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Abstract

A boundary value problem for a system of Euler-Poisson equations modelling semicon-
ductor devices or plasma is considered. The boundary conditions are supersonic inflow
and subsonic outflow. The purpose of this paper is to elucidate the role played by the elec-
tric filed to the structure of solutions with transonic shocks. The existence, non-existence,
uniqueness and multiplicity of solutions with transonic shocks are obtained according to
the different cases of the boundary data and physical interval length. Detailed structures
of solutions are given. Shock locations are determined by the boundary data. Different
phenomena are shown for the different situations when the density of fixed, positively
charged background ions is in supersonic and subsonic regimes.

1 Introduction

The following system of 1-dimensional Euler-Poisson equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (p(ρ) + ρu2)x = ρE,

Ex = ρ − b,

(1.1)

models several physical flows including the propagation of electrons in submicron semicon-
ductor devices and plasma (cf. [17])( hydrodynamic model), and the biological transport of
ions for channel proteins (cf [3]). In the hydrodynamical model of semiconductor devices or
plasma, u, ρ and p represent the average particle velocity, electron density and pressure, re-
spectively, E is the electric filed, which is generated by the Coulomb force of particles. b > 0
stands for the density of fixed, positively charged background ions. The biological model
describes the transport of ions between the extracellular side and the cytoplasmic side of the
membranes([3]). In this case, ρ, ρu and E are the ion concentration, the ions translational
mass, and the electric field, respectively.

In this paper, we consider the transonic shock solutions for following time-independent
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problem ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρu)x = 0,

(p(ρ) + ρu2)x = ρE,

Ex = ρ − b.

(1.2)

Assuming that p satisfies:

p(0) = 0, p′(ρ) > 0, p′′(ρ) > 0, for ρ > 0, p(+∞) = +∞, (1.3)

we consider boundary value problem for (1.2) in an interval 0 ≤ x ≤ L with the boundary
condition:

(ρ, u,E)(0) = (ρl, ul, α), (ρ, u)(L) = (ρr, ur). (1.4)

We assume ul > 0 and ur > 0. By the first equation in (1.2), we know that ρu(x) =
constant(0 ≤ x ≤ L) so the boundary data should satisfy

ρlul = ρrur (1.5)

We denote
ρlul = ρrur = J. (1.6)

Then ρu(x) = J(0 ≤ x ≤ L) and the velocity is given by

u = J/ρ. (1.7)

The boundary value problem for system (1.2) reduces to⎧⎨
⎩ (p(ρ) + J2

ρ )x = ρE,

Ex = ρ − b,
(1.8)

with the boundary conditions:

(ρ, E)(0) = (ρl, α), ρ(L) = ρr. (1.9)

We use the terminology from gas dynamics to call c =
√

p′(ρ) the sound speed. There is a
unique solution ρ = ρs for the equation

p′(ρ)ρ2 = J2, (1.10)

which is the sonic state (recall that J = ρu).
In this case, the flow is called supersonic if

p′(ρ)ρ2 < J2, i.e. ρ < ρs. (1.11)

If
p′(ρ)ρ2 > J2, i.e., ρ > ρs, (1.12)
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then the flow is called subsonic.
We notice that (1.8)1 is singular at sonic state (p′(ρs) − J2

ρ2
s

= 0) and the coefficient of
ρx changes the sign for the supersonic flow and subsonic flow. This makes the problem
of determining which kind of boundary conditions should be posed to make the boundary
value problem well-posed a subtle one. In the previous works, some pure subsonic or su-
personic solutions are obtained for both 1-dimensional and multidimensional cases (cf. [10]
and [17]). For a viscous approximation of transonic solutions in 2-d case for the equations
of semiconductors, see [12]. However, there have been only a few results for the transonic
flow. In the following, we list several results which are closely related to the present paper.
First, a boundary value problem for (1.8) was discussed in [1] for a linear pressure function
of the form p(ρ) = kρ with the special boundary condition ρ(0) = ρ(L) = ρ̄ with ρ̄ being
a subsonic state for the case when 0 < b < ρs. The solution obtained in [1] may contain
transonic shock. On the other hand, since the boundary conditions and the pressure function
are special in [1], it is desired to consider the more general boundary conditions with more
general pressure function. Moreover, only the case when 0 < b < ρs (i.e., when b is in the
supersonic regime) is considered. As we will show later, the cases when 0 < b < ρs and
b > ρs are completely different. Actually, (b, 0) is a center when 0 < b < ρs and a saddle
point when b > ρs for system (1.8). We will construct solutions with transonic shocks for
both cases. In [18], the local-in-time stability of transonic shock solutions for the Cauchy
problem of (1.1) is considered by assuming the existence of steady transonic shocks. In [19],
a phase plane analysis is given for system (1.8). However, no transonic shock solutions are
constructed in [19]. A transonic solution which may contain transonic shocks was constructed
by I. Gamba (cf. [13]) by using a vanishing viscosity limit method. However, the solutions
as the limit of vanishing viscosity may contain boundary layers. Therefore, the question of
well-posedness of the boundary value problem for the inviscid problem can not be answered
by the vanishing viscosity method. Moreover, the structure of the solutions constructed by
the vanishing viscosity method in [13] is shown to be of bounded total variation and possibly
contain more than one transonic shock. One of the main purposes of the present paper is
to obtain more detailed structure of the solutions for the boundary value problem (1.8) and
(1.9) and answer the question of well-posedness of solutions for this boundary value problem.
We give a throughout study of the structure of the solutions to the boundary value prob-
lem for the different situations of boundary data and the interval length L. The existence,
non-existence, uniqueness and non-uniqueness of solutions with transonic shocks are obtained
according to the different cases of boundary data and physical interval length. The solution
(when it exists) that we construct contains exactly one transonic shock in the interval [0, L].
On the left of this transonic shock, the flow is supersonic, it is subsonic on the right of this
shock. Moreover, we can determine the shock location by the boundary data and L. It is
interesting to compare this result with the transonic solutions of a quasi-one-dimensional gas
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flow through a nozzle studied by Embid, Goodman and Majda ([9]). The time-dependent
equations for the one dimensional isentropic nozzle flow are⎧⎨

⎩ ρt + (ρu)x = −A′(x)
A(x) ρu,

(ρu)t + (ρu2 + p(ρ))x = −A′(x)
A(x) ρu2,

(1.13)

where ρ, u and p denote respectively the density, velocity and pressure, A(x) is the cross-
sectional area of the nozzle. In [9], steady state solutions containing transonic shocks are
constructed for the boundary value problem in the interval [0, 1] with the boundary conditions
(ρ, u)(0) = (ρl, ul) and (ρ, u)(1) = (ρr, ur) satisfying ρlul = ρrur with (ρl, ul) being supersonic
and (ρr, ur) being subsonic. It is shown in [9] that, if A(x) is not strictly monotone, then
there exist multiple steady state transonic shock solutions, and the shock locations are not
unique. Particularly, when A′(x) ≡ 0 (this means the duct is uniform), the transonic shock
can be anywhere in the duct. Therefore, the structure of solutions depend on the structure of
the geometry of the nozzle. The electric field E plays a similar role as we will show later. The
difference is that the geometry of the nozzle is given, while the electric field E is unknown
and is a part of solutions.

There have been many studies on the stability of transonic shocks for system (1.13)(cf.
[15], [16] and [14] ). It would be interesting to investigate the stability of steady transonic
solutions obtained in the paper. It would be interesting to extend the results of this paper to
the multi-dimensional case, as those for gas dynamics (cf. [2], [4], [5], [6], [7], [8], [20], [21] and
[22]). An effort in this direction was made in [12] for a viscous approximation of transonic
solutions in 2-d case for the equations of semiconductors. However, passing limit when the
viscosity tends to zero for the viscosity approximation in [12] is still an open problem. Some
progress has been made in this direction [6] for the potential flow equations of gas dynamics.

2 Initial Value Problem For System (1.8)

In this section, we study the initial value problem for (1.8), i.e., we consider the initial value
problem: ⎧⎨

⎩ (p(ρ) + J2

ρ )x = ρE, Ex = ρ − b, for x > x0,

(ρ, E)(x0) = (ρ0, E0).
(2.1)

which will be used when we construct the transonic shock solutions for the boundary value
problem.
The solution of (1.8) can be analyzed in (ρ,E)-phase plane. Any trajectory in (ρ,E)-plane
satisfies the following equation,

d

(
1
2
E2 − H(ρ)

)
= 0, where H ′(ρ) =

ρ − b

ρ
(p′(ρ) − J2

ρ2
). (2.2)
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The trajectory passing through the point (ρ0, E0) with ρ0 > 0 is given by

1
2
E2 −

∫ ρ

ρ0

H ′(s)ds =
1
2
E2

0 . (2.3)

Since the cases when 0 < b < ρs (b is in supersonic region) and b > ρs (b is in subsonic region)
are completely different, we discuss these two cases separately. The phase portraits of those
two different cases are in Figure 1 and Figure 2, respectively (all figures are at the end of this
paper).

2.1 The Case when 0 < b < ρs.

The following facts will be useful:

H ′(ρs) = H ′(b) = 0,H ′(ρ) > 0 for 0 < ρ < b and ρ > ρs, H ′(ρ) > 0 for b < ρ < ρs, (2.4)

lim
ρ→0+

∫ ρ

ρ0

H ′(s)ds = −∞, for any ρ0 > 0. (2.5)

For the different situations of the initial value (ρ0, E0) on the (ρ,E)-plane, we give the follow-
ing classification of solutions. First, we define the Critical Trajectory for the case when
0 < b < ρs .
Definition: The critical trajectory is the trajectory passing through the point (ρs, 0) with
the equation:

1
2
E2 −

∫ ρ

ρs

H ′(s)ds = 0. (2.6)

There are two branches of the critical trajectory, a supersonic branch and a subsonic branch.
The supersonic branch is for ρc

min ≤ ρ ≤ ρs where ρc
min is determined by

∫ ρc
min

ρs

H ′(s)ds = 0, 0 < ρc
min < b. (2.7)

The subsonic branch is for ρ > ρs. The supersonic branch is a loop with the center (b, 0) (we
call this the supersonic loop of the critical trajectory). The supersonic branch and subsonic
branch intersect at the sonic point (ρs, 0).
Solutions for IVP (2.1) for the case 0 < b < ρs.
Case 1 (ρ0, E0) is inside the critical supersonic loop, i. e., (1

2E2
0 − ∫ ρ0

ρs
H ′(s)ds < 0 and

0 < ρ0 < ρs (ρ0, E0) �= (b, 0)).
In this case, initial value problem (2.1) admits a unique solution (ρ,E) for all x ≥ x0. In
(ρ, E)-plane, the trajectory of the solution is given by equation (2.3). In this case, the tra-
jectory is a loop with the center (b, 0). The direction of the trajectory is counter clockwise.
The solution is periodic and always supersonic.
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Case 2 (ρ0, E0) is inside the critical subsonic branch of the critical trajectory, i. e.,(1
2E2

0 −∫ ρ0

ρs
H ′(s)ds < 0 and ρ0 > ρs ).

In this case, initial value problem (2.1) admits a unique solution (ρ,E) for all x ≥ x0. E is
strictly increasing. The solution is always subsonic. Moreover,

lim
x→∞(ρ,E) = (∞,∞). (2.8)

Case 3 ( (ρ0, E0) is on the critical supersonic trajectory , i.e., 1
2E2

0 − ∫ ρ0

ρs
H ′(s)ds = 0 and

0 < ρ0 ≤ ρs. In this case, there are infinitely many smooth solutions for IVP (2.1) for all
x ≥ x0. These solutions are of the following types:
i)(Type I)( Periodic ) The solution (ρ,E) is always on the supersonic loop of the critical
trajectory.
ii) (Type II) The solution travels along the supersonic loop of the critical trajectory n times
(n = 0, 1, 2, · · · ), and then travels to the sonic point (ρs, 0). From this sonic point, it travels
along the upper subsonic branch of the critical trajectory 1

2E2−∫ ρ
ρs

H ′(s)ds = 0, E > 0, ρ >

ρs. In this case, we have
lim

x→∞(ρ,E) = (∞,∞). (2.9)

Case 4 ((ρ0, E0) is on the critical trajectory, and ρ0 > ρs (subsonic) and E0 > 0.)
In this case, there exists a unique solution (ρ,E)(x) of the initial value problem (2.1) for
all x ≥ x0, which travels along the upper subsonic branch of the critical trajectory 1

2E2 −∫ ρ
ρs

H ′(s)ds = 0, E > E0, ρ > ρ0. In this case, we have

ρx > 0, Ex > 0, lim
x→∞(ρ,E) = (∞,∞). (2.10)

Case 5((ρ0, E0) is on the critical trajectory, and ρ0 > ρs (subsonic) and E0 < 0.) In this
case, there are infinitely many solutions. In (ρ,E) plane, the solutions start from (ρ0, E0),
travel along the lower subsonic branch of the critical trajectory 1

2E2 − ∫ ρ
ρs

H ′(s)ds = 0, 0 >

E > E0, ρ < ρ0 in the direction ρ decreases and E increases. The solutions reaches the sonic
point (ρs, 0) at some x1 > x0. After then (x > x1), this case reduces to case 3).

Case 6(1
2E2

0 − ∫ ρ0

ρs
H ′(s)ds > 0 and 0 < ρ0 < ρs )

In this case, the solution for initial value problem (2.1) exists only on a finite interval [x0, x2)
for some x2 > x0. Moreover,

lim
x→x−

2

(ρ,E) = (ρs, E1), (2.11)

where E1 is determined by

1
2
E2

1 −
∫ ρs

ρ0

H ′(s)ds =
1
2
E2

0 , E1 < 0.

Furthermore,
lim

x→x−
2

ρx(x) = +∞. (2.12)
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Case 7(1
2E2

0 − ∫ ρ0

ρs
H ′(s)ds > 0 and ρ0 > ρs, E0 > 0 )

In this case, the solution for initial value problem (2.1) exists for all x ≥ x0. Along the
trajectory of the solution, both ρ and E are strictly increasing. Moreover,

lim
x→∞(ρ,E)(x) = (+∞, +∞). (2.13)

Case 8(1
2E2

0 − ∫ ρ0

ρs
H ′(s)ds > 0 and ρ0 > ρs, E0 < 0 )

In this case, the solution for initial value problem (2.1) exists only on a finite interval [x0, x3)
for some x3 > x0. Moreover,

lim
x→x−

3

(ρ,E) = (ρs, E2), (2.14)

where E2 is determined by

1
2
E2

2 −
∫ ρs

ρ0

H ′(s)ds =
1
2
E2

0 , E2 < 0.

Furthermore,
lim

x→x−
3

ρx(x) = −∞. (2.15)

2.2 The case when b > ρs.

In this subsection, we solve the initial value problem (2.1) for the different situations of the
initial values (ρ0, E0). In this case, the equilibrium point (b, 0) is a saddle point on the phase
plane (see Figure 2).
We define the Critical Trajectory for the case b > ρs.
Definition: The critical trajectory (for the case b > ρs) is the trajectory passing through
the point (b, 0) with the equation:

1
2
E2 −

∫ ρ

b
H ′(s)ds = 0. (2.16)

We solve the initial value problem (2.1) for the differnet cases of the initial data (ρ0, E0).
Case 1 (ρ0 < ρs), i.e., ρ0 is supersonic. In the case, the solution of (2.1) only exists in a
finite interval [x0, x4). Moreover,

lim
x→x4−

(ρ,E) = (ρs,−
√

E2
0 + 2

∫ ρs

ρ0

H ′(s)ds), lim
x→x4−

ρx = +∞.

Case 2 ρ0 > ρs.
a) (ρ0, E0) is inside the critical trajectory, i.e.,

1
2
E2

0 +
∫ b

ρ0

H ′(s)ds < 0, ρ0 > ρs.

There are two subcases.
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a1) ρs < ρ0 < b.
In this case, initial value problem (2.1) admits a unique solution (ρ,E) in a finite interval
[x0, x5). Moreover,

b > ρ(x) > ρs, x ∈ [x0, x5),

lim
x→x5−

(ρ,E)(x) = (ρs,−
√

E2
0 + 2

∫ ρs

ρ0

H ′(s)ds), lim
x→x5−

ρx(x) = −∞. (2.17)

a2) ρ0 > b.
In this case, initial value problem (2.1) admits a unique solution (ρ,E) for all x ≥ x0.
Moreover,

ρ(x) > b > ρs, Ex > 0, x ∈ [x0,∞),

lim
x→∞(ρ,E)(x) = (+∞, +∞). (2.18)

b) (ρ0, E0) is outside the critical trajectory, i.e.,

1
2
E2

0 +
∫ b

ρ0

H ′(s)ds > 0, ρ0 > ρs.

There are two subcases.

b1) E0 > 0.

