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Abstract

In this paper, we first study a class of elliptic equations with anisotropic boundary degeneracy.
Besides establishing the existence, uniqueness and comparison principle, we obtain the optimal Hoélder
estimates for weak solutions by the estimates in the Campanato space. Based on such Hélder esti-
mates, we then investigate subsonic-sonic flows with singularities at the sonic curves in a symmetric
convergent nozzle with straight wall for an approximate model of the potential flow equation. It
is proved that the perturbation problem of the symmetric subsonic-sonic flow is solvable and the
symmetric subsonic-sonic flow is stable.
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1 Introduction

The motivation of this paper is to study continuous subsonic-sonic compressible Euler steady flows in a
three-dimensional symmetric convergent nozzle with straight solid wall. If the flow is irrotational and is
symmetric with respect to the z-axis, it satisfies the following potential flow equation in polar coordinates

(ro(62+28)0) +2(o(62+%)0n) =0 ) €C=(rr)x ). (L)

where 71 <19 < 0,0 <6y < 7/2,

1 AL/
q2)

ol 2
p(q2)=(1——2 , 0<q2<—7_1 (y>1).

If the angular velocity ¢y is relatively small compared with the linear velocity ¢,, (1.1) may be approxi-
mated by

(ro(¢7)ér), + M%e =0, (rn0)ed. (1.2)
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We are interested in the boundary value problem of (1.2) prescribed the following boundary conditions

g (r,0) = ¢g(r,00) = 0, r<r<ry, (1.3)
qb(rl,H) = b(@), 0 <0< by, (14)
or(r2,0) = ¢, 0<6 <6, (1.5)

where ¢, = 1/2/(y+ 1) is the sonic speed. As the potential flow equation (1.1), (1.2) is also elliptic at
subsonic state (where 0 < ¢, < ¢,), while degenerate at sonic state (where ¢, = c¢,).

If the incoming flow enters the nozzle with right angle so that b is a constant by, there is a unique
subsonic-sonic flow ¢g, whose angular velocity is zero, to the problem (1.2)—(1.5). This symmetric flow
is subsonic apart from the outlet and sonic at the outlet; further, it is singular at the sonic curve in the
sense that the speed of the flow is only Holder continuous and the acceleration of the flow is infinite at the
sonic curve. We are interested in whether this flow is stable. That is to say, if b is a small perturbation of
by, whether there is a subsonic-sonic flow ¢ of the problem (1.2)—(1.5). Moreover, if such a subsonic-sonic
flow ¢ exists, is it singular at the sonic curve and what is the singularity, and is it sufficiently close to
the symmetric flow ¢o? We will prove that the symmetric flow is stable and the perturbed flow possesses
the same singularity at the sonic curve as the symmetric flow. The key to prove these conclusions is to
establish some suitable estimates for the perturbations. Particularly, we need to establish the precise
regularity of ¢ near the sonic curve r = ro. To do end, we should study Holder estimates of solutions to
the following degenerate elliptic equation

2
%(72—‘:) 2‘;—‘: ”2?‘97‘2/ = %FI(T, 0) +T2%FQ(T, 0), (r,0)€(0,1)x (0,60).  (L6)

Although there are many studies on regularities of solutions to degenerate elliptic equations, Holder
continuity of solutions to (1.6) is still open. Thus, we will establish the Holder estimates for (1.6) in the
first part of this paper. More generally, we consider the following degenerate elliptic equation

@.0)) + A2 0 9) + 2 Ayl ) = i (2.9) + 2V, fol),

0 (xau
ox
(xay) €= (Oa 1) X BRO(0)7 (17)

9 \" 0z

where A > 0, A > 0, Bg,(0) is the ball in R™ centered at the origin with radius Ry, A, and V,, are the
Laplacian and gradient operators in R™. The equation (1.7) is degenerate on {0} x Bg,(0), a portion of
the boundary, with an anisotropic degeneracy. Corresponding to the boundary conditions (1.3)—(1.5) for
subsonic-sonic flows, we prescribe the following mixed boundary conditions for (1.7)

ou

a(xay) =0, (a:,y) € (07 1) X 8BR() (O)a (18)

U(l,y) = g(y)v y € Br, (O)a (19)

where v is the unit outer normal to 9. It is noted that there is no boundary condition on {0} x Bgr,(0),
where (1.7) is degenerate, according to the general theory on the linear equations of second order with
nonnegative characteristic form ([25]).

The investigation of linear equations degenerating on the boundary began in the beginning of the
last century. The 1951 paper of M. V. Keldys [15], initiating a long series of papers, played a significant
role in the development of the theory. It was this paper that first brought to light the fact that in the case
of elliptic equations degenerating on the boundary, under definite assumptions a portion of the boundary
may be free from the prescription of boundary conditions. Later, G. Fichera and O. A. Oleinik established
general theory on the following second order linear elliptic equations with nonnegative characteristic form

([25))

n 2u n u
> az‘j(y)ﬁ%(y) + z;bi(y)g—yi(y) +cly)uly) = f(y), yeD,

4,j=1



where a;; € W2°°(D), b; € Wh>(D), ¢ € L*°(D) and

> ay(y)&g; >0, £€R" yeD.

