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Abstract

The main purpose of this paper is to study the asymptotic equiv-
alence of the Boltzmann equation for the hard-sphere collision model
to its corresponding Euler equations of compressible gas dynamics in
the limit of small mean free path. When the fluid flow is a smooth
rarefaction (or centered-rarefaction) wave with finite strength, the cor-
responding Boltzmann solution exists globally in time, and the solu-
tion converges to the rarefaction wave uniformly for all time (or away
from t = 0) as € — 0. A decomposition of a Boltzmann solution into
its macroscopic (fluid) part and microscopic (kinetic) part is adopted
to rewrite the Boltzmann equation in a form of compressible Navier-
Stokes equations with source terms. In this setting, the same asymp-
totic equivalence of the full compressible Navier-Stokes equations to
its corresponding Euler equations in the limit of small viscosity and
heat-conductivity (depending on the viscosity) is also obtained.

1 Introduction

The Boltzmann equation of kinetic theory gives a statistical descrip-
tion of a gas of interacting particles. An important property of this
equation is its asymptotic equivalence to the Euler or Navier-Stokes
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equations of the compressible gas dynamics, in the limit of small mean
free path. It is expect that, away from initial layers, boundary layers
and shock layers, the Boltzmann solutions should relax to its equilib-
rium state (local Maxwellian) in the small mean free path, and the
gas should be governed by the macroscopic equations- the fluid equa-
tions. This asymptotic relationship can be seen formally by using
the Hilbert expansion and Chapman-Enskog expansions. The rigor-
ous mathematical justification of this asymptotic equivalence poses
challenging problems. For a simplified model, Broadwell model of
Boltzmann equations, the asymptotic equivalence between which and
corresponding Euler equations in the small mean free path was justi-
fied when the Euler flow is either smooth (by Caflish and Papanicolou
[6]), or contains finitely many non-interacting shocks (by Xin [31]) or
is a rarefaction wave (by Xin [32] and Wang, Xin [30]). For the Boltz-
mann equation, some progress has been made for smooth flows (cf. [5])
or in the case when the fluid flow has finitely many non-interacting
shocks ([34]). In [5], Caflisch showed that, if the compressible Euler
equation has a smooth solution which exists up to time 7" < oo, then
there exists corresponding solutions to the Boltzmann equation in the
same time interval such that the Boltzmann solutions converge to the
local Maxwellian state determined by the fluid solutions as the mean
free path goes to zero. This result was generalized by Yu ([34]) to
the case when the Euler flow contains finitely many non-interacting
shocks. Besides the shock wave, it is well-known that the rarefaction
wave is another important elementary nonlinear wave for compress-
ible Euler equations. One of main purpose is to extend Caflish’s finite
time convergence result mentioned above, which is not uniform for all
time, to the uniform in time case when the Euler flow is a rarefac-
tion wave. More precisely, we can obtain the following results: First,
when the fluid flow is a centered-rarefaction wave for the Euler equa-
tions, then we can construct a sequence of global in time solutions
which converges to the local Maxwellian determined by the centered-
rarefaction wave, uniformly away from ¢ = 0. Next, we obtain a rate
of convergence in the mean free path which is valid uniformly for all
time, when we specialize to smooth rarefaction waves of the Euler
equations. Our analysis is strongly motivated by the idea of Xin in
[32] for the Broadwell model equations, where a decomposition by us-
ing the Chapman-Enskog ansatz is introduced and an entropy energy
estimate is used. The main difficulty in extending the analysis in [32]
is the treatment of the high velocity tail of the distribution. To over-
come this obstacle, we adopt here a decomposition of a Boltzmann
solution into its macroscopic (fluid) part and microscopic (kinetic)
part to rewrite the Boltzmann equation in a form of compressible
Navier-Stokes equations with source terms. This decomposition was



first used in [22] and further elaborated in [20]. In this setting, we
can handle the zero dissipation problems, when the mean free path
goes to zero for Boltzmann equation and the viscosity and heat con-
ductivity tend to zero for compressible Navier-Stokes equations, in a
uniform way. Therefore, besides the results for Boltzmann equations
aforementioned, we also obtain the convergence results for compress-
ible full Navier-Stokes equations when the corresponding Euler flow
is a rarefaction wave. It should be mentioned here that the same
convergence result was obtained by Xin ([33]) for the isentropic flow.
We extend here the result in [33] to the general non-isentropic case.
Related result for the non-isentropic Navier-Stokes equations with the
Riemann data being center rarefaction wave can be found in [15], re-
quiring that the strength of the rarefaction wave is suitably small.
Here, for our problem, we can allow the rarefaction wave arbitrarily
strong, but for the initial data depending on the viscosity and heat
conductivity, in the same spirit as in [33] for the isentropic flow.

2 Botltzmann Equation, Navier-Stokes
Equations, Euler Equations and Rar-
efaction Waves

The one space dimensional Boltzmann equation is

ot @fe= QUL ), (63, ERXRT xRXE,  (21)

in which f(¢,z,&) represents the distributional density of particles at
time-space (t,x) with velocity £ , and Q(f, f) is a bilinear collision
operator (cf. [4]), and e is the mean free path. We consider the hard
sphere model, for which Q(f,g) takes the form:

QS 9)(€)

/ / a(€) + F(ED)g(E) — F(E)g(E)
R3 J 52
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Here 5% = {Q € 8%: (£ &) Q> 0} and
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The important property of the asymptotic relation between the
Boltzmann equation and the macroscopic fluid-dynamical equation,
i.e., Euler system and Navier-Stokes equations has been investigated
intensively in the literature for either small mean free path or large
time, see [1, 2, 3, 5, 7, 9, 14, 13, 16, 17, 22, 21, 25, 26, 29, 34] and
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references therein. In this paper, we study the macroscopic limit to
rarefaction waves of the fluid equations for small mean free path.

For a given solution f(¢,z,&) of the Boltzmann equation, there are
five conserved macroscopic quantities: the mass density p(t,x), mo-
mentum m(t,z) = p(t,z)u(t,z), and energy density e(t, z)+|u(t, z)|?/2:

plta) = [ St )
m(t,z) = (my, ma, m3)’ = / Ef(t,z,&)dE, (2.2)
R3

1 1
| ole+ghP)ta) = [ SleR st e

The local Maxwellian M associated to the Boltzmann solution f (¢, z, &)
is defined in terms of the conserved fluid variables:

B B p(t,x) € — u(t,z)]?
M= Mpwn 08 = oty 2 2Ra(te)

). (2.3)

Here 0(t, z) is the temperature which is related to the internal energy
e by e = 3RA/2 = 0 with the gas constant R taken to be 2/3, and
w(z,t) = (ui(t,z),us(t, z),us(t,z))" is the fluid velocity. Following
[22, 20], we decompose the solution into the macroscopic (fluid) part
and microscopic (kinetic) part as:

f(x7 t? é-) = M(:I:7 t? é-) + G(x7 t7 5)7

where the local Maxwellian M and G represent the fluid and non-
fluid components in the solution, respectively. Since our problem is
in one-dimensional space 2 € R!, in the macroscopic level, it is more
convenient to rewrite the system by using the Lagrangian coordinates.
That is, consider the coordinate transformation:

x :>/ p(t,y)dy, t=t. (2.4)
0

We will still denote the Lagrangian coordinates by (¢, x) for simplicity
of notation. System (2.1) in the Lagrangian coordinates becomes,

R )] 25)

v

where v = 1/p represents the specific volume. Under the macro-
micro decomposition, the Boltzmann equation (2.5) is equivalent to



the following fluid-type system for the fluid components (cf. [22, 20]),

9 re)e - /5wma

%—4%7%, - [ ot =23

.
v — Ui, = 0,

Ul + Pz = E(

(2.6)

(e + %‘UF)t + (pul z = e(H(H) eac):v + 6(4?)’—@“1 113)3c
3
+ EZ(—uzum / §1|§ df,
=2

together with the equation for the non-fluid component G
1 U1 1 2 1
Git—Pi(61Go) = —~Got = P61 M) = —Q(M, G)+-Q(G, G), (2.7)

where the pressure p = R6/v, the viscosity coefficient p(6)(> 0) and
the heat conductivity coefficient x(0)(> 0) are smooth functions of
the temperature 6, and Z is higher order term of the non-fluid part
(see section 7.1).

When Z is set to be zero in (2.6), this system becomes the com-
pressible Navier-Stokes equations. So we neglect the effect of = in
(2.6) and study the following compressible Navier-Stokes equations
under the assumptions that the coefficients of viscosity € and heat-
conductivity k, are positive constants and satisfy

(H1) k=0(e)ase —0; k/e>¢c>0, Ve >0
for some positive constant c,

vy — Uy = 0,
Uy

1

ut+px—e(v), t>0,zeR (2.8)
u? 0, Uy

(e + 7% + (up)z = (/@; +e . V-

Here the unknowns v(> 0), u, p, and e represent the specific volume,
the velocity, the pressure and the internal energy, respectively. We
assume, as usual in thermodynamics, that by any given two of the five
thermodynamical variables, v, p, e, the temperature (> 0), and the
entropy s, the remaining three variables can be expressed. Choosing
(v,0) as independent variables, we can deduce that

ep(v,0)

SU(Uv 0) = pg(’l), 9)7 89(U7 0) = 0 )

ev(v,8) = 0pg(v,0) — p(v,0)



by the second law of thermodynamics
0ds = de + pdv.

Then a straightforward calculation gives

‘91 92 2
Stzﬁ( ‘9)14—&@4'6—9 (29)
and
Opg (v, 6) k0, e u?
0 z = — ) + ———=. 2.1
e 00) " T .8 0 T (8) (2.10)

One may also choose (v,s) as independent variables and write p =
p(v,s), 8 =6(v,s). In fact, for smooth solutions, (2.8) are equivalent
to (2.8); 9, (2.9) or (2.8); 5, (2.10).

When the mean free path e and = are set zero in (2.6), the system
becomes the following compressible Euler equations:

UVt — Uy :07
U +pe, =0, t>0,zcR! (2.11)
St:O.

We assume that the pressure p and the internal energy satisfy, for
v >0,

(2) pu(v,0) <0, ep(v,0) >0,
Pww(v,8) > 0, p(v,s) is convex with respect to (v, s),

which, together with the second law of thermodynamics, assures that
pu(v,s) < 0and e(v,s) is convex with respect to (v, s). (2.12)
For v > 0, system (2.11) has characteristic speeds

)\1 =~V _pv(vvs)a >\2 = 07 >\3 = —py(’l),S)

and the 1st and 3rd characteristic fields are genuinely nonlinear and
can give rise to rarefaction waves (cf. [18]). For illustration, we con-
sider only the 1-rarefaction wave, the case for the 3-rarefaction wave
can be handled similarly.

