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Abstract

The large time asymptotic behavior towards viscous contact waves for
a class of systems of viscous conservation laws is studied in this paper
for general initial perturbations. The high order deviation of the viscous
solutions from the leading order ansatz is estimated pointwisely via the
approximate Green function approach. The structural constraint on the
left eigenvector belonging to the principal linearly degenerate family used
in [13] is removed so that our results hold, in particular, for the one-
dimensional compressible Navier-Stokes equations of gas dynamics in both
Lagrangian and Eulerian coordinates.

1 Introduction

The purpose of this paper is to study the large time asymptotic behavior toward
viscous contact waves for the solutions of viscous conservation laws for general
perturbations, by giving the detailed pointwise behavior of solutions via the ap-
proximate Green function approach. This problem was studied by Liu and Xin
([13]), under some structural constraints on both the left and right eigenvectors
of the linearly degenerate family belonging to which the contact discontinuity is
under investigation. As pointed out in [13], the asymptotic behavior toward the
viscous contact wave for solutions to viscous conservation laws without those
structural constraints is an open problem. In this paper, we show that the same
results in [13] still hold without the constraint on the left eigenvector. Consider
the following system of viscous conservation laws

opu + O, f (u) = 02u, reRY t>0, ueRY, (1.1)

where the flux f(u) € R™ is assumed to be smooth. We will study the large
time asymptotic behavior of solutions to Cauchy problem (1.1) with the initial
data

u(z,t =0) =wup(z) —» ur asx — too. (1.2)
The corresponding inviscid system

Ou+ Oy f (u) =0, reRY t>0, ueR", (1.3)
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is assumed to be strictly hyperbolic, i.e., the Jacobian matrix f’(u) has real
eigenvalues \;(u) with corresponding right and left eigenvectors r;(u) and ;(u)
such that

AM(u) <o < No(u), fl(wri(u) = Ni(w)ri(u), Li(u)f'(u) = Ni(w)li(u),
for all u under consideration. Define the matrices L, R and A as

L(u) = (li(w), -, l(w)'s R(u) = (r1(u), -+ (),
A(u) = diag(A1(u), -+, A\ (w)),

where (---)! denotes the transpose. Then we have
L(u)f'(u)R(u) = A, L(u)R(u) = Id.

The i-th characteristic field is called genuinely nonlinear (or linearly degenerate),
if VAi(u) - ri(u) # 0 (or VAi(u) - ri(u) = 0) for all u under consideration (cf.
[10] and [18]). Suppose that there exists a p € [1,n], such that the p-th field is
linearly degenerate, and the triple (u_,u4,s) forms a p-contact discontinuity,
ie.,

o) = Flus) = slu- —uy), s = Apus) = Apluy).

As in [13], the p-th viscous contact wave for (1.1) corresponding to the p-
contact discontinuity (u_,u, s) is constructed as follows. Set

Cylu-) =Ll u=ulp). G =ryfu(p)), u(p=p-) =u- ).

Thus the p-th contact wave curve through u_, Cp(u—), is the integral curve
associated with the vector field r,(u) in the state space with the nonsingular
parameter p. The parameter p is chosen to satisfy

u(p-) =u—, u(ps) = us;
Oup+ s0,p = 03p, xR, > -1,

0 (1.4)
plz,t=~1)= { o=
p+, x>0.
The p-th viscous contact wave @(z,t) is defined as
a,t) = ulp(e, 1)) € Cylu). (1.5)

Then it holds that,
O+ Op f(0) — 02t = (Vry - 1) (0) (9p) .
With the following structural constraints on both the left and right eigenvectors,

(Viy-1p)(u) =0, for u e Cp(u_), (1.6)



and
(Vry -rp)(u) =0, for ue Cp(u_). (1.7)

it was shown in [13] that the viscous contact wave @ is nonlinearly stable for the
Cauchy problem (1.1) and (1.2) provided the strength of the contact discontinu-
ity, |u+ — u_|, is suitably small. Moreover, the leading order asymptotic ansatz
of the solution to (1.1) and (1.2) was constructed in [13] as the superposition
of the viscous contact wave (with a proper shift) in the p-th field and nonlin-
ear (or linear) diffusion waves in the transversal fields. Also, the high order
deviation of the solutions to (1.1) and (1.2) from its leading order asymptotic
ansatz was estimated pointwisely and the optimal rate of convergence (in time)
was obtained in [13], under both the constraints (1.6) and (1.7). However, it
should be noted that for the one-dimensional compressible Navier-Stokes equa-
tions of gas dynamics, the constraint on the right eigenvector (1.7) holds true in
both Lagrangian coordinates and Eulerian coordinates (cf. [13] and [25]), but
the constraint on the left eigenvector (1.6) is only satisfied by the compressible
Navier-Stokes equations in Lagrangian coordinates, but not in Eulerian coor-
dinates (see [25] for instance). The main purpose of this paper is to improve
the results obtained in [13] by removing the constraint on the left eigenvector
(1.6). The significance of this improvement is that it sheds light on the nonlin-
ear stability of planar contact waves for the multi-dimensional compressible
Navier-Stokes equations. This is because, as well- known, that the Lagrangian
coordinates system is very inconvenient to use in multi-dimensions. In [25], the
nonlinear stability of superposition of shock waves and contact discontinuities
is obtained for n x n viscous conservation laws solely under the constraint on
the right eigenvector (1.7), by using the weighted energy method. For the ini-
tial data considered in [25], the Riemann solution to (1.3) with the Riemann
data uy (which are the limits of the initial data ug(x) as @ — £00) consists of
shock waves and contact discontinuities. Each wave has a weak but non-zero
strength. In this case, the initial perturbation of superposition of viscous shock
waves and contact waves only produces the translations of those waves, but not
diffusion waves. Also, no decay rate is given in [25]. In this paper, we consider
a generic perturbation of a viscous contact wave. As observed in [21] and [13],
a generic perturbation produces not only a translation in viscous contact wave,
but also diffusion waves in the transversal families. We decompose the solution
as the sum of the viscous contact wave, diffusion waves and high order error
terms and use the approximate Green function approach to give detailed point-
wise estimates of the solution, which yields the optimal decay rate. The same
decay rate is obtained as in [13], with the constraint on both the left and right
eigenvectors.