In this case, initial value problem (2.1) admits a unique solution (ρ,E) for all x ≥ x0.
Moreover,

ρ(x) > ρs, x ∈ [x0,∞),

lim
x→∞(ρ, E)(x) = (+∞, +∞). (2.19)

b2) E0 < 0.

In this case, the initial value problem (2.1) admits a unique solution (ρ, E) in a finite interval
[x0, x6). Moreover,

ρ(x) > ρs, x ∈ [x0, x6),

lim
x→x6−

(ρ,E)(x) = (ρs,−
√

E2
0 + 2

∫ ρs

ρ0

H ′(s)ds), lim
x→x6−

ρx(x) = −∞. (2.20)

c) (ρ0, E0) is on the critical supersonic trajectory , i.e.,

1
2
E2

0 +
∫ b

ρ0

H ′(s)ds = 0.

8



c1) ρs < ρ0 < b,E0 > 0.
In this case, initial value problem (2.1) admits a unique solution (ρ,E) for all x ≥ x0.
Moreover,

ρx > 0, Ex < 0, x > x0,

lim
x→∞(ρ,E)(x) = (b, 0). (2.21)

c2) ρs < ρ0 < b,E0 < 0.
In this case, , the initial value problem (2.1) admits a unique solution (ρ,E) in a finite interval
[x0, x7). Moreover,

ρx(x) < 0, Ex(x) < 0, x ∈ [x0, x7),

lim
x→x7−

(ρ,E)(x) = (ρs,−
√

2
∫ ρs

b
H ′(s)ds), lim

x→x7−
ρx(x) = −∞. (2.22)

c3) ρ0 > b,E0 > 0.
In this case, initial value problem (2.1) admits a unique solution (ρ, E) for all x ≥ x0.
Moreover,

ρx > 0, Ex > 0, x > x0,

lim
x→∞(ρ,E)(x) = (∞, ∞). (2.23)

c4) ρ0 > b,E0 < 0.
In this case, the initial value problem (2.1) admits a unique solution (ρ,E) for all x ≥ x0 .
Moreover,

ρx(x) > 0, Ex(x) > 0, x > x0,

lim
x→∞(ρ, E)(x) = (b, 0). (2.24)

3 Transonic Shocks

We use (ρ,E)(x, ρ0, E0) (x ≥ x0) to denote the solution of the initial value problem (2.1) and
use T (ρ0, E0) to denote the trajectory passing through the state (ρ0, E0) in the direction as
x increases. Precisely, we define
Definition 3.1 We say that a state (ρ1, E1) ∈ T (ρ0, E0) if there exist x0 ∈ R1 and x1 ∈ R1

satisfying x1 ≥ x0 such that (ρ1, E1) = (ρ,E)(x1, ρ0, E0).
Therefore, if (ρ1, E1) ∈ T (ρ0, E0), then

1
2
E2 −

∫ ρ

ρ0

H ′(s)ds =
1
2
E2

0 .

For boundary value problem (1.8) and (1.9), we assume ρl < ρs and ρr > ρs. This means
the flow is supersonic at x = 0 and subsonic at x = L. By the results in section 2, we know
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that this boundary value problem does not have a smooth solution in general. The solution
is expected to have a transonic shock in the interval [0, L]. A transonic shock solution is a
discontinuous solution of the boundary value problem (1.8) and (1.9). Suppose the shock
location is at a point a ∈ [0, L], then we require the following Rankine-Hugoniot condition
and entropy condition:
Rankine-Hugoniot Condition(

p(ρ) +
J2

ρ

)
(a+) =

(
p(ρ) +

J2

ρ

)
(a−), E(a+) = E(a−), (3.1)

Entropy Condition
ρ(a+) > ρ(a−). (3.2)

The shock is transonic means
ρ(a+) > ρs > ρ(a−). (3.3)

For any ρ ∈ (0, ρs), there exists one and only one F (ρ) satisfying

p(F (ρ)) +
J2

F (ρ)
= p(ρ) +

J2

ρ
, F (ρ) > ρs. (3.4)

Also it is easy to verify that

F ′(ρ) =
p′(ρ) − J2

ρ2

p′(F (ρ)) − J2

F (ρ)2

< 0, for 0 < ρ < ρs, (3.5)

H ′(F (ρ))F ′(ρ) =
F (ρ) − b

F (ρ)

(
p′(ρ) − J2

ρ2

)
, for 0 < ρ < ρs. (3.6)

For the trajectory passing through (ρl, α), we define the shock curve by Tshock

Tshock = {(F (ρ), E) : (ρ, E) ∈ T ((ρl, α)}.

We denote � ((ρ1, E1); (ρ2, E2)) the length in x for the trajectory of (1.8) traveling from the
state (ρ1, E1) to the state (ρ2, E2)) when (ρ1, E1) and (ρ2, E2)) are on the same trajectory.
In order to show the existence and uniqueness of transonic shocks, we need the following
lemmas.

Lemma 3.1. If the two states (ρ1, E1) and (ρ2, E2) are on the same trajectory of system
(1.8), i.e., (ρ2, E2) ∈ T (ρ1, E1) and on the trajectory connecting these two states, E does not
change sign (then E is a function of ρ, denoted by E(ρ)) ,

� ((ρ1, E1); (ρ2, E2)) =
∫ ρ2

ρ1

p′(ρ) − J2

ρ2

ρE(ρ)
dρ. (3.7)
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Proof. From (1.8)1 we have,
p′(ρ) − J2

ρ2

ρE
dρ = dx, (3.8)

when E does not change sign. This proves (3.7).�

Lemma 3.2. If two states (ρ1, E1) and (ρ2, E2) are on the same trajectory of system (1.8),
i.e., (ρ2, E2) ∈ T (ρ1, E1), and on the trajectory connecting these two states, E is strictly
increasing or decreasing (then ρ is a function of E, denoted by ρ(E, ρ1)), then

� ((ρ1, E1); (ρ2, E2)) =
∫ E2

E1

dE

ρ(E, ρ1) − b
, (3.9)

as long as ρ(E, ρ1) �= b for E between E1 and E2.

Proof. By the second equation in (1.8), we have dE
ρ−b = dx. (3.9) follows then. �

Lemma 3.3. For the fixed (ρ0, E0) and ρr, let

X(ρ̄) = �((ρ0, E0); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))), (3.10)

where ρ0 < ρs, ρ̄ < ρs, ρr > ρs, (ρ̄, E(ρ̄)) ∈ T (ρ0, E0), (ρr, Er(ρ̄)) ∈ T (F (ρ̄), E(ρ̄)). If E does
not change the sign along the trajectories from (ρ0, E0) to (ρ̄, E(ρ̄)) and from (F (ρ̄), E(ρ̄)) to
(ρr, Er(ρ̄)), then

X ′(ρ̄) = (p′(ρ̄) − J2

ρ̄2
)(

1
ρ̄
− 1

F (ρ̄)
)Q(ρ̄), (3.11)

where

Q(ρ̄) =
1

E(ρ̄)
+ b

∫ ρr

F (ρ̄)

p′(t) − J2

t2

tE3(ρ̄, t)
dt, (3.12)

provided E(ρ̄) �= 0 and F (ρ̄) �= 0, where

E(ρ̄, t) = sgn(E(ρ̄))

√
E2(ρ̄) + 2

∫ t

F (ρ̄)
H ′(s)ds, (3.13)

for t between F (ρ̄) and ρr. Moreover,

Q′(ρ̄) = (p′(ρ̄) − J2

ρ̄2
)

(
1

E3(ρ̄)
[
b

ρ̄
− b

F (ρ̄)
− 1] + 3b2[

1
ρ̄
− 1

F (ρ̄)
]
∫ ρr

F (ρ̄)

p′(t) − J2

t2

tE5(ρ̄, t)
dt

)
. (3.14)

Proof. Let X1(ρ̄) = �((ρ0, E0); (ρ̄, E(ρ̄))) and X2(ρ̄) = �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))). Then
we have, by Lemma 3.1,

X1(ρ̄) =
∫ ρ̄

ρ0

p′(t) − J2

t2

tE(t)
dt, (3.15)
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where (t, E(t)) ∈ T (ρ0, E0). So

1
2
E2(t) − H(t) =

1
2
E2

0 − H(ρ0). (3.16)

Especially,
1
2
E2(ρ̄) − H(ρ̄) =

1
2
E2

0 − H(ρ0). (3.17)

Therefore
E(ρ̄)E′(ρ̄) = H ′(ρ̄). (3.18)

Moreover,

X2(ρ̄) =
∫ ρr

F (ρ̄)

p′(t) − J2

t2

tE(ρ̄, t)
dt,

where E(ρ̄, t) is given by

1
2
E2(ρ̄, t) − H(t) =

1
2
E2(ρ̄) − H(F (ρ̄)), (3.19)

for t between F (ρ̄) and ρr. By (3.15), we have

X ′
1(ρ̄) =

p′(ρ̄) − J2

ρ̄2

ρ̄E(ρ̄)
, (3.20)

and

X ′
2(ρ̄) = −

p′(F (ρ̄)− J2

(F (ρ̄))2

F (ρ̄)E(ρ̄)
F ′(ρ̄),

−
∫ ρr

F (ρ̄)

(
p′(t) − J2

t2
)∂E(ρ̄, t)/∂ρ̄

tE2(ρ̄, t)dt. (3.21)

From (3.5), we have (
p′(F (ρ̄)) − J2

(F (ρ̄))2

)
F ′(ρ̄) = (p′(ρ̄) − J2

ρ̄2
). (3.22)

By virtue of (3.6) and (3.18), we obtain,

E(ρ̄, t)
∂E(ρ̄, t)

∂ρ̄
= E(ρ̄)E′(ρ̄) − H ′(F (ρ̄)F ′(ρ̄)

= H ′(ρ̄) − H ′(F (ρ̄))F ′(ρ̄)

= (p′(ρ̄) − J2

ρ̄2
)(

b

F (ρ̄)
− b

ρ̄
). (3.23)

Since X(ρ̄) = X1(ρ̄) + X2(ρ̄). Therefore, (3.11) follows from (3.20)-(3.23). (3.14) can be
obtained by the same method. �.

We give an alternative lemma on how to calculate X ′(ρ̄) which will be used later.
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Lemma 3.4. For the fixed (ρ0, E0) and ρr, let

X(ρ̄) = �((ρ0, E0); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))), (3.24)

where ρ0 < ρs, ρ̄ < ρs, ρr > ρs, (ρ̄, E(ρ̄) ∈ T (ρ0, E0), (ρr, Er(ρ̄)) ∈ T (F (ρ̄), E(ρ̄)). If E does
not change the sign along the trajectories from (ρ0, E0) to (ρ̄, E(ρ̄)) and from (F (ρ̄), E(ρ̄)) to
(ρr, Er(ρ̄)), and ρ �= b along the trajectory from (F (ρ̄), E(ρ̄)) to (ρr, Er(ρ̄)), then

dX(ρ̄)
dρ̄

=
(

p′(ρ̄) − J2

ρ̄2

)
F (ρ̄) − ρ̄

ρ̄

·
⎧⎨
⎩ 1

F (ρ̄)E(ρ̄)
+

b

F (ρ̄)

∫ ρr

F (ρ̄)

H ′(ρ̂)

(ρ̂ − b)sgn(E(ρ̄))[E2(ρ̄) + 2
∫ ρ̂
F (ρ̄) H ′(t)dt]3/2

dρ̂.

⎫⎬
⎭ ,

(3.25)

provided E(ρ̄) �= 0 , Er(ρ̄) �= 0 and F (ρ̄) �= 0 .

Proof. Let
L1(ρ̄) = �((ρ0, E0); (ρ̄, E(ρ̄))),

and
L2(ρ̄) = �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))). (3.26)

First, we have from Lemma 3.1 that

L1(ρ̄) =
∫ ρ̄

ρ0

p′(s) − J2

s2

sE(s)
ds. (3.27)

So,

L′
1(ρ̄) =

p′(ρ̄) − J2

ρ̄2

ρ̄E(ρ̄)
, (3.28)

as long as E(ρ̄) �= 0. Next, since E does not change sign along the trajectory from the state
(F (ρ̄), E(ρ̄)) to (ρr, Er(ρ̄)), it follows from (p′(ρ) − J2

ρ2 )ρx = ρE that ρ is a function of E on
the trajectory from the state (F (ρ̄), E(ρ̄)) to (ρr, Er(ρ̄)) (sgn(ρx) = sgnE). We denote this
function by ρ(E, ρ̄). It follows from Lemma 3.2 that

L2(ρ̄) =
∫ Er(ρ̄)

E(ρ̄)

dE

ρ(E, ρ̄) − b
. (3.29)

Notice that ρ (E(ρ̄), ρ̄)) = F (ρ̄) and ρ(Er(ρ̄), ρ̄) = ρr, we have

L′
2(ρ̄) =

E′
r(ρ̄)

ρr − b
− E′(ρ̄)

F (ρ̄) − b
−

∫ Er(ρ̄)

E(ρ̄)

∂ρ(E,ρ̄)
∂ρ̄

(ρ(E, ρ̄) − b)2
dE. (3.30)

Since
1
2
E2(ρ̄) − H(ρ̄) =

1
2
E2

0 − H(ρ0),

13



E′(ρ̄) =
H ′(ρ̄)
E(ρ̄)

, (3.31)

provided E(ρ̄) �= 0. Moreover, in view of the fact E2
r (ρ̄) = E2(ρ̄) + 2

∫ ρr

F (ρ̄) H ′(t)dt, we obtain

Er(ρ̄)E′
r(ρ̄) = E(ρ̄)E′(ρ̄) − H ′(F (ρ̄))F ′(ρ̄)

= H ′(ρ̄) − H ′(F (ρ̄))F ′(ρ̄). (3.32)

We calculate ∂ρ(E,ρ̄)
∂ρ̄ as follows. First, along the trajectory form (F (ρ̄), E(ρ̄)) to (ρr, Er(ρ̄)),

1
2
E2 − H(ρ(E, ρ̄)) =

1
2
E2(ρ̄) − H(F (ρ̄)). (3.33)

It follows from (3.6) and (3.33) that

∂ρ(E, ρ̄)
∂ρ̄

=
H ′(F (ρ̄)F ′(ρ̄) − E(ρ̄)E′(ρ̄)

H ′(ρ(E, ρ̄))

=
H ′(F (ρ̄))F ′(ρ̄) − H ′(ρ̄)

H ′(ρ(E, ρ̄))
. (3.34)

Therefore, (3.30)-(3.34) imply

L′
2(ρ̄) =

(
H ′(ρ̄) − H ′(F (ρ̄))F ′(ρ̄)

) (
1

(ρr − b)Er(ρ̄)
+

∫ Er(ρ̄)

E(ρ̄)

dE

(ρ(E, ρ̄) − b)2H ′(ρ(E, ρ̄))
ds

)

− H ′(ρ̄)
(F (ρ̄) − b)E(ρ̄)

. (3.35)

By (2.1), (3.5) and (3.6), we have

H ′(ρ̄) − H ′(F (ρ̄))F ′(ρ̄) = (p′(ρ̄) − J2

ρ̄2
)
b(ρ̄ − F (ρ̄)

ρ̄F (ρ̄)
. (3.36)

Therefore, by virtue of (3.28), (3.35) and (3.36), we have

L′
1(ρ̄) + L′

2(ρ̄) =
(

p′(ρ̄) − J2

ρ̄2

)
(F (ρ̄) − ρ̄)

·
{
− b

ρ̄F (ρ̄)

(
1

(ρr − b)Er(ρ̄)
+

∫ Er(ρ̄)

E(ρ̄)

dE

(ρ(E, ρ̄) − b)2H ′(ρ(E, ρ̄))

)
+

1
ρ̄E(ρ̄)(F (ρ̄) − b)

}
.

(3.37)

Next, we calculate the term
∫ Er(ρ̄)
E(ρ̄)

dE
(ρ(E,ρ̄)−b)2H′(ρ(E,ρ̄))

. We make a substitution ρ̂ = ρ(E, ρ̄).
By the definition of ρ(E, ρ̄), we have

1
2
E2 − H(ρ̂) =

1
2
E2(ρ̄) − H(F (ρ̄)). (3.38)

Thus
EdE = H ′(ρ̂)dρ̂. (3.39)
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Therefore, noticing that ρ(E(ρ̄), ρ̄) = F (ρ̄) and ρ(Er(ρ̄), ρ̄) = ρr, we have

∫ Er(ρ̄)

E(ρ̄)

dE

(ρ(E, ρ̄) − b)2H ′(ρ(E, ρ̄))
=

∫ ρr

F (ρ̄)

dρ̂

(ρ̂ − b)2sgn(E(ρ̄))
√

E2(ρ̄) + 2
∫ ρ̂
F (ρ̄) H ′(t)dt

.