Suppose that two states (v4,uy,sy) satisfy

v—
S_ =84+ =38, uy =u_ —I—/ A (z,8)dz, vy >v_ >0, (2.13)

vt



then the Riemann problem of (2.11) with the initial data

(v_yu_,s_), <0

(vo, w0, so0)(z) = (vg,up, 56)(0,z) = { (2.14)

(U+,U+,8+), z>0

admits a self-similar solution, the centered 1-rarefaction wave (v", u", s")(x/t),

which is defined by (cf. [8, 28])

s"(z/t) =5, u"(z/t) = u_ + /vr(:c/t) Ai(z,5)dz,

A1(v_, 3), z/t < A(v_,5), (2.15)
A (v"(x/t),8) = ¢ x/t, A(v-,8) <z/t < A\(vy,S),

A1(vg, 8), x/t > Ai(vg, §).

3 Convergence to Rarefaction Waves
for The Compressible Navier-Stokes Equa-
tions

We consider the compressible Navier-Stokes equations (2.8) ,,(2.9)
with the initial data:

(v,u,5)(0,2) = (vo, w0, S0)(x) — (v, ut,sy), as z — +oo, (3.1)

where vy (> 0), uy, st are given constants.

We ignore the effects of initial layers by allowing the initial data for
the Navier-Stokes equations to depend on the viscosity, and show
that for a given 1l-centered rarefaction wave (v",u",s")(x/t) of ar-
bitrary strength, there exists global smooth solutions (v, u, s)(¢,z) to
the Navier-Stokes equations such that the viscous solution converges
to the centered rarefaction wave as viscosity € — 0, uniformly away
from ¢ = 0. More precisely, we have

Theorem 3.1 Assume that (H1) and (H2) hold. Let (v",u",s")(x/t)
be the centered 1-rarefaction wave defined by (2.15), which connects
two constant states (v4,uy,sy) satisfying (2.13) with v— > 0. Set
0" (x/t) = 0(v",s"), then there exists a small positive constant €y such
that for each € € (0,€p], we can construct a global smooth solution
(v,u,0)(t,x) to the Navier-Stokes equations (2.8); 5,(2.10) with the
following properties:

(i (v—v",u—u",0—0") € C%0,+o0; L?),
i
(v,u,0), € CO(0,+oo;L2), (u,0)zs € LQ(O, +oo;L2).



(ii) As viscosity € — 0, (v,u,0)(t,x) converges to (v",u",0")(x/t)
pointwise except at (0,0). Furthermore, for any given positive con-
stant h, there is a constant ¢, > 0, independent of €, so that

sup [|[(v — 0", u—u”,0 — ") (t, )| < cpe'/?|Inel. (3.2)
t>h

To prove Theorem 3.1, we first approximate the centered 1-rarefaction
wave (v, u",0")(x/t) by a smooth rarefaction wave (vg(e) sy 0500 )(t,x),
which converges to (v",u",0") at a rate as ¢ — 0 (see section 6). And
then, we prove that the smooth rarefaction wave dominates the behav-
ior of the solution (v,u,0)(t,x) to the Navier-Stokes equations with
the same initial data as that of (vg(e),ug(e),%(e)). This is done by de-
composing the solution (v,u,#) as a small perturbation of the smooth
rarefaction wave and using an elementary energy method on two time
scales (see section 6.1), which is first estimated by the entropy method,
motivated by the ideas in [33]. However, since our aim is to solve the
Boltzamann equation, the scaling argument in [33] does not apply di-
rectly to the analysis of Boltzmann equation, so we do not use the
scaling argument here.

Next, we prove that in the case that the inviscid flow is a smooth
rarefaction wave, the global smooth solution to the Navier-Stokes
equations with the same initial data as the inviscid flow, exists and
converges to the smooth rarefaction wave at a rate as ¢ — 0. By
a smooth 1-rarefaction wave (v%, uft s®)(t,z), we mean the unique
solution to the Euler equations (2.11) with sufficiently smooth initial
data (v, uft, s%)(0, z) satisfying

[ (0f,uf)(0,2) = (va,uy), as & — +oo, with vy > 0;

s®(0,2) = 5, Yz € RY; 9,uf(0,2) > 0,

v (0,x)
u_ = u0,z) —|—/ Mi(z,8)dz, Vo € RY;

(3.3)
L, R
MT(C?’QJ) — 0, asx — oo, [ =1,2,3; %UR(O,CC) e H*;
I, R
|3u87;(l),x)| < cl|%uR(0,x)|, when |z| large and [ = 2, 3,
for some constants ¢; (I = 2,3). The smooth l-rarefaction wave
(v® uft, s%)(t,z) can be defined by
SR(tvx) =5, )‘I(UR(tax)v §) = w(tvx)a
R _ v =
uw't(t,x) =u_ + va(t,x) Ai(z, 85)dz, (3.4)

w + ww, = 0,
UJ(O,CC) = Al(UR(O,.’L’),g).
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The second theorem in this paper is stated as follows:

Theorem 3.2 Assume that (H1) and (H2) hold. Let (v®, uft, s%)(t, )
be a smooth 1-rarefaction wave defined by (3.4) with the initial data
(v, ul s1)(0,7) satisfying (3.3). Set 6T (t,x) = 0(vTt, s%), then there
exists a small positive constant €y such that for each € € (0, €], the
Navier-Stokes equations (2.8); 5, (2.10) with initial data

(v,u,0)(0,z) = (v2,ult,67)(0, )
have a unique smooth solution (v,u,0)(t,z) satisfying
(v —v® u—uf 0 —0%) e C%0, +o0; HY),
{ (v — o)y € L2(0,+00; L?), (u — u™, 0 — 07), € L*(0, +o00; H')
and

sup ||(v — v ou—ult - HR)(t, Mre < 061/2, (3.5)
>0

where ¢ is a positive constant independent of €.

For the proof of Theorem 3.2, we will combine a finite time esti-
mate, which applies for arbitrary smooth solution of (2.11), with a
large time estimate which can be obtained by an energy method mak-
ing use of the expansion nature of the rarefaction wave (see section
6.2). The proof of the above two theorems can be found in Section 6.

4 Convergence to Rarefaction Waves
for The Boltzmann equation

Now, we turn to the Boltzmann equation. Similar to the compressible
Navier-Stokes equations, we can get the following two theorems. First
we ignore the effects of the initial layers by allowing the initial data
for the Boltzmann equation to depend on the mean free path €, and
show that the global Boltzmann solution exists and converges to the
local Maxwellian determined by the given centered rarefaction wave
as € — 0, uniformly away from ¢ = 0. In order to state our theorem,
we introduce some notations first.

Let M. = M; ] be a global Maxwellian satisfying

Vs yUse, 0

1
50(t2) <0, <0(t,z), for t>0, z € R, (4.1)

v — vi| 4+ |u — us| + 10 — 0,] < 9,

where ¢ = 9(v,u, 0; vy, us, 0,) is the constant to be given in Lemma

7.2. We say that f(€) € L(q7) if A= € L.

With these notations, we have the following




Theorem 4.1 Let (v",u}, s")(z/t) be the centered 1-rarefaction wave
defined by (2.15), which connects two constant states (vi,ui+,S4+)
satisfying (2.13) with v_ > 0. Set 0" (x/t) = 3(v")~%/3 exp(s")/(4em)
and u"(z/t) = (uf,0,0)!, if

a=|vy —v_|+|up —u_|<¥, sup 0" (z/t)<2 inf 0"(z/t),
£>0,0€R! >0,z€R!

then there exists a small positive constant €y such that for each € €
(0, €0], we can construct a global solution f(t,z,£) to the Boltzmann
equation (2.5). Furthermore, for any given positive constant h, there
is a constant ¢, > 0, independent of €, so that

§1>1£) lf(t,x, &) — Miyr ur gr] (t,z, f)”LgOLg(\/%*) < Ch€1/5’ Ine|. (4.2)
To prove Theorem 4.1, we first approximate (v",u",6") by a smooth
rarefaction wave (vg(e),ug(e)ﬁg(e)) as in the proof of Theorem 3.1.
Then we prove that the local Maxwellian determined by the smooth
rarefaction wave governs the asymptotic behavior of the solution to
the Boltzmann equation with the same initial data as that of this
Maxwellian. This is done by combing the techniques for the compress-
ible Navier-Stokes equations as in Section 6 and the weighted energy
method, based on the macro-micro decomposition of the Boltzmann
solution. The treatment of the macroscopic components (v,u,#) is
almost the same as the one for Navier-Stokes equations except esti-
mating the relevant part of the non-fluid component = with respect to
the weight M(, . g- As in [21], we use the microscopic H-theorem (7.7)
to estimate the non-fluid component. Since the energy estimate with
respect to the weight M has an error term with a polynomial of ¢ of
order greater than 1 because of the derivatives on M, but the order of
growth in £ of the dissipation on the microscopic component in only
1. Hence, another set of energy estimates based on a global suitably
chosen Maxwellian M, (ensuring the H-theorem hold in Lemma 7.2)
is needed to complete the analysis (similar to the argument given in
[5]). Notice that the error term in the energy estimate with respect to
M is an integral with the weight M, and a small factor. Although an
additional term in the form of integrals of the fluid components and
their derivatives appear because of the invalid orthogonality of M and
G with respect to the weight M,, the small factor helps to yield the
desired estimates.

Finally, we prove that in the case that the fluid is a smooth rar-
efaction wave, the global solution to the Boltzmann equation with the
same initial data as the fluid, exists and converges to the relevant
Maxwellian at a rate as ¢ — 0. We state our final theorem as follows:
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Theorem 4.2 Let (v, uf,sf)(t,2) be a smooth 1-rarefaction wave
defined by (3.4) with the initial data (v, uf, s1)(0, ) satisfying (3.3).
Set 01 (t,z) = 3(v) =23 exp(s?)/(4em) and ufi(t,z) = (uf,0,0), if

a=|vy—v_|+|up—u_| <¥, sup HR(t,x) <2 inf HR(t,x),
(t,x)eRT xR (t,x)eRT xR

then there exists a small positive constant ey such that for each € €
(0, €0], the Boltzmann equation (2.5) with initial data

f(oa xz, 5) = M[vR,uR,GR] (07 xz, f)

has a unique global solution f(t,x,&) satisfying

_ < pell4 )
igg ||f(t,$,f) M[UR,uR,GR} (t’x7§)||L§°L§(\/]lvT*) >cer (4 3)

where ¢ is a positive constant independent of €.