The problem of nonlinear stability of elementary waves, such as shock waves,
rarefaction waves and contact discontinuities for viscous conservation laws is a
fundamental one in understanding the large time asymptotic equivalence be-
tween the hyperbolic conservation laws and viscous conservation laws. This
problem has been extensively studied for the shock waves and rarefaction waves
(cf. [2], 3], [9], [11], [12], [14], [16], [17], [19], [22], [23] and the references



therein). However, the problem on the nonlinear stability of contact discontinu-
ities is more subtle due to its degeneracy. For the equations of polytropic gases
with the artificial (uniform) viscosity in Lagrangian coordinates, the viscous
contact wave is introduced by Xin ([21]), which approximates the contact dis-
continuity on any finite time interval. For this viscous contact wave, nonlinear
stability is proved for small generic perturbations and the detailed asymptotic
behavior of solutions is shown ([21]. Later on, for the one-dimensional com-
pressible Navier-Stokes equations of polytropic gas in Lagrangian coordinates,
the nonlinear stability of the viscous contact waves is proved by Huang, Mat-
sumura and Xin ([5]) for the perturbations with zero excessive mass ([5]) and
further by Huang, Xin and Yang ([8]) for general perturbations ([8]), both with
the decay rate of (1 4+ ¢)~%/4 in L>-norm by using the energy method. The
nonlinear stability of a superposition of viscous contact waves with rarefaction
waves for 1-d compressible Navier-Stokes equations in Lagrangian coordinates
is proved by Huang, Li, and Matsumura ([4]) by using the energy method. The
decay rate is not given in [4]. In the present paper, by using the Green function
approach, we obtain the optimal decay rate in LP-norm for any 1 < p < 400, es-
pecially we obtain that the decay rate in L>-norm is (1+t)~/2. Furthermore, it
should be noted the above mentioned systems for polytropic gases for which the
nonlinear stability of the viscous contact wave is proved are all in Lagrangian
coordinates, in which the constraints both on the left and right eigenvectors
(1.6) and (1.7) are satisfied. However, as already mentioned, for those systems
in Eulerian coordinates, only the constraint on the right eigenvector (1.7), but
not the constraint on the left eigenvector (1.6), holds. It should be noted that
the nonlinear stability of contact waves is also proved in [6] for the Jin-Xin re-
laxation model with the decay rate of (1 + t)’1/4 L°°-norm by using the energy
method.

The rest of this paper is organized as follows. In Section 2, we describe the
leading order asymptotic ansatz and state the main theorem. The equations
for the antiderivatives of the high order error terms are derived and some esti-
mates on nonlinear terms are given in Section 3. Exact and approximate Green
functions for the principal and transversal fields are introduced in Section 4. In
Sections 5 and 6, we derive the a priori estimates for the principal and transver-
sal fields, respectively. Based on those a priori estimates, the main theorem is
proved in Section 7.

2 Main Results

In this section, we describe the leading order time asymptotic ansatz, which is
the superposition of the viscous contact wave and diffusion waves.

Under the structural condition 1.7, the viscous contact wave u(x,t) intro-
duced in (1.5) is an exact solution to equation (1.1).

For § = |uy—u_|small, rq(u_), - ,mp_1(u_), ugp—u_,rpp1(uy), -, mn(ug)



form a basis in R™. So the initial excessive mass can be decomposed as follows:

/ (uo(x) — @(z,0))dr = xo(uy —u_) + Zmim (2.1)
R i#p
with uniquely determined o and m; (i # p). Here and thereafter, we use the
following notations:
u; = u_ fori < p, u; = uy fori > p,
i = i), L = 1i(ug), ri = ri(ug), ag = (VA1) (ug), fori #p,  (2.2)
Ap = Mpuyg) = s,
unless otherwise mentioned. A generic perturbation of the viscous contact wave
should also introduce waves in the transversal characteristic fields [21, 13]. These

are the nonlinear (or linear) diffusion waves introduced by Liu [11], which are
governed by the converted Burgers equations

1
0n0; + 0x(Nib:) + ax(Eaief) = 0260;, i#0p. (2.3)
The masses carried by the diffusion waves are
m; z/ 0;(z,t)dx, i +#p. (2.4)
R1
By Hopf-Cole transform, the solution to (2.3) and (2.4) has an explicit form
1 z—Ni(1+1)
ei J),t = i 2.5
(=:1) ¢1+tX( VAL +1) ) (25)
with
o) " Hexp(oym;/2) — 1) exp(—y? .
ily) = ) (OB ZDedCy) e i o, 4 o)
V7 + (explaimy/2) = 1) [T exp (—€2)
or

m;

xi(y) = \/Eexp(—zf) (if a; = 0).

We now define the leading order time asymptotic ansatz for the solution to (1.1),
(1.2) as a superposition of a shift viscous contact wave with diffusion waves in
the transversal fields, i.e.,

u(z,t) = u(x + xo,t) + 0(z, t) = a(x + zo,t) + Z 0;(z, t)r;. (2.6)
i#p

Since
/Rl (uo(x) — u®(z, 0))dz = /R (uo(x) — @(, 0))dz + /R (7 — u)(z, 0)da
=xo(uy —u_)+ ;mim — /}R1 (a(x + o, 0)

—u(z,0))dx — /}R1 Z 0;(z,0)r;dz =0,

i#p



it follows from the conservation laws for the viscous contact wave @(zx,t), the
diffusion waves 6;(x,t), and the solution u(z,t) to (1.1), (1.2) that

/OO (u(z,t) —u(x,t))de =0, forallt > 0. (2.7)

—0o0
The main result in this paper is the following:

Theorem 2.1 Suppose that the system (1.3) is strictly hyperbolic and each
characteristic field is either genuinely nonlinear or linearly degenerate. Fur-
thermore, suppose that (u_,uy,s) is a p-contact discontinuity and the structural
condition (1.7) holds. Let u(x,t) be the viscous contact wave as defined by (1.5),
the initial excessive mass be decomposed as in (2.1), u®(z,t) be a superposition
of a shifted viscous contact wave with transversal diffusion waves as constructed
in (2.6). Then there ezists suitable small positive constants §1 and o2 such that
if

ug —u € H'(RY), (2.8)

d=Jug —u_] <dn, (2.9)

/(1+|x|)|u0—ﬂ|dm+/ (1+ 22)[uo — l2dz
RY RY

+[[(1 + [2]*)(uo — )| oo (r1) < 63, forl<a<5/4,

then the Cauchy problem (1.1), (1.2) admits a unique global (in time) solution
u(x,t) with the following properties:

(1) u—u® € C([0,+00); HY(R')), u —u € C([0, +o0); HL(RY));

(2) for allx € R, ¢t >0,

(2.10)

u(z,t) = u(w,t) + 0:(Y_ vilw, t)ri(w)

i=1

. (2.11)
= a(x + 20, 1) + 0(x,t) + > _{(Davi)rs (@) + v; Vr(0)(0,1) }
i=1
with
|vi| = O(1)(81 + 82) (| — Nt|* + (1 + 1)) ~/4, (2.12)
|0pvi] = O(1) (81 + 82) (| — Nit|* + (1 +1)) /4 (1 +1) 71/, (2.13)
and
|02v;] = O(1)(01 + d2)|z — Nit| =%, for |[& — Nit] > co(1 + t), (2.14)
where ¢y > 4m§¥ [Ai(u(x,t))| is a positive constant;
(3) as an immediate consequence of (2),
llu(-,t) = a(- +zo0,t)||Lrrry s uniformly bounded in time (2.15)

(s t) = a(- + 20, t)|| ey = (L+8) "2/ E 0 for all1 < p < oo. (2.16)



Remark: As an immediate consequence of (2), it hold that

(14 t)"tF/p, l<p<?2
[u(-,t) = u( )|l ey = § (L+1) " In(1 +¢), p=2
(1+ t)*3/4+1/(2p)7 2 < p < 0.

These rates of convergence are optimal.

(2.17)



3 Integral error equations and the characteristic
decomposition

Let u®(z,t) be the leading asymptotic ansatz constructed in (2.6). Without loss
of generality, we assume that the speed of the p-contact discontinuity and the
shift in the center of viscous contact wave are zero, i.e., s = 0, xg = 0. It follows
from the fact that (VA; - r;)(w) = (Lif"(rs, 7)) (w) and (3) of Lemma 3.1 that

Ou® + 0, f (u®) — O2u®

x

=0, () ~ f(@) = S Oubi + g
i#p

=0, A S (@)~ fluribi+ 5 S @700

i#p i,J#p, i#£]
4= Z (f" (@) (ri,ri) — a;r)02 + O(1)0]3 (3.1)
l#p

—Z Zlk wi) £ (i) (ray )i (wi) — Lif” (wg) (i, ri)rs 9?

i#p Lk=1
OM)[0]° + e}

1
3 Z Z(Zkf”(ri, ) ) (ug)02 + O(1)|0° + e p = Oe.
i#p k#i

Here and thereafter, e = e(x,t) represents the exponential error term,
e(x,t) = O(1)(6mo + md) exp(—c(t + |z])) (3.2)

for some suitable positive constants O(1), ¢, and mo = > |m;|. Before going
i#p

further, we list some basic properties of the viscous contact wave and diffusion

waves in the following lemma. The proof is clear, based on the known prop-

erties of the solutions to heat equation and Burgers equation, and the strict

hyperbolicity.

Lemma 3.1 The viscous contact wave u(x,t) and diffusion waves 6;(x,t) sat-
isfy the following properties:

CC2
(1) s, = ODI0p] = O3 +1) 2 expl- 1),
CC2
2a(z, 0] = ()31 +1) expl{— g
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(2) e, t) —u_| < O(1)d exp{— W} z <0,
Ju(, £) - us| < O(1)8 exp{— (m)}, > 0;
(3) lale,t) — willt:] = O(L)smi] exp(—c(t + |a])) for i # p,

103,00 (2,0 = O(L)|mym| exp(—c(t + [a])) for j,k £ p, j # k.
Here 6 = |uy —u_| and m; (i # p) are determined by (2.1).

Suppose now that u(z,t) is a solution to the Cauchy problem (1.1), (1.2). We
can decompose u(z,t) as:

u(z,t) = u(z,t) + o(x,t).

It follows from (1.1) and (3.1) that @(x,t) solves

{ Ow + O (f(u® + @) — f(u®)) — 02w = —0O,e, 53)

w(z,t =0) =up(z) —u(x,0).
Note that (2.7) enables us to introduce the following anti-derivative variable
x T
w(z,t) = / oy, t)dy = / (u—u®)(y,t)dy. (3.4)
—o0 —o0

Substituting (3.4) into (3.3) and integrating the resulting system with respect
to space variable x, one has the integrated error equations for w(z,t),

Orw + f/(0)0pw — 0*w = E, (3.5)
sl 0) = wo(o) = [ (woly) = u (500 (3.6)
where

E=—c— [ (u)(0,0,w) - —f (@)(Daw, Do) + O() (10 + |0,])

Note that

+oo
J

Foo
J

(1 +Jz])?

2

+oo 400
/ (u—1—6)(y,0)dy| do §4/ (u— @~ 0)(y, ) y2dy|.
x 0

400
du s/ (u— @ — 0)(5,0)] [yldy| .
0

+oo
/ (u— 1~ 0)(y,0)dy

+o0 +oo )
/ <u—fu—9><y,0)dy\</_ (L4 1o)? [ — @ — 6)(5,0)[ dy,

which can be verified easily by using the Héolder inequality and change of the or-
der of integrations. It follows from some simple inequalities, the explicit forms of




the viscous contact wave and diffusion waves (Lemma 3.1), and the assumptions
(2.8)-(2.10) that

w(z,0) = wo(x) € HAR') N LY (RY), (3.7)
lwoll 2 gy + lwoll 1 ey 1 (L + [2]) " 2wol| Loe )

(3.8)
+ 11 + |z]) *wp| oo rey < CO3,

for some positive constant C', and d2, v given in Theorem 2.1. We diagonalize
system (3.5) by introducing a new variable

v(x,t) = L(a)w(z, t). (3.9)

Then w(z,t) = R(u)v(z,t), and system (3.5) becomes

v + AN@)0,v — 020 = e + e, (3.10)
where

e1 = —L(w)(0:R(w) + f'(@)0, R(@) — 0*R())v + 2L(1)0, R(10)dyv,

ey = L(’U,)E

We conclude this section by listing some simple estimates on the right hand
side of (3.10), which will be used later.