(3.40)
Here we have used the fact E = sgn(E(ρ̄))

√
E2(ρ̄) + 2

∫ ρ̂
F (ρ̄) H ′(t)dt along the trajectory from

(F (ρ̄), E(ρ̄)) to (ρr, Er(ρ̄)) and (3.39). Next, integration by parts gives

∫ Er(ρ̄)

E(ρ̄)

dE

(ρ(E, ρ̄) − b)2H ′(ρ(E, ρ̄))

=
∫ ρr

F (ρ̄)

dρ̂

(ρ̂ − b)2sgn(E(ρ̄))
√

E2(ρ̄) + 2
∫ ρ̂
F (ρ̄) H ′(t)dt

= − 1
(ρr − b)Er(ρ̄)

+
1

(F (ρ̄) − b)E(ρ̄)
−

∫ ρr

F (ρ̄)

H ′(ρ̂)

(ρ̂ − b)sgn(E(ρ̄))[E2(ρ̄) + 2
∫ ρ̂
F (ρ̄) H ′(t)dt]3/2

dρ̂.

(3.41)

It follows from (3.37) and (3.41) that

L′
1(ρ̄) + L′

2(ρ̄) =
(

p′(ρ̄) − J2

ρ̄2

)
F (ρ̄) − ρ̄

ρ̄

·
⎧⎨
⎩

1 − b
F (ρ̄)

(F (ρ̄) − b)E(ρ̄)
+

b

F (ρ̄)

∫ ρr

F (ρ̄)

H ′(ρ̂)

(ρ̂ − b)sgn(E(ρ̄))[E2(ρ̄) + 2
∫ ρ̂
F (ρ̄) H ′(t)dt]3/2

dρ̂.

⎫⎬
⎭

(3.42)

This proves (3.42). �

Lemma 3.5. For the fixed (ρ0, E0) and ρr satisfying ρ0 < ρs, ρr > ρs, let (ρ̄, E(ρ̄)) ∈
T (ρ0, E0) be a state satisfying 0 < ρ̄ < ρs and E does not change sign along the trajectory
from (ρ0, E0) to (ρ̄, E(ρ̄)). Moreover, the trajectory starting from (F (ρ̄), E(ρ̄)) crosses the
ρ-axis at the point (q(ρ̄), 0) and then intersects the line ρ = ρr at (ρr, Er(ρ̄)) (i.e. (q(ρ̄), 0) ∈
T (F (ρ̄), E(ρ̄)) and (ρr, Er(ρ̄)) ∈ T (q(ρ̄), 0)). Furthermore, we assume that ρ �= b on the
trajectory T (F (ρ̄), E(ρ̄)) . Let

X(ρ̄) = �((ρ0, E0); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))), (3.43)

then

dX(ρ̄)
dρ̄

=
(

p′(ρ̄) − J2

ρ̄2

)
F (ρ̄) − ρ̄

ρ̄

·
{

1
(F (ρ̄) − b)E(ρ̄)

− b

F (ρ̄)
[

1
(ρr − b)Er(ρ̄)

+
∫ q(ρ̄)

F (ρ̄)

dρ

(ρ − b)2E1(ρ, ρ̄)
+

∫ ρr

q(ρ̄)

dρ

(ρ − b)2E2(ρ, ρ̄)
]

}
,

(3.44)
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provided E(ρ̄) �= 0 and Er(ρ̄) �= 0, where

E1(ρ, ρ̄) = sgn(E(ρ̄))

√
E2(ρ̄) + 2

∫ ρ

F (ρ̄)
H ′(t)dt, (3.45)

E2(ρ, ρ̄) = −sgn(E(ρ̄))

√
E2(ρ̄) + 2

∫ ρ

F (ρ̄)
H ′(t)dt. (3.46)

Remark 1. By the definition of E1(ρ, ρ̄), E2(ρ, ρ̄) and q(ρ̄), it is clear that

E1(q(ρ̄), ρ̄) = E2(q(ρ̄), ρ̄) = 0, (3.47)

E1(F (ρ̄), ρ̄) = E(ρ̄), E2(ρr, ρ̄) = Er(ρ̄). (3.48)

Proof of Lemma 3.5.

Let
X1(ρ̄) = �((ρ0, E0); (ρ̄, E(ρ̄))),

and
X2(ρ̄) = �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))). (3.49)

Similar to (3.28), we have,

X ′
1(ρ̄) =

p′(ρ̄) − J2

ρ̄2

ρ̄E(ρ̄)
, (3.50)

as long as E(ρ̄) �= 0. Since
E1(ρ, ρ̄)

dx
= ρ − b,

thus
∂E1(ρ, ρ̄)/∂ρ

ρ − b
= dx.

Therefore

L2(ρ̄) =: � ((F (ρ̄), E(ρ̄); (q(ρ̄), 0)) =
∫ q(ρ̄)

F (ρ̄)

∂E1(ρ, ρ̄)/∂ρ

ρ − b
dρ. (3.51)

Noticing (3.47) and (3.48), integration by parts gives,

L2(ρ̄) = − E(ρ̄)
F (ρ̄) − b

+
∫ q(ρ̄)

F (ρ̄)

E1(ρ, ρ̄)
(ρ − b)2

dρ. (3.52)

Similarly,

L3(ρ̄) =: � ((q(ρ̄), 0); (ρr, Er(ρ̄)) =
Er(ρ̄)
ρr − b

+
∫ ρr

q(ρ̄)

E2(ρ, ρ̄)
(ρ − b)2

dρ. (3.53)

It should be noted that

�((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))) = L2(ρ̄) + L3(ρ̄). (3.54)
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By (3.52), (3.47) and (3.48), we have,

L′
2(ρ̄) = − E′(ρ̄)

F (ρ̄) − b
+

∫ q(ρ̄)

F (ρ̄)

∂E1(ρ, ρ̄)/ρ̄

(ρ − b)2
dρ. (3.55)

Similar to (3.31), we have
E′(ρ̄)E′(ρ̄) = H ′(ρ̄). (3.56)

It follows from (3.45) that

1
2
E2

1(ρ, ρ̄) =
1
2
E2(ρ̄) +

∫ ρ

F (ρ̄)
H ′(t)dt.

Therefore, in view of (3.56),

E1(ρ, ρ̄)
∂E1

∂ρ̄
= H ′(ρ̄) − H ′(F (ρ̄))F ′(ρ̄). (3.57)

So

L′
2(ρ̄) = − H ′(ρ̄)

(F (ρ̄) − b)E(ρ̄)
+ (H ′(ρ̄) − H ′(F (ρ̄))F ′(ρ̄))

∫ q(ρ̄)

F (ρ̄)

1
(ρ − b)2E1(ρ, ρ̄)

dρ. (3.58)

Now we show that
∫ q(ρ̄)
F (ρ̄)

1
(ρ−b)2E1(ρ,ρ̄)

dρ is finite. This is necessary because E1(q(ρ̄), ρ̄)) = 0.
Let

g(ρ) = E2(ρ̄) + 2
∫ ρ

F (ρ̄)
H ′(t)dt.

By (3.45)
E1(ρ, ρ̄) = sgn(E(ρ))

√
g(ρ). (3.59)

It is clear that g((q(ρ̄)) = 0 and

g′(q(ρ̄)) = H ′(q(ρ̄)) �= 0, (3.60)

because q(ρ̄) �= b and q(ρ̄) �= ρs. So

g(ρ) = g′(q(ρ̄)(ρ − q(ρ̄)) + O((ρ − q(ρ̄))2),

as |ρ− q(ρ̄))| is small. This, together with (3.59) and (3.60), implies that
∫ q(ρ̄)
F (ρ̄)

1
(ρ−b)2E1(ρ,ρ̄)

dρ

is finite. By a similar method as above, we can show that

L′
3(ρ̄) = (H ′(ρ̄) − H ′(F (ρ̄))F ′(ρ̄))

(
1

(ρr − b)Er(ρ̄)
+

∫ ρr

q(ρ̄)

1
(ρ − b)2E2(ρ, ρ̄)

dρ

)
. (3.61)

(3.44) follows from (3.50), (3.58) and (3.61), in view of (3.22). �

In the following, since the cases of 0 < b < ρs and b > ρs are completely different, we
consider them separately.
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4 Transonic shock solutions for the case of 0 < b < ρs.

We consider this problem for the following different cases.
Case 3.1 (ρl, α) is inside the critical trajectory, i.e.,

(1
2α2 − ∫ ρl

ρs
H ′(s)ds < 0 and 0 < ρl < ρs (ρl, α) �= (b, 0)) (see Figure 3).

By case 1 discussed in section 2, the initial value problem⎧⎨
⎩ (p(ρ) + J2

ρ )x = ρE, Ex = ρ − b, for x > 0,

(ρ,E)(0) = (ρl, α)
(4.1)

has a unique periodic supersonic solution. We denote the period of the solution by P . We
assume there exists a positive integer k such that

kP + 2B < L < (k + 1)P + 2B, (4.2)

where B is the length of x for the solution of (1.8) to travel from the state (ρr,−Er
c ) to

the state (ρs, 0). Here Er
c is defined as follows: there two intersection points of the line

ρ = ρr with the critical trajectory in (ρ,E) plane, we denote those two intersection points by
(ρr, E

r
c ) and (ρr,−Er

c ) (Er
c > 0). The length in x for the solution of system (1.8) to travel

from (ρr,−Er
c ) to the state (ρs, 0) is the same as that for the solution to travel from (ρs, 0)

to (ρr, E
r
c ). In the case of (4.2), the solution starts from (ρl, α) and travels k times along the

periodic trajectory and come back to the state (ρl, α) at x = kP . In this case, we expect the
shock location is in the interval (kP,L). Due to this, for simplicity, we may assume k = 0.
Let ρL(x) be the solution of initial value problem (4.1). Let ρmin and ρmax be the minimum
and maximum values of ρL(x) , i. e.,

ρmin = min
0≤x≤P

ρL(x), ρmax = max
0≤x≤P

ρL(x), (4.3)

where P is the period of the solution.
In order to construct the transonic shock solution, we assume α > 0, the case for α < 0

can be handled similarly. Suppose ρr > F (ρmin), we define Emax by the value of E such that
the states (F (ρl), α)) and (ρr, Emax) are on the same trajectory of system (1.8), i.e.,

Emax =

√
α2 + 2

∫ ρr

F (ρl)
H ′(s)ds, (4.4)

and Emin by the value of E such that the states (F (ρmin), 0)) and (ρr, Emin) are on the same
trajectory of system (1.8), i.e.,

Emin =

√
2

∫ ρr

F (ρmin)
H ′(s)ds. (4.5)

We have the following theorem
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Theorem 4.1. For α > 0, suppose that (ρl, α) is inside the supersonic loop of critical tra-
jectory, i.e.,

1
2
α2 −

∫ ρl

ρs

H ′(s)ds < 0, and 0 < ρl < ρs, (4.6)

and
(ρl, α) �= (b, 0). (4.7)

If ρr > F (ρmin) and

�((F (ρl), α); (ρr, Emax)) ≤ L ≤ �((ρl, α), (ρmin, 0)) + �((F (ρmin), 0); (ρr, Emin)), (4.8)

then there exists a unique state (ρ∗, E∗) on the trajectory of system (1.8) passing through
(ρl, α) satisfying ρmin ≤ ρ∗ ≤ ρl and E∗ ≥ 0 and a unique number β satisfying Emin ≤ β ≤
Emax such that the following equality holds true:

L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, β)) . (4.9)

So the transonic shock location is a = �((ρl, α); (ρ∗, E∗)) (see Fig. 3).

Proof. For any ρ̄ ∈ [ρmin, ρl], let

E(ρ̄) =

√
α2 + 2

∫ ρ̄

ρl

H ′(s)ds. (4.10)

Er(ρ̄) =

√
E2(ρ̄) + 2

∫ ρr

F (ρ̄)
H ′(s)ds, (4.11)

i.e., (ρl, α) and (ρ̄, E(ρ̄)) are on the same supersonic trajectory of system (1.8) and (ρr, Er(ρ̄)))
and (F (ρ̄), E(ρ̄)) are on the same subsonic trajectory of (1.8). Let

X(ρ̄) = �((ρl, α); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))), for ρmin < ρ ≤ ρl. (4.12)

By (3.11), we have
X ′(ρ̄) < 0, for ρmin < ρ ≤ ρl. (4.13)

This is because 0 < ρ̄ < ρs < F (ρ̄) < ρr, E(ρ̄) > 0 and 0 < b < ρs. (4.8) follows from (4.13)
then. �

We still assume ρr > F (ρmin). We denote

L3 = � ((ρl, α); (ρmin, 0)) , (4.14)

L4 = � ((F (ρmin), 0); (ρr, Emin)) , (4.15)

where Emin =
√

2
∫ ρr

F (ρmin) H ′(s)ds,

L5 = � ((ρmin, 0); (ρmax, 0)) (4.16)

L6 = �
(
F (ρmax), 0); (ρr, Ẽ)

)
, (4.17)

where Ẽ =
√

2
∫ ρr

F (ρmax) H ′(s)ds. At first, we have the following lemma.
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Lemma 4.1. For α > 0, suppose that (ρl, α) is inside the supersonic loop of critical trajectory,
i.e. ,

1
2
α2 −

∫ ρl

ρs

H ′(s)ds < 0, and 0 < ρl < ρs, (4.18)

and
(ρl, α) �= (b, 0). (4.19)

If ρr > F (ρmin), then
L4 < L6. (4.20)

Proof. We define

x(ρ) = �
(
(ρ, 0); (ρr, Ēs(ρ)

)
, for F (ρmax) ≤ ρ ≤ F (ρmin), (4.21)

where Ēs(ρ) =
√

2
∫ ρr

ρ H ′(t)dt. By Lemma 3.2, we get

x(ρ) =
∫ Ēs(ρ)

0

dz

ρ̄(z, ρ) − b
, (4.22)

where the function ρ̄(z, ρ) is given by

1
2
z2 =

∫ ρ̄

ρ
H ′(t)dt, for 0 ≤ z ≤ Ēs(ρ) and ρ ≤ ρ̄ ≤ ρr. (4.23)

Notice that ρ̄(Ēs(ρ), ρ) = ρr, we have

x′(ρ) =
Ē′

s(ρ)
ρr − b

−
∫ Ēs(ρ)

0

∂ρ̄(z,ρ)
∂ρ

(ρ̄(z, ρ) − b)2
dz, F (ρmax) ≤ ρ ≤ F (ρmin). (4.24)

By the definition of Ēs(ρ) ( Ēs(ρ) =
√

2
∫ ρr

ρ H ′(t)dt), we have

Ēs(ρ)Ē′
s(ρ) = −H ′(ρ). (4.25)

It follows from (4.23) that
∂ρ̄(z, ρ)

∂ρ
=

H ′(ρ)
H ′(ρ̄)

. (4.26)

Therefore, (4.24)-(4.26) imply

x′(ρ) = − H ′(ρ)
(ρr − b)Ēs(ρ)

−
∫ Ēs(ρ)

0

H ′(ρ)
(ρ̄(z, ρ) − b)2H ′(ρ̄(z, ρ))

dz, F (ρmax) ≤ ρ ≤ F (ρmin).

(4.27)
For ρsonic < F (ρmax) ≤ ρ ≤ F (ρmin), we have H ′(z) > 0, Ēs(ρ) > 0 and H ′(ρ̄(z, ρ)) > 0. By
(4.27), we have

x′(ρ) < 0 for F (ρmax) ≤ ρ ≤ F (ρmin) (4.28)

Because L4 = x(F (ρmin)) and L6 = x(F (ρmax)) and F (ρmin) > F (ρmax), (4.20) follows from
(4.28).

�

20



Theorem 4.2. For α > 0, suppose that (ρl, α) is inside the supersonic loop of critical tra-
jectory, i.e.,

1
2
α2 −

∫ ρl

ρs

H ′(s)ds < 0, and 0 < ρl < ρs, (4.29)

and
(ρl, α) �= (b, 0). (4.30)

If ρr > F (ρmin) and
L3 + L4 < L < L3 + L5 + L6 (4.31)

there exist a unique state (ρ∗, E∗) on the trajectory of system (1.8) passing through (ρl, α)
satisfying ρmin < ρ∗ < ρmax and E∗ < 0 and a unique number β1 such that the following
equality holds true:

L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, β1)) . (4.32)

So the transonic shock location is a = �((ρl), α); (ρ∗, E∗)) (see Fig. 4).

