 1
+

b0|u|p+1

p + 1

]
dx

=
α1

2

∫
Ω

[
(Δu)2 − β2

α1
c |∇u|2

]
dx −

∫
Ω

[
a0|u|q+1

q + 1
+

b0|u|p+1

p + 1

]
dx

≥ α1

2

∫
Ω

[
(Δu)2 − c |∇u|2

]
dx − m1‖a0‖σq‖u‖q+1

0,1 − m2‖b0‖σp‖u‖p+1
0,1

≥ α1

2
‖ u ‖2 −c1‖a0‖σq‖u‖q+1 − c2‖b0‖σp‖u‖p+1 (3.19)

for all u ∈ V , where m1 = (q + 1)−1S− q+1
2 , m2 = (p + 1)−1S− p+1

2 , c1 = m1(λ1(Ω) −
c)−

q+1
2 , c2 = m2(λ1(Ω) − c)−

p+1
2 , and

S := inf{
∫
Ω
|∇u|2dx : u ∈ H1

0 (Ω) and
∫
Ω
|u|2∗dx = 1}. (3.20)

When c < 0, by combining (iiig), (3.1) and (3.19), similarly, from (3.19) we have

E(u) =
∫
Ω

[
G1

(
(Δu)2

)
− c G2

(
|∇u|2

)]
dx −

∫
Ω

F (x, u)dx

≥ α1

2

∫
Ω

[
(Δu)2 − β2

α1
c |∇u|2

]
dx −

∫
Ω

[
a0|u|q+1

q + 1
+

b0|u|p+1

p + 1

]
dx

≥ α1

2
‖u‖2 − c1‖a0‖σq‖u‖q+1 − c2‖b0‖σp‖u‖p+1 (3.21)

for all u ∈ V , where c1 and c2 as in (3.19). Let A = (2c1/α1)‖a0‖σq and B =

(2c2/α1)‖b0‖σp, it follows from (ivf ) and (vf ) that A > 0 and B > 0. By Lemma 3.5,

(3.19) and (3.21), we get

E(u) ≥ α1

2
ΨA,B(tB) > 0 (3.22)

for all u ∈ V with ‖u‖ = tB and Ap−1Bq−1 < η1(p, q), this implies that

‖a0‖p−1
σq

‖b0‖1−q
σp

<
αp−q

1 η1(p, q)

2p−q(c1)p−1(c2)1−q
= η(p, q, N). (3.23)
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Noting that E(0) = 0, thus by (3.22) and (3.23) we have obtained a range of mountains

around 0.

Now we will show that for some u2 ∈ V such that E(tu2) → −∞ as t → +∞. By

assumption (vf), there exist t3 > t0 and θ3 > 0, such that F (x, t) ≥ θ3t
2 + 1 for a.e.

x ∈ Ω2 and all t ≥ t3. For x ∈ Ω2 and t ≥ t3, we then divide the inequality of (iif)

by tF (x, t), integrate from t3 to t and take the exponential to get

F (x, t) ≥ F (x, t3)(
t

t3
)θ exp(−d(x)

∫ t

t3

sr−1

F (x, s)
ds).

From (vf ), it implies that

F (x, t) ≥ Ctθ (3.24)

for a.e. x ∈ Ω2 and all t ≥ t3, where C > 0 is a constant. Choosing a function

u2 ∈ V
⋂

Hθ(Ω) with support in Ω2 and u2 ≥ 0, u2 �≡ 0, and taking t2 such that

measure of {x ∈ Ω2 : tu2(x) ≥ t3} is > 0 for t ≥ t2. By (iiig) and (3.1) we have

E(tu2) =
∫
Ω

[
G1

(
(Δtu2)

2
)
− c G2

(
|∇tu2|2

)]
dx −

∫
Ω

F (x, tu2)dx

≤ t2

2

∫
Ω2

[
β1(Δu2)

2 − cα2|∇u2|2
]
dx −

∫
Ω2

F (x, tu2)dx, (3.25)

by splitting the integral over Ω2 into an integral over {x ∈ Ω2 : tu2(x) < t3} and an

integral over {x ∈ Ω2 : tu2(x) ≥ t3}, and by using (3.24) and (3.25), this follows that,

for some constants C1, C2 and C3, with C3 > 0,

E(tu2) ≤ t2

2

∫
Ω2

[
β1(Δu2)

2 − cα2|∇u2|2
]
dx + C2

−Ctθ
∫
{x∈Ω2:tu2(x)≥t3}

(u2)
θdx

≤ C1t
2 + C2 − C3t

θ. (3.26)

Since θ > 2, this implies that E(tu2) → −∞ as t → +∞.

By combining (3.22), (3.23) and (3.26), the Mountain Pass theorem yields a critical

point v of E with

E(v) ≥ α1

2
ΨA,B(tB) > 0. (3.27)

This v is the first nontrivial solution of problem (1.1).

Next, we will show the existence of the second solution by local minimization.