The proof of Theorem 4.2 will be based on a combination of a finite
time estimate, which applies for arbitrary smooth flows, with a large
time estimate, which can be obtained by the same argument as in the
proof of Theorem 4.1.

Remark 1 The restriction a < ¢ on the strength « of the rarefaction
wave is mainly to ensure that the microscopic version of H-theorem
holds for some o (v, u, 8; vy, us, 0) > 0, and ¥ depends on the first non-
zero eigenvalue of the linearized operator Lj,;, which is not necessary
to be small. So a need not be small.

Remark 2 By a analogous analysis, one can check that the aforemen-
tioned four theorems also hold for the superposition of 1-rarefaction
wave and 3-rarefaction wave.

Remark 3 On any finite time interval [0, 7] with 7" < +o00, the rates
of convergence in Theorem 3.2, Theorem 4.2 are ¢, €/2 respectively,
ie.

sup ||(v — v ou—ult 9 — HR)(t, e < e(T)e,
0<t<T

— < 1/2
OzltlgT ”f(tv €T, 5) M[UR,uR,GR] (t7 €L, §)HL30L§(\/J{/I_*) = C(T)e

This is so even in the case that (v, u®,6%) is replaced by an arbi-
trary smooth solution of the Euler equations over [0,7] x Rl. Note
that Caflisch (cf. [5]) has proved that for smooth, spatially periodic
Euler solution (V,U,0)(t,z) over [0,T] x R!, there exists a smooth
Boltzmann solution f to (2.1) with initial values depending on €, such
that

sup |[f(t,2,8) = Myue)t, 2, )l pger2 < e(T)e.
0<t<T

11



Although our rate is only €!/2, the initial value is independent of .
Notations. Throughout this paper, ¢ denotes a generic positive con-
stant, € represents the mean free path, viscosity in the study of Boltza-
mann equation, Navier-Stokes equations, respectively, and ~ is taken
as a small positive constant to be determined later. For functional
space, H'(R) denotes the I-th order sobolev space with its norm

l
fullp = 1&%ull,  when ||| = |- [|2(R).
j=0

For the integral, [(---)d§ means [ps(---)dE.

5 Approximate rarefaction waves

In this section, we construct smooth rarefaction waves which approx-
imate centered rarefaction waves. Consider

w + ww, = 0,

w_, z <0, (5.1)
w(0,) = {w+ x>0

If w_ < wyg, then (5.1) has the centered rarefaction wave solution
w”(t,x) = w"(z/t) given by

w_, z/t <w_,
w'(t,x) =< z/t, w_ <zt <wy,
Wy, x/t>wy.

To construct a smooth rarefaction wave solution of the Burgers equa-
tion which approximates the centered rarefaction wave, we set for each
0 >0,

ws(x) = w(x/d) = (wy +w_)/2 + tanh(x/d)(wy —w_)/2 (5.2)
and solve the following initial value problem

+ T = O,
{wt ww (5.3)

w(0,z) = ws(z).

Next, we state certain properties for the smooth rarefaction wave (see
[23, 33] for the proof).

Lemma 5.1 For eachd > 0, (5.3) has a unique global smooth solution
wj(t,x), such that the following hold:

12



(1) w_ < wi(t,z) < wyi, Swi(t,z) >0, forx e R, ¢t >0, § > 0.
(2) For any 1 < p < oo, there is a constant ¢, depending only on p,
such that the following estimates hold for allt >0, § > 0,

10wt lor < cpminf(wy —w )5, (1, — w_)Yrg1+1pY,
02w (t, )| < cpmin (w —w_ )5 217 57141y,

081, Voo < cpmin(uwy — w_)55+1/p 5-241p 1y,
(3) There exist constants &y € (0,1), ¢ such that for § € (0,d0],t > 0,
lwi (¢, ) — w" (¢, )|z < ct™6(In(1 + ) + |Ind]).

Set wy = A\ (v4, §) in (5.1)-(5.3), and define the smooth approxi-
mation (v§,uy, s, 05)(t, z) of the centered-rarefaction wave (v",u", s")(z/t)
in (2.15) by

s5(t,xz) =5, Mi(vs(t,z),s) = ws(t,z),

Wi 3) = U+ / (2, 8)dz, (5.4)

v (t,2)
05(t,x) = 0(vs(t,x),s).
Then, it is easy to check that (vj,u},s},05)(t,z) satisfy the Euler
equations
vgt - ug:v = 07
g + p(vs, 05)2 = 0,

u” 2
(e(w.85) + 55, 4 wipeg. 090 = 0 (5.5)

Opo(vs, b5)
r r u5$

s5 = 0.

And due to Lemma 5.1, the following lemma holds.

Lemma 5.2 The functions (vy,u}, sy, 05)(t,x) constructed by (5.4)
have the following properties:
(1) Opuf(t,x) >0 forz € R, t >0 and § > 0.
2) For any 1 < p < o0, there is a constant c, depending only on p,
P
such that the following estimates hold for allt >0, § > 0,
102 (v5, w5, 05)(t, )| Lo < cp minfad™ /P ol /pe= i1y,
Haéw(vgaugaeg)(tv ')”Lp < Cp min{a5_2+l/pa5_1+1/pt_1}7

1Oz (05,45, O5)(E, | e < € min{ad=3+1/P §=2+1/pg=1y,
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where o = vy — v_| + |uy —u_|.
(3) There exist constants &y € (0,1) and ¢ such that for ¢ € (0,0 and
>0,

(05, 5, 05) (¢, 2) — (", u", 0") (2 /t)|[2e < et S(In(1+1) +|In ).

The smooth rarefaction wave (v, uf, s%)(t,z), defined by (3.4)
with the initial data satisfying (3.3), has the following properties

Lemma 5.3 Let (v, uf?,0%)(t, z) be the smooth rarefaction wave given
in Theorem 3.2, then it holds that:

(1) ul(t,z) >0 for x € RY, t > 0.

(2) For any 1 < p < oo, there is a constant ¢, depending only on p,
such that the following estimates hold for all t > 0,

1Cos’ 03" 007 Vs st O Vit Untns D) (8, |20 < (1 +8)7F

x :E’ T :E:E’ :E:E’ Tx? LULUJ?’ 3333337 Txrxr

6 Proof of Theorems 3.1 and 3.2 for
Compressible Navier-Stokes Equations

This section is devoted to proving Theorem 3.1 and Theorem 3.2. To
this end, set

(¢7w7€7w)(77 y) = (U - V,U - U,H - 678 - S)(t,.ﬁlf),
in which
y=¢lz, T=€'t,

where (v,u,0,s)(t,z) and (V,U, O, S)(t, x) are assumed to be the solu-
tions of the Navier-Stokes equations (2.8); 5, (2.9),(2.10) and the cor-
responding Euler Equations, respectively. "Then (¢,1,C)(T,y) solves
the following initial value problem:

¢T_¢y:0
Ur + (p(v,0) = p(V,0)), = (gy)

Op(v,0) (po(v.6)  Opp(V, O) (6.1)
Gt eo(v,0) 7Y ( eq(v,0) ep(V,0) Uy

SN

N eeg(v,H)( v Ju veg v,@)

(,9,0)(0,9) = (¢0,%0,C)(y) = (v =V, u—=U,0 —0)(0,z). (6.2)

14



The entropy difference w(7,y) satisfies the following equation

2
K 0y /<a9y

2
>y _Y
(vﬂ) + € 00?2 0

Wy = —

For convenience of presentation, in what follows, we will choose (v, )
as independent variables in the equation of state. We seek a global
(in time) solution (¢, 1, () to the problem (6.1) and (6.2) in the space
defined as
X(0,71) ={(6, 0, ) (1.9)|(9,%,¢) € CO0,m3 HY),
by € L*(0,715L%), (ty, Gy) € L0, 7 H')

Define a normalized entropy n(v,u,0;V,U,©) around (V,U, ©) as

n(r,y) = {(e(v,0) +u?/2) — (e(V,0) + U?/2)

+p(V,0)(v—V)=U(u—U) —O(s — S)}. (6.3)

Since e(v, s)+u?/2 is a strictly convex function of (v, u, s) by (2.12),
then n > 0. A simple computation shows that

N + €UxQI + wQ + Cy ( )y

2C¢ ?M) CC Co
=e{(Tg" — U + ’“(7‘; - 2500} (6.4)
CU;EQ YWoUpy 6 (Ve0, YUze K (Oxw
+e( v w2 € 020 )+ € v + € v )

where q1 = p(U,S) - p(V, S) - pv(va S)('U - V) - ps(‘/a S)(S - S) >0
by the convexity of p(v, s).

6.1 Proof of Theorem 3.1

In this subsection, we prove Theorem 3.1. Let (V,U, 0)(t, x) = (v}, us, 05)(t, x)
be defined by (5.4) and (v,u,0)(t,x) be the solution of the initial

value problem of the Navier-Stokes equation (2.8) ,,(2.10) with the

same initial data as that of the smooth rarefaction wave, that is,

(vo, ug, o) (x) = (vj,uf,05)(0,2). Consider Cauchy problem (6.1) and

(6.2), in which

(0,9, )(7,y) = (v—v5, u=us, 0=05)(t,2), (¢0, %0, C0)(y) = 0. (6.5)

Due to the smoothness of (vj,u},05), the local existence of smooth
solutions to (6.1) and (6.2) is standard (cf. [19, 24] ), while the global
existence and the estimate (3.2) will follow from the following a priori
estimate.

15



Proposition 6.1 (A priori estimate) Suppose that (6.5) holds and
the problem (6.1) and (6.2) has a solution (¢,1,¢) € X(0,7) for some
71 > 0. There exist positive constants €1,01, k1,1 and c, independent
of €,6 and 11, such that if

0<e<e, 0<8<b, /4 <k, sup ||(¢,0,0)(T)|1 <1 (6.6)

0<7<m

for small €1 and vy, then

sup (6,1, (r u2+e/ I/ (6, Q) (D)2
0<r<71 0 (67)

+ / 1y, 6y, €, (7|2 < e/,
0

sup ||(¢yv¢y7Cy)(7')”2+/0 1@y Gu) (T IPdT < e (6.8)

0<7<m

Once Proposition 6.1 is proved, one can take § = kf161/4, so that
(6.7) and (6.8) imply that there exists a positive constant ¢ indepen-
dent of € such that

sup H(¢7w7<)(77')HL°° < 661/4-

0<7<+00

Therefore, the Navier-Stokes equations (2.8), ,,(2.10) have a global
smooth solution (v,u,0)(t, ) satisfying (i) of Theorem 3.1 and for all
2

||(U7 u, ‘9)(t7 ) - (/Ugu Ug, 95)@7 ')HLOO < 661/4‘
By (3) in Lemma 5.2, it follows that for ¢ > 0,
| (uE, uf, 05)(t, ) — (0T, ul®, 05) (8, )|l e < et e /A (In(1+1)+|Inel).