Proof. By Lemma 4.1, we know that

L3 + L4 < L3 + L5 + L6. (4.33)

The existence of (ρ∗, E∗) follows from intermediate value theorem. So the remaining task is
to prove the uniqueness. This is done as follows. For ρ̄ ∈ [ρmin, ρmax], we define

E(ρ̄) = −
√

2
∫ ρ̄

ρmin

H ′(s)ds. (4.34)

Er(ρ̄) =

√
E(ρ̄)2 + 2

∫ ρr

F (ρ̄)
H ′(s)ds, (4.35)

i.e., (ρmin, 0) and (ρ̄, E(ρ̄)) are on the same supersonic trajectory of system (1.8) and (ρr, Er(ρ̄)))
and (F (ρ̄), E(ρ̄)) are on the same subsonic trajectory of (1.8).Let

X(ρ̄) = � ((ρmin), 0); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))), for ρmin < ρ̄ ≤ ρmax. (4.36)

Then we can apply Lemma 3.4 to show that

X ′(ρ̄) > 0, for ρ̄min < ρ < ρmax. (4.37)

This is because 0 < b < ρs, and for ρmin < ρ̄ < ρmax , 0 < ρ̄ < ρs, E(ρ̄) < 0, Er(ρ̄) > 0,
ρr > ρs > b, q(ρ̄) < F (ρ̄) and q(ρ̄) < F (ρ̄). Moreover,

E1(ρ, ρ̄) < 0, for q(ρ̄) < ρ ≤ F (ρ̄),
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and
E1(ρ, ρ̄) > 0, for q(ρ̄) < ρ ≤ ρr.

These quantities are defined in Lemma 3.4. Theorem 4.2 follows from (4.37). �
We define L7 by

L7 = � (ρmax, 0); (ρl, α)) , (4.38)

L8 = � (F (ρl, α); (ρr, Eα)) , (4.39)

where Eα =
√

α2 + 2
∫ ρr

F (ρl)
H ′(s)ds. Then we have

Theorem 4.3. For α > 0, suppose that (ρl, α) is inside the supersonic loop of critical tra-
jectory, i.e.,

1
2
α2 −

∫ ρl

ρs

H ′(s)ds < 0, and 0 < ρl < ρs, (4.40)

and
(ρl, α) �= (b, 0). (4.41)

If ρr > F (ρmin) and
L3 + L5 + L6 < L < L3 + L5 + L7 + L8, (4.42)

there exist a unique state (ρ∗∗, E∗∗) on the trajectory of system (1.8) passing through (ρl, α)
satisfying ρl < ρ∗∗ < ρmax and E∗∗ > 0 and a unique number β2 such that the following
equality holds true:

L = � ((ρl, α); (ρ∗∗, E∗∗)) + � ((F (ρ∗∗), E∗∗); (ρr, β2)) . (4.43)

So the transonic shock location is �((ρl, α); (ρ∗∗, E∗∗)).

Proof. For ρ̄ ∈ [ρl, ρmax], we define

E(ρ̄) =

√
2

∫ ρ̄

ρmax

H ′(s)ds. (4.44)

Er(ρ) =

√
E(ρ̄)2 + 2

∫ ρr

F (ρ̄)
H ′(s)ds, (4.45)

i.e., (ρmax, 0) and (ρ̄, E(ρ̄)) are on the same supersonic trajectory of system (1.8) and (ρr, Er(ρ̄)))
and (F (ρ̄), E(ρ̄)) are on the same subsonic trajectory of (1.8). Let

X(ρ̄) = � ((ρmax), 0); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))), for ρl < ρ̄ < ρmax. (4.46)

By a similar approach as in the proof of Theorem 4.1, we can show that

X ′
3(ρ̄) < 0, for ρl < ρ < ρmax. (4.47)
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This shows that L6 < L7 + L8. So the assumption (4.42) makes sense. Also Theorem 4.3
follows from (4.47). �

Theorems 4.1-4.3 complete all the possible cases for the interval length L for the case when
(ρl, α) is inside the supersonic loop of the critical trajectory. We turn to the case when (ρl, α)
is on the supersonic loop of the critical trajectory, i. e.,

1
2
α2 −

∫ ρl

ρs

H ′(s)ds = 0.

and ρl < ρs. We still assume α > 0. (The case when α < 0 can be handled similarly).
There are two intersection points of the supersonic loop of the critical trajectory and the line
E = 0. One is (ρs, 0), another one is (ρc

min, 0) (
∫ ρc

min
ρs

H ′(t)dt = 0, 0 < ρc
min < b). We define

the following quantities:

Ē(ρl) =

√
α2 + 2

∫ ρr

F (ρl)
H ′(t)dt, Ē(ρc

min) =

√
2

∫ ρr

F (ρc
min)

H ′(t)dt, (4.48)

Lc
1 = �((ρl, α); (ρc

min, 0)), (4.49)

Lc
2 = �((ρc

min, 0); (ρs, 0)), (4.50)

Lc
3 = �((ρc

min, 0); (ρl, α)), (4.51)

Lc
4 = �((F (ρl), α); (ρr, Ē(ρl))), (4.52)

Lc
5 = �((F (ρc

min), 0); (ρr, Ē(ρc
min))), (4.53)

Lc
6 = �((ρs, 0); (ρr, Ec)), (4.54)

where Ec is defined by Ec =
√

2
∫ ρr

ρs
H ′(t)dt. We have the following theorem.

Theorem 4.4. For α > 0, suppose that (ρl, α) is on the supersonic loop of critical trajectory,
i.e.,

1
2
α2 −

∫ ρl

ρs

H ′(s)ds = 0, and 0 < ρl < ρs, (4.55)

If ρr > F (ρc
min), then

a) If
Lc

4 ≤ L ≤ Lc
1 + Lc

5, (4.56)

where Ē(ρl) =
√

α2 + 2
∫ ρr

F (ρl
H ′(t)dt, Ē(ρc

min) =
√

2
∫ ρr

F (ρc
min

H ′(t)dt, then there exists a
unique state (ρ∗c , E∗

c ) on supersonic loop of the critical trajectory satisfying ρc
min ≤ ρ∗c ≤ ρl

and E∗
c ≥ 0 and a unique number βc satisfying Ē(ρc

min)) ≤ βc ≤ Ē(ρl) such that the following
equality holds true:

L = � ((ρl, α); (ρ∗c , E
∗
c )) + � ((F (ρ∗c), E

∗
c ); (ρr, β

c)) . (4.57)
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So the transonic shock location is a = �((ρl, α); (ρ∗c , E∗
c ));

b)If Lc
1 + Lc

5 ≤ L < Lc
1 + Lc

2 + Lc
6, then there exists a unique state (ρ∗∗c , E∗∗

c ) on supersonic
loop of the critical trajectory satisfying ρc

min ≤ ρ∗c < ρs and E∗
c ≤ 0 and a unique number βc

1

such that the following equality holds true:

L = Lc
1 + � ((ρc

min, 0); (ρ∗∗c E∗∗
c )) + � ((F (ρ∗∗c ), E∗∗

c ); (ρr, β
c
1)) . (4.58)

So the transonic shock location is a = Lc
1 + � ((ρc

min, 0); (ρ∗∗c E∗∗
c ));

c)If L = Lc
1 + Lc

2 + Lc
6, then the solution of the boundary value problem of (1.8) and (1.9) is

smooth (no transonic shock). In (ρ,E)-phase plane, the solution starts from (ρl, α), travels
along the supersonic loop of the critical trajectory to the sonic state (ρs, 0), then travels along
the subsonic branch of the critical trajectory to the state (ρr, Ec);
(d) If Lc

1 + Lc
2 + Lc

6 < L ≤ Lc
1 + Lc

2 + Lc
3 + Lc

4, then there exists a unique state (ρ0
c , E

0
c ) on

supersonic loop of the critical trajectory satisfying ρl ≥ ρ0
c < ρs and E0

c > 0 and a unique
number βc

2 such that the following equality holds true:

L = Lc
1 + Lc

2 + �
(
(ρs, 0); ((ρ0

c , E
0
c ))

)
+ �

(
(F (ρ0

c), E
0
c ); (ρr, β

c
2)

)
. (4.59)

So the transonic shock location is a = Lc
1 + Lc

2 + �
(
(ρs, 0); ((ρ0

c , E
0
c ))

)
;

The proof of this theorem is similar to those of Theorems 4.2 and 4.3. So we omit it.

When the state (ρl, α) is outside the supersonic loop of the critical trajectory, i.e.

1
2
α2 −

∫ ρl

ρs

H ′(s)ds > 0, and 0 < ρl < ρs, (4.60)

the situation is more complicated. We consider the following cases. We use To to denote the
supersonic trajectory passing through the point (ρl, α) on (ρ,E) phase plane, i.e.,

To = {(ρ,E) :
1
2
E2 =

1
2
α2 +

∫ ρ

ρl

H ′(t)dt, 0 < ρ < ρs}. (4.61)

We use the T shock
o to denote the shock conjugate of To,

T shock
o = {(F (ρ), E) : (ρ, E) ∈ To}. (4.62)

It is easy to verify that T shock
o intersects the subsonic branch of the critical trajectory at two

points, denoted by (ρ̌, Ě) and (ρ̌,−Ě), where Ě > 0. Also, we denote the intersection point
of To with ρ-axis by (ρo

min, 0). We assume that ρr > F (ρo
min). We assume α > 0. We define

the following quantity:

L̄(ρ) = � ((ρl, α); (ρ,E(ρ))) + �
(
(F (ρ), E(ρ)); (ρr, Ē(ρ))

)
, for (ρ,E(ρ)) ∈ To, E(ρ) ≥ 0,

(4.63)
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where Ē(ρ) =
√

E2(ρ) + 2
∫ ρr

F (ρ) H ′(t)dt. By the same argument as in the proof of theorem

4.2, we can show that L̄(ρ) is a strictly decreasing function of ρ for ρo
min ≤ ρ ≤ ρl. We also

define the quantity

L̃(ρ) = � ((ρo
min, 0); (ρ,E(ρ))) + �

(
(F (ρ), E(ρ)); (ρr, Ē(ρ))

)
, (4.64)

for (ρ,E(ρ)) ∈ To, ρ
o
min ≤ ρ < F−1(ρ̌), E(ρ) < 0, where Ē(ρ) =

√
E2(ρ) + 2

∫ ρr

F (ρ) H ′(t)dt.

By the same argument as in the proof of theorem 3.2, we can show that L̄(ρ) is a strictly
increasing function of ρ for ρo

min ≤ ρ < F−1(ρ̌).
Then we have the following Theorem.

Theorem 4.5. Assume α > 0, then
1. If L̄(ρl) ≤ L ≤ L̄(ρo

min), then there exits a unique state (ρ1, E1) ∈ To with E1 ≥ 0 such
that L = L̄(ρ1). In this case, the transonic shock location is at a = � ((ρl, α); (ρ1, E1)) .

2. If � ((ρl, α); (ρo
min, 0)) + L̃(ρo

min) ≤ L < � ((ρl, α); (ρo
min), 0)) + limρ→F−1(ρ̌) L̃(ρ),then there

exits a unique state (ρ2, E2) ∈ To with −Ě < E2 ≤ 0 such that L = L̃(ρ1). In this case, the
transonic shock location is at a = � ((ρl, α); (ρ2, E2)) .

The proof of this theorem is similar to those for Theorems 4.2 and 4.3. So we omit it.
The case when L ≥ � ((ρl, α); (ρo

min), 0)) + limρ→F−1(ρ̌) L̃(ρ) is more complicated. We have
the following theorem for this case. In this case, we do not assume ρr > F (ρo

min).

Theorem 4.6. Assume α > 0. If L ≥ � ((ρl, α); (ρo
min), 0)) + limρ→F−1(ρ̌) L̃(ρ), the only

possible solution of the boundary value problem is described as follows: In (ρ,E)-phase plane,
the solution starts from (ρl, α), travels along the To in the counterclockwise direction and
reaches the point (F−1(ρ̌),−Ě), then jumps to the point (ρ̌,−Ě) by a transonic shock. Start-
ing from (ρ̌,−Ě), the solution travels along the lower portion of the subsonic branch of
the critical trajectory {(ρ,E) : E = −

√
2

∫ ρ
ρs

H ′(t)dt, ρ > ρs} and reaches the sonic point
(ρs, 0). Starting from the sonic point (ρs, 0), the solution travels along the supersonic loop
{(ρ,E) : 1

2E2 =
∫ ρ
ρs

H ′(t)dt, ρ < ρs} k times k = 0, 1, 2, · · · and comes back to the sonic point.
Starting form the sonic point, the solution travels along the upper portion of the subsonic
branch of the critical trajectory {(ρ,E) : E =

√
2

∫ ρ
ρs

H ′(t)dt, ρ > ρs} in the direction that ρ

increases and reaches the state (ρr, Ec) where Ec =
√

2
∫ ρr

ρs
H ′(t)dt.

Proof. In (ρ,E)-phase plane, starting from (ρl, α), the solution travels along the To in the
counterclockwise direction. The solution can not jump by a transonic shock before it reaches
the point (F−1(ρ̌),−Ě), otherwise it reduces to the case that L < � ((ρl, α); (ρo

min), 0)) +
limρ→F−1(ρ̌) L̃(ρ) discussed in Theorem 4.5. Also , it can not travel beyond the point (F−1(ρ̌),−Ě).
This is because if it travels beyond the point (F−1(ρ̌),−Ě), it can never reach the state ρr.
This can be shown clearly by a phase plane analysis. So the only possibility is as described
in the theorem. �
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5 Transonic shock solutions for the case when b > ρs.

In this section, we study the case when b > ρs, i. e., b is in subsonic region. It is easy to see
that

H ′(ρ) > 0 for 0 < ρ < ρs and ρ > b,H ′(ρ) < 0, for ρs < ρ < b. (5.1)

In order to solve the boundary value problem (1.8) and (1.9), we need several lemmas. First,
we have the following Lemma.

Lemma 5.1. Suppose the pressure function p satisfies (1.3) and b > ρs. Let ρb be the density
satisfying

0 < ρb < ρs, H(ρb) = H(b). (5.2)

Then
ρs < F (ρb) < b. (5.3)

Proof. Since H(ρb) = H(b),

∫ b

ρb

t − b

t

(
p′(t) − J2

t2

)
dt = 0.

So

(p(b) +
J2

b
) − (p(ρb) +

J2

ρb
)

−
∫ b

ρb

(
p′(t) − J2

t2

)
b

t
dt = 0. (5.4)

Let

f(z) =:(p(z) +
J2

z
) − (p(g(z)) +

J2

(g(z)
)

−
∫ z

g(z)

(
p′(t) − J2

t2

)
z

t
dt, (5.5)

for z ≥ ρs, where g(z) = F−1(z). Since g(ρs) = ρs, we have

f(ρs) = 0. (5.6)

On the other hand,

p(g(z)) +
J2

g(z)
= p(z) +

J2

z
, z ≥ ρs.

Hence, (
p′(g(z)) − J2

(g(z))2

)
g′(z) = p′(z) − J2

z2
, z ≥ ρs. (5.7)
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(5.5) and (5.7) yield,

f ′(z) =
(

p′(z) − J2

z2

)
1

g(z)
(z − g(z)) −

∫ z

g(z)

(
p′(t) − J2

t2

)
1
t
dt

=
∫ z

g(z)

(
p′(z) − J2

z2

)
1

g(z)
dt −

∫ z

g(z)

(
p′(t) − J2

t2

)
1
t
dt. (5.8)

Since p′′(ρ) > 0 for ρ > 0 (see (1.3)), we have

p′(z) − J2

z2
> p′(t) − J2

t2
, for g(z) ≤ t < z.

This, together with (5.8), implies

f ′(z) > 0, for z > ρs.

Therefore, in view of (5.6), we have
f(b) > 0, (5.9)

since b > ρs. This means, in view of (5.5),

(p(b) +
J2

b
) − (p(g(b)) +

J2

(g(b)
)

−
∫ b

g(b)

(
p′(t) − J2

t2

)
b

t
dt > 0. (5.10)

Next, we define

q(ρ) =:(p(b) +
J2

b
) − (p(ρ) +

J2

ρ
)

−
∫ b

ρ

(
p′(t) − J2

t2

)
b

t
dt, for 0 < ρ < ρs. (5.11)

It is easy to verify that

q′(ρ) = (p′(ρ) − J2

ρ2
)(

b

ρ
− 1) < 0, for 0 < ρ < ρs, (5.12)

since b > ρs > ρ. This, together with (5.4) and (5.10), implies

ρb < g(b) = F−1(b). (5.13)

Since F ′(ρ) < 0 for 0 < ρ < ρs (cf. (3.5)), (5.3) follows. �
Let

Tb =: {(ρ,E) :
1
2
E2 − H(ρ) = −H(F−1(b)), ρ ≤ ρs}, (5.14)

and Sb be the set of states which can be connected to the states of Tb by transonic shocks,
i.e.,

Sb := {(F (ρ), E) : (ρ,E) ∈ Tb.}
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Then Sb is a curve in (ρ,E)-plane satisfying the following equation

1
2
E2 − H(F−1(ρ)) = −H(F−1(b), ρs ≤ ρ ≤ b. (5.15)

Clearly (b, 0) ∈ Sb. Let

Csub
b =: {(ρ,E) :

1
2
E2 − H(ρ) = −H(b), ρs ≤ ρ ≤ b},

the subsonic branch of the critical trajectory passing through (b, 0). In the next lemma, we
will show that curve Sb is outside the curve Csub

b . Precisely, we have

Lemma 5.2.