i,j=1
The general theory can be applied to

0/ Ou

(20 w9)) + AP ) + 0 Ayl y) +elayhu= [lwy), (y)€Q  (110)

in the case A = 0,1 or XA > 2. It is shown that there exists a negative constant ¢y such that for any ¢ < ¢,
the weak solution of the problem (1.10), (1.8), (1.9) in some Hilbert space exists uniquely if f € L?(Q).
The Hilbert space is defined as follows. For w,v € C'(Q), define the inner product

0 0
(w,ohmie) = [ (550G w0) + 2 Vi) - Vyo(ann) + wla,p)ole. ) dedy
+A/ w(0,y)v(0, y)dy.
Br (0)

The closure of C'! (Q) with respect to this inner product (-, -)3(q) is denoted by H(£), which is an Hilbert
space. Therefore, the general theory can not be applied to (1.7), which is just (1.10) with ¢ = 0. As
to the regularity, it is shown in the general theory that the weak solution is Lipschitz continuous if ¢
and f are Lipschitz continuous ([25]). Such a regularity is much different from the Schauder theory on
uniformly elliptic equations and insufficient to study (1.2).

After the general theory by G. Fichera and O. A. Oleinik, many authors investigated the following
second order linear elliptic equation with isotropic boundary degeneracy and with divergence form

n

0 ou " ou
o i \Y) 75— i\Y) 75— = , D C R", 1.11
20y (w(y)a i) i (y)) + ;b () m () +culy) =fly), yeDcC (1.11)
where w is a nonnegative function in D and

n

Cilél? < ) ay()&é < Coléf’, €€R™, yeD (0<Ci<Cy).

4,j=1

If w € C(D) and is positive in D, A. Nakaoka [23, 24] established the well-posedness for (1.11) under
some structure conditions on ¢, similar to the L? theory on uniformly elliptic equations. If w belongs to
the Muckenhoupt class As, i.e.

/ w(y)dy w™ (y)dy < C’(meas(B))2 for any ball B C R" (C >0),
BND BND

many authors established the Harnack’s inequality for (1.11) and showed its solutions are Holder con-
tinuous ([4, 5, 6, 7, 17, 18, 19, 26, 29]). Among these, [4, 17, 26] studied the following special case of
(1.11)

O (22 ) gl g) + bl ) o) = fag), () €0,
Particularly, [26] investigated the optimal Holder continuity of solutions in the case that b is a constant
greater than —1. There are few studies on degenerate elliptic equations with anisotropic degeneracy
([8, 10, 14]). In [8] and [10], the authors established the Harnack’s inequality for a class of anisotropic
degenerate elliptic equations related with the Sobolev-Poincaré inequality, whose typical example is the
continuous Grushin-type equation

0 0
%(<|x|”+l+|y|>’f%<x,y>)+§y(<|x|“+l+|y|>k|x|“a—;‘<x,y>) = f@.y), (5y) €R: (ko >0).



n [14], J. X. Hong and C. Zuily studied

2
%(% y) + 2Ayu(z,y) = f(z,y), (z,y) € (0,+00) xR" (1.12)

and proved that u € C* ([0, +00) x R™) if f € C*°(]0, +00) x R™). It is noted that the boundary {0} x R",
where (1.12) is degenerate, is noncharacteristic.

In the first part of this paper, we consider the problem of the anisotropic degenerate elliptic equation
(1.7) with the boundary conditions (1.8) and (1.9). After establishing the existence, uniqueness and
comparison principle, we will focus on the Hoélder continuity of weak solutions. Here, since the degeneracy
of (1.7) is anisotropic, the optimal Holder continuity of weak solutions is also anisotropic. Let us clarify
this anisotropy via a selfsimilar transformation. Assume that u is a weak solution of the homogeneous
equation of (1.7). Then, for any R > 0, the function

w(z,y) = u(R™ 'z, R-AHD/2y)
is also a weak solution of this homogeneous equation. Therefore, we should choose the following seminorm
to describe the Holder continuity of weak solutions to (1.7)

1)V (@, §) — ulz, )]

— "+ [y -yl

o (max{
u ;Q = u
« (5.5).(5 5y € (max{ )(A 1)@/2|
(2,9)#(2,9)

By using the estimates in the Campanato space, we establish the optimal Holder estimates of weak
solutions by the above anisotropic seminorm. Based on such Holder estimates, we then investigate the
subsonic-sonic flow problem (1.2)—(1.5) in the second part of this paper. It is proved that the perturbation
problem of the symmetric subsonic-sonic flow is solvable and the symmetric subsonic-sonic flow is stable in
the sense that if b is a small perturbation of by, there is a subsonic-sonic flow ¢ of the problem (1.2)—(1.5),
which is sufficiently close to ¢y and possesses the same singularity at the sonic curve as ¢q.

The paper is arranged as follows. In §2 and §3, we prove the well-posedness and establish the optimal
Holder estimates for the problem (1.7)—(1.9). Subsequently, we solve the problem (1.2)—(1.5) in §4.

0<a<l).

2 Well-posedness of boundary value problem

In this section, we investigate the well-posedness of the boundary value problem (1.7)—(1.9).

2.1 Definition of weak solutions

For (1.7), we may also define weak solutions in H(2) as for (1.10). Indeed, set

H, () = {w € HL.(Q) ://Q (m“’ (g—z;)(x, y))2 + 2PNV w(z, y) 2 + x“’*QwQ(x,y))dxdy < +oo}

with w > 1. This is an Hilbert space with the inner product

»Ow ov WA w—
(w,v)n, @) = //Q (x oy @Y gz (@) + 2V, y) - V(e y) + 2 (e, y)v(x,y))dxdy-
We can define weak solutions in H,,(€2) as follows.