It is clear now that the desired estimate (3.2) and Theorem 3.1 fol-
low from the above two estimates. Thus, the main task is to prove
Proposition 6.1. Notice that the smallness of vy in (6.6) guarantees
that
Vi 4+ ¢ >v /2, 054+C>0/2, for 6= inf O5(t,x).
t>0,z€R!

We will derive the lower order estimate (6.7) and the higher order
estimate (6.8) on (¢, 1, ¢)(e~1t, e 1y) in two time scales, 0 <t < T < 1
and 1 <t < +oc0. Set

T = 673/4T, 70 = ¢3/4,

Then 79 < 7°. Moreover 79 = 7 when 7' = 1. Proposition 6.1 can be
proved by the following two lemmas and choosing 7% = 74 in (6.10).
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Lemma 6.2 (Basic energy estimate) Suppose that the assumptions
in Proposition 6.1 hold. Then for 7o < 1,

sup [|(6,4,0)(r u2+e/ /A (6,0)(1)|Pdr
0<7<79 0 (69)

+ [Nt GO < e,

while for 70 < 7,

sup (6,8, O + ¢ / /i (6, Q) (7| Pdr

T0<r<n
+ /O H(@byﬂpy;Cy)(T)‘PdT < c(||(¢,¢,<)(7—0)||% _’_61/2)'

Proof We prove the basic energy estimate in finite time, (6.9), first.
Integrating (6.4) with respect to 7 and y over [0,7] x R! (7 < 7o)
shows that

/ n(r)dy + / / (eulygy + 02 + C2)dydr
R 0 R

SC/ (R1 + Ry + R3)dydr,
Rl

(6.10)

where

Ry = e{(ICy| + [y |)uge| + (1CCyl +1Coy[)105,1}
Ry = 62{K’(ugx)2 + Kvg:tegx‘ + ’¢ngugx‘},

We only estimate some typical terms in the R;(i = 1,2, 3), the others
can be handled similarly. For Ry,

[ [ evusdyir

[ € P s oy
' (e”%ﬁ—i—cﬂ@)d dr

o Jar y 52 Y

/0 /R 1 (€22 + ce¢?)dydr,

provided that § > &k Lel/4. Similarly, for Ry and Rs,
& / / 01 ((150)? + [ty
/0 {0 + () + (1)) yr (6.12)

IN

(6.11)

IN

IN

! 2
Se/o - Yodydr + 05—3.
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So,

/ n(T)dy+/ / (eus,q1 +¢§ +C§)dyd7-
Rl 0 JRr!

. (6.13)
Sc/ / {268 + (¢ + 2 + () }dydr + e
0o Jr!
Now we deal with the double integral of gbf/. Multiply (6.1), by v~'¢,
and use (6.1); to get

¢y Yo ;
%—Tynﬂfj}‘

_ ¢Z + p@¢y(y

¢§ (- )y :
€ r r € r €¢y _ N\
+ U_2¢(¢yuézv - @Z)y%x) + ;¢y¢yv&r + T{(pv — pv)v&v (614)
62¢y

+ (pG - ﬁ@)egx} + F(ngugx - ’ngxx),

where p = p(v,0),p = p(v§,05). Integrating (6.14) with respect to 7
and y over [0,7] x R! (7 < 7p) yields

by Vo, T
|G =g+ [ [ diaur
<c / / (Ry + Rs + Rq)dydr,
0 R
where

Ry = w; + ‘¢y<y‘ + 6‘¢y¢yvgx’v
Rs = e{(|90y| + [Coy ) (|v5a| + 165 1) + [Vyus,| + [byvs, ],

R = €|y | (|05 use | + [t )-

Since the estimate for R5 is similar to that for Ry, it suffices to estimate
R4 and R6. For R4,

/ / 6,C,dydr < / Sdydr + () / Cdydr,
0 R 0 R 0 R

and
T r r T 2 2
/ / €l 5aldydr < ellofy zzs / / (62 + ¢2)dydr
0 R 0 R

e [T 2 2
= Cg /0 /]Rl (¢y + ¢y)dyd7'.
For Rg,

€

[ o) + Wgldvar < [* [ Gagar +e5.
0 JR! 0o JRr1

18



The above inequalities yield

Sy Uy T
/Rl(w - T(T))dy +/0 /Rl ¢, dydrt 615

Sc/o /le; G €@ + 07+ ) dydr + o5

Since n(v, u, 0; v§, uy, 05) > c(¢? + 1% + ¢2) for some positive constant
¢, then a suitable linear combination of (6.13) and (6.15) implies that

16, ), )2 + / 1y s Gy /) (5)]2ds

T (6.16)
ce/ (¢* + o2 +C2)dyd7—|—c
0o Jrt

5_37

We conclude from (6.16) by using the classical Gronwall inequality
that for 7 € [0, 79],

6.6, + [ 160G VAR < e, (617

Hence, the estimate (6.9) holds due to the definition of g1, which gives
q1 > c(¢? + ¢?) for some constant c¢(> 0). Next, we derive the basic
energy estimate in large time, (6.10), by modifying the procedure for
the finite time. Note that for Ry,

e[ [ fcvpslayar
70 JR1
§61/4/ / wgdyd7+67/4/ / C2(uf, ) dydr
70 JR! 70 JR!

> d (6.18)
< [Cyldr 4 et |GG g dr
e T e O
70 T0<s<r
FOI' R2 and R3,
&2 / / 61((u0)2 + [ty
<ce / 2 by 12 (Ui 125 + 2 )
(6.19)

<7/ / YRdydr + c(y 4/3/ |23 4/3dr

S’V/O /Rl %dydT—i—’y sup [|[9(s)[|* + c(v)e'/2.

T0<s<r
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Finally, for Rg,
2 T
‘ / / 8y 1[0 t5e] + [0 )y
70 JR1

<e / / Gydydr + € / / (|05l | + [l |) 2 dydr
7-0 Rl 7.0 Rl

< 2duyd <

_E/TO/ngby Y 7'+c6

Then we have obtained the basic energy estimate for the large time,
(6.10). This completes the proof of the lemma. [J

Lemma 6.3 (Derivative estimate) Suppose that the assumptions in
Proposition 6.1 hold, then

sup H(¢yv¢yv<y)(7)u2 +/0 ”(¢yyvgyy)(7)u2d7 < ce®/*, (6.20)

0<7<m

Proof The derivative estimate, (6.20), will be derived in two time
intervals. We start with the estimate in finite time (0 < 7 < 79 < 77).
Multiplying (6.1)y by —tyy, 0y(6.1)5 by eq(v5,05)Cy /05, respectively,
adding the resulting equations and using (6.1),, we have

(s g
vy K€y .2
evbseq VY

et = ) + Ay — P S~ (S

1 €9
S UPeloy + v+ grtyde +

S

eg 05D vul - — U5 Uk
+( 6— )xwygy] (W)ywy'i‘v_g(vgﬂﬂy

01”
Pythythyy K

02 269(;_;%@[”@2; — PyGy

r r r T oor keg T .
_E(Uéxgy + 961@;) + 62(U05:E:E - ’Uéxe&t)] + 2[6’020569 (’Ueéxx (6 21)

—V505:)]yCy + ger — i Cyyl€(05, 0y + v5,Cy) + Py Gyl

+ug, ¢y)¢yy +

€9 €9 €9
+7(¢y§yy —¢€ uamgy)% - €ﬁngCyQ3y + 6(@):#%@;%
4

Gty + 205, (45,

epts
€

s G 4 260ty + T )y

ve 6?7"
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where

e=e(v,0),p=p,0),e=e(vs,05),p = p(vs,b5)
@ =p—P—ud— peC = O(1)(¢* + ¢?),

g =70 0P _ o1y (1) + 1¢)).
e €

Then integrating (6.21) with respect to 7 and y over [0, 7] xR! (7 < 7p)
leads to

T T 3
600 GO+ [ W GuiPas < [ S it

where

ho = (|| + [CD{[¥yCyyl + (19| + 1Sy D [yyl] + [dythythyy|
+ (1¢y Gyl +¢§)|ny| + (% + CQ)(|¢y| + [Cy D) [Pyl

hy = e{(J0f] + 105 (5 + ) + (V5| + 105D (19 Gyl + [dyby])
+ UE;U(CZ + |Cy¢y|) + (|ugx¢y| + |U§x¢y|)|¢yy| + [|‘9g;c¢y| + |ugcﬂ/}y|
+ ([052] + 105 D)1yl Cyy | + (18] + ICD[(|v52 | + 1052 DIty Gyl + |ufe | (104 Gyl
+ 1+ (@7 + ) (v5e | + 105 Dyy| + (5] + 105 (16y 165 + v5lcD},

hy = {(I6] + [CDI(105e| + 105, DIl + [uGee DSyl + (1050 + 05,05
+ 15ea D yl] + (05l + 10521 (105 165 + 105:0uCyl + |45,y Cy)

hy = E{[([v5,] + 1052 ) (10520 | + [V5ab50] + (u52)?) + |650ael + 1(05,05,)2]

Since many terms in h;(i = 0,--- ,3) can be estimated similarly, so we
only treat the typical terms. For hy,

| [ 1eovbilavar

< [ [ ity + cneeiyyir

S7/0 /RlﬁydydTJrC(’Y)/o ¢l 1> dr
2
S’Y/O Al¢yydyd7+6(7)osgp7\\¢ )¢y (s H//qudy

< / / R dydr + 5 sup 6, ()% + c(v) / / Sy)? sup o)
0 R 0<s<rt <s<t
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and

S7/0 /Rl Uyydydr + c(y / oy 121y l1180gy || + 110117 |0y [I7)dr
<2y /0 /leyydydT"‘C Vl/ |(dy, 1y) (T)]] dTOgETHqﬁy(s)HQ.