Lemma 3.2 The coupling and nonlinear terms in (3.10) admit the following
estimates

1
(1 +e2)p == 5 > (" () ()05 + O(1) { Y _[(0ep)? (5] +25)
J#p J#p (3.11)
+ 102p1(102v51 + 16][vs] + [051020]) + (Bav;)”
+ 1020p 100, 1] + 16]1020] + 1617 + |02w]” + €},

1 _
(e +e2)i =—5 W gy ri)) ()03 =Y [Nili(Vr - p))(@) (D p)v;
J#i,p J#D
+ O [(02p)*(lvj] +v2) + 1020l (102051 + 10][05] + |v;|0zv]) (3.12)
J#p
+(9207)? + |020p| 0z 05 ) + 101|820] + |0 + 18,0]* + €}, i # p.

Remark: With the constrain on the left eigenvector (1.6) as in [13], (e1), =

(62)10 =0.
Proof of Lemma 3.2. This lemma follows from direct computations by using
the structure of viscous contact wave and diffusion waves, and the structural

10



condition (1.7). Indeed, for all i = 1,--- . n,
(e1)i
= Z{ (Oprj + Ny — Dyry)|(@)vy — 203(a) (D (@) (Dxv;)}

- Z{ i(Vrj - 1p)|(@)(8ep + Xi(@)Drp — D3 p)v;
(3.13)

+ LV (Vrj - rp) - 1p)(@)(92p)* 05 + 2[L(Vry - 1) (@) (02p) (O )}
_Z{ i(Vrj - rp)[(@)Ai (@) (O p)v; + [V (V) - mp) 1) (T )(8:8/))

+2[Li(Vry 1) [(0)(92p) (9v;) },

where we have used the equation for p(z,t) in (1.4) in the last equality. Note
that the structural condition (1.7) ensures A, (@) = 0, so

(e1)p = O(1) > {(0ap)?[v;] + |02pl|0xv5]}, (3.14)
J#p

(ex)i = Y _{=li(Vrj - 1p)|(@)(@zp)vj + O()[(02p)* 0] + 10upl| 0051}, i # .

J#p
(3.15)
(€2) = =~ L(me ~ L@ @0,0:0) — S W) Or 00)
+O0)(10 + [8zwl).
We compute these three terms one by one as follows:
ll(’l_l,)c :li(u]‘)E + (ll(ﬂ) — li(uj))e
=5 S 13, 7i)) )2+ OO+
i#p ki (3.17)
1
=5 > Waf"(rgyri)) ()03 + O[] +e;
J#Pyi

Since
Opw = (0 R(u))v + R(u)0zv = Z{(aﬂj (@)v; +ri(@)(0:05)}, (3.18)
then

Li(@) £ (@)(0, 0pw) =Y > {Li(@) f (@) (ry, 07 (w))Orv;

k#p Jj
+ (@) £ (@) (ri, 75 (@) 0k (02v5) } (3.19)
=0 _ 0xpl16][v;] + 10110,0]};
J#p

11



li(a) f" (a

=> {ll:f"
7,k

+ [Laf" (rjy r)](@) (D2v5) (D vr) b

1) {(20)°0] + [02pl[v5]|020] + (9005)* + |00y ]102051},
J#P
where we have used the fact 0,1y, (@) = (Vrprp)(2)(9zp) = 0and [l; f" (rp, rp)](7)
0 fori=1,---,n, due to

1" (ris i)} (w) = (VX - i) ()i + (A = X5)5(Vrs - )] (). (3.21)

) W, &cw)

(0
(0x75, Oxri))(Wvjvr + 2[Li " (Ourj, mi)) (@) (O vr)
(3.20)

4 Green functions for principal and transversal
fields

We now begin our proof of the theorem by analyzing the asymptotic behavior
of solution to (3.10). As it is well known, the accurate pointwise behavior
of solutions to parabolic system is achieved by using the parametrix method
(cf.[1, 12,21, 19, 13, 15, 24]). We can construct the approximate Green functions
by approximating scalar dual waves corresponding only to the decoupled scalar
operators on the left hand side of (3.10) as in [13]. Now that the linear operator
on the left hand side of (3.10) is diagonal, and each component has a dual of
the form

Here and from now on, we use the notation
iz, t) = Ni(a(x, t)).

Thus the fundamental solution matrix to the linear operator d,v+ A(i)9,v—0%v
is a diagonal matrix with (7,7)-component given by #;(x,t;y,T) which solves
(4.1) on R! x (0,7T) with data

ni(z,t =Ty, T) =0(x —y) (4.2)
for any given 7' > 0 and y € R!. In the case i = p, A\,(u(x,0)) = s =0, so the
solution to (4.1)-(4.2) is given uniquely by the heat kernel

I 1 (z —y)?
ip(x,t;y,T) = mexp{—m}'

For i # p, we do not have an explicit solution to (4.1)-(4.2) in general. We thus
define an approximate scalar dual n;(z, t;y,T) as follows:

. _ 1 (mi(xat;yaT))2
ni(x,t;y,T) = mexp{—w} (4.4)

12
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for x € R, y € R', and t < T, where

mi(x,t;y, T) = N\i(x,t) (/; % +(T - t)) . (4.5)

It follows that the Green functions for the principal field n, (z, t;y, T) = 7y (2, t; y, T),
and for the transversal fields n;(x,t;y,T') satisfy the following properties:

ni(x,t =Ty, T)=0(x—y), i=1,2,---,n, (4.6)
and
Omi + O (Ni(z, t)m;) + O2my = E; (4.7)

with the error terms £, = 0 and for i # p,

E; =(0sMi)mi — Q(TLL) [8“" St (1 - 2(m% )

A2 T —t)
(4.8)
+8t>\1 +8§>\1 o m; Oz 3_ mf " )\(8 TL) ‘
n LAY Ry T —¢) "]

Here \; = \i(z,t), my = my(z,t;y,T), and n; = n;(z, t;y) = f; %

Taking the scalar product of (3.10) with = (m, - ,7n,) and integrating
the resulting equation, we obtain the following integral representation for the
solution to (3.10) by using (4.6)-(4.7),

w( ) = [ oo, O)(o.t = 0:y 7)o
T
+ / /vi(x, t)E;i(x,t;y, T)dxdt (4.9)
0

T
+/ /(61 + 62)1(33773)771(3?7757va)dxdta 1= 1; e, N
0

We also need to estimate the derivative of v(x,t). Thus differentiating (4.9)
with respect to y yields