Deﬁnltlon 2.1 Assume that f1, f5 € L{ .(0,1; L' (Bg,(0))) and fa is piecewise continuous near (0,1) x
0BR,(0). A functzon u € Ho(Q) with w > 1 is said to be a weak solution to the problem (1.7)—(1.9) if

// 2L )~ AZE @)l y) + 2Vl ) - V(e 9)) dedy

) ” ! -
= //Q fi(z, y)a—i(x,y) + x’\fg(a:, y) - Vy(z, y)) dxdy — /0 /BBRO(O) x’\fg(a:, y) - vip(z,y)dSdx

for any ¢ € CY(Q) vanishing near x =0 and x = 1, and (1.9) holds in the sense of trace.



2.2 Uniqueness and existence of weak solutions

We first establish the uniqueness of weak solutions for the problem (1.7)—(1.9).
Theorem 2.1 The problem (1.7)—(1.9) admits at most one weak solution in Har+1(S2).

Proof. Let uy,us € Hopnt1(92) be two weak solutions of the problem (1.7)—(1.9). Set

u(x,y) = Ul(a?,y) — ug(x,y), (a:,y) c Q.

= 0 in the sense of trace and

Then, u € Hoat1(2) with u(1,-) Ba (0)
Ro

ou O ou N B
//Q (x%% —Agb+a Vyu-Vyw)dxdny (2.1)

for any 1 € C'(Q) vanishing near z = 0 and z = 1.
For any 0 < 6 < 1, let 5 € C°°([0, 1]) satisfying s = 1 on [, 1], s = 0 on [0, /2] and

0<ns(z) <1, 0<njx)< 0<z<1.

ST

Taking 1) = 22 nsu in (2.1), one can get by an approximating process that

ou\2 A O(u?
//Q (J?QAH??&(%) - §$2A775—((9x) +$2A+Ana|vyu|2>d$dy

—|—2A[/ xQAngu@dxdy—i—// AL Ou dxdy—O

Integrating by parts leads to

2
[/ xQAng%dxdy =— [/ (xQAn('g + 2Ax2A*1n5)u2dxdy < —2A// e psuldady.
Q Q Q

Therefore,

ou\ 2
// (x2A+1n5(%> +A2x2A_1775u2+x2A+’\n5|Vyu|2)dxdy
Q

ou ou
< 2A _ 2A+1 7 . .
< 2A//Qx ngu—axdxdy //Qx néu—axdxdy (2.2)

It follows from the Cauchy inequality, the Hélder inequality and u € Hap41(€2) that

‘2A//x ngu—dxdy‘ <// 2A+1n5 dxdy+A2// e Insuldedy (2.3)
Q

ou
2A+1 7 _d d ‘
] gy
5 5
Oun 2 1/2 1/2
ST N 2A+1 (U 2A-1, 2
<l @)= 5720 /5/2 Lo G ) ([ e ta)
<4 / / 2A+1 ) dxdy 1/2 / / P21 2dxdy>1/
5/2JBry (0) 3$ 5/2 JBry(

—0 as 0 — 0%, (2.4)

and



Letting § — 07 in (2.2) and using (2.3) and (2.4), we get that

// AV u)?dedy <0,

u(z,y) = w(z), ae. (z,y) €Q

which implies

with w being the solution of
(zw'(2)) + Aw'(z) =0, 0<z<1, w(l) = 0.

Therefore,
u(z,y) =C(1—z ™), ae (z,9)€Q (C eR).

Due to u € Hapa11(€2), we get that C =0 and
u(z,y) =0, ae. (z,y) € .

The proof is complete. O

Remark 2.1 The space Hant1(Q) is optimal for the uniqueness of the weak solution to the problem
(1.7)~(1.9). For example,

ul,y) =C(l—a ), (r,y)eQ  (CeR),
which belongs to H,, () for w > 2A + 1, is a weak solution to the problem (1.7)—(1.9) with

g=0, f1=0, fr=0.

Now, let us turn to the existence theorem for the problem (1.7)-(1.9). According to Remark 2.1,
there may exists infinite weak solutions in H,, () with w > 2A 4 1. Therefore, we just study the existence
of weak solutions in H,,(Q) with 1 < w <2A + 1.

Theorem 2.2 Let 1 < w < 2A + 1. Assume that g € H(Bg, (0)), ~2/2f, 2@tA-D/2f c [2(Q), f
is piecewise continuous near (0,1) x OBg,(0) and x(@+A=D/2=A=D-/2f ¢ [2((0,1) x dBg,(0)), where
A=1)_=0ifA>1while A—=1)_ =1—=Xif 0 < X < 1. Then there exists at least one weak solution
u € Hy,(Q) to the problem (1.7)—(1.9).