H(F−1(ρ)) − H(F−1(b)) > H(ρ) − H(b), ρs ≤ ρ < b. (5.16)

Proof. Let

h(ρ) = H(F−1(ρ)) − H(ρ) + H(b) − H(F−1(b)), ρs ≤ ρ < b.

Since F−1(ρs) = ρs, we have

h(ρs) = H(b) − H(F−1(b)) = H(ρb) − H(F−1(b)), (5.17)

where ρb < ρs is the constant defined in (5.2). Since ρs < b we have H ′(ρ) > 0 for 0 < ρ < ρs.
Thus, (5.13) and (5.17) imply

h(ρs) > 0. (5.18)

On the other hand, just as (5.7), we have(
p′(g(ρ)) − J2

(g(ρ))2

)
g′(ρ) = p′(ρ) − J2

ρ2
, ρ ≥ ρs, (5.19)

where and in the following
g(ρ) = F−1(ρ).

This gives

H ′(g(ρ))g′(ρ) =
(

p′(ρ) − J2

ρ2

) (
g(ρ) − b

g(ρ)

)
ρ ≥ ρs. (5.20)

Therefore,

h′(ρ) =
(

p′(ρ) − J2

ρ2

) (
b

ρ
− b

g(ρ)

)
, ρ ≥ ρs. (5.21)

Since g(ρ) = F−1(ρ) < ρs for ρ > ρs, we have

h′(ρ) < 0, ρ > ρs. (5.22)

On the other hand
h(b) = 0. (5.23)
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This, together with (5.18) and (5.22), implies (5.16). �
For (ρl, α) satisfying 0 < ρl < ρs, let

T̄ (ρl, α) = {(ρ,E) :
1
2
E2 − H(ρ) =

1
2
α2 − H(ρl), ρ > 0}, (5.24)

and
S(ρl, α) = {(ρ, E) :

1
2
E2 − H(F−1(ρ)) =

1
2
α2 − H(ρl), ρ ≥ ρs}. (5.25)

So S(ρl, α) is the set of states which can be connected to the set {(ρ,E) ∈ T̄ (ρl, α) : 0 < ρ ≤
ρs} by a transonic shock. For the set {(ρ, E) ∈ T̄ (ρl, α), ρ ≥ ρs}, E2 is a function of ρ, we
denote this function by E2

1(ρ), i.e.,

E2
1(ρ) = α2 + 2(H(ρ) − H(ρl)). (5.26)

For the set S(ρl, α), E2 is also a function of ρ, we denote this function by E2
2(ρ), i.e.,

E2
2(ρ) = α2 + 2(H(F−1(ρ)) − H(ρl)), ρs ≤ ρ ≤ ρα, (5.27)

where ρα is determined by

H(F−1(ρα)) = H(ρl) − 1
2
α2, ρα > ρs. (5.28)

Obviously
E2(ρα) = 0. (5.29)

Then we have following lemma.

Lemma 5.3.
E2

1(ρ) > E2
2(ρ), for ρs < ρ ≤ ρα. (5.30)

Proof. Obviously
E2

1(ρs) = E2
2(ρs). (5.31)

Let g(ρ) = F−1(ρ) for ρ ≥ ρs. By (3.5), we have

(p′(g(ρ)) − J2

(g(ρ))2
g′(ρ) = p′(ρ) − J2

ρ2
, ρ ≥ ρs. (5.32)

It follows from (5.26), (5.27) and (5.32 that

d(E2
1(ρ) − E2

2(ρ))
dρ

= 2(H ′(ρ) − H ′(g(ρ))g′(ρ))

= 2(p′(ρ) − J2

ρ2
)(

b

g(ρ)
− b

ρ
), (5.33)

for ρs ≤ ρ ≤ ρα. For ρ > ρs, g(ρ) = F−1(ρ) < ρs, p′(ρ)− J2

ρ2 > 0. Therefore, d(E2
1(ρ)−E2

2(ρ))
dρ > 0

for ρs < ρ ≤ ρα. This, together with (5.31), implies (5.30). �
We construct transonic shock solutions according to the different situations of (ρl, α), ρr

and L.
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5.1 The case for (ρl, α) is outside the trajectory though (F−1(b), 0).

In this case,
1
2
α2 − H(ρl) > −H(F−1(b)), 0 < ρl < ρs. (5.34)

We define ρout
min by

H(ρout
min) = H(ρl) − 1

2
α2, 0 < ρout

min < ρs

(see Figure 6). We construct the solution for the different situations of ρr.

Subcase 1. ρr ≥ F (ρout
min).

We define

T(ρl, α) =: {(ρ,E) :
1
2
E2 − H(ρ) =

1
2
α2 − H(ρl), ρout

min ≤ ρ < ρs} (5.35)

the supersonic trajectory passing through (ρl, α), and

S(ρl, α) =: {(F (ρ, E) : (ρ,E) ∈ T(ρl, α)} (5.36)

the curve on (ρ,E)-plane consisting of the states which can be connected to those on T(ρl, α)
by a transonic shock. Then S(ρl, α) intersects the critical trajectory passing through (b, 0)
at two points (ρc, Ec) and (ρc,−Ec) with ρc > b and Ec > 0 (see Figure 6).

In this case, we have the following result.

Theorem 5.1. Suppose that (ρl, α) satisfies (5.34) and ρr ≥ F (ρour
min).

1) If α > −Ec, then we have
1a) the boundary value problem (1.8) and (1.9) does not have a solution with a single transonic
shock, if

L < �((F (ρl), α), (ρr, β)), (5.37)

where β is determined by

β =
√

α2 + 2(H(ρr) − H(F (ρl)), (5.38)

such that (ρr, β) ∈ T (F (ρl), α),
1b) if

�((F (ρl), α); (ρr, β)) ≤ L < +∞, (5.39)

Then there exists a unique state (ρ∗, E∗) ∈ T (ρl, α) satisfying ρout
min ≤ ρ∗ ≤ ρl and −Ec <

E∗ ≤ α and a constant Er such that

(ρr, Er) ∈ T (F (ρ∗), E∗), L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, Er)) , (5.40)

so the transonic shock location is a = �((ρl, α); (ρ∗, E∗)).
2) If α < −Ec, then the boundary value problem (1.8) and (1.9) does not have a solution with
a single transonic shock. (See Figure 6).
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Proof. 1a) and 2) are clear by looking at the phase portrait (see Figure 6). Therefore, the
task is to prove 1b). We prove this for the different cases of α.
Case 1.

α ≥ 0. (5.41)

In this case, we claim:
i) if

�((F (ρl), α); (ρr, β)) ≤ L ≤ �((ρl, α); (ρout
min, 0)) + �((F (ρout

min), 0); (ρr, Er1) (5.42)

where β is given by (5.38), Er1 is determined by

Er1 =
√

2(H(ρr) − H(F (ρout
min)), (5.43)

such that (ρr, Er1) ∈ T (F (ρout
min), 0), then there exists a unique state (ρ∗, E∗) ∈ T (ρl, α)

satisfying ρout
min ≤ ρ∗ ≤ ρl and 0 ≤ E∗ ≤ α and a constant Er such that

(ρr, Er) ∈ T (F (ρ∗, E∗), L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, Er)) , (5.44)

ii) if
�((ρl, α); (ρout

min, 0)) + �((F (ρout
min), 0); (ρr, Er1)) ≤ L < +∞, (5.45)

then there exists a unique state (ρ∗, E∗) ∈ T (ρout
min, 0) satisfying ρout

min ≤ ρ∗ ≤ F−1(ρc) and
-Ec < E∗ ≤ 0 and a constant E∗

r > 0 such that

(ρr, E
∗
r ) ∈ T (F (ρ∗), E∗), L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, E

∗
r )) . (5.46)

We prove i) and ii) by using Lemmas 3.3 and 3.4. First, if (5.41) and (5.42) hold, we define

X(ρ̄) = � ((ρl, α); (ρ̄, E(ρ̄)) + � ((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))) ,

for (ρ̄, E(ρ̄)) ∈ T (ρl, α), ρout
min ≤ ρ < ρl and 0 < E(ρ̄) < α. Here the meaning of Er(ρ̄) is the

same as that in Lemma 3.3, i.e.

Er(ρ̄) =
√

E2(ρ̄) + 2(H(F (ρ̄)) − H(ρr)). (5.47)

Then we can apply (3.11) in Lemma 3.3 to obtain

X ′(ρ̄) < 0, for ρout
min ≤ ρ < ρl. (5.48)

This is because 0 < ρ̄ < ρs, ρr > F (ρ̄) > ρs > ρ̄, E(ρ̄) > 0 and E(ρ̄, t) > 0 for ρr > t > F (ρ̄)
(The definition of E(ρ̄, t) can be found in Lemma 3.3). This proves i). In order to prove ii),
we let

φ(ρ̄) = �
(
(ρout

min, 0); (ρ̄, E(ρ̄)
)

+ � ((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))) ,
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for (ρ̄, E(ρ̄)) ∈ T (ρout
min, 0), ρout

min < ρ̄ < F−1(ρc) and −Ec < E(ρ̄) < 0. Here the meaning of
Er(ρ̄) is the same as that in Lemma 3.5, i.e.,

Er(ρ̄) =
√

E2(ρ̄) + 2(H(F (ρ̄)) − H(ρr)). (5.49)

By using Lemma 3.5, we obtain

dφ(ρ̄)
dρ̄

= =
(

p′(ρ̄) − J2

ρ̄2

)
F (ρ̄) − ρ̄

ρ̄

·
{

1
(F (ρ̄) − b)E(ρ̄)

− b

F (ρ̄)
[

1
(ρr − b)Er(ρ̄)

+
∫ q(ρ̄)

F (ρ̄)

dρ

(ρ − b)2E1(ρ, ρ̄)
+

∫ ρr

q(ρ̄)

dρ

(ρ − b)2E2(ρ, ρ̄)
]

}
,

(5.50)

where

E1(ρ, ρ̄) = −
√

E2(ρ̄) + 2
∫ ρ

F (ρ̄)
H ′(t)dt, (5.51)

E2(ρ, ρ̄) =

√
E2(ρ̄) + 2

∫ ρ

F (ρ̄)
H ′(t)dt, (5.52)

where q(ρ̄) is determined by

E1(q(ρ̄), ρ̄) = E2(q(ρ̄), ρ̄) = 0, (5.53)

It is clear that q(ρ̄) < F (ρ̄) and q(ρ̄) < ρr for ρout
min < ρ̄ < F−1(ρc). Moreover, E1(ρ, ρ) <

0 as q(ρ̄) < ρ ≤ F (ρ̄), so ∫ q(ρ̄)

F (ρ̄)

1
(ρ − b)2E1(ρ, ρ̄)

dρ > 0. (5.54)

On the other hand, q(ρ) < ρr and E2(ρ, ρ̄) > 0 as q(ρ̄) < ρ ≤ ρr, so∫ ρr

q(ρ̄)

1
(ρ − b)2E2(ρ, ρ̄)

dρ > 0. (5.55)

Therefore, ∫ ρr

F (ρ)

1
(t − b)2E(t, ρ)

dt > 0. (5.56)

Due to the fact that p′(ρ̄) − J2

ρ̄2 < 0 and F (ρ̄) > b > ρ̄ and E(ρ̄) < 0 for ρout
min < ρ̄ < F−1(ρc).

In view of (5.55) and (5.54), we have

φ′(ρ̄) > 0, for ρout
min < ρ̄ < F−1(ρc). (5.57)

Finally, we show that

lim
ρ̄→F−1(ρc)−

�((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄)) = +∞, (5.58)
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where Er(ρ̄) is determined by (5.47). This can be shown as follows. The trajectory T (F (ρ̄), E(ρ̄))
intersects the ρ-axis at (q(ρ̄), 0) In order to show (5.58), it suffices to show that

�(F (ρ̄), E(ρ̄)); (q(ρ̄), 0)) =
∫ q(ρ̄)

F (ρ)

p′(t) − J2

t2

E1(t, ρ̄)t
dt → +∞, (5.59)

as ρ̄ → F−1(ρc)−, where

E1(t, ρ̄) = −
√

2
∫ t

q(ρ̄)

(s − b)(p′(s) − J2

s2

s
ds, q(ρ̄) ≤ t ≤ F (ρ̄). (5.60)

In fact, as ρ̄ < F−1(ρc), F (ρ̄) ≥ q(ρ̄) > b. Therefore

|E1(t, ρ̄)| ≤ C

√∫ t

q(ρ)
(s − b)ds = C

√
1
2
((t − b)2 − (q(ρ̄) − b)2), q(ρ̄) ≤ t ≤ F (ρ̄). (5.61)

By (5.59) and (5.60), we have

�(F (ρ̄), E(ρ̄)); (q(ρ̄), 0) ≥ C

∫ F (ρ̄)

q(ρ̄)

1
|E1(t, ρ̄)|dt ≥ C

∫ F (ρ̄)

q(ρ̄)

1√
1
2((t − b)2 − (q(ρ̄) − b)2)

.

As ρ̄ → F−1(ρc)−, F (ρ̄) → ρc > b, q(ρ̄) → b. Thus, (5.59) follows from (5.60)and (5.61). �
Case when b < ρr < F (ρout

min)
Next, we consider the case when b < ρr ≤ F (ρout

min). We still denote (ρc, Ec) and (ρc,−Ec)
the intersection points of the shock curve S(ρl, α) and the trajectory though (b, 0) (see Figure
7). There are two subcases needed to be handled separately.
Subcase 1:

ρc ≤ ρr ≤ F (ρout
min). (5.62)

In this case, the line ρ = ρr intersects the shock curve S(ρl, α) at two points (ρr, E
0
r ) and

(ρr,−E0
r ) with E0

r > 0, the trajectory passing through (ρr, 0) satisfying 1
2E2−H(ρ) = −H(ρr)

intersects the shock curve S(ρl, α) at two points (ρ1
r , E1

r ) and (ρ1
r , −E1

r ) with E1
r > 0 (see

Figure 7). Clearly, ρ1
r > ρr and E0

r > E1
r .

For ρ̄ ∈ [F−1(ρ1
r), F

−1(ρc)], we let

Er(ρ̄) =
√

E2(ρ̄) + 2((H(ρr) − H(F (ρ̄)), (5.63)

where
E(ρ̄) = −

√
α2 + 2(H(ρ̄) − H(ρl))

satisfying (ρ̄, E(ρ̄) ∈ T (ρout
min, 0) ⊂ T (ρl, α).

In this case, for any state (ρ̄, E(ρ̄) ∈ T (ρl, α) satisfying F−1(ρ1
r) < ρ̄ < F−1(ρc), −Ec <

E(ρ̄) < −E1
r , the trajectory T (F (ρ̄), E(ρ̄)) starting from (F (ρ̄), E(ρ̄)) intersects the line

ρ = ρr twice at (ρr,−Er(ρ̄) and (ρr, Er(ρ̄). Obviously,

Er

(
F−1(ρ1

r)
)

= 0, Er

(
F−1(ρr)

)
= E0

r . (5.64)

33



For (ρ̄, E(ρ̄) ∈ T (ρout
min, 0) ⊂ T (ρl, α), we define

Y (ρ̄) =�((ρl, α); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr,−Er(ρ̄))),

for ρ̄ ∈ [F−1(ρ1
r), F

−1(ρr)], −E0
r ≤ E(ρ̄) ≤ −E1

r ,

Z(ρ̄) =�((ρl, α); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))),

for ρ̄ ∈ [F−1(ρ1
r), F

−1(ρc)),−Ec < E(ρ̄) ≤ −E1
r . (5.65)

It should be noted that Z(ρ̄) = Y (ρ̄) + �((ρr,−Er(ρ̄)); (ρr, Er(ρ̄))) for ρ̄ ∈ [F−1(ρ1
r), F

−1(ρr)]
and Y (F−1(ρ1

r)) = Z(F−1(ρ1
r)). With those notations, we have the following Lemma.

Lemma 5.4. Suppose that (ρl, α) satisfies (5.34), ρr satisfies (5.62) and α > E0
r . Then

there exists a unique state (ρ̂, E(ρ̂) ∈ T (ρl, α) satisfying F−1(ρ1
r) < ρ̂ < F−1(ρr) and −E0

r <

E(ρ̂) < −E1
r such that

Y ′(F−1(ρ1
r)) = −∞,

⎧⎨
⎩ Y ′(ρ̄) < 0, for F−1(ρ1

r) < ρ̄ < ρ̂,

Y ′(ρ̄) > 0, for ρ̂ < ρ̄ ≤ F−1(ρr).
(5.66)

So
Y (ρ̂) = min

F−1(ρ1
r)≤ρ̄≤F−1(ρr)

Y (ρ̄). (5.67)

Proof. We prove (5.66) first. Notice that

Y (ρ̄) = �((ρl, α); (ρout
min, 0)) + X(ρ̄), (5.68)

where
X(ρ̄)) = �((ρout

min, 0); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr,−Er(ρ̄))),

for ρ̄ ∈ [F−1(ρ1
r), F

−1(ρr)). So
Y ′(ρ̄)) = X ′(ρ̄).