‘ / / (05162 + lufabyibyy| + 1050y Cy dydr
0 R
<ce(l + )| (05, 45) | ze, / / (W2, + @2 + 92+ C2)dydr

<c(1+ 1/1)% /0 /Rl (Q,Z)yy + qbz + @Z)y + Cy)dydT,

[ [ g ldvar
<4 / |, whydvr -+ / o216, (05.)2dy)ir
<o [ v+ i [lolar

and
e[ whonGuir < [T1G G [ 1o50yldur
0 R 0 R
A P (A
T € T
<o [ GulPdr +an [ oI
0 0
For hg,

62/0 /Rl{(!vgxugx\ [ DGy |+ (052)2C2 + 105500y Cy | Yydr
2 T -
<t ) [ [ @+ avar+& [ ] G0z + il 2ayar
0% Jo Jwi 0o Jr
62 T
§<f+5—2>/0 /RIWZ+<§>dyd¢+63u<vgxu§x,ugm 7z, / EIRG
<t ) [+ G+ sup Jo
- 62 0 R! Y Y 6 <s<T ’
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Finally, for hs,
3 T 2
] ORI+ 105205l + s DI

T T
< / Cydr + & / / (1050 2185,] + (V58| + [0 )2y
0 R1 0 R

63

< 2dyd .
_e/o Rl(y Yy 7—1—055

These estimates, together with the basic energy estimate in finite time
(6.9) and the a priori assumption & > k 'e!/4, give

sup H(¢yv¢yv<y)(7)u2 +/0 ”(¢yyvgyy)(7)u2d7 < ce®/t, (6.22)

0<7<79

Next, we derive the derivative estimate in large time (7° < 7 < 71) by
following the same procedure as for finite time. Note that for ho,

)
& / / (05150 + [0 |6, |dydr
7-O Rl

< [0 [ Gutwar+& [ 155 + Wil oy
T T 62

<c [ [ Gavare sup o(s)I? [ lloyr)lPar + o
70 JR? T0<s<r 70

and for hg,
3 T 2
-

T T
< / / Cydr + & / / (1050 2185,] + (058 | + [0e )2y
70 JRr1 70 JR1

T 3
< 2dydr + c= .
_e/TO/RICy Y 7—1—063

Then, we have

swp (64,0 IO+ [ 10 G (7P

T0<r<ny

<c(|(@y, Py, G (T + /%)

(6.23)

The desired estimate (6.20) follows by choosing 79 = 79. O
Remark In fact, (6.21) can be computed much easier to estimate
(6.20). The reason that we do such a complicated calculation here is
to derive the convergence rate in the following subsection.
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6.2 Proof of Theorem 3.2

The problem of inviscid limit to smooth flow is well understood. The
main interest here is to obtain a rate of convergence in the viscosity
which is valid uniformly for all time, when we specialize to smooth
rarefaction waves of the Euler equations. We first prove a finite time
result which justifies the vanishing viscosity method for a fairly large
class of smooth flows on any given fixed time interval [0,7] with 7' <
+00, which, in particular, yields Theorem 3.2 on [0,7]. We then
complete the proof of Theorem 3.2 by deriving a large time a priori
estimate.

6.2.1 Smooth Flows in Finite Time

Let 0 < T < 400, and (V,U,O)(t,xz) be a smooth solution to the
Euler equation (5.5), 5, on [0,7] x R! with initial data

(V,U,0)(0,z) = (Vo, Up, Oo) ()

satisfying
sup ) / 10,(V,U,0)Pda < ¢ < 400, (6.24)
0st<Ty <3 /R
and

inf  V(t,z)>v>0, inf ©O(t,z)>6>0,
0<t<T,z€R! 0<t<T,z€R!

for some positive constants ¢y, v and §. Our following theorem asserts
that (V,U,O)(t,z) is a strong limits as € — 0, of the viscous solution
(v,u,0)(t, ) to the Navier-Stokes equations (2.8); ,,(2.10) with the
same initial data

(v,u,0)(0,2) = (Vo, Uy, Op)(x). (6.25)

Theorem 6.4 Let (V,U,0)(t,z) be a smooth Euler solution as de-
scribed above. Then there exist positive constants o and ¢(T') such that
for each € € (0,€3], the Cauchy problem for the Navier-Stokes equa-
tions (2.8); 5, (2.10) and (6.25) has a unique smooth solution (v, u,0)(t, x)
fort € [0,T] such that
sup ||[(v—V,u—U,0 —O)(t,")||r= < c(T)e. (6.26)
0<t<T

To prove this theorem, we consider the initial value problem (6.1)

with the initial data

(60, %0, C0)(y) = 0. (6.27)

It is easy to see that the above theorem follows immediately from the
following a priori estimate.
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Proposition 6.5 Suppose that the initial value problem (6.1) and
(6.27) has a solution (¢,9,C)(7,y) in X(0,71) for some (0 < 71 <
€ IT. There exist positive constants ez, vs and c(T), independent of €
and 11, such that if

e€(0,e], sup [[(¢,9,0)(s)IIF < v (6.28)

0<s<7

for small e and vo, then for T € (0,711],

sup (&, 9, C)(s)|” + /OT 16y, s G (8)IPds < e(T)e  (6.29)

0<s<t

and

s (00 I + [ 0G0 < T)E- (630
Proof First, note that the smallness of 5 in (6.28) guarantees that
V+¢ > v/2,0+(¢ > 0/2. (6.29) can be derived in a similar way to (6.9)
by taking into account the fact that |U,| < ¢y. Although U, has no
sign here, the term € [ [ U,q1dydr is bounded by ce [ [(¢? + (?)dydr,
which can be put into the right hand side of (6.16). (6.30) can be
derived similarly as for (6.22). Following the derivation step by step,
then we get

sup. || (s > C) ()% + / 1(yys G ()]s

0<s<T1
<ce / 16y 0y, C,)(3)|2ds + c(T)e?
0

based on (6.29). This together with a classical Gronwall inequality
yields the desired estimate (6.30).0

6.2.2 Smooth Rarefaction Waves in Large Time

Let us now turn to smooth rarefaction waves. Applying Theorem 6.4
to be the smooth rarefaction wave (v, u®, 0%)(¢, z) implies Theorem
3.2 on any finite time interval. To complete the proof of Theorem 3.2,
we need only show the following large time a priori estimate. In the
rest of this section, (¢, %, ¢)(r,y) = (v — v, u —uft,0 — 0%)(t, x).

Proposition 6.6 Suppose that the Cauchy problem of the Navier-
Stokes equations has a solution (v,u,0)(t,x) as in Theorem 3.2, which
is defined on [0,T1] x RY (1 < Ty < +00) and with the reqularity as
stated in Theorem 3.2. There exist small positive constants €3, v3 and
¢, which are independent of € and 11, such that if

e€(0,es], sup [[(&,%, ()| < v

T0<r<n
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with 70 = €1 and 71 = € 1T} for small €3 and vs3, then the following
estimates hold

2
o o O e [ [ e+ e

(6.31)
+/ @yt GO < (6,0, O +€2),
su TP n Ndr
N R e I [t e

< ell(y, ¥y, G (TP + €2

Proof By virtue of Lemma 5.3, the proposition can be proved by
modifying the proof of lemmas in Section 6.1. First, (6.31) follows
from the derivation of (6.10) and the properties of (v, uf?, 0%)(¢, )
in Lemma 5.3. Next, applying the argument for the estlmate (6.23)
and using the estimates (6.29), (6.30) and (6.31), we obtain the desired
estimate (6.32).

7 Proof of Theorems 4.1 and 4.2 for
Boltzmann Equation

In order to prove Theorems 4.1 and 4.2 on the zero mean free path
limit to rarefaction waves for Boltzmann Equation, we need the de-
composition, which decomposes a Boltzmann solution into its macro-
scopic (fluid) part and microscopic (kinetic) part, and the celebrated
H-theorem.

7.1 Macro-micro decomposition

The collision operator has five collision invariants (cf. [4]),

Po(§) =1
Vi(§) =€, for i=1,2,3,
ba(€) = [€7/2

satisfying

/¢a Q(f, f)d§ =0, for any function f and a =0, -

The inner product in ¢ € R? with respect to the local Maxwellian M
is defined by

<hg>= [ e
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for functions h,g of £ such that the above integral is well defined.
With respect to this inner product, the following functions spanning
the space of macroscopic, i.e. fluid components of the solution, are
pairwise orthogonal:

(f,p,ue)—— )
\/_
Xi(&p,u,6) = M fori=1,2,3,
\/_
wa(€pn) = ——(E gy
’p7 b \/_p R9
\ <XZ:X] >_6Z]7 fOI"L,j:O,”' 74

The macroscopic projection Py and microscopic projection P, can be
defined as:

4
Roh=Y " <hx;>x;, Pih=h-PRph.
j=0

The operators Py and P; are orthogonal (and thus self-adjoint) pro-
jections for the inner product< -,- >. A function A(§) is called micro-
scopic, or non-fluid, if it has no fluid components, i.e.,

[ @€ =0, forj =0, 1

The solution of the Boltzmann equation f(t,z,&) is decomposed
into the macroscopic (fluid) part, i.e. the local Mawellian M =
M(t,x,§) = M, and the microscopic (non-fluid) part, i.e. G =
G(t,z,€):

f(t,%,f):M(t,$,§)+G(t,$,f), POf:Mv Plf:G
The Boltzmann equation (2.1) hence becomes
2 1

which is equivalent to the following fluid-type system (see [20, 22] for
details):

pt + (pu1)e =0,

(pur)e + (02 + p)a / €2, de,

7.2
(pui)e + (puru;)e = —/flftidS, 1=2,3, (72)

ple-+ 3lul)l + a(ple + 51uf®) +p)le = = [ F6al€P G,
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together with the equation for the non-fluid part G:
1
Ge+ Pi(&Me) + Pi(61Gs) = —(2Q(M, G) + Q(G,G)). (7:3)

Consider the coordinate transformation (2.4). We will still denote
the Lagrangian coordinates by (t,z) for simplicity of notations. The
system (7.2) in the Lagrangian coordinates becomes

p
UVt — Ulg = Ou

wi s = [ G

iy = — / QGG e, i=2.3,
R?)