Proof. Without loss of generality, we assume that g = 0.
For any 0 < ¢ < 1, consider the following approximating problem

(@4 PE) $ A% aeP Dy = A frewn) + @4 PV foelwy), () €0, (25)
e ) = 0 (£.9) € (0,1) x OB, (0),  (26)
u:(1,y) =0, y € Br,(0), (2.7)
% (0,4) = € By, (0), (2.9

where f1 . € C3°(Q) and ﬁ@ € C>(Q) satisfy

Iz +e)“ 272 f iz < 129722 fill 2y, @ +e) @26 ey < 2@ D72 f| 12,
(2.9)

| (x + E)(w+)\71)/27()\71)7/2f;,6HLQ((O,l)xaBRO(O)) < ||x(w+)\71)/27()\71)7/2f;||L2((0,1)><83R0(0))a (2.10)



lim // 2(fr.e — f1)dady = 0, hm // WAL fy - — folfdady =0 (2.11)

e—0*t

and

1
lim / / g A= ) fol?dSda = 0. (2.12)
OBR, (0

e—0t Jo

It follows from the classical theory on the uniformly elliptic equations that the problem (2.5)-(2.8) admits
a unique classical solution u. € C*° (). Multiplying (2.5) on both sides by —(z+¢)“~u,, then integrating
by parts over €2 with (2.6)—(2.8), we obtain that

8 \2 A O (u?
// (x+ E)“J - ) — E(at +e)et E’;;J + (z+ 6)“+’\_1|Vyu5|2)dxdy
8u6

ou
—1)( w—1 = w—1 -
// (w (x4+¢€) " u e +(@+e) A
+(w—1)(x+e)“ 2 f1cuc + (x + €)w+’\71f2,e . Vyug)dxdy

1
- / / (z + )t fo. - vucdSda. (2.13)
0 JoBg,(0)

Integrating by parts gives

//x+ “1 )dd /]3R(0)(x+6)“12(xy)dy B w—l//x—i—e“QQd:pdy
—(w— 1)//§l(x+5)“”2u§dxdy. (2.14)

It follows from the Holder inequality and the trace theorem that

1
‘ / / (x + 6)‘”)‘*1]%,6 . VuEdex‘
0 JoBg,(0)

<@ +e) @Az | |(z + e)(HA—D/2+O-1)-/2

L2((O,1)><BBRO(O))| ( “€HL2((0,1)xaBRO(o))

HA-D/2=(A-1)-/2 f) FA-1)/24+(A—1)_ /2
<M |(@ + ) HAIETOTIL2E |0ty wommg o | @ + E)HATDEHOTD 2,

+A-1)/2—(N=1)_/2
SMy|(z + ) tAT D=0 /f215||L2((0,1)><8BRO(0))

HHl((O,l)xaBRO (0))

1/2

(//Q ((a: +e) (%)2 + (@ +e) PV + (= + e)“‘%ﬁ)dxdy) , (2.15)

where My, My > 0 depend only on w, A and Ry. Substitute (2.14) and (2.15) into (2.13) and use the
Cauchy inequality to get

\2 A
// (x + 5)‘” 8u ) + E(w —1)(x+ 5)“_2u§ + (x4 5)“+’\_1|Vyu6|2>dxdy

_ w 2 2
<(1 37//x+5 )dd + 1_37_ //x—i—e “dzdy
+T// x+e)” )ddy—i——// x+5“’2f1€dxdy
—1
i >//Q<x+e> At

1 1 -
+5//(x+6)“’+)‘*1|vyu€|2dxdy+5//(x+6)“’+’\*1|f2,€|2dxdy
Q Q

(x + 6)“’72fl7€dxdy
Q



IRY
( - )+ @+ Ty + (4 2) 22 ) dady

+T// ((JH—e)“
Q
M3 [t -
+—2 / / (@ + )1V f PdSda (2.16)
4t Jo Jopn,

for any 0 < 7 < 1/3. Owing to 1 < w < 2A + 1, there exists 7 € (0,1/3) such that

(w—1)2

m+7(w—1)+7<%(w—1).

Then, combining (2.16) with (2.9) and (2.10) yields that

2
( 81;6) + (@4 &) Ty P + (2 + 2)* 22 ) dady

//Q (w+e(%

1
<M //Q ((m + 6)“’72]”1275 + (z+ 6)“’+)‘71|f2,5|2)d$dy + Mo/ /aB o (x+e) 1O £ PdSda
R,

1
gMo// (x“’2f12+x“’*’\’1|fg|2)dxdy+Mo/ / A= 1245 da (2.17)
Q 0 JOBRr,(0)

with My > 0 depending only on A, w, A and Ry.
Due to (2.17) and (2.7), there exist a subsequence of {uc}o<z<1, denoted by itself for convenience,

and a function u € H,, () with wu(1,-) = 0 in the sense of trace such that

R (O)

0 5}
(z + 6)“/2% — xw/Qa—u and (x4 &)@ V/27 gy — 2@HAD2g 4 in L2(Q). (2.18)
x x

For any 1 € C*(Q) vanishing near z = 0 and = = 1, multiplying (2.5) by —1 and then integrating over
Q) by parts with (2.6), one gets that

8’(1,5 81& 8“6 A
// 8 o w + (z+¢) " Vyu. - Vyw> dxzdy

1
- fl,ea—+(x+e>Af2,€-vyw)dxdy— [ ] @+e) e vidsis
Q T 0 JOBR,(0)

Letting ¢ — 07, together with (2.18), (2.11) and (2.12), yields

Ou Oy ou N
//Q (x%% — A%¢ + 2z Vyu- Vyw> dzdy

://Q (flg—i} +x)‘fé . Vzﬂ/J)dxdy - /01 /aB " x)‘f; ~vpdSdz.