Applying (3.11) in Lemma 3.3, we get

Y ′(F−1(ρr)) = X ′(F−1(ρr)) =
(

p′(F−1(ρr)) − J2

(F−1(ρr))2

) (
1

F−1(ρr)
− 1

ρr

)
1

E(F−1(ρr))
.

Since E(F−1(ρr)) < 0, p′(F−1(ρr)) − J2

(F−1(ρr))2
< 0 and F−1(ρr) < ρr,

Y ′(F−1(ρr)) > 0. (5.69)

Again, by (3.11), we have

Y ′(F−1(ρ1
r)) = X ′(F−1(ρ1

r)) =
(

p′(F−1(ρ1
r)) −

J2

(F−1(ρ1
r))2

) (
1

F−1(ρ1
r)

− 1
ρ1

r

)
Q(F−1(ρ1

r)),

(5.70)
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where

Q(F−1(ρ1
r)) =

1
E(F−1(ρ1

r))
+ b

∫ ρr

ρ1
r

p′(t) − J2

t2

tE3(F−1(ρ1
r), t)

dt, (5.71)

E(F−1(ρ1
r), t) = −

√
E2(F−1(ρ1

r)) + 2(H(t) − H(ρ1
r)), ρr ≤ t ≤ ρ1

r .

We know that
−∞ < E(F−1(ρ1

r)) < 0. (5.72)

We now show that ∫ ρr

ρ1
r

p′(t) − J2

t2

tE3(F−1(ρ1
r), t)

dt = +∞. (5.73)

This can be shown as follows. Let

g(t) = E2(F−1(ρ1
r), t), ρr ≤ t ≤ ρ1

r .

Then
1
2
g(t) − H(t) =

1
2
E2(F−1(ρ1

r)) − H(ρ1
r), ρr ≤ t ≤ ρ1

r .

Therefore,

g′(t) = 2H ′(t) = 2(1 − b

t
)(p′(t) − J2

t2
), ρr ≤ t ≤ ρ1

r .

Since ρ1
r > ρr > b > ρs, there exist positive constants C1 and C2 such that

C1 ≤ g′(t) ≤ C2, ρr ≤ t ≤ ρ1
r . (5.74)

Since g(ρr) = 0, we have
g(t) = O(|t − ρr|),

as |t − ρr| is small. This means

E(F−1(ρ1
r), t) = O(|t − ρr|1/2),

as |t − ρr| is small. (5.73) follows since ρ1
r > ρr and E(F−1(ρ1

r), t) < 0 for ρr ≤ t ≤ ρ1
r . By

(5.70)-(5.73), we have
Y ′(F−1(ρ1

r)) = −∞. (5.75)

In view of (5.69) and (5.75), we know that Y ′(ρ̄) changes the sign in the interval [F−1(ρ1
r), F

−1(ρr)].
Since

signQ(ρ̄) = −signX ′(ρ̄) = −signY ′(ρ̄)

for ρ̄ ∈ [F−1(ρ1
r), F

−1(ρr)] (where Q(ρ̄) is defined in (3.12)), Q(ρ̄) changes the sign in the
interval [F−1(ρ1

r), F
−1(ρr)]. Suppose

Q(ρ̂) = X ′(ρ̂) = Y ′(ρ̂) = 0, (5.76)
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for ρ̂ ∈ [F−1(ρ1
r), F

−1(ρr)]. By (3.11) and (3.12), we have

Q(ρ̂) =
1

E(ρ̂)
+ b

∫ ρr

F (ρ̂)

p′(t) − J2

t2

tE3(ρ̂, t)
dt = 0. (5.77)

This, together with (3.14), gives

Q′(ρ̂)
p′(ρ̂) − J2

ρ̂2

=
1

E3(ρ̂)

(
b

ρ̂
− b

F (ρ̂)
− 1

)
+ 3b2

(
1
ρ̂
− 1

F (ρ̂)

) ∫ ρr

F (ρ̂)

p′(t) − J2

t2

tE5(ρ̂, t)
dt

= b2

(
1
ρ̂
− 1

F (ρ̂)

) ∫ ρr

F (ρ̂)

p′(t) − J2

t2

tE3(ρ̂, t)

(
3

E2(ρ̂, t)
− 1

E2(ρ̂)

)
dt − 1

E3(ρ̂)
. (5.78)

Since ρr < F (ρ̂), E2(ρ̂, t) < E2(ρ̂) for ρr ≤ t < F (ρ̂), E(ρ̂) < 0, F (ρ̂) > ρ̂ and p′(ρ̂) − J2

ρ̂2 < 0
(ρ̂ < ρs), (5.78) implies

Q′(ρ̂) < 0.

Therefore, by (5.69), (5.75) and (3.11), we have

Q(F−1(ρr)) < 0, Q(F−1(ρ1
r)) = +∞, Q′(ρ̂) < 0 as Q(ρ̂) = 0 for ρ̂ ∈ [F−1(ρ1

r), F
−1(ρr)].

Therefore, Q(ρ̄) only changes the sign once for ρ̄ ∈ [F−1(ρ1
r), F

−1(ρr)] at ρ̄ = ρ̂ where
Q(ρ̂) = 0. Therefore, we can claim that

Q(F−1(ρ1
r)) = +∞,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q(ρ̄) > 0 as F−1(ρ1
r) < ρ̄ < ρ̂,

Q(ρ̂) = 0,

Q(ρ̄) < 0 as ρ̂ < ρ̄ ≤ ρ̂, F−1(ρr).

This proves (5.66) and (5.67) in view of (3.11).

With this lemma, we have the following theorem.

Theorem 5.2. Suppose that (ρl, α) satisfies (5.34) and ρr satisfies(5.62). Then 1) If α > E0
r ,

1a) the boundary value problem (1.8) and (1.9) does not have a solution with a single transonic
shock, if

L < �((F (ρl), α), (ρr, β)), (5.79)

where β is determined by

β =
√

α2 + 2(H(ρr) − H(F (ρl)), (5.80)

such that (ρr, β) ∈ T (F (ρl), α).
1b) if

�((F (ρl), α); (ρr, β) ≤ L ≤ �((ρl, α); (F−1(ρr), E0
r )), (5.81)
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where β is determined by in (5.109), then there exists a unique state (ρ∗, E∗) ∈ T (ρl, α)
satisfying F−1(ρr) ≤ ρ∗ ≤ ρl and E0

r ≤ E∗ ≤ α and a constant Er such that

(ρr, Er) ∈ T (F (ρ∗), E∗), L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, Er)) . (5.82)

So the transonic shock location is a = �((ρl, α); (ρ∗, E∗));
2) If α > E0

r and
�((ρl, α); (F−1(ρr), E0

r )) < L < Y (ρ̂)), (5.83)

(where and in the following ρ̂ is given in (5.66) and (5.67)), then the boundary value problem
(1.8) and (1.9) has no solution with single transonic shock;
3) If α > E0

r and
Y (ρ̂) < L ≤ min{Y (F−1(ρ1

r)), Y (F−1(ρr))}, (5.84)

then there exist two and only two states (ρ∗1, E(ρ∗1)) ∈ T (ρl, α) and (ρ∗2, E(ρ∗2)) ∈ T (ρl, α)
satisfying F−1(ρ1

r) < ρ∗1 < ρ̂ and ρ̂ < ρ∗2 < F−1(ρr), E(ρ̂) < E(ρ∗1) < −E1
r and −E0

r <

E(ρ∗2) < E(ρ̂) such that
L = Y (ρ∗1) = Y (ρ∗2). (5.85)

In this case, there are two shock locations, i.e., �((ρl, α); (ρ∗1, E(ρ∗1)) and �((ρl, α); (ρ∗2, E(ρ∗2))).
4) Suppose α > E0

r and Y (F−1(ρ1
r)) �= Y (F−1(ρr)) (the case Y (F−1(ρ1

r)) = Y (F−1(ρr)) can
be handled similarly).
If

min{Y (F−1(ρ1
r)), Y (F−1(ρr))} < L < max{Y (F−1(ρ1

r)), Y (F−1(ρr))}, (5.86)

then we have the following results:
4a) if

Y (F−1(ρ1
r)) < Y (F−1(ρr)), (5.87)

then there exist two states (ρ̄∗1, E(ρ̄∗1)) ∈ T (ρl, α) and (ρ̄∗2, E(ρ̄∗2)) ∈ T (ρl, α) satisfying (F−1(ρ1
r)) <

ρ̄∗1, ρ̄∗2 < F−1(ρr) such that
L = Z(ρ∗1) = Y (ρ∗2), (5.88)

4b) if
Y (F−1(ρ1

r)) > Y (F−1(ρr)), (5.89)

then there exists a unique state (ρ̄∗, E(ρ̄∗)) ∈ T (ρl, α) satisfying (F−1(ρ1
r)) < ρ̄∗ < F−1(ρr)

such that
L = Z(ρ̄∗). (5.90)

So the shock location is a = �((ρl, α); (ρ̄∗, E(ρ̄∗)).
5) if

max{Y (F−1(ρ1
r)), Y (F−1(ρr))} ≤ L < +∞, (5.91)
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then there exists a unique state (ρ̃∗, E(ρ̃∗)) ∈ T (ρl, α) satisfying F−1(ρ1
r) ≤ ρ̃∗ < F−1(ρc) and

−Ec < E(ρ̃∗) < −E0
r such that

L = �((ρl, α); (ρ̃∗, E(ρ̃∗))) + �(ρ̃∗, E(ρ̃∗)); (ρr, E
∗
r )) = Z(ρ̃∗), (5.92)

where E∗
r =

√
(E2(ρ̃∗) + 2(H(ρr) − H(F (ρ̃∗)) so that (ρr, E

∗
r ) ∈ T (F (ρ̃∗), E(ρ̃∗). So the

transonic shock location is a = �((ρl, α); (ρ∗, E∗)).
6) If −E1

r < α < E0
r or α < −Ec, then the boundary value problem (1.8) and (1.9) has no

solution with single transonic shock.

Proof. We prove 1a)and 1b) as follows, we define

x(ρ̄) = �((ρl, α); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))),

for (ρ̄, E(ρ̄)) ∈ T (ρl, α), F−1(ρr) ≤ ρ̄ ≤ ρl and E0
r ≤ E(ρ̄) ≤ α, where Er(ρ̄) is determined

by (ρr, Er(ρ̄)) ∈ T (F (ρ), E(ρ̄) satisfying E0
r ≤ Er(ρ̄) ≤ β . By (3.11) and (3.12), we have

x′(ρ̄) = (p′(ρ̄) − J2

ρ̄2
)(

1
ρ̄
− 1

F (ρ̄)
)Q(ρ̄),

where

Q(ρ̄) =
1

E(ρ̄)
+ b

∫ ρr

F (ρ̄)

p′(t) − J2

t2

tE3(ρ̄, t)
dt.

Therefore,
x′(ρ̄) < 0, F−1(ρr) ≤ ρ̄ ≤ ρl,

since E(ρ̄) ≥ E0
r > 0, F (ρ̄) ≤ ρr and E(ρ̄, t) > 0 as F (ρ̄) ≤ t ≤ ρr. Thus 1a) and 1b) are

proved.
2) can be proved as follows. For any state (ρ,E) ∈ T (ρl, α) on the portion between two states
(F−1(ρr), E0

r ) and (F−1(ρ1
r),−E1

r ), i.e. ,

1
2
E2 − H(ρ) =

1
2
α2 − H(ρl), −E1

r < E < E0
r ,

the trajectory passing through (F (ρ), E) is on the right of the trajectory passing through
(ρr, 0) and thus can not intersect the line ρ = ρr. This, together with (5.69), proves 2).
3) can be proved by using (5.66) and (5.67).
In order to prove 4) and 5), we first show that

Z ′(ρ̄) > 0, for F−1(ρ1
r) < ρ̄ < F−1(ρc), (5.93)

where Z(ρ̄) is defined in (5.65).
In fact, we may write Z(ρ̄) as

Z(ρ̄) = �((ρl, α); (ρout
min, 0)) + z(ρ̄), (5.94)
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for F−1(ρ1
r) < ρ̄ < F−1(ρc). Then

Z ′(ρ̄) = z′(ρ̄), (5.95)

for F−1(ρ1
r) < ρ̄ < F−1(ρc). It follows (3.44) in Lemma 3.5 that

dz(ρ̄)
dρ̄

=
(

p′(ρ̄) − J2

ρ̄2

)
F (ρ̄) − ρ̄

ρ̄

·
{

1
(F (ρ̄) − b)E(ρ̄)

− b

F (ρ̄)
[

1
(ρr − b)Er(ρ̄)

+
∫ q(ρ̄)

F (ρ̄)

dρ

(ρ − b)2E1(ρ, ρ̄)
+

∫ ρr

q(ρ̄)

dρ

(ρ − b)2E2(ρ, ρ̄)
]

}
,

(5.96)

for F−1(ρ1
r) < ρ̄ < F−1(ρc), where the definitions of quantities in (5.96) are the same as

those in Lemma 3.5. Since p′(ρ̄) − J2

ρ̄2 < 0 (ρ̄ < ρs), F (ρ̄) > b > ρ̄, E(ρ̄) < −E1
r < 0, ρr >

b, Er(ρ̄) > 0, ρr > q(ρ̄), F (ρ̄) > q(ρ), E1(ρ, ρ̄) < 0 and E2(ρ, ρ̄) > 0, we conclude,

z′(ρ̄) > 0, for F−1(ρ1
r) < ρ̄ < F−1(ρc). (5.97)

(5.93) follows from (5.94) and (5.97).
Proof of 4a).
If (5.76) holds, then (5.75) implies

Y (F−1(ρ1
r)) < L < Y (F−1(ρr)). (5.98)

Since Y (F−1(ρ1
r)) = Z(F−1(ρ1

r)), 4a) is proved by using (5.98) and (5.93).
Proof of 4b).
If (5.78) holds, then (5.75) implies

Y (F−1(ρr)) < L < Y (F−1(ρ1
r)). (5.99)

Since Y (F−1(ρ1
r)) = Z(F−1(ρ1

r)) and Z ′(ρ̄) > 0 for F−1(ρ1
r) < ρ̄ < F−1(ρc), 4b) is proved.

Proof of 5).
5) is proved by using (5.93) and the following fact

lim
ρ̄→F−1(ρc)−

Z(ρ̄) = +∞. (5.100)

The proof of (5.100) is similar to that for (5.58). We thus omit it.
6) can be easily seen by looking at the phase portrait (see Figure 7).

Next, we consider
Subcase 2:

b < ρr < ρc. (5.101)

In this case, the line ρ = ρr intersects the shock curve S(ρl, α) at two points (ρr, E
0
r ) and

(ρr,−E0
r ) with E0

r > 0, the trajectory passing through (ρr, 0) satisfying 1
2E2−H(ρ) = −H(ρr)
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intersects the shock curve S(ρl, α) at two points (ρ1
r , E1

r ) and (ρ1
r , −E1

r ) with E1
r > 0 (see

Figure 8). Clearly, ρ1
r > ρr and E0

r > E1
r .

For ρ̄ ∈ [F−1(ρ̄r), F−1(ρr)], we let

Er(ρ̄) =
√

E2(ρ̄) + 2((H(ρr) − H(F (ρ̄)), (5.102)

where
E(ρ̄) = −

√
α2 + 2(H(ρ̄) − H(ρl))

satisfying (ρ̄, E(ρ̄)) ∈ T (ρout
min, 0) ⊂ T (ρl, α).

In this case, for any state (ρ̄, E(ρ̄) ∈ T (ρl, α) satisfying F−1(ρ̄r) < ρ̄ < F−1(ρc), −Ec <

E(ρ̄) < −Ēr, the trajectory T (F (ρ̄), E(ρ̄)) starting from (F (ρ̄), E(ρ̄)) intersects the line
ρ = ρr twice at (ρr,−Er(ρ̄) and (ρr, Er(ρ̄). Obviously,

Er

(
F−1(ρ̄r)

)
= 0, Er

(
F−1(ρc)

)
= Ec. (5.103)

For (ρ̄, E(ρ̄) ∈ T (ρout
min, 0) ⊂ T (ρl, α), we define

Y (ρ̄) =�((ρl, α); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr,−Er(ρ̄))),

for ρ̄ ∈ [F−1(ρ̄r), F−1(ρr)], −Er ≤ E(ρ̄) ≤ −Ēr, (5.104)

Z(ρ̄) =�((ρl, α); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr, Er(ρ̄))),

for ρ̄ ∈ [F−1(ρ̄r), F−1(ρc)),−Ec < E(ρ̄) ≤ −Ēr. (5.105)

It should be noted that Z(ρ̄) = Y (ρ̄) + �((ρr,−Er(ρ̄)); (ρr, Er(ρ̄))) for ρ̄ ∈ [F−1(ρ̄r), F−1(ρc)]
and Y (F−1(ρ̄r)) = Z(F−1(ρ̄r)). With those notations, we have the following Lemma.