1 1
(et gluP)e+ s = = [ | FErIePGude

or more precisely the form of (2.6) (cf. [1, 2] for details), and the
non-fluid equation (7.3) in the Lagrangian coordinates becomes (2.7).
It follows from (2.7) that

G = ~Lyf (P& M) + 2 (75)

with
€Ul

= = Ly leGi + = Pi(61Gy) — =G~ Q(G.C)] (7.6)

Here L)y is the linearized collision operator around the local Maxwellian
M:

Lath = Ly gh = 2Q(h, M)

and the null space N of Lj; is spanned by the macroscopic vari-
ables: x;, j = 0,---,4. Furthermore, there exists a positive con-
stant og(p, u,#) > 0 such that for any function h(¢) € N+, cf. [11],

< h,Lph >< _00(p7u7 0) < (1 + ‘f’)h,h > (77)

In the above presentation, we have normalized the gas constant R to
be 2/3 for simplicity so that e = 6 and p = 26/(3v). Notice also that
the viscosity coefficient p(6) > 0 and the heat conductivity coefficient
k(0) > 0 are smooth functions of the temperature . The entropy
s =2(Inv)/3 +1In(470/3) + 1 is constant across the Euler rarefaction
waves. And the temperature 6(v,s) = 3v=%/3exp(s)/(4en) satisfies
the following equations

2
o+ e = - [ 96 (78)
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or

3
0 41,(6 0
0 + puig :e(—ﬁgj )Hx)x + 6—1;5) )u%x + € g —HEJ )uzx
i=2

(7.9)
ef? _
= | (5 —u G EqdE.
Since the approximate rarefaction waves for the Boltzmann equa-

tion My, e) are not sufficiently accurate for the energy method, we
have to subtract from G(t,x,¢) the term G(t,x,&):

LyMAla(SLe, + cu,) M)
Rvo ’

G(t,z,&) =€ (7.10)

which is the first term in the Chapman-Enskog expansion, cf. (7.5).
For later use, we list some basic properties of the projections Py, P;
and the linearized collision operator L, as follows (cf. [22]):

[ Po(xjM) = x;M, Pi(x;M) =0, j=0,1,2,3,4,

Ly Py = PiLy = Ly, Pr(Q(h,h)) = Q(h,h),

Ly(Py) = PoLy =0, Po(Q(h,h)) =0,

< xjM,h >=<x;M,Phh >, j=0,1,2,3,4,

< h,Lyg >=< Pyh, Ly (Pig) >,

< h,Ly}(Pig) >=< Ly} (Pih), Pig >=< Pih, Ly} (Pig) > .

7.2 H-theorem

We list the following basic lemmas based on the celebrated H-theorem
for later use. The first lemma is from [10].

Lemma 7.1 There exists a positive constant C' > 0 such that

(1+16)~'Q(f.9)? A+IEDs [ 6
f s o | g | s

£ (e
+/RB d&/RSiM de}

where M can be any Maxwellian so that the above integrals are well
defined.

Based on Lemma 7.1, the following three lemmas are proved in
[21].
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Lemma 7.2 If0/2 < 0, < 0, then there exist two positive constants
o =0(p,u,0;px,us,0x) >0 and 9 = I(p,u,0; py, uy, 0.) > 0 such that
if |p— pu| + |u — us| + |0 — 04 < 09, it holds that for h(¢) € N+

hLyrh (1 + |€])h?
_ e > RS Y VAL
/Rg i K= U/Rg a9

where M, = M, ., 0. and the definition of My, g can be found in
(2.3).

Corollary 7.3 Under the assumptions in Lemma 7.2, the following
estimates hold

1+ ¢

|L]T41h|2d§ < 02/ wd&

]R3 M RS M
L€l 1, 0 —2/ (1+1¢))~h?
L < LAis)
RS ]\4’4< ’ M h’ dé >0 R3 M*

for each h(&) € N*-.

dg

Lemma 7.4 Under the conditions in Lemma 7.2, there exists a con-
stant C > 0 such that for positive constants k and (3,

k k 2 —1,2
[ 2l [l o | Aol ol
R3 M* R3 M*

RS M,
7.3 Reformulation of the problem

d.

In order to prove Theorem 4.1 and Theorem 4.2, we set
(¢7¢7<7é)(7—7y) = (U - ‘/,’LL— U,Q— @,G—@)(t,.’b)
with
T=¢lt,y=¢la,

where the macroscopic parts (v,u,f) and the microscopic compo-
nent G of the Boltzmann solution f satisfy the fluid-type system
(7.4)1 534, (7.8) or (2.6); 554, (7.9) and the non-fluid equation (2.7),
respectively. The macroscopic ansatz (V, U, ©) satisfy the Euler equa-
tions (5.5); 5 4 and the microscopic ansatz G is defined by (7.10). Then

(¢,9,¢)(1,y) and G(r,y) satisfy the following equations
( ¢r — ¢1y =0,
e+ (00,6) ~ p(V,0)), = — [ Gy

1%——/6@%@,i—z& (7.11)

G+ (v, 0)¢1y + (p(v,0) — p(V, 0)) Uy

——/£E—WQ§G%
_- [ a,
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or

¢7_¢1y:07
4u(6
Uie + 0,0) — p(v,0)) = (), - [ e

0
v = (W), - [aez,ae i-23

(7.12)
0
Q+M%@%MHM%®—MW@MEP%%%%M
2
1y + Z :U’ 2 / |§| . é—)élaydf’
\
and
~ ~_ 1 € — uf? U1
Gr — LyG =— %Pl[fl(i@ + &Yy ) M| + =Gy (7.13)

_ %pl(glay) +Q(G.C) — Gy

We seek a global (in time) solution f to the Cauchy problem of the
Boltzmann equation (2.5) with the initial data f(0,z,£) = Mjy,,6(0,z,§).
To do so, we define the function space for the difference

Q(T’y,ﬁ) = f(tvxvf) - M[V,U,@](tvxaf)

to be

o~ aOt
X(0,m1) = {g(r,y,8)| \/M—g (O,Tl;L;g(Rl X RS)’

V1+[£0%g 2 2 (ml 3
L € L7(0,m1; Ly ((R* x R?), [a| <2}

with the differential operator 9 = 9(®0-*1) = 000, |al = ag + az,
where oy and a; are non-negative integers. We set also for 79 < 7

N*(ro,m1) = sup_{l(¢, ¥, ) YOI+ Y 19%(v,u,0) (0]

TO < ST1 ‘Ot|71

/Rl/ G (8O‘G )4 Z (07 f dgdy}.

| \ . M o] =2
Note that for the monatomic gas, the normalized entropy n(v,u, 8; V,U, ©)
defined by (6.3) in Section 6 can be written as

n(t,y) = ;@CI)(%) + %(u —U)?+ @@(%)
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with ®(s) = s —Ins — 1. Direct computations give that

et et + 200y 4 2yt + @@3
:e[<<”/(§)ex<y—ﬁ 0uty + D0, + By )
(20, - 4“(9)11195%)] [%@

e O g KO0E OOV 0) ) (710
s (10 '(9) 4“(9)U v+ [l e,
PRI U (¢ 1Oz
o)y

with g1 = p(v,s) —p(V,S) — pu(V,S)(v = V) — ps(V,S)(s —S) > 0 by
the convexity of p(v,s) = v=/3 exp(s)/(2em).

7.4 Proof of Theorem 4.1

In this subsection, we prove Theorem 4.1. Thus, we consider the
Cauchy problem of the Boltzmann equation (2.5) with the initial data

f(07x7§) = fO(‘T7§) = M[vg,ug,@g](07x7§)a (715)

where (v}, uls,05) is the approximation rarefaction wave given by (5.4)
and uf = (uls,0,0)". Due to the smoothness of (v§,uj,65), the local
existence of (2.5) and (7.15) is standard (cf. [12]), the global existence
and the estimate (4.2) will follow from the following a priori estimate.
Throughout this subsection, (V,U,©)(t,x) = (vj,us, 05)(t, x).

Proposition 7.5 (A priori estimate) Suppose that the Cauchy prob-
lem (2.5) and (7.15) has a solution f with (f — M[vg,ug,eg}) € )A((O,Tl)
for some 7 > 0. There exist positive constants €1,901,k1,v1 and c,
independent of €,6 and T, such that if

0<e<e, 0<8<dy, e/t <kis, N*(0,m) < v} (7.16)
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for small €1 and vy, then

2(0, ) / (V@O + 3 10%(6, 9,0

lal=1
o +|e)G?
Y 10w, 0% + // L (7.17)
|a|=2
(1+ [¢)(0°G
+ Z KJ’\L )\ Jd¢dydr < 53+el/2)
1<]al<2

Once Proposition 7.5 is proved, we can take § = kf161/5, then
(7.17) implies that there exists a positive constant ¢ independent of €
such that

sup {l(@, 0, Q)| + Gy, Oz py} < ee'/?
L {168 OE I+ 16Ol )
Therefore, the Boltzmann equation (2.5) has a global solution f (¢, z, )
satisfying
£t 2. €) = Mg g (82 Oll e 21y < e/,

e\ AL

for all t € (0,+00). By (3) in Lemma 5.2, we have for ¢ > 0,
(0§, 05) (2, ) = (7 u” 07)(t, )| e < et~ e P(In(L+4) + I e]).

Thus, combining the above two estimates yields the desired estimate
(4.2), and the proof of theorem 4.1 is complete.

Now, we turn to the proof of Proposition 7.5. The bound for
N2(0,7) yields the following LioLz and L7 ) estimates by the sobolev
imbedding theorem:

sup /Rl/ (0°M)? (8“G) (T )dgdy

la|= 27’6[0 71]
¢ (7.18)
+ sup ¢7¢7C) + ( o v, u, 0) :
e yeRl{!( ! 7R > (j0%( !

lal=1
+/ OCF 16)(r,9) < (1 + V/eTB) = cv,

for some small constant o, independent of €, 7. Note that

2 2 1 G
[ e s f s [P f G o

for some constant ¢(> 0), independent of € and 71. We should keep in
mind that the above two estimates (7.18) and (7.19) give the smallness
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in the energy estimate. Notice also that the smallness of v and ¢;
guarantees that

vy + o >v_/2, 05+(¢>0/2, for§ = tz(}ggRl 05 (t, )

and the existence of M, satisfying (4.1). Similar to the proof of Propo-
sition 6.1, we will derive the energy estimate (7.17) in two time levels,
0<t<T<land1l<t<+o00. Set

T = 673/4T, = 673/4,

then 79 < 79. Moreover, 19 = 7° when T' = 1. Proposition 7.5 can be
proved by the following two lemmas with 7° = 7 in lemma 7.7.