Let e1 be the positive eigenfunction associated to the principle eigenvalue of −Δ on
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H1
0 (Ω1), it is known that e1 ∈ L∞(Ω1). Set t1 = t1/‖e1‖∞, using the positivity of e1

and the hypothesis (ivf ), it is easy to see that for all 0 < t ≤ t1, 0 ≤ te1 ≤ t1. By

(iiig) and (3.1), this implies that

E(te1) =
∫
Ω

[
G1

(
(Δte1)

2
)
− c G2

(
|∇te1|2

)]
dx −

∫
Ω

F (x, te1)dx

≤ t2

2

∫
Ω1

[
β1(Δe1)

2 − cα2|∇e1|2
]
dx − θ1t

2
∫
Ω1

e2
1dx

≤ λ1(Ω1)(λ1(Ω1)β1 − cα2)
t2

2

∫
Ω1

e2
1dx − θ1t

2
∫
Ω1

e2
1dx

= (λ1(Ω1)(λ1(Ω1)β1 − cα2)/2 − θ1)t
2

∫
Ω1

e2
1dx

< 0, (3.28)

since θ1 > λ1(Ω1)(λ1(Ω1)β1 − cα2)/2. Thus, there exists t > 0 sufficiently small such

that

E(te1) < 0. (3.29)

Let Gu =
∫
Ω [G1 ((Δu)2) − c G2 (|∇u|2)] dx, and Wu =

∫
Ω F (x, u)dx. By (ig)-(iiig),

it is easy to check that G is a convex and lower semicontinuous, hence G is weakly

lower semicontinuous. As in the proof of Lemma 3.1 from assumption (if), we know

that W is weakly continuous. Thus E = G − W is weakly lower semicontinuous. It

follows from (3.29) that the minimum of the functional E on the closed ball in V with

center 0 and radius tB is achieved in the corresponding open ball and thus yields a

nontrivial solution w of problem (1.1) with

E(w) < 0 and ‖w‖ < tB. (3.30)

Thus, we obtain the second solution. This completes the proof of the existence of at

least two solutions in Theorem 2.1.

We now turn to the study of the asymptotic behavior of one of these two solutions.

When f varies in such a way that a0 → 0 in Lσq(Ω) and b0 remains bounded in Lσp(Ω),

let γ ∈ (0, 1/1 − q) and tB = ‖a0‖γ
σq

. By (3.19), we have

E(u) ≥ α1

2
‖ u ‖2 −c1‖a0‖σq‖u‖q+1 − c2‖b0‖σp‖u‖p+1

≥ α1

2
‖a0‖2γ

σq
− c1‖a0‖1+γ(q+1)

σq
− c2‖b0‖σp‖a0‖γ(p+1)

σq

= ‖a0‖2γ
σq

(
α1

2
− c1‖a0‖1−γ(1−q)

σq
− c2‖b0‖σp‖a0‖γ(p−1)

σq
) (3.31)
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for all u with ‖u‖ = tB. Since γ ∈ (0, 1/1 − q), so 1 − γ(1 − q) > 0, thus it follows

from (3.31) that

E(u) ≥ α1

2
ΨA,B(tB) > 0 (3.32)

for all u with ‖u‖ = ‖a0‖γ
σq

= tB sufficiently small. By combining (3.30), and (3.31)

and (3.32), this implies that the corresponding solution w will converges to 0 in V as

a0 → 0. This complete the proof of Theorem 2.1.

Proof of Theorem 2.2. By combining assumptions (ig)-(iiig), (if )-(vf), Lemma 3.1,

3.2 and 3.4, we can give the proof of Theorem 2.2 similar to the proof of Theorem 2.1.

Proof of Theorem 2.3. Let

f(x, t) =

⎧⎪⎪⎨⎪⎪⎩
a(x)tq + b(x)tp t ≥ 0,

0 t < 0.

By combining assumptions (ig)-(iiig), (vif )-(viif), Lemma 3.1, 3.2 and 3.3 and the

proof of Theorem 2.1, we can show that J ∈ C1(V, R), it is enough to verify that

for each λ > 0, hypotheses (if)-(vf) hold. Noting the strict inequalities τq > σq and

τp > σp, by using Young’s inequality, we know that (if ) holds. Set θ = p+1, r = q+1,

d(x) = λ(θ/(q + 1)− 1)a+(x) and t0 = 0, it follows that (iif) holds. Hypothesis (iiif )

is clear. By assumption (vif ), we have

lim
t→0+

f(x, t)

t
= lim

t→0+
a(x)tq−1 + b(x)tp−1

= +∞ (3.33)

uniformly for a.e. x ∈ Ω1. So, there exist θ1 > λ1(Ω1)(λ1(Ω1)β1 − cα2)/2 and t1 > 0,

such that

F (x, t) ≥ θ1t
2 (3.34)

for a.e. x ∈ Ω1 and all 0 ≤ t ≤ t1, where F (x, t) =
∫ t
0 f(x, s)ds. It implies from (3.34)

that hypothesis (ivf ) holds on Ω1. By assumption (viif ), set d(x) = λ(θ/(q + 1) −
1)a+(x), which is bounded on Ω2, we have

lim
t→+∞

f(x, t)

t
= lim

t→+∞ a(x)tq−1 + b(x)tp−1

= +∞ (3.35)
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uniformly for a.e. x ∈ Ω2. So, there exist θ2 > 0 and t2 ≥ 0, such that

F (x, t) ≥ θ2t
2 (3.36)

for a.e. x ∈ Ω2 and all t ≥ t2, where F (x, t) =
∫ t
0 f(x, s)ds, with the additional

requirement that the function d(x) appearing in (iiif ) is bounded on Ω2. It implies

from (3.36) that hypothesis (vf ) holds on Ω2. This complete the proof of Theorem 2.3.

Proof of Theorem 2.4. By combining assumptions (ig)-(iiig), (vif ),(viif ), Lemma

3.1, 3.2 and 3.4, the proof of Theorem 2.4 can be completed similar to the proof of

Theorem 2.3.

Remark 3.2. The proofs of Theorem 2.5 and 2.6 are similar to the proofs of Theorem

2.3 and 2.4. So we omit them.
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