Therefore, u is a solution of the problem (1.7)—(1.9) with g = 0. The proof is complete. O

Remark 2.2 Theorem 2.2 is invalid for w = 2A + 1. For example, if

3/2
fiwy) =2 (—m3) T, flay) =0, (ny) e
then all solutions of (1.7) are of the form
~1/2 _
u(z,y) = 2x_A(—1ng) +Cz ™+ Cy, (2,9) € (C1,C5 €R)

Here, 2A1D/2 £ € L2(Q), while u & Hany1(Q) for any C1,Ca € R.



2.3 Comparison principle

Consider the problem

0 / Ou ou

(a5 (@) + Ass (@) + 2 Ayu(e,y) > 0, (e.9) € 2, (2.19)
0

oo (y) <0, (z.9) € (0,1) x OB, (0),  (220)
u(l,y) <0, y € Br, (0), (2:21)

Definition 2.2 A function v € H,,(2) with w > 1 is said to be a weak solution of the problem (2.19)-
(2.21) if

0 0 0
J| (@50 G @) = Mg @)oo ) + 2V ey - V(o)) dody < 0

for any nonnegative function 1 € C*(Q) vanishing near x = 0 and x = 1, and (2.21) holds in the sense
of trace.

Theorem 2.3 Let u € Hy, () with 1 < w < 2A+ 1 be a weak solution of the problem (2.19)—(2.21).
Then

u(z,y) <0, ae (x,y) € (2.22)

Proof. The proof is based on a duality argument (see for example [28] Theorem 3.2.1). For any
nonpositive function f € C§°(€2), consider the problem

D02y A%y i) A = fley),  @weQ (2.23)
W (wy) =0, (2,9) € (0,1) x OB, (0),  (224)
ve(1y) = 0 y € Br,(0), (2.25)
0e(0,5) = 0 € By 0), (2.26)
where 0 < ¢ < 1. From the classical theory on the uniformly elliptic equations, the problem (2.23)—(2.26)

admits a unique classical solution 1. € C> ().

Below we derive uniform estimates on ¥. and denote by M a positive constant depending only on A,
A, nand f, but independent of . Since f € C§°(€) is nonpositive, it follows from the classical maximum
principle that

0 <¢e(z,y) <M, (,9) €. (2.27)

This, together with the classical boundary estimate, leads to

O
VE(y) <0, ye B, 0) (2.28)

M <

Multiplying (2.23) on both sides by —(z+¢)!~“%. and then integrating by parts over 2 with (2.24)(2.26),
we get that

// (x+e)* 3%) —( +5)1_“%w2)+(a:+5)”1 “|V | )dxdy

=(w—1) // (x4 &) e, “’dedy // z+ &)Y fopodady. (2.29)




Integrating by parts gives

// te)l (w2>d dy /BR o (2 + &) =02 (z, y)dy 0+(w_1)//ﬂ(x+g)*ww§dxdy

=(w-1) // T+ ) “pldrdy. (2.30)

Substituting (2.30) into the left side of (2.29) and using the Cauchy inequality, one gets that
3 B
// {E+€2 w(9Y ) (w—l)(m+6) w2 +(x+6)’\+1 “Vy e )dmdy
<7
el | AR (a )dd il M (@+e) W2dudy
+ sup || // (z + &) | f|dzdy,
Q Q
which, together with (2.27), 1 <w < 2A + 1 and f € C5°(12), yields
O \2 _ _
// ((x +e)* v (i) + (z+e) P2 + (v + ) “’|Vy1/)6|2)dxdy <M. (2.31)
Q ox

For any 0 < § < 1, let ns be the function defined in the proof of Theorem 2.1. Taking v = nsi.
in the definition of the weak solution to the problem (2.19)-(2.21) by a standard approximating process,
one can get that

ou O ou A
//Q ((a: + 5)776% or Ans %we + (z+¢e)'nsVyu - Vywe)dxdy

Ju Ou O
< _ ) ou ouU 0ve A A .
// T std:cdy—ka// ns =P dxdy //((x+5) M )nsVyu - Vy.dady,

which, together with (2.23)—(2.25), implies after integration by parts that

//Q nsufdrdy = //Q n(;u(&% ((.23 +e) 88%:) - Aaawe + (z+ E)AAyw5>dxdy

>/BRO (1+¢e)u(l,y) ;}6(1 y)dy — // (x+e¢) néu%idxdy

A // npuipedady + // oy 3 ey // ms g O iy

- // (x4 &) = 2MnsVyu - Vy.dady. (2.32)
Q
It follows from (2.21) and (2.28) that
/ (1+¢e)u(l,y) O (1,y)dy > 0. (2.33)
By (0) Ox

Using the Holder inequality and (2.31) yields that

‘// T+e néu—dxdy‘—k‘//néuwgdxdy‘—k‘//xnéa z/zgdxdy‘

o 1/2 (02 1/2
<||(z + z—:)n(’;(x)HLm(é/w) / / (x+¢e) 2u2dxdy / / (z +¢)? (8—) dxdy)
§/2 J Br, (0) §/2 J Bg,(0) €T
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5 1/2 g 1/2
@+ @l ( /5/2 /B © @+ E)WQquxdy) (/5/2 /B ©) @+ e)*“’wfdxdy)
Rg Ro

4 4
Oun 2 1/2 _w 1/2
Hlan@lea( [ [ (a:—i—s)w(a—) dody) ([ [ @y utdody)
§/2 J BR,(0) §/2 J Brq(0)