Lemma 7.6 (Finite time estimate) Suppose that the assumptions in
Proposition 7.5 hold. Then for 19 < 11,

2(0, 7) / (el @O+ 3 10%(6, 4, O

|al=1

G2
£ 3w+ [ [ (7.20)

|laf=2

vy LR P acayyir < o5

1<]a|<2

53

Proof This lemma is proved in the following three steps.
Step 1. Basic Energy Estimate

First, integrating (7.14) with respect to 7 and y over [0,7] x R!
(1 < 79p) yields that

/ n(r)dy + / / (culsoqr + [y 2 + C)dydr
R1 0 R1

] (7.21)
SC/ / (Rl + Ry + Ry + Ry + R5)dyd7',
0 R1

where

(R = e{(IC01y| + 10y ] + [1¢ D) | + (1ICCy 1+ 1€y 105,13
Ry = {[¢[[ufs * + 105,05, ] + (05,)%] + [rug, | ([0f,] + 165,1)3
R3 = E2{|¢)ugxm| + |Cegacac|}7

Ro= oy [ €azdsl+16, [ (e 26 - wenzag),

Rs = el¢|{Jul / ceZde| + |65, / (e - 2¢ - Zde]).

34



Since R;, Ry and Rj3 can be estimated by (6.11) and (6.12) as in
Section 6, then it suffices to treat R4 and Rs. Note that for any

polynomial g(§),

=2 =2
2 « 2 = —_
[ s0zas < (| ey [ S0 < [ S 12
Then

T T =2
24 02 -
| radvar < [ ] G, ve) [ Sdchavar 23

and

T T 52
/ / Redydr < / / (2 (il |+165. )2 e / = de}dydr. (7.24)
0 JRI 0 R M

It follows from (7.6) and Corollary 7.3 that

/”_ng - / G2+ (1+ EDGy +]\;1 +1E)71Q*(G. G)

Thus the following basic energy estimate holds,

/ n(r)dy + / / (eulspan + [ty + C2)dydr
R1 0 R1

el e /0 /IR {202 4+ (6P + P o+ ) pydr (7.26)

T GZ+ 1+ )Gy + (1 +€)7'Q(G,G)?
el [, ) i

It remains to estimate the microscopic component G and the double

d¢. (7.25)

dédydr.

integral for |¢,|?. Multiplying (7.13) by & 77 and 77, and integrating
the products over [0,7] x Rl x R? (1 < 7p), respectlvely, we obtain
from (7.7) and Lemma 7.2 that

/Rl O/T/ﬂv/%dfdwﬁ

//Rl/M Rév 51(|§_ |Cy+€%) M] + 1;1Gy

66, +0(6.0) - @) - o M dcdydr
and
G(ry? O leE
N / /R/ a, e
2
//R/M et v esan + Ya,

— ;Pl (&1Gy) + Q(G, G) — €Gyydédydr.
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From (7.10), (7.18), (7.19), Lemma 5.2 and Lemma 7.1, one may ob-
tain

/ T /R / = ’5‘)71Q2(G’ D deayar

//Rl/ H'i' Gng)( ](\;;df)dydT

//Rl/ (1+1ED( i+G2)d§)( %jgpdf)dydT (7.27)
SC’j/ /R / Md@@ﬂ“ + e / s 05
<CV/ /Rl/ H'f' d&dyd7+c53,

with M; = M( or M,). Note that for any h and polynomial g(§),

h « h
M) ge / e MO / e

Thus, together with Lemma 5.2, Lemma 7.4 and (7.27), shows

/Rl /TAI/<1+|5|>é2d§dydT

/ / 52¢ + P+ + /( TIENG, Yde)dydr  (7.28)

v [ /R/M
/Rl /OT/Rl/uH&\)éQdfdydT

T 2 2
gc/o /ﬂ§1(§—2¢2+!wy12+<§+/%d5)dw s

The estimate on the double integral of ¢§ is obtained from the coupling
through the conservation laws. Indeed, multiplying (7.11), by —¢,
and integrating the product over [0,7] x R! (7 < 79) lead to

- [ wepan [ [ Loavar= [ [ to,keto =,

+ e(pg — Po)05, + poy + /ﬁGyd{] + w%y}dydr

(7.29)
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Direct calculations give

| [ dhavr < clwio) @l +e [ [ (G,

(7.30)
/ G g+ 2ug) + (05206 + )y

Similarly, the double integral of |(¢-,%,(;)|? can be estimated by
(7.11),

| [ @ecobavar < [ [ (10y0,.6)F

(7.31)
/ G g+ 05)? + (05,)°)(6 + )y

Due to (7.25) and (7.27), suitable linear combinations of (7.26), (7.28),
(7.30) and (7.31) yield the following basic energy estimate

16,8, + / | ]t

+/%d5+ Z |0%(6, %, Q) Ydydr

laf=1

//{e¢2+w +¢) +Z/ H'é' SO v ayar

o[ & 9

Step 2. Derivative estimate.

For |a| = 1, multiplying 0%(2.6), by 0%u;—1(i = 2,3,4), 0%(7.9)
by 0%6/6 respectively, adding up all the resulting equations and using
(2.6),, one has

(7.32)

(] +c—

| =

L@ ol 4 L (@0 + “f)[\aauy\2+§<aauly>2]
+ 0 g, = (L) (0002 + ()00~ P
x(0) aae

P Lugiruy) — 07" Day 20,

(7.33)
__(8049 ) ]+ eaa[ ( )| y|2 &’f)(uly)Q]aae

ag 2
v <89 wor([EE - gazig + 00, [eaiorzae

e, / £610° (uyE)de + (),
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Integrating (7.33) over [0, 7] x R! (7 < 7p) yields

10% (v, u, ) (7)]* + /H “uy, 070, )(7)|*dr

<c [* [ 10-0.0)l(@) + 16,100)" +10°(0.0) Py
0 JR!
=y

=2
+ Juy|* 4 62) + (|0%ul? + |0°6]*) “Mdg + / déYdydr.

The macroscopic components (v, u, ) can be estimated as follows

/0 /Rl 10| (0%v) 2 dydr

< Rl{a(@%ﬁ 107051C + 0052165, [Yydr (734

<c(v + = // Z|8Q¢C|dydr+c

|al=1

To estimate the microscopic part =, one first notes that the linearized
operator L]T/[l satisfies, for any h € Nt

O*(Ly h) = Ly (0%h) — 2L {Q(Ly; hy 0°M)}, |a] =1

and the projection P, satisfies, for any h,

4

0*(Pi(&1h)) = P (€0%h) =Y < &k, x; > Pi(0%x;)-
=0

Thus, it follows from (7.18), (7.19) and lemma 7.1 that

J
8

<c/ /}R1 / (L+]¢) *8°‘G) dg)(/ %dﬁ)dym (7.35)

_ (1 +[E)(9°G)?
< .
<cpv /0 /R ) / M, dédydr

Then the following estimate holds

//Rl/ dgdyd7<c/ /Rl Z/ H'f' 5

|laf=2

2
Z/ 1+|§| dﬁ-l—/i(l +]|\§|) ]}dydT—l—cé3

laf=1
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This analysis leads to the following basic estimate on derivatives
T
o (0., )OI + | H(aauy,aaeym%

<e[ [ [ g r S 106,008 (130

ol=2 o1
lo" 2
+/(1+|5]|\)4(a G) d§]+1//7(1+15|) d€}dydr + e,

We now turn to estimate the derivatives of G. For |a| = 1, multiplying
0%(2.7) by 0“G /M, 0“G /M, and integrating the products over [0, 7] x
R! x R? (7 < 79) respectively, one obtains from (7.7) and Lemma 7.2

that
/Rl/i(aag\);(ﬂdych—l—ao /OT /Rl / 1+ lgl\);aaG)QdfdydT

v G s o
g/o/Rl/{M{[a (LuG) — Lud"G) + °Q(G, G)

(0°G)*
2072

/ /wddeU/T/ /(1+\§]y\)f(aa0)2d§dyd7
R o Jri .
/ \/]R1 / 0°G aa LMG) LMaOéG] +aaQ(G’ G)

~PLPIGG,) ~ LG, + 1 Pi(6M,)]dedydr

— 8“[%P1 (&1Gy) — %Gy + %Pl(glMy)]} — M, }dédydr

and

Note that
0*(LyG) = Ly (0°G) +2Q(0°M, G), |a] = 1.

Similar to the estimates of é, it holds that

a T fe 2
S 8GNy + | IVTFRIOGI i)

M
lo|=1

<o [ [ S 0y [ UG g

|laf=2

e (7.37)
0 Y10 oP + [ DIy
=1 *
2
—I—D/%df}dydT—l-cé3
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and

S0 GOz pey+ | VTG yir)

VM
lo|=1 :

/ / (3 [10%w,u,0) + /(1+|§|)(5a )? de] 38)

|laf=2

2
AY 000 + [ UL agpiir o8
|a|=1 *

Here one has used the following fact

[] [ur ewes q,
<e |7 [ 1 SEEREE gy [ &

([ Oy [ L gepyayar

<cy/ /Rl/ (1+ €Dl G2 (aa P geayar.

The estimate for the double 1ntegra1 of (9“v,)? is also obtained from
the coupling through the conservation laws. Multiplying 0%(7.4), by
—0%vy and integrating the product over [0,7] x R (7 < 79), we obtain

_/(5 uy - 0%y)(s // 0%vy) 2dydr

R1 R1 v

_/ R {(8au1y) + 6avy[(3apy — Py - 0%y) + /glaaGydf]}dydT
0 1

This can be estimated directly to get

/T /Rl(ﬁ%y)MydT < C/T/ ((0%u1y)? + (86,2

sy [UEENTC e+ Y 1060, PYdydr (7.30)

|or|=2 la]=1
2

53"
Similarly, one can estimate the double integral of |0%(v,, ur, 0,)|? by
(7.4)1 5,54 and (7.8),

[ e ooPavar < [ ] 41008 (7.40)
0°Gy)” G? 2 (7.40
_|_/( My) d§+l7[z ’30‘(¢7¢7C)‘2—I-/My]}dydT—i—c;—g.

lal=1

T ell(9%u1 - %0,) ()11 + 5

40



The following estimate holds as a consequence of (7.36), (7.37), (7.39)
and (7.40):

> " w1 + [ / O DD ey

laf=1

D e

|lal=1

£y / / 0% (0,4, 0) Pdydr < ¢ 3 (07072 (7.41)

|laf=2 |laf=2

ve[ [ ] UL IDEC 4 5 3 [0 (0,16,

lo|=2 lo|=1
+/(8°‘G) dg] + /7(1 +]5|) dé”}dydT—I—c

Step 3. Higher order estimates.