0,01(0.) = [ viw,0)0,m(z,t = 0:9. T)do
T
+/ /vi(x,t)(‘)yEi(a:,t;y,T)dmdt (4.10)
0

T
+ / /(61 + 62)i($at)ay77i($;t;y; T)dxdtv 1= ]-7 s, N
0

Here and from now on, by [dz, we always mean the le dx unless otherwise
stated. For simplicity of presentation, we will use the following notations:

di(z,t) = ((z — A(1+8)2 + (1 +18) "4,

K(z,t) = (J2[** x(a,t) + (1 + 1) 72, (4.11)

Hi(xat) = K({E - >\z(1 + t)vt)a
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where x(x,t) is a smooth function satisfying
x(x,t) =1, for |z| > co(1 +t); x(x,t) =0, for |z| < co(1+1)/2.
Set also

M(t) = sup max {||(vid; ) (-, )l + [ ((Qavi) (diHi) ) (7)1} (4.12)

0<r<t 1sisn
Thus on the time interval the solution exists, one has that

viz, 8)] < M(t)ds(x, 1),

|0y v (z, )] < M(t)(d; H;)(, 1), (4.13)

for all z € R, i = 1,--- ,n. As long as one can obtain a priori bound on M (t)
independent of the time, the standard continuity argument yields the global (in
time) solution, and (4.13) gives the desired pointwise asymptotic form (2.12)-
(2.14). Thus, we only need to derive the following a priori estimate

M(t) < € (4.14)

where ¢g is a small positive constant depending on the initial data and wave
strength. The technical estimates for the bound on M(¢) are derived in the
next two sections.

5 A priori estimate I- on principal waves

We start with the estimate on the wave in the principal field, v,(x,t) and
Oyvp(x,t). This case is easier than the ones for the waves in the transversal
fields due to the fact that n, is exact.

5.1 Estimate on v,(y,T)

It follows from (3.11), (4.9) and the Cauchy-Schwartz inequality that for any
yeRL T >0

op(y, T |</|vpxo>||np<m0y, T)ldz + 01 //{|9|2

+ 3 [(02p)([vj] + v3) + 102p1102v5]] + [0a0]* + 6] (5.1)
J#p
+ 102 |0 + |820]* + e} (2, )y (2, 5y, T)daedt.

14



Using (2.5), (4.11), (4.13), (1) of Lemma 3.1 and the smallness of &, mg, M(T),

we have
oy, )| < / [0 (2, 0) [y, 0; y, T)
T
+oq) / / 10(z, )Py (2, t; y, T)dadt
0
T
+00M@) [ [+ 07 0rp(e.lny o153 T

1)M?*(T Z/ / (dZHZ2)(x,t)n, (z, t;y, T)dxdt

1// e(z, t)np(z, t;y, T)dxdt

1

Il
Mu

<.
Il

Lemma 5.1 For suitably small 61, 02 and €y, one has that
[op(y, T)| < O(1)(82 + 67 + M*(T))dp(y, T)

for all (y,T) € R* x (0, 00).

Proof For I,
I < v, 0) | Imp (-, 09, T) | e < O(1)T 1263,

and when y > /14 T (the case y < —/1 + T is similar), one has

y/2 00
b= {/ +/ } [vp (2, 0)|np (2, 05y, T)dx
- y/2
1/2
y/2 1 z—y 9
<llep(,0)ll» (/ M_Texp{_%}dx>

+ o0 (1 + - I)I/QH/ (L +[a) =20y (2, 0,9, T)da

y/2
_0()d, y? 0(1)3
N Xp{ 167 " T+ )7

So

I < O(1)82d,(y, T).

15
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Next, we consider
T
L - 0(1)/ /|9(x,t)|2np(a:,t;y,T)dxdt
=0 Z/ /|9 x,t) 20, (x, t;y, T)dadt (5.7)

i#£p
(y— Xi(1+1))? }dt

1
m‘);/ A eXp{_ A1+T)

where we have used the following formula

o e S

Cex {_M1(1+t)+u2(T—t)[
dpgpo(1+8)(T —t)
pr(1+1) PN ,
_u1(1+t)+u2(T—t)(y_)‘J(T t) Mlﬂ))]}
[y — Ni(1+ ) = (T — t)]?
Xexp{_ Al (1 +t) + pa (T — )] }

= Ai(1+1)

for some given positive constants 1 and ps. For the integral

T 1 . =M +1))?
12_/0 VAFT)1+1) p{ C(1+T) }dt’ (5:9)

we will treat the case i > p only, since the case i < p is similar.

When |y| <V1+T,
21
A7 ( +t))}dt

/ \/1+T =R { 20(1+T

<o) +T)"V4
When y < —v1+ 1T,
y? oxc )
< /\/71+T1+t { 1+T>} p{ c<1+T>}dt

O(1) y?
S sy P {_0(1 +T) } '

16



When y > 14T,

v
;L

Ii = —N(1+1))2 } "

1 (y
0 \/1+T T+1) eXp{_ C(L+1)
/ {_(y—Az-(lth))Q}dt
m CO+T)
o d YA+ (/2= N1+ 1)
S/o \/(1+T)(1+t) p{ CA+T) }dt
1 =AM+ 1))
+/ L Vax y/n))exp{ C+T) }dt
0(1) y? o)
ST e"p{_40(1+T)}‘L N

Hence,
d, ' (y, T)I; <O(1), for i#p. (5.10)

It follows from (5.7) and (5.10) that

dy " (y, T) I < O(1)mg. (5.11)
Similarly,
T
I3 = / / (14 8)348,p(x, t)|n, (z, t; y, T)dadt
0
T
/ exp —y72 dt
o (L+T)V2(1+1¢)3/4 4(1+1) (5.12)

1 y?
< O(L)SM(T)dy(y, T).

To estimate the term I, we consider the integral
A T
f= [ [@8) . 0m ot Ty
0
T

- / / (@2H?)(x, by, £y, T)derdt
0
le—X; (141)| <VIFE (5.13)

T
+ / / (@2H2)(x, )y, T dadt
0
|z —X; (148)|>v/IFL
= Ifh + Iiz

17



For the case i > p, A\; > 0,

T
: 1
Ii, <00 :
=0l )/0 / (1 + )32(T — 1)1/
=X (14-4)| < VIFE

(z = \i(1+1))? (z —y)
T 1 (y =M1 +1)?
< 0(1)/0 1+ 1) 72(1 +1) oxXp {_W} at
<O()I5 < O()dy(y,T).