8 1/2
<m(i+5) / / (o 4+2)° dedy / / (z +e)* ) dudy) (2.34)
5/2 JBr,(0) 5/2J Bag () 8
and
Ou 0.
’ // wdd‘—l—’// x+e) —x)n5Vu Vywedxdy’
(x +e) w/2 / 2 1/2 oo (D2 12
< a. _
SO T Rz te) x+5 dxd y [ (w+e) ((%) dxdy)
(z+e)* = )(a:+5)(/\+1 w)/2775 s P
+(S$E 2@t A—1)/2 // IV, ul dxdy)
// (2427 |Vy1b5|2dxdy>
<M sup (x +¢€) w/2776 // )1/2
>~ (0’1) xw/Q J)—FE
(z+e)—= )(x+s)<k+1 ©)/2p i p
+M<S£R g tr-1)/2 Vyul dwdy) : (2.35)

Letting € — 0T and then § — 0T in (2.32) and using (2.33)—(2.35), we get that

// ufdxdy > 0,
Q

which implies (2.22) since the nonpositive function f € C§°(f2) is arbitrary. The proof is complete. [

Based on Theorem 2.3, one can get the global boundedness of weak solutions to the problem (1.7)-

(1.9).

Theorem 2.4 Under the conditions of Theorem 2.2, if
8f1 A _° <M B—1 Q
%(J%y)—’—x Vyf2($,y)| = &€ ) (a:,y)e

with M > 0 and 8 > 0, then the weak solution u € H,,() with 1 < w < 2A+1 of the problem (1.7)—(1.9)
is bounded and satisfies

[Jwll < llgll 7~ (2.36)
|| Loo( o .
L>(Q) 9llL>>(Bg,(0)) A 3)

Proof. Tt follows from Theorem 2.3 that

M M

J)B o
TEatp Barm . @veo

u(@,y) < gllLe(Br, (0))

and M o
) > —lgll e - + A ,y) € Q.
u(z,y) > —|gllx (Bry (0)) BA+ 0) 6(A+ﬂ)x (z,y)
These two estimates imply (2.36) and complete the proof of the theorem. g
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3 Holder continuity of weak solutions

We now concentrate on the regularity of weak solutions to the problem (1.7)-(1.9) in this section. As
an example, we choose H2(Q2) as the class of weak solutions. According to Remark 2.1, A should satisfy
A>1/2.

3.1 Estimates in Campanato space for weak solutions to the homogeneous
equation

In this subsection, we do estimates in Campanato space for weak solutions to the homogeneous equation.
First consider the regularity near the boundary {0} x Bg,(0), where (1.7) is degenerate. Moreover, the
degeneracy along the x direction and the degeneracy along the y direction is different. That is to say,
the degeneracy is anisotropic. Let us clarify this difference via a selfsimilar transformation. Assume that
u is a weak solution of the homogeneous equation

(2.9)) + A2 2. ) + 2B u(e. ) = 0. (31)

0 (a: ou o

9z \" 9z
Then, for any R > 0, the function
w(z,y) = u(R™ 'z, R-AD/2y)

is also a weak solution of (3.1). Therefore, the Holder continuity of weak solutions to (3.1) and (1.7) is
also anisotropic, and the standard rectangles should be substituted by the following anisotropic ones in
studying this continuity

QR(07 Zj) = (_R7 R) X BR(*+1)/2 (?j)a QR(O7 Zj) =0an QR(07 g)? (32)

where § € R™ and R > 0. However, it is not convenient to investigate (3.1) directly since the equation is
degenerate. Thus, we consider the approximating equations.

Lemma 3.1 Assume that A > 1/2, X >0, € > 0, § € Bpy/2(0) and 0 < R < min{17(RO/2>2/(A+1)},
Let u. € C*°(Qz(0,7)) be a solution of

0 Oue Ouc _
= ()55 @) + AT ) + e+ Dyl y) =0, (59) €0a(0,7)  (33)
satisfying
Oue B
%(0, y) =0, y € Bron.(0,7). (3.4)

Then for any 0 < 0 < R < R,

Oue\ 2
//Q (0.9) ((UE — (u)g0.)” + (@ + 6)2<8_1;) (@ + Ve — (Vyus)g7(07g)|2)d$dy

<u(1+5) (14 2) ()N (e o)+ o+ 2 ()’

+ @+ M |Vyue — (Vyu)r 0| ) dedy, (3.5)

where k > 0 and M > 0 depend only on A, \, n, but not on €, and

ol
W) R0g) = —— w(z,y)dzdy.
(w) R, (0,7) meas(2r(0,7)) Lax 0. )
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Proof. For convenience, set

Qr=Qr(0,9), Qr=Qr(0,7), (wW)r= (w)r,0,7)>

M to be a generic positive constant depending only on A, A and n, while M(-) depending also on the
variables in the parentheses. Additionally, for nonnegative integer k, 85 will denote the k-th order partial
derivatives with respect to the variation y. The proof of the lemma falls into four steps.

Step I. Weighted Caccioppoli inequalities.