Lemma 5.5. Suppose that (ρl, α) satisfies (5.34), (5.101) holds and α > E0
r . Then there

exists a unique state (ρ̂, E(ρ̂) ∈ T (ρl, α) satisfying F−1(ρ̄r) < ρ̂ < F−1(ρc) and −Er < E(ρ̂) <

−Ec such that

Y ′(F−1(ρ̄r)) = −∞,

⎧⎨
⎩ Y ′(ρ̄) < 0, for F−1(ρ̄r) < ρ̄ < ρ̂,

Y ′(ρ̄) > 0, for ρ̂ < ρ̄ ≤ F−1(ρr).
(5.106)

So
Y (ρ̂) = min

F−1(ρ̄r)≤ρ̄≤F−1(ρc)
Y (ρ̄). (5.107)

The proof of this lemma is almost the same as that for Lemma 5.4. So we omit it.
With this lemma, we have the following theorem.

Theorem 5.3. Suppose that (ρl, α) satisfies (5.34) and (5.101) holds. Then 1) If α > E0
r ,

1a) the boundary value problem (1.8) and (1.9) does not have a solution with a single transonic
shock, if

L < �((F (ρl), α), (ρr, β)), (5.108)
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where β is determined by

β =
√

α2 + 2(H(ρr) − H(F (ρl)), (5.109)

such that (ρr, β) ∈ T (F (ρl), α).
1b) if

�((F (ρl), α); (ρr, β) ≤ L ≤ �((ρl, α); (F−1(ρr), Er)), (5.110)

where β is determined by in (5.109), then there exists a unique state (ρ∗, E∗) ∈ T (ρl, α)
satisfying F−1(ρr) ≤ ρ∗ ≤ ρl and E0

r ≤ E∗ ≤ α and a constant Er such that

(ρr, Er) ∈ T (F (ρ∗), E∗), L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, Er)) . (5.111)

So the transonic shock location is a = �((ρl, α); (ρ∗, E∗));
2) If α > E0

r and
�((ρl, α); (F−1(ρr), Er)) < L < Y (ρ̂)), (5.112)

(where and in the following ρ̂ is given in (5.107)), then the boundary value problem (1.8) and
(1.9) has no solution with single transonic shock;
3) If α > E0

r and
Y (ρ̂) < L ≤ min{Y (F−1(ρ̄r)), Y (F−1(ρr))}, (5.113)

then there exist two and only two states (ρ∗1, E(ρ∗1)) ∈ T (ρl, α) and (ρ∗2, E(ρ∗2)) ∈ T (ρl, α)
satisfying (F−1(ρ̄r)) < ρ∗1 < ρ̂ and ρ̂ < ρ∗2 < F−1(ρr), E(ρ̂) < E(ρ∗1) < −Ēr and −Er <

E(ρ∗2) < E(ρ̂) such that
L = Y (ρ∗1) = Y (ρ∗2). (5.114)

In this case, there are two shock locations, i.e., �((ρl, α); (ρ∗1, E(ρ∗1)) and �((ρl, α); (ρ∗2, E(ρ∗2))).
4) Suppose α > E0

r and Y (F−1(ρ̄r)) �= Y (F−1(ρr)) (the case Y (F−1(ρ̄r)) = Y (F−1(ρr)) can
be handled similarly).
if

min{Y (F−1(ρ̄r)), Y (F−1(ρr))} < L < max{Y (F−1(ρ̄r)), Y (F−1(ρr))}, (5.115)

then we have the following results:
4a) if

Y (F−1(ρ̄r)) < Y (F−1(ρr)), (5.116)

then there exist two states (ρ̄∗1, E(ρ̄∗1)) ∈ T (ρl, α) and (ρ̄∗2, E(ρ̄∗2)) ∈ T (ρl, α) satisfying (F−1(ρ̄r)) <

ρ̄∗1 < F−1(ρc) < ρ̄∗2 < F−1(ρr) such that

L = Z(ρ∗1) = Y (ρ∗2),

4b) if
Y (F−1(ρ̄r)) > Y (F−1(ρr)), (5.117)
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then there exists a unique state (ρ̄∗, E(ρ̄∗)) ∈ T (ρl, α) satisfying (F−1(ρ̄r)) < ρ̄∗ < F−1(ρc)
such that

L = Z(ρ̄∗).
So the shock location is a = �((ρl, α); (ρ̄∗, E(ρ̄∗)).
5) if

max{Y (F−1(ρ̄r)), Y (F−1(ρr))} ≤ L < +∞,

then there exists a unique state (ρ̃∗, E(ρ̃∗)) ∈ T (ρl, α) satisfying F−1(ρ̄r) ≤ ρ̃∗ < F−1(ρc) and
−Ec < E(ρ̃∗) < −Er such that

L = �((ρl, α); (ρ̃∗, E(ρ̃∗))) + �(ρ̃∗, E(ρ̃∗)); (ρr, E
∗
r )) = Z(ρ̃∗), (5.118)

where E∗
r =

√
(E2(ρ̃∗) + 2(H(ρr) − H(F (ρ̃∗)) so that (ρr, E

∗
r ) ∈ T (F (ρ̃∗), E(ρ̃∗). So the

transonic shock location is a = �((ρl, α); (ρ∗, E∗)).
6) If −Ēr < α < Er or α < −Ec, then the boundary value problem (1.8) and (1.9) has no
solution with single transonic shock.

The proof of this theorem is similar to that for Theorem 5.2. So we omit it.
Next, we consider the following subcase:

Subcase 3:
b < ρr < ρc. (5.119)

In this case, the line ρ = ρr intersects the shock curve S(ρl, α) at two points (ρr, E
0
r ) and

(ρr,−E0
r ) with E0

r > 0. The trajectory passing through (b, 0) satisfying 1
2E2−H(ρ) = −H(b)

intersects the shock curve S(ρl, α) at two points (ρc, Ec) and (ρc, −Ec) with Ec > 0 (see
Figure 9).
For ρ̄ ∈ [F−1(ρc), F−1(ρr)], we let

er(ρ̄) = −
√

E2(ρ̄) + 2((H(ρr) − H(F (ρ̄)), (5.120)

where
E(ρ̄) = −

√
α2 + 2(H(ρ̄) − H(ρl))

satisfying (ρ̄, E(ρ̄) ∈ T (ρout
min, 0) ⊂ T (ρl, α).

For (ρ̄, E(ρ̄) ∈ T (ρout
min, 0) ⊂ T (ρl, α), we define

Y (ρ̄) =�((ρl, α); (ρ̄, E(ρ̄))) + �((F (ρ̄), E(ρ̄)); (ρr,−er(ρ̄))),

for ρ̄ ∈ [F−1(ρc), F−1(ρr)], −E0
r ≤ E(ρ̄) ≤ −Ec, (5.121)

Then we have,
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Lemma 5.6. Suppose that (ρl, α) satisfies (5.34) and (5.119) holds and α > E0
r . Then

there exists a unique state (ρ̂, E(ρ̂) ∈ T (ρl, α) satisfying F−1(ρc) < ρ̂ < F−1(ρr) and −E0
r <

E(ρ̂) < −Ec such that

lim
ρ̄→ρc+

Y ′(ρ̄) = −∞,

⎧⎨
⎩ Y ′(ρ̄) < 0, for F−1(ρc) < ρ̄ < ρ̂,

Y ′(ρ̄) > 0, for ρ̂ < ρ̄ ≤ F−1(ρr).
(5.122)

So
Y (ρ̂) = min

F−1(ρc)≤ρ̄≤F−1(ρr)
Y (ρ̄). (5.123)

Proof. We only prove
lim

ρ̄→ρc+
Y ′(ρ̄) = −∞

in (5.122). The proof of the rest is almost the same as that for Lemma 5.4.
For any ρ̄ ∈ (F−1(ρc), F−1(ρr)), we apply (3.11) and (3.15) to get

Y ′(ρ̄) = (p′(ρ̄) − J2

ρ̄2
)(

1
ρ̄
− 1

F (ρ̄)
)Q(ρ̄,

where

Q(ρ̄) =
1

E(ρ̄)
+ b

∫ ρr

F (ρ̄)

p′(t) − J2

t2

tE3(ρ̄, t)
dt,

with −E0
r < E(ρ̄) < −Ec. The meaning of E(ρ̄, t) is given in (3.13). Now we want to show

that
lim

ρ̄→F−1(ρc)+
Q(ρ̄) = +∞.

This is equivalent to ∫ ρr

F (ρ̄)

p′(t) − J2

t2

tE3(ρ̄, t)
dt = +∞. (5.124)

Since E(ρ̄, t) < 0, p′(t)− J2

t2
> 0 and F (ρ̄) > b > ρr for F−1(ρc) < ρ̄ < F−1(ρr), ρr ≤ t ≤ F (ρ̄),

we have ∫ ρr

F (ρ̄)

p′(t) − J2

t2

tE3(ρ̄, t)
dt ≥

∫ b

F (ρ̄)

p′(t) − J2

t2

tE3(ρ̄, t)
dt. (5.125)

Let
g(ρ̄, t) = E2(ρ̄, t), for b ≤ t ≤ F (ρ̄).

Then we have
1
2
g(ρ̄, t) − H(t) = C(ρ̄),

where C(ρ̄) is a quantity only depending on ρ̄ but not on t. Therefore,

∂g(ρ̄, t)
∂t

= 2H ′(t) = 2(1 − b

t
)(p′(t) − J2

t2
).
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Thus
∂g(ρ̄, t)

∂t
|t=b = 0. (5.126)

On the other hand,
lim

ρ̄→F−1(ρc)+,t→b+
g(ρ̄, t) = 0. (5.127)

It follows from (5.126) and (5.127) that

g(ρ̄, t) = o(|t − b|), (5.128)

as |t − b| is mall. Therefore, (5.124) follows from (5.125) and (5.128).

With this lemma, we have the following theorem.

Theorem 5.4. Suppose that (ρl, α) satisfies (5.34) and (5.119) holds. Then 1) If α > E0
r ,

1a) the boundary value problem (1.8) and (1.9) does not have a solution with a single transonic
shock, if

L < �((F (ρl), α), (ρr, β)),

where β is determined by

β =
√

α2 + 2(H(ρr) − H(F (ρl)), (5.129)

such that (ρr, β) ∈ T (F (ρl), α).
1b) if

�((F (ρl), α); (ρr, β) ≤ L ≤ �((ρl, α); (F−1(ρr), E0
r )),

where β is determined by in (5.129), then there exists a unique state (ρ∗, E∗) ∈ T (ρl, α)
satisfying F−1(ρr) ≤ ρ∗ ≤ ρl and E0

r ≤ E∗ ≤ α and a constant Er such that

(ρr, Er) ∈ T (F (ρ∗), E∗), L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, Er)) .

So the transonic shock location is a = �((ρl, α); (ρ∗, E∗));
2) If α > E0

r and
�((ρl, α); (F−1(ρr), E0

r )) < L < Y (ρ̂)), (5.130)

(where and in the following ρ̂ is given in (5.122)), then the boundary value problem (1.8) and
(1.9) has no solution with single transonic shock;
3) If α > E0

r and
Y (ρ̂) < L ≤ Y (F−1(ρr)),

then there exist two and only two states (ρ∗1, E(ρ∗1)) ∈ T (ρl, α) and (ρ∗2, E(ρ∗2)) ∈ T (ρl, α)
satisfying (F−1(ρc)) < ρ∗1 < ρ̂ and ρ̂ < ρ∗2 < F−1(ρr), E(ρ̂) < E(ρ∗1) < −Ec and −E0

r <

E(ρ∗2) < E(ρ̂) such that
L = Y (ρ∗1) = Y (ρ∗2).
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In this case, there are two shock locations, i.e., �((ρl, α); (ρ∗1, E(ρ∗1)) and �((ρl, α); (ρ∗2, E(ρ∗2))).
4) if

Y (F−1(ρr)) ≤ L < +∞,

then there exists a unique state (ρ̃∗, E(ρ̃∗)) ∈ T (ρl, α) satisfying F−1(ρc) ≤ ρ̃∗ < F−1(ρ̂) and
E(ρ̂) < E(ρ̃∗) < −Ec such that

L = �((ρl, α); (ρ̃∗, E(ρ̃∗))) + �(ρ̃∗, E(ρ̃∗)); (ρr, E
∗
r )) = Z(ρ̃∗),

where E∗
r =

√
(E2(ρ̃∗) + 2(H(ρr) − H(F (ρ̃∗)) so that (ρr, E

∗
r ) ∈ T (F (ρ̃∗), E(ρ̃∗)). So the

transonic shock location is a = �((ρl, α); (ρ∗, E∗)).
6) If −Ec ≤ α < E0

r or α < −E0
r , then the boundary value problem (1.8) and (1.9) has no

solution with single transonic shock.

Proof. The proof of this theorem is similar to that for Theorem 5.2 by noticing that

lim
ρ̄→F−1(ρc)+

Y (ρ̄) = +∞,

which can be shown by a similar argument to that for (5.59).

Next, we consider the following case

5.2 The case when (ρl, α) is between the trajectory passing through (F−1(b), 0)

and the subsonic part of the trajectory passing through (b, 0).

In this case, (ρl, α) satisfies:

−H(b) <
1
2
α2 − H(ρl) < −H(F−1(b)), 0 < ρl < ρs. (5.131)

The supersonic part of the trajectory passing through (ρ, α) intersects the line E = 0 at
(ρbw

min, 0), the shock curve S(ρl, α) intersects the subsonic part of the critical trajectory pass-
ing through (b, 0) at two points, denoted by (ρc, Ec) and (ρc,−Ec).
We first consider the case when ρr > b. We have the following result (See Figure 10).

Theorem 5.5. Case for ρr > b

Suppose that (ρl, α) satisfies (5.131),
1) If α > Ec, then
1a) the boundary value problem (1.8) and (1.9) does not have solutions with a single transonic
shock if

L < �(F (ρl), α); (ρr, E
α
r ), (5.132)

(where Eα
r is determined by (ρr, E

α
r ) ∈ T (F (ρl), α)),

1b) if
�(F (ρl), α); (ρr, E

α
r ) ≤ L < ∞, (5.133)
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then there exists a unique state (ρ∗, E(ρ∗) ∈ T (ρl, α) satisfying F−1(ρc) < ρ∗ ≤ ρl and
Ec < E(ρ∗) ≤ α such that

L = �((ρl, α); (ρ∗, E(ρ∗)) + �((F (ρ∗), E(ρ∗), (ρr, E
∗
r )), (5.134)

where E∗
r satisfies (ρr, E

∗
r ) ∈ T (F (ρ∗), E(ρ∗)).

2) If α ≤ Ec, the boundary value problem (1.8) and (1.9) does not have solutions with a single
transonic shock .

Proof. 1a) and 2) are easily seen on phase plane (see Figure 10). We prove 1b) as follows:
If ρr > b and α > Ec, for (ρ,E(ρ) ∈ T (ρl, α) satisfying F−1(ρc) < ρ ≤ ρl, we define

X(ρ) = �((ρl, α); (ρ,E(ρ)) + �((F (ρ), E(ρ), (ρr, Er(ρ))),

where Er(ρ) satisfies (ρr, Er(ρ)) ∈ T (F (ρ), E(ρ)). By (3.11), we can show that

X ′(ρ) < 0, (5.135)

for (ρ,E(ρ) ∈ T (ρl, α) satisfying F−1(ρc) < ρ ≤ ρl and Ec < E(ρ) ≤ α. Moreover, just as
(5.58),

lim
ρ→F−1(ρc)+

�((F (ρ), E(ρ), (ρr, Er(ρ))) → +∞. (5.136)

This implies
lim

ρ→F−1(ρc)+
X(ρ) → +∞. (5.137)

(5.134) follows from (5.135) and (5.137). �

Next, we consider the case when F (ρbw
min) < ρr < b. In this case, the trajectory passing

through (ρr, 0) satisfying 1
2E2 − H(ρ) = −H(b) intersects the shock curve S(ρl, α) at two

points, denoted by (ρK , EK) and (ρK ,−EK). In this case, for any state (ρ0, E0) in between
the trajectory through (ρr, 0) and the critical trajectory Tb through (b, 0), i. e.,

−H(ρr) <
1
2
E2

0 − H(ρ0) < −H(b) (5.138)

the trajectory through (ρ0, E0) is also in between the trajectory through (ρr, 0) and the
critical trajectory Tb through (b, 0), and thus intersects the line ρ = ρr at two points, denoted
by (ρr, Er(ρ0, E0)) and (ρr,−Er(ρ0, E0)) (see Figure 11). With these notations, we have the
following theorem.