Rewrite the integral I, as

. T 1 (z—9)°
w00 [ [ e iy e o
|z[>+/1+t

where § =y — \;(1 +t). Note that

=0 [ i [ EC = I

|z|>vI+t
1/2
T
dt 1
<0(1 S —d
<o [ gy | ) e
>vIF (5.16)
1/2

(z—9)*

X / exp{ AT —1) dz
z|>V/1+t

T 1
= 0(1)/0 (14 )5/ 4T —t)/4

It remains to bound I}, for |y| > 2v/1+T. When y < —2y/1+T, then §j =
y—AN(1+1t) <y<-2/1+T,s0

fizz()(”/fmwflﬁ{/_y:%exp{‘%}dz
— V¥t 00 2 )2
+{/y/2 + +/¢m}|?1|exp{_%}dz} (5.17)

<o) /OT { T T {‘%}} "

< O(l)|y|—1 In(1+7)+ O(l)T_1/4 exp {_ y? } |

dt <O()T~/4,

CT
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Fory >2y1+T,set J1 =[0,T]N{t:y<2y1+t}and o =[0,T|N{t: 5>
2y/1+t}. Then [0,7] = Ji + J2. Note that

[ o | e {a e
121> VITE

1
<o) | g (518)

T
1
=oa < O(1)|y|~ Y2
=0 )/0 |y|1/2(1+t)3/4(T_t)1/4dt_0( )Nyl=77,

[ L L e - e
[ 2ol
<o [ {aeara—ameon{-er} * e} (5.19)

QX”A%A{u+wmzuﬂvﬁm{_£;}+wﬁuﬂ}ﬁ

+q”/T {20+ 0@ -7+ L+ Lt

Yy o
20, 1

2
<o {7 exp { - L bl b+ 02

It follows from (5.14) and (5.16)-(5.19) that
Ii <0)d,(y,T), for i>p. (5.20)

and

The same arguments yield that
I <0()dy,(y,T), for i<p. (5.21)

For the case i = p, A, = 0, the estimate is similar but much easier than the one
for ¢ > p. Indeed, we have

, T 1 y2
I < 0(1)/0 T {_m} "

<OM)(1+T) Y21 +7) eXp{_Ax(%T)} (5.22)
<OM)dy(y, T),
and
b, <omr—Y4 (5.23)
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To bound I}, for |y| > 2/1+ T, we only deal with y < —2y/1+ T, since
y > 2y/1+ T is similar.

fff“”fmwfﬁ{/_y:%exp{‘iff—y;}dz
—VIFE oo )2
*{/W + */m}ﬁ“p{‘i(T—%}dz} (5.24)

<o /OT { o T o {‘%}} o

2
<Oy (1 +T)+O0(1)T*exp {_%} .

It follows from (5.22)-(5.24) that
1§ < O(1)dy(y, T). (5.25)
From (5.20), (5.21) and (5.25) , we obtain

I, = O(1)M*(T) ifj <O(M)M*(T)dy(y,T). (5.26)

i=1

For I,

I, = 0(1) / / (6mo + m3) exp{—c(t + 2])}1p (. t; y, T)eladt

O(1)(§mo +mg)(1+ 1)1/, lyl <VI+T
{ O(1)(6mo + m3) (T—1/2 exp{—y2/(CT)} + eXp{—C'1|y|}) ., otherwise.
Thus,
Iy < O(1)(6mo +m3)dy(y, T). (5.27)

From (2.10), we can see that |mg| < O(1)d2, so we finish the proof of this lemma.
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5.2 Estimate on 0,v,(y,T)

We now turn to the estimate for the derivative 0,vp,(y, T'). It follows from (3.11),
(4.10) and the Cauchy-Schwartz inequality that for any y € RY, T'> 0

|8yvp(yaT)| < ‘/Up(a?,o)@ynp(x,o;y,T)da?
_Z (Lp " (rj,r))(u; / /9 Oynp(x, 3y, T))dxdt
J;ﬁp
/ S @ (el +2) + owplzns

J#p
+ 101 |v;]] + [0z + 10]|0zv] + [0 + [0 |v]®
+ 0.0 + eHoynp(x, t;y, T)|dadt.

By (2.5), (4.11), (4.13), (1) of Lemma 3.1, the smallness of §, mg, M(T) and
the fact Oyny(z,t;y,T) = —0ump(x, t;y, T'), we have

(5.28)

9,004, < \ [ 000, (5,059, T
T/2
+o() / / 6z, 1) 210, mp (. £, T)

Z/T/2/| (000:)) (2, ) mp (, t; y, T)davdlt

i#p

+O()M(T) / / (1 + 63410, pla, 1) |0y my . 1, T) et

. (5.29)
FOMMID) + ) [ [+ 071000010, (0.t T) s
0
n T
DY M) [ [ @ w00, by D) dode
i=1 0
T
+o() [ [ et 10, (r.tiy. T)ldude
0
12
= ZI,L
i=6
Lemma 5.2 For all (y,T) € R! x (0,00), it holds that
|0yop(y, T)| < O(1) (82 + &6 + M*(T))(dpHy)(y, T) (5.30)
provided that 61, 62 and €y are suitably small.
Proof Note that
y—x o(1) (z —y)?
vy, )| = | —— sy, T)| = _ 5.31
|8y77p(337tyy7 )| |2(T_t)np(xat7ya )l T—teXp 4‘LL(T—t) ( )
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for some constant p > 1. For Ig, since

o) / 1 { (z —y)? }
Is < —= | |vp(x,0)|—=e ———— i dz,
so the analysis for I gives
Is < O(1)6,T~Y2d,(y, T).

When y > ¢o(1 +T)/2 (the case y < —co(1 4+ T')/2 is similar), one has

I — / (D2vp) (2, 0)p (2, 03y, Tl

y/2 oo
=3[ [ ot 0,050, T
—o0 y/2

<O exp {2/ (16T)} [0s0p(-.0)]| 11
- Bap (- 0) (1 [ ) / Ul 0 T
Yy

_0(1)d3 v O(1)d3
i P\ T T U )

It follows from (5.32)-(5.33) that

Is < O(1)02(dpHp)(y, T).