For any 0 < o < R < R, let £ € C§°(QR) satisfying £ = 1 in Q,,

Vel || @EQn

2 4

ROFD/Z _ p0+1D)/2 < ROD2(R — o)’ (z,y) € Qr

Vy&(z,y)| <

and o
%(xvy) = Oa (xay) € (_Qv Q) X BRM*D”(@)'

First, we estimate u.. For any L € R, multiplying (3.3) on both sides by —(x + ¢)&?(u. — L), then
integrating by parts over Qi and using (3.4) and the Cauchy inequality yield

// (x+¢) €2 (ue — )) + %§2(u5 —L)? + (2 + )V, (ue — L)|2)dxdy
Qr

+ge f £(0,)(u=(0, ) — L)dy
R(/\+1)/z(y)

__2//%:”5 )( — ‘%dd—//Q (z+ )& (u —L)( L)dxdy

- A//QR(a: +€)&(ue — L)? %dxdy - 2//%@:1 e e(u. — L)Vy(ue — L) - V Edady
gr//QR(JH-e) 52( Ou 8_ dxdy—i— // (x4 ¢)? ) (ue — L)*dzdy
+(1-7) //QR(:C+€)252 %) dady + - 1_7) /QR €2(u. — L)2dady

+ T/QR & (ue — L)*dady + i—j //QR(a: + 6)2(%>2(u5 — L)?dxdy

+ //Q (x + 6))‘4'1§2|Vy(uE — L)|*dzdy + //Q (x + 5)”\"’1|Vy§|2(uE — L)?dxdy

for any 0 < 7 < 1. Due to A > 1/2, there exists 7 € (0, 1) such that

A
- TS

Therefore, for any 0 < o < R < R, it holds that

// . — L)?dxdy
<M/ /B (Hw . (z+¢)? (35) (u E—L)dedy+M// (@ + )YV €2 (ue — L)2dady
M

< (x+¢) — L)Y*dxdy + (x+e — L)*dxd
— Prdy + g |, (P e — Ly

13




M (R+¢) ,\ I 5
S(R—Q)Q((g—l—e R/\l // x4 e)M — L)*dzdy.

ou
Next, we estimate —-. Set

ox

Oug —
'Ue(x7y) = %(l‘ayL (x,y) S QR

Then, v. € C*(Q3) is a solution of

821)5 N 81}6
W+(m+s) Ayve + (A +2-X) p.

(z+¢) XA+ D@+ =0, (,y) € Qp

satisfying
’UE(O, y) =0, Y€ Bro+y,e (g)
Assume that —3 <[ < 2\ — 1. Then,

P<20l+2)+ARN=1) 1)

(3.9)

owing to A > 1/2 and A > 0. Multiplying (3.7) on both sides by —(x + &) ~'¢?v. and then integrating by

parts over Qp with (3.8) lead to

//Q @+ e (GE) + @+ e P ev,up

1()\(l+2)+A(2)\—l)—l)(x+e) =le2y )dxdy
- 0 _
:—2//Q r+e) e El—gd dy—Z//QR(a:—i—E) A v, Vv, -V, Edrdy

—1 52 —14+2 5‘1)5
+()\—A—1)//QR(CE+6) £%v€dxdy+l//QR(x+s) 51}68

Similar to the proof of (3.6), using the Cauchy inequality and (3.9), one can get that for any 0 < o <

R<R,
// ((m )7ttt (_(%6)2 + (z+ &) TNV 02 + (z + 6)71*1v2)dxdy
Q, ox vre ¢

2
SM// (a:—f—s)_l“(%) vgdxdy—i—M// (x4 )MV € Pvidady
Qn oz Qn

M(R +¢) e\ A1 by
<—+11 14+ = dxdy. 3.10
_(R—Q)2(+(+R> )//QR(aH-e) vZdxdy (3.10)
Denote by m the integer satisfying
2A+2<m < 2X+ 3.
For any 0 < o < R < R, taking [ = 2\ — 1,2\ — 2, ---, 2\ — m in (3.10) with suitable ¢ and R and

iterating, one can get

// (x+¢) 22 (%ve) + (x4 ) MYV, 02 + (= + 5)*2)‘v§)dxdy
M(R+e)™ // 2X 2
<7 1+ x+ &) vided
(R —0)*™ ( ( Qr Y
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M(R+€)2m—2(k+1) e\A—1\m 5 o
R (1+ (HE) ) %R(x+€) V2dwdy. (3.11)
Finally, we estimate Ayu. and Vyu.. Rewrite (3.3) as
Ayue. = —(z + e)*)‘“% —(A+1)(x+e) v, (2,9) € Qr. (3.12)

For any 0 < 9 < R < R, it follows from (3.12) and (3.11) that

//Q (Ayuz)?dedy < M(R(;; 6_)2;2:”1) (1+(1+ }%)H)m //Q (& + &)202dady. (3.13)

For any L € R, multiply (3.12) on both sides by —¢2?(u. — L) and then integrate over Qg to get

0
] - Dayudndy = [| - D)@+ NGE < (A Do +2) ) dod,

Qg Qn Ox

which implies after integration by parts and direct estimates that
// |V ue|2dady <M<; + 1) // (u. — L)*dxdy
Q, Y T \RMI(R-0)? Qr
0ve \ 2
—2x+2 (Y% —2X,2
+M//QR ((x—i—e) (8a:) +(x+e) fue)dxdy.