Theorem 5.6. Case when F (ρbw
min) < ρr < b.

Suppose that (ρl, α) satisfies (5.131) , then
1) If α > Ec, then the boundary value problem (1.8 ) and (1.9 ) does not have solutions

with a single transonic shock if

L < �(F (ρl), α); (ρr, E
α
r )), (5.139)
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(where Eα
r is determined by (ρr, E

α
r ) ∈ T (F (ρl), α)).

2) If α > EK , then
2a) if

�(F (ρl), α); (ρr, E
α
r )) ≤ L ≤ �((ρl, α), (F−1(ρK), EK)) + �((ρK , EK), (ρr, 0)), (5.140)

then there exists a unique state (ρ∗, E(ρ∗)) ∈ T (ρl, α) satisfying F−1(ρK) ≤ ρ∗ ≤ ρl and
EK ≤ E(ρ∗) ≤ α such that

L = �((ρl, α); (ρ∗, E(ρ∗)) + �((F (ρ∗), E(ρ∗), (ρr, E
∗
r )), (5.141)

where E∗
r satisfies (ρr, E

∗
r ) ∈ T (F (ρ∗), E(ρ∗)),

2b) if
�((ρl, α), (F−1(ρK), EK)) + �((ρK , EK), (ρr, 0)) ≤ L < +∞, (5.142)

then there exists a unique state (ρ∗, E(ρ∗) ∈ T (ρl, α) satisfying F−1(ρK) ≤ ρ∗ ≤ ρl and
EK ≤ E(ρ∗) < Ec such that

L = �((ρl, α); (ρ∗, E(ρ∗)) + �((F (ρ∗), E(ρ∗), (ρr,−Er((F (ρ∗), E∗)). (5.143)

3) If α < EK , the boundary value problem (1.8 ) and (1. 9) does not have solutions with a
single transonic shock .

Proof. 1) and 3) are easily seen on phase plane (see Figure 11). We prove 2a) and 2b)as
follows: F (ρbw

min) < ρr < b and α > EK , for (ρ,E(ρ) ∈ T (ρl, α) satisfying F−1(ρK) < ρ ≤ ρl

and EK < E(ρ) ≤ α, we define

X(ρ) = �((ρl, α); (ρ,E(ρ)) + �((F (ρ), E(ρ), (ρr, Er(ρ))),

where Er(ρ) satisfies (ρr, Er(ρ)) ∈ T (F (ρ), E(ρ)). By (3.11), it can be readily shown that

X ′(ρ) < 0, (5.144)

for (ρ,E(ρ) ∈ T (ρl, α) satisfying F−1(ρK) < ρ ≤ ρl. This proves 2a).
For (ρ̄, E(ρ̄) ∈ T (ρl, α) satisfying F−1(ρK) < ρ̄ ≤ ρc and EK < E(ρ) ≤ α, we define

Y (ρ̄) = �((ρl, α); (ρ̄, E(ρ̄)) + �((F (ρ̄), E(ρ̄), (ρr,−Er(F (ρ̄), E(ρ̄))).

By using (3.41), we obtain

dY (ρ̄)
dρ̄

=
(

p′(ρ̄) − J2

ρ̄2

)
F (ρ̄) − ρ̄

ρ̄
· { 1

(F (ρ̄) − b)E(ρ̄)

− b

F (ρ̄)
[

1
(ρr − b)(−Er(F (ρ̄), E(ρ̄))

+
∫ q(ρ̄)

F (ρ̄)

dρ

(ρ − b)2E1(ρ, ρ̄)
+

∫ ρr

q(ρ̄)

dρ

(ρ − b)2E2(ρ, ρ̄)
]}.

(5.145)
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The meanings of q(ρ̄), E1(ρ, ρ̄), E2(ρ, ρ̄) are the same as those in Lemma 3.5. Moreover, it
should be noted that Ēr(ρ̄) in (3.41) is the same as −Er(F (ρ̄), E(ρ̄)) here. Since F (ρ̄) < b,
E(ρ̄) > 0, Er(F (ρ̄), E(ρ̄)) > 0, ρr < b, q(ρ̄) > F (ρ̄), E1(ρ, ρ̄) > 0, q(ρ̄) > ρr and E2(ρ, ρ̄) < 0,
by the same method we have already used, we can show that

Y ′(ρ̄) > 0, (5.146)

for (ρ̄, E(ρ̄)) ∈ T (ρl, α) satisfying F−1(ρK) < ρ̄ ≤ ρc. Moreover,

lim
ρ̄→F−1(ρc)+

�((F (ρ̄), E(ρ̄), (ρr,−Er(F (ρ̄), E(ρ̄))) → +∞. (5.147)

This implies
lim

ρ→F−1(ρc)+
Y (ρ̄) → +∞. (5.148)

(5.143) follows from (5.146) and (5.148). This proves 2b).

Next, we consider the case when ρc < ρr < F (ρbw
min ) (see Figure 12).

ρc < ρr < F (ρbw
min) (5.149)

In this case, the line ρ = ρr intersects the shock curve S(ρl, α) at two points (ρr, E
0
r ) and

(ρr,−E0
r ) with E0

r > 0. The trajectory passing through (b, 0) satisfying 1
2E2−H(ρ) = −H(b)

intersects the shock curve S(ρl, α) at two points (ρc, Ec) and (ρc, −Ec) with Ec > 0 (see
Figure 12).
For ρ̄ ∈ [ρbw

min, F−1(ρr)], we let

E−
r (ρ̄) = −

√
E−2(ρ̄) + 2((H(ρr) − H(F (ρ̄)), (5.150)

where
E−(ρ̄) = −

√
α2 + 2(H(ρ̄) − H(ρl))

satisfying (ρ̄, E−(ρ̄) ∈ T (ρbw
min, 0) ⊂ T (ρl, α). and −E0

r ≤ E−(ρ̄) ≤ 0. In this case, we define

Y(ρ̄) =�((ρl, α); (ρ̄, E−(ρ̄))) + �((F (ρ̄), E−(ρ̄)); (ρr, Er(ρ̄))),

for ρ̄ ∈ [F−1(ρbw
min), F−1(ρr)], −E0

r ≤ E−(ρ̄) ≤ 0. (5.151)

For ρ̄ ∈ [ρbw
min, F−1(ρc)], we let

E−
r (ρ̄) = −

√
E+

2(ρ̄) + 2((H(ρr) − H(F (ρ̄)), (5.152)

where
E+(ρ̄) =

√
α2 + 2(H(ρ̄) − H(ρl))
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satisfying (ρ̄, E+(ρ̄)) ∈ T (ρl, α). and 0 ≤ E+(ρ̄) ≤ Ec. In this case, we define

Z(ρ̄) = �((ρl, α); (ρ̄, E+(ρ̄))) + �((F (ρ̄), E+(ρ̄)); (ρr, E
−
r (ρ̄))),

for ρ̄ ∈ [ρbw
min, F−1(ρc)), 0 ≤ E+(ρ̄) < Ec. (5.153)

It is easy to see that
Y(ρbw

min) = Z(ρbw
min). (5.154)

Then we have,

Lemma 5.7. Suppose that (ρl, α) satisfies (5.131), ρr satisfies (5.149) and α > Ec. Then
there exists a unique state (ρ̂, E(ρ̂) ∈ T (ρmin

min, 0) ⊂ T (ρl, α) satisfying ρc
min < ρ̂ < F−1(ρr)

and −E0
r < E(ρ̂) < 0 such that

Y′(ρbw
min) = −∞,

⎧⎨
⎩ Y′(ρ̄) < 0, for ρbw

min < ρ̄ < ρ̂,

Y′(ρ̄) > 0, for ρ̂ < ρ̄ ≤ F−1(ρr).
(5.155)

So
Y(ρ̂) = min

ρbw
min≤ρ̄≤F−1(ρr)

Y(ρ̄). (5.156)

Also

Z′(ρ̄) > 0, for ρbw
min ≤ ρ̄ < F−1(ρc),

lim
ρ̄→F−1(ρc)

Z(ρ̄) = +∞. (5.157)

Proof. The proof of (5.155) is almost the same as that for Lemma 5.4. The proof of (5.157)
follows a similar argument as that for (5.93) and (5.100).

With this lemma, we have the following theorem.

Theorem 5.7. Suppose that (ρl, α) satisfies (5.131) and ρr satisfies (5.149).
1) If α > Ec,
1a) the boundary value problem (1.8) and (1.9) does not have a solution with a single transonic
shock, if

L < �((F (ρl), α), (ρr, β)),

where β is determined by

β =
√

α2 + 2(H(ρr) − H(F (ρl)), (5.158)

such that (ρr, β) ∈ T (F (ρl), α).
1b) if

�((F (ρl), α); (ρr, β)) ≤ L ≤ �((ρl, α); (F−1(ρr), E0
r )),
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where β is determined by in (5.158), then there exists a unique state (ρ∗, E∗) ∈ T (ρl, α)
satisfying F−1(ρr) ≤ ρ∗ ≤ ρl and E0

r ≤ E∗ ≤ α and a constant Er such that

(ρr, Er) ∈ T (F (ρ∗), E∗), L = � ((ρl, α); (ρ∗, E∗)) + � ((F (ρ∗), E∗); (ρr, Er)) .

So the transonic shock location is a = �((ρl, α); (ρ∗, E∗));
2) If α > Ec and

�((ρl, α); (F−1(ρr), E0
r )) < L < Y(ρ̂)), (5.159)

(where and in the following ρ̂ is given in (5.156)), then the boundary value problem (1.8) and
(1.9) has no solution with single transonic shock;
3) If α > Ec,

Y(ρ̂) < L ≤ min{Y((ρbw
min),Y(F−1(ρr))}, (5.160)

then there exist two and only two states (ρ∗1, E(ρ∗1)) ∈ T (ρl, α) and (ρ∗2, E(ρ∗2)) ∈ T (ρl, α)
satisfying ρbw

min < ρ∗1 < ρ̂ < ρ∗2 < F−1(ρr), E(ρ̂) < E(ρ∗1) < 0 and −E0
r < E(ρ∗2) < E(ρ̂) such

that
L = Y(ρ∗1) = Y(ρ∗2). (5.161)

In this case, there are two shock locations, i.e., �((ρl, α); (ρ∗1, E(ρ∗1)) and �((ρl, α); (ρ∗2, E(ρ∗2))).
4) Suppose α > Ec and Y(F−1(ρbw

min) �= Y(F−1(ρr)) (the case Y(F−1(ρbw
min) = Y(F−1(ρr))can

be handled similarly).
If

min{Y(ρbw
min),Y(F−1(ρr))} < L < max{Y(F−1(ρbw

min)),Y(F−1(ρr))},
then we have the following results:
4a) if

Y(ρbw
min) < Y(F−1(ρr)),

then there exist two states (ρ̄∗1, E(ρ̄∗1)) ∈ T (ρl, α) and (ρ̄∗2, E(ρ̄∗2)) ∈ T (ρl, α) satisfying ρbw
min <

ρ̄∗1 < F−1(ρc) < ρ̄∗2 < F−1(ρr), 0 ≤ E(ρ̄∗1)) < Ec and −E0
r ≤ E(ρ̄∗2) ≤ 0, such that

L = Z(ρ∗1) = Y(ρ∗2),

4b) if
Y(ρbw

min) > Y(F−1(ρr)),

then there exists a unique state (ρ̄∗, E(ρ̄∗)) ∈ T (ρl, α) satisfying ρbw
min < ρ̄∗ < ρ̂ and −Ec <

E(ρ̄∗)) ≤ 0 such that
L = Y(ρ̄∗).

So the shock location is a = �((ρl, α); (ρ̄∗, E(ρ̄∗)).
5) if

max{Y(F−1(ρ1
r)),Y(F−1(ρr))} ≤ L < +∞,
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then there exists a unique state (ρ̃∗, E(ρ̃∗)) ∈ T (ρl, α) satisfying ρbw
min ≤ ρ̃∗ < F−1(ρc) and

0 < E(ρ̃∗) < Ec such that

L = �((ρl, α); (ρ̃∗, E(ρ̃∗))) + �(ρ̃∗, E(ρ̃∗)); (ρr, E
∗
r )) = Z(ρ̃∗),

where E∗
r = −√

(E2(ρ̃∗) + 2(H(ρr) − H(F (ρ̃∗)) so that (ρr, E
∗
r ) ∈ T (F (ρ̃∗), E(ρ̃∗)). So the

transonic shock location is a = �((ρl, α); (ρ∗, E∗)).
6) If α < −E0

r , then the boundary value problem (1.8) and (1.9) has no solution with single
transonic shock.

The proof of this theorem is similar to that for Theorem 5.2 with the help of Lemma 5.7.
So we omit it.

The case when
ρs < ρr < ρc. (5.162)

can be handled in a similar manner to the case ρc < ρr < F (ρbw
min). A phase portrait of this

case is given by Figure 13. We omit the details for this case.

5.3 The case when (ρl, α) is inside subsonic part of the trajectory passing

through (b, 0).

In this case, (ρl, α) satisfies:

1
2
α2 − H(ρl) < −H(b), 0 < ρl < ρs. (5.163)

The curve
1
2
E2 − H(ρ) =

1
2
α2 − H(ρl), (5.164)

which is the trajectory passing through (ρl, α), intersects the line E = 0 at (ρin
min, 0) and

(ρmax, 0) satisfying

H((ρin
min) = H(ρmax) = H(ρl) − 1

2
α2, ρin

min < ρs < ρmax. (5.165)

The curve (5.164) is a closed curve, lying inside the critical trajectory through (b, 0). The
shock curve S(ρl, α) lying inside the subsonic part of the curve (5.164), by Lemma 5.3 (see
Figure 14).
The proofs of theorems in this subsection are similar to those in section 5.2, so we omit them.

By looking at the portrait, it is easy to see

Theorem 5.8. Case for ρr > ρmax

Suppose that (ρl, α) satisfies (5.163), if ρr > ρmax, then the boundary value problem (1.8)
and (1.9) does not have a solution for any L (see Figure 14).
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Next, we turn to the case when F (ρin
min) < ρr < ρmax. In this case, the trajectory though

the point (F (ρin
min), 0) satisfying 1

2E2 −H(ρ) = −H(ρin
min) intersects the shock curve S(ρl, α)

at two pints, denoted by (ρK , EK) and (ρK ,−EK) with EK > 0 (See Figure 15). In this case,
we have the following theorem.

Theorem 5.9. Case for F (ρin
min) < ρr < ρmax

Suppose that (ρl, α) satisfies (5.163), then
1) If α > EK , then
1a) if

L < �((F (ρl), α); (ρr, E
α
r ),

where Eα
r is determined by (ρr, E

α
r ) ∈ T (F (ρl), α) satisfying Eα

r > 0, then the boundary value
problem (1.8) and (1.9) does not have a solution with a single transonic shock;
1b) if

�((F (ρl), α); (ρr, E
α
r ) ≤ L ≤ �((ρl), α); (F−1(ρK), EK)) + �((ρK , EK); (ρr, 0)), (5.166)

then there exists a unique state (ρ∗, E(ρ∗) ∈ T (ρl, α) satisfying F−1(ρK) ≤ ρ∗ ≤ ρl and
EK ≤ E(ρ∗) ≤ α such that

L = �((ρl, α); (ρ∗, E(ρ∗)) + �((F (ρ∗), E(ρ∗), (ρr, E
∗
r )), (5.167)

where E∗
r satisfies (ρr, E

∗
r ) ∈ T (F (ρ∗), E(ρ∗)) and E∗

r ≥ 0;
1c) if

�((ρl), α); (F−1(ρK), EK)) + �((ρK , EK); (ρr, 0)) ≤ L ≤ �((F (ρl), α); (ρr,−Eα
r ), (5.168)

where Eα
r is determined as in 1a), then there exists a unique state (ρ∗, E(ρ∗)) ∈ T (ρl, α)

satisfying F−1(ρK) ≤ ρ∗ ≤ ρl and EK ≤ E(ρ∗) ≤ α such that

L = �((ρl, α); (ρ∗, E(ρ∗)) + �((F (ρ∗), E(ρ∗), (ρr,−E∗
r )), (5.169)

where E∗
r satisfies (ρr, E

∗
r ) ∈ T (F (ρ∗), E(ρ∗)) and E∗

r ≥ 0.
2) If α < EK , the boundary value problem (1.8) and (1.9) does not have solutions with a
single transonic shock .

The case ρs < ρr < F (ρin
min) can be handled in a similar way to the case of F (ρin

min) <

ρr < ρmax. So we omit it. A phase portrait is given by Figure 16, which illustrates how to
handle this case.
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Phase Portrait for 0 < b < s
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Figure 2 
Phase Portrait of b > s
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