For Iy,

I, = O(1)M(T) / / (1+8) 3410, pla, )10y 1y (2, 9, T) dt

=0(1)5M(T) /OT/WGXP{_M%@}

X exp{—%}dmdt

T 1 Y2
<O(1)0M(T) /0 (14+T)Y/2(1 + ¢)3/4(T — t)1/2 P {_ C(1+1) } dat

1 y2
1+ 1) 2/a P {_ C1+1) }
<O()M(T)(dy Hy) (. T).

<O(1)6M(T)
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Next, we estimate ;9. Note that for i # p,

T
/ / (14 6)3/416,(z, )10, mp (2 £y, T) | dcdt

mo/ / 1+t5/4 _t)eXP{ (z 4?1(i5t))}
XGXp{ %}daﬁdt (5.36)

4p(T —t
' 1 (y = N1 +1))?
1)m0/0 \/<1+T><T—t><l+t>3/4exp{_ Ca+1) }dt

=0(1)moli,.

We will only treat the case ¢ > p, since ¢ < p can be dealt similarly.

1 __ oW

Tio < d . 5.37
10 _/(1+T)1/2(1+t)3/4(T—t)1/2 = (1+T)1/2T1/4 ( )
Fory < —v1+4T,
I </ 1 . y? .
X -7
0= AT RA T AT -2 P e 1) )

o) v’ o)
—————————eXpP{ — = —=.

T (TR CA+T) ) [yl¥?
It remains to estimate I, for y > /1 +T. If y/(2)\;) — 1 < 0, then 1 < 2)\;/y,

0(1) 2

2 O(1)
1+ T)1/2T1/4(7)3/ N ' (0:39)

i
fo = PRE

If 0 <y/(2\) —1 < T/2, then y < ¢o(1+T)/2,

Iy = {/ / / } 1+1)72(1 +1t)3/4(T—t)1/2

2

(y—Ai(1+1))
X exp{—w}dt

2X -1 1 y2
*/o (1+ D)V2(1+ AT — )12 P {‘_40(1 +7) } " (5.40)

| o) (y— N1 +1)
/— (L+ T) 2y AT/ e"p{‘ CU+T) }‘“

’ o) (y =\l +1)?
* /z (L+ 1) 2L+ T)P¥AT — )2 P {_ C(L+1) } at

__ o ), 0w o
T (1 T)RTVA exXp 4C(1+T) T2y|3/4 " (1 + T)3/AT1/A

_|_
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IET/2<y/(2)\)—1<T,theny <co(1+T)/2,

Im{/‘ /‘}1+T”2LHP“@—U”2

(y—Ai(1+1))
X eXp{—W}dt

o(1) y? o(1)
=@+ P {_40(1 +T) } T axEaT

Ify/(2X\;) =1 > T, then (1 +7T) < y/2,
A T 1 y?
A s e A e s
oQ) y?
= +r)eriya P {_40(1 ) } '

It follows from (5.37)-(5.42) that

(d, ' H, ) (y, T) 1o < O(1).
This together with (5.36) gives that
(d, "H, V) (y, T) o < O(1)mo(M(T) 4 mg).

For Iz,

I = 0(1) / ) / 160z, 1) 10,1, (. £y, T)|drdt
B T 1 (x — \i(1+1))?
0<1>m3§;/0 [wwar=s=- ")

X exp {— 4(26(; g); } dodt

<O

Hép/ VI +T) 1 +)(T —t) (1+T)

(y — N1 +1))?
= Tl/2 Z/ (1+T)(1+t)exp{_ C1+T) }dt

<O()mi(dpHy)(y, T).
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Here we obtain the last inequality by the same arguments as for I3 and I},.
Exactly the same analysis gives that

- T 1 (x — Ni(1+1))?
Is = O(l)mg Z/§ / (1+)3/2(T — t)1/2 P {_W}

i#p

X exp {—%} dxdt

I, 1 (y = Ni(1+1)”
owmsS. [ g e\ et

i#p T 2
<O(1)mi(dp Hy)(y, T)-

(5.45)

To estimate the term I77, we will work on the following term,
A T
L= [ [@H) w000, 60T dod
0

T
- / / (d2H2)(x, 1),y (x, t; y, T) | ddt
0
le—A: (14+8)| < VIFL

T
+ / / (d2H2)(x, 1)|0,ny (z, t; y, T) | dadt
0
|z—X; (141)|>v/IFE
= Iﬁ + Iﬁ

As before, in the case i > p, \; > 0, one can get,

T
A 1
I <oa / SR S
1 = O )/0 (1+1)3/2(T —t)
|z—N; (14+8) | <v/IT+E

(& = Ni(1+1))? (z —y)
xexp{—w}exp{—m}dxdt (5.46)
T 1 (y = Xi(1+ 1))
= 0(1)/0 A+ TV 20+ (T -2 P {_W} «
< O()(dpHyp)(y, T).

The last inequality is obtained by the same calculation as for I{,. Rewrite the
integral I3 as

1

113 :O(l)/o / |2|[|z]22 1x (2, 1) + (1 + )|(T — t)
|z|>VIFE

X exp {—%} dzdt,
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with § =y — X\i(1 +t). Note that

i2 T dt 1 ox _ -y y)? 2
hlgO“fA (EDIED / B p{ MAT—ﬂ}d

<0(1) /T ! dt <Oo)T—3/*,
B o (L+)P/4T -3/~

It remains to bound Ii% for |y| > 2/1+T. For y < —2/1+T, then §j =
y—Ai(l+1) <y<-2v1+T,s0

T 1 NG
A /mIMMm*Maﬂ+O+mﬂ“¢)m{zw@—ﬂ}dﬁ

[yl

2c0—Ag 1
< dt
_/0 [7l(17] + (1 + ) (T —t)1/2

) : 5.48
+/2 ol _q |Z7|(1+t)(T—t)1/2dt (5.48)

co—n;

1

T 1 T 1
9172 {/o Jaior o +/0 W0+ O —0) dt}

<O()ly|~*"2,

and
T —VITE - e
[T o b oo
<o() /OT e {_ 16@7/;} (5.49)

oQ1) v?
5TW4WP{‘ET |

Fory >2y1+T,set J1 =[0,T]N{t:y<2y1+t}and o =[0,T|N{t: 5>
2y/1 + t}, then [0,T] = J1 + J2. Note that