For |a| = 2, multiplying 9%(2.5) by 0% f /M, 0% f /M, and integrat-
ing the products over [0, 7] x R! x R? (7 < 7p), respectively, we obtain
from (7.7) and Lemma 7.2 that

/Rl/\aaf dydr + oo / /Rl/—lﬂﬁ\ PG e dyar
(0°f)°

<[ [ [5G ere - GG - B,

52

— M. T o«
oo nacayar+ [ [ [ S0 @6 - L)
+0rQ(@, @)~ on (1) - S Mo yagdydr
and
iG] 0+ eGP
/Rl/ dyd + / /Rl/ dédydr
aa 092G (8af) 51
<[/ / ( G)+ B, ydeayar
aa (63 (63
+[ /RI/M*{[ (LnG) — LG + 07°Q(G. C)
o () - S e g dedyar
Note that

/O ' /R [ S o Gydedyir - /O ' /R | PO 100 Gyaedyar
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and

0*(LymG) = Ly (0°G) + Y 2Q(0*7PM,0°G) +2Q(0°M,G), |a| = 2.
1Bl=1

Since P;(0“M) does not contain 0%(v,u,#), then we may get

a T 1} 2
S0 Mg+ | IVTFTIOGIE oo yir)

|ae|=2
<cy//{2|aa¢¢g|2+2|aavu9 (7.42)
la]=1 |al=2
N Z / 1—1—’5‘ )(0°G )df}dd _1_0537
1<]a|<2

where (7.19) has been used. Notice that for |a| = 2,

//Rl/ (9°M)” df/ 1+ [€DG d{dydT
[ /R/ @1y @MY /(1+!£\) dedy)1V?

(/ %d&l )1/2}d

_ 8‘“M)2 (1+ [¢)G? +G2
§cu/0 /]Rl/[ . YA Y)dédydr,

due to a priori assumption in (7.18). Then it holds that

S Oz + [ VIO Gy yir)

|laf=2

<c//{Z|8avu9|dydT+VZ|8a¢1/)C (7.43)

|laf=2 |al=1

eTe 2 2
+/(1+|§]|\)4i8 9 d§]+u/7(1+]\|2) d€}dydr + 5.

42



Suitable linear combinations of (7.32), (7.41) and (7.42) give

2
16, OO + 3 107 (0,0, 0) (7)) + //{G

|laf=1

4 Z (80‘(];’\;2 N Z (80‘{\)4( )}dé‘dy-k/ / {euaqu

|a]=1 |ar|=2

2
= S 000+ Y o+ [ )
|a]=1 |ar|=2

v > WO g <o [ [ et +?

+ )+ 1+l ;\}'5' [G? + Z (0°G)?)d¢ Y dydr + c%,

1)
1<|a|<2

where the following fact has been used:

(0 f dgd - (0°M)? + 2(0°M )(aaGH(aaG)Qd&dy
%? 0(0°M)) /}’i éaM)) " 2R (07 M)(9°C) + (0°G)?
-

déd

M Ly
(Po(0* M))?

> RO M))” 1o

_/Rl/ i Edy

Finally, we get the following estimate by appropriate linear combina-
tions of the estimates (7.29), (7.38), (7.43) and (7.44)

2(0, 7) //{Z|aa¢¢g|2+2|a%ue

|al=1 |al=2

. .
N / UG | 5 A Do O \de + cuanYaydr (745

M, «
1<|a]<2
< c% + ce/ (0% + ¢* + ¢*)dydr.
6 0 R1

This, together with a classic Grownwall inequality, yields the desired
estimate (7.20). O

Lemma 7.7 (Large time estimate) Suppose that the assumptions in
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Proposition 7.5 hold, then

(0 7) / (V@O + 3 16%(6,9, 01

la=1

~2
£ 3 lerwao+ [ [0 (7.46)

|laf=2

+ 2 H‘i’waa(}) Jdgdy}dr < e(N?(7°,7°) + €'/?).

1<|al<2 *

Proof The procedure is similar to the one for the finite time esti-
mate in Lemma 7.6. Thus we only point out the differences between
them here. For the basic energy estimate, R;(i = 1,2,3) in (7.21) are
estimated by (6.18) and (6.19). Noting that

’ (1+[¢)~1Q%G,G)
/To /]Rl/ M dedydr
T 1 ~2 -
"”/ / / i aedyar + o / | (s 05| g
70 JR1 Mz 20 4
T 1 ~2
SCD/ / /MdfdydT—i—Cg,
70 JRr1 M,;

/ ' / / 62@2 dedydr
<cy/ / (Pys by, C)? + / yd§ dydT—l—c;

one then can get the basic energy estimate in large time

s oo+ [ [ SR [ e

2
= S oo 0P+ [ agayar
|a]=1

T ~2
chQ(TO,T°)+c\|¢y(T)\|2+cel/2+cy/ / /G
-0 Jr1 ) M,

¢y /: /Rl/(l—i_‘gjl\);aaG)QdfdydT.
jaj=1"7

To estimate the derivatives (|| = 1), noting that

//\eyaa dyd7<cu// > 10%(¢, Q)P dydr + ce

|al=1

IN
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and

//Rl/ dfdyd7<ce+c/ /Rl/ /1+y§\

+ ) 1+|§]|\)4(aa ) +az( +|§l\)4(aa ) Ydédydr,

oo =2 lo]=1

then we have the following derivative estimate

S {1107 (0, 6, 0) ()| + //a " dedyy

laf=1

LS

+ Z/ ]80‘ v,u,0)2dydr < eN*(7°,7%) + ce
|or|=2

v [L[ (5 [SHEED e 57 (6,000

|laf=2 |al=1

+/(8QG) d€] + /7( FIEVE seydydr + ¢ 3 0%

|af=2

Since the higher order estimates of f are similar to those for the finite
time estimate in Lemma 7.6, then we obtain the desired estimate
(7.46) by an appropriate linear combination as in the last lemma. O

7.5 Proof of Theorem 4.2

The main interest here is to obtain a rate of convergence in the mean
free path ¢ which is valid uniformly for all time, when we specialize
to smooth rarefaction waves of the Euler equations. We first prove a
finite time result which justifies the fluid-dynamical limit for a fairly
large class of smooth flows on any given fixed time interval [0, 7] with
T < 400, which, in particular, yields Theorem 4.2 on [0,7]. We then
complete the proof of Theorem 4.2 by deriving a large time a priori
estimate as in the previous subsection.

7.5.1 Smooth Flows in Finite Time

Let 0 < T < 400, and (V,U,O)(t,x) be a smooth solution to the
Fuler equations as stated in Section 6.2.1. Our following theorem
asserts that My e)(t,x,§) is a limits as e — 0, of the Boltzmann
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solution f(t,x,£) to Boltzmann equation (2.5) with the same initial
data

f(oaxag) = M[V,U,@}(vavé.)‘ (747)

Theorem 7.8 Let (V,U,0)(t,z) be a smooth Euler solution as de-
scribed above. Then there exist positive constants €a and c¢(T') such

that for each € € (0, €3], the Cauchy problem for the Boltzmann equa-
tion (2.5), (7.47) has a unique solution f(t,z,&) such that

_ < 1/2
Oi?g’f ||f(t,$,€) M[V,U,@](t’x7§)||Lg°Lg(\/}vT*) = C(T)E : (748)

It is easy to see that the above theorem follows immediately from
the following a priori estimate.

Proposition 7.9 Suppose that the Cauchy problem (2.5) and (7.47)
has a solution f with (f — My,ue)) € )?(O, T1) for some positive 11 <
€ IT. There exist positive constants ez, vs and c(T), independent of €
and 11, such that if

€ € (0,62], N2(0,7'1) < 1y (7.49)
for small e and vs, then for T € (0,711],
N0+ [ (X 10600 + 3 107 u ol
la]=1 |a|=2

(L+1€D)  ~ .
+/]R/ T*[G2+ > (0°G))dédy}dr < ¢(T)e.

1<|a|<2

(7.50)

Proof First, note that the smallness of €3 and vy in (7.49) guaran-
tees that V + ¢ > v/2, © + ¢ > 0/2 and the existence of M,. The
estimate (7.50) can be derived in a similar way as for (7.17) by taking
into account the fact that |U;| < ¢yg. For the basic energy estimate,
although U, has no sign here, the term € [ [ Uyqidydr is bounded
by ce [ [(¢? + ¢?)dydr, which can be put into the right hand side of
(7.32). Then we have

G(r)? T .
6.0l + [ [+ [ [ (3 06,0

|laf=1

1 é? T
+ [EE dggayar < o, P+ [ [ g4+

o 2 T ~2
+ Y / (1”5]‘\)4(8 ) df}dydT—l—cD/O /Rl/z*dfdyd7+ce,

|laf=1
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where 7 = (e, 1) are small. The estimates for the derivatives are
the same as in Lemma 7.6. It then holds that

2(0, 7) //{Zyaa¢¢g\2+210avue

lor|=1 \Otl 2
~2 aiy
* 1<|al<2 *

< ce+ ce/ (% + % + ¢)dydr.
0 Jr

This, together with a classic Grownwall inequality, yields the desired
estimate (7.50). O

7.5.2 Smooth Rarefaction Waves in Large Time

Let us now turn to the smooth rarefaction waves. Take (V,U, ©)(t, )
as in Theorem 7.8 to be the smooth rarefaction wave (vft, uf?, 07) (¢, z)
given in Theorem 4.2. Then Theorem 7.8 implies immediately Theo-
rem 4.2 on any finite time interval. To complete the proof of Theorem
4.2, we need only show the following large time a priori estimate. In
what follows, (V,U,©)(t,z) = (vf, uf, 65)(t, )

Proposition 7.10 Suppose that the Cauchy problem of the Boltz-
mann equation has a solution f(t,z,£) as in Theorem 4.2, which is
defined on [0,Ty] x R? (1 < Ty < +o00) and with (f — Miyr oy gr)) €
)A((O, 1) for some 71 > 70(= €71). There exist positive constants €3, 3
and c, independent of € and 11, such that if

€ (0, €3], N2(TO,T1) <y

for small e3 and vs, then it holds that

N?(%,71) + / {elJull (6,012 + 3 10°(0, 0, O

|a|=1
(1 )G?
—i—ZH@aquHQ // +|§|
|af=2
1 (6%
+ Z i ‘5’ Gl Jd¢dy}dr < c(N?(7%,7%) + €'/2).
1<|al<2 M.

Proof By virtue of Lemma 5.3, the proposition can be proved in the
same way as for Lemma 7.7. [J
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