1 Bl )
ﬂl /1 EEP X0 + (L DI — 1) p{ 4MT—w}ddt
|z|>V1+t

IN

dt

1
<O0(1) /J1 (1+t)32(T — t)1/2

y/(2x:)—1
—om [T 20
A S RA =T

T/2 1 T 1
""/ 3/2 1/2dt+/ 3/2 172
v/@a)—1 (L+1)3/2T 772 (L+T)»2(T —t)

<0(1) <|y|—3/2 +T—1/2y—1/2 +T_1) ’
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and for Jy

—/(1+1) 7/2 1
/, {/oo */mt)} B + G+ 01T )

X exp{—%}dzdt

y/(2Xi)—1 1 3]2 (5.51)
< I .
_0(1)/0 (1+ t)5/4(T — t)3/4 eXp{ CT} dt

T/2 T ]
+0(1 / +/ »
W w/@x)—1 Jrp | (L4+)32)(T —t)1/2

1 2 1o - -
<0(1) (WGXP{_ZL%T}—FT 1/2=1/2 o 7 1)7

and

- ! ex —7(2_@2 z
/// FIE )+ AT DT —8) p{ 4u<T—t>}ddt

y/(2co+Ai)—1 1
gmn/ dt
0

119 + (1 + )T — t)1/2

1) y/(2Xi)—1 1
+o( / ] »
u/(2co+ni)—1 [T (L4 )(T — t)1/2 (5.52)
T/2 T )
+0(1 / +/ »
W w/@-1 Jra | (L+1)32(T —t)1/2

1 T 1 1 1 1
<O(1 / dt + + +=1.
()<|y|‘°’/2 o VAT —t) W VTl T)

It follows from (5.46), (5.47)-(5.52) that

I, <O)(dpH,)(y,T) for i>p. (5.53)
Similar arguments yield that

Ii, <O()(dpyH,)(y, T) for i< p. (5.54)
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For the case i = p, A, = 0, the estimate is similar but much easier than the one
for i > p. Indeed, we have

4 g 1
meon [ [ ey
2| <VIFE
D SRR DN SR Gt Vi
. p{ 4(1+t>} p{ 4u(T—t>}ddt (5.55)
T 1 y2
= 0(”/0 A+ )P+ 0T — 072 P {_4u<1 +7) } “

0O(1) Y2
§ m exp {_m} S O(]‘)(dep)(ya T)a

and
M <o()T=3/4. (5.56)

To bound If12 for |y > 2v/1+4+ T, we only deal with y < —2/1+4 T, since
y > 2y/1+ T is similar.

/ /W |2][|2[2—? (z t) 1+ 0T —t) Xp{‘%}dwﬁ

lyl
2cy

S ST +t>)<T —n (5.57)

T 1
+ dt
/%_1 lyl[(1+6)(T —)1/?

<o)yl 2,
and
B Y 1 G
/{// +/ } Ee e e T
v 5.58
SO(l)/o (1+t)5/4( — )3/ eXp{_lfiuT} o

y
= T3/4 P { 16uT}

It follows from (5.55)-(5.58) that
Ity < O(1)(dpHp)(y, T). (5.59)
This together with (5.53) and (5.54) shows
Iy = O()MA(T) S Iy < O()MA(T)(dy H,) (3, T). (5.60)
i=1

The term I15 can be estimated trivially as for I, so we omit here. Also, we have
mo < O(1)d2 by (2.10). Now, we get the estimate for the derivative 0,v,(y, T).
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6 A priori estimate II- on transversal waves

In this section, we give the estimates on the waves moving in the transversal
directions. In [13], those a priori estimates for |v;(y,T)| and |9yv;(y,T)| with
1 # p are derived by the elaborate analysis of the properties of the error terms F;
(7 # p) defined by (4.8) and the Green functions for transversal fields n; (i # p)
defined by (4.4)-(4.5), such as, the asymptotic behaviors of E; (cf. Lemma 3.2
in [13]), the essential support and effective propagation speed of n; (cf. Lemma
3.3 in [13]).

Since the constraint on the left eigenvector (1.6) has only effect on the prin-
cipal wave, but not on the transversal waves. This can be verified easily by
comparing Lemma 3.2 with Lemma 3.1 in [13]. Therefore, the a priori esti-
mates on transversal waves are the same no matter whether the constraint on
the left eigenvector (1.6) is imposed. So we list the following two lemmas about
the estimates on the transversal waves without proofs. The interested reader
may refer to [13] for the proofs.

Lemma 6.1 For suitably small 61, 02 and €y, one has that

[0i(y, T)| < O(1)(82 + 67 + M*(T))d;(y, T) (6.1)
for all (y,T) € R x (0,00) and i # p.
Lemma 6.2 For all (y,T) € R! x (0,00) and i # p, it holds that

|0yvi(y, T)| < O(1) (62 + 67 + M*(T))(d; H;) (y, T) (6.2)
provided that 61, 62 and €y are suitably small.

This completes the a priori estimates on the transversal waves.

7 Proof of the stability theorem

With the a priori estimates derived in the previous two sections, we can now
complete the proof of our main theorem easily. It follows from Lemma 5.1, 5.2,
6.1, 6.2 and (4.11)-(4.12) that

M(T) < O(1)(8 + & + M*(T))
provided that d1, do and €y are suitably small. We then have
M(T) < O(1)(61 + d2).
Since (3.8) implies that
M(0) < O(1)(61 + b2),
so by continuity we have for suitably small §; and ds,
M(t) < O(1)(61 + 92), for t>0. (7.1)

Consequently, we have shown
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Proposition 7.1 (A priori estimate) Let T be any positive constant and M(T)
be defined by (4.12). Suppose that w(x,t) is a smooth solution to the Cauchy
problem (3.5)-(3.8) defined on [0,T] and v(z,t) is the corresponding character-
istic variable defined by (3.9). Then there exist positive constant 0y and C such
that if 01 + 92 < o, then for all t € [0,T],

M(t) < C(61 + d2)
and |v;| = C(81 + 62)(Jx — Mt|> + (1 +1))~1/4,
|0,05] = C (81 + 62) (| — Mit|? + (14 1)) "4 + 1)~ /2,
|Opv;| = C(01 + d2)|x — Nit| =%, for |z — Nit| > co(1 +1).

Now, the theorem 2.1 follows from Proposition 7.1 by the standard argument
for parabolic equations. Thus the proof of Theorem 2.1 is complete.
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