Then, for any 0 < o < R < R, it follows from this and (3.11) that

Pdxdy <M 1// V2dxd
//IVUIxy (Rkl >+ o xdy

+ (R(; ?2;,220&1) (1 n (1 " %)/\fl)m//Q (@ +)202dedy.  (3.14)

Step II. L? estimates.
Since d)v. satisfies the same equation (3.7) and the boundary condition (3.8) as v, for each positive
integer k, it follows from (3.11) that

//Q Q ((w+ e)—”H%agve

M(R + £)?m=20+1) e\ A—1ym .
(1+ <1+ E) ) //QR(x—i—e) |0, ve|“dxdy

2
+ (@4 &) T k0 4 (@ 4+ &) 2| ) dady

(R —o0)*™

M(R+ ¢ 2m—(A+1) e\NA—1\m _
( R —)9)2’” (1 + (1 + E) ) //Q (x+e) ’\+1|8§v6|2dxdy
R

<M(p, R)(1+ %)WQH) (1+(1+ %)H)m //Q (2 + ) Ok | *dady.
R

This, together with (3.11) and an iteration process, yields that

// .13 + 5 2)\+2‘ a 8kve

2m(k+1)— (A +1) (k+2) A—1y m(k+1)
<M(k, g,R)(l—i—;) (1+(1+}%) ) //Q (« +e)20dady, k=0,1,2, -,
R

+ (@ +e) MV Ok + (2 + 5)*2’\|8§v5|2>dxdy
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which yields
k 2 22 —2X | ak 2
//Q O v [Pdudy <(R + <) //Q (& + )2 |bu, 2dady

2m(k+1)—Ak—(k+2) A—1\ m(k+1)
M(k, o, R) (1 + %) (1 + (1 + %) ) // (z + ¢)*vidzdy,
Qr
k=0,1,2,- . (3.15)

Since 8§u5 satisfies the same equation (3.3) and the boundary condition (3.4) as u. for each nonnegative
integer k, it follows from (3.13) and (3.14) with L = 0 that for any 0 < o < R < R,

M(R 4+ £)2m—20+1) c\ A1y m
//Q |Ay8§u€|2dxdy < ( R _) PR (1 + (1 + }—%) ) //Q (x + 6)2|5‘5v6|2dxdy
4 R

Swtom(i )"0 ()7 ] b e

and

// [V, 8ku€| dxdy <M(RA T +1 // |5‘ku€| dxdy

(R+5)2m 2(A+1) e\ A—1\m ok 1o
e O+(L+E) ) [fo+g|%%“m@

Mig.R) [[ (05ucdady
Qr

FMer)(1+5) " 1 (1 )" // OFv.[2dady.  (3.17)
R

Due to (3.14) and (3.6) with L = (0} uc)r, one can get that for any 0 < o < R < R,

// |Vy8;u5|2dxdy SM(Q,R)(l—i— (1+ £>7 (1+ // (x+¢ ’\+1‘81u5 - 8 Us R| dxdy
Q, o
£\ 2m—2) A 1 Lo
+ M(o, R)(1+ }—%) (1+(1+ E) //QR 0kv.|2dedy,  (3.18)

Combining (3.16) and (3.15) leads to

(2m—A—1)(k+2) £\ A—1\ m(k+2)
k, |2 < £ 2 2
// 1Ay D [Pdudy <M (k, 0, R) (1 + R) (1+(1+ R) ) //QR(x—i—e) Vdzdy,
k=0,1,2,---.  (3.19)

Similarly, it follows from (3.17), (3.14) and (3.15) that

// |8§+1u5|2dxdy
Mk, 0, R // dmdy
Qr

(2m—A—1)(k+2) A—1\ m(k+2)
M(k, o, R) (1 + %) (1 + (1 + %) ) //Q (z + €)?vidxdy,
k=0,1,2,- (3.20)

16



while (3.17), together with (3.18) and (3.15), shows that

// |8k+2u5| dxdy

SM(k,g,R)(l—i— (1+E)_k(1+ // (@ + M| Vyue — (Vyue) g| dady

(2m—A—1)(k+3) A—1\ m(k+3)
M(k, o, R) (1 + %) (1 + (1 + %) ) //Q (z + )*v?dady,
R
k=0,1,2,-- . (3.21)

Step III. L°° estimates.
These will follow from the L? estimates and the Sobolev embedding theorem. Indeed, it follows from
(3.15) and (3.20) that

sup |Vyu:|? <M(R Z // (105 v |* + |05 ue|? ) dady

Qr/2 0<k<n

// dmdy
Qr

M(R) (1 + %) AT (1 + (1 + %)Aﬂ)m(nw) //Q (z + ¢)*v?dady.
R

(3.22)
Similarly, it follows from (3.15), (3.19) and (3.21) that
sup |Ayuc|? <M(R) // |5‘k+2v€|2 +|Ay 8ku€| )dxdy
Qr/2 0<k<n Qry2
e\ 2m=A=1)(n+3)+A e\ A1\ m(n+3) 9 9
< — — .
<M(R)(1+ R) (1+(1+ R) ) //QR(a: +o)22dedy, (3.23)

sup |A, Vyu > <M(R Z //Q 8k+3v€|2 + |Ay8§+1u5|2)dxdy

QRr/2 0<k<n R/2
(2m—A—1)(n+4)+X e\ A1\ m(n+4)
<M(R)(1+ ) (+(0+%)" ) // (x + €)202dzdy (3.24)
R R o

and

sup |8%u.|? <M(R // 8k+2v5 2 8k+2u6 dxd
5 p [0 ue| ) > (1 I+ | %) dady

R/2 0<k<n

<M(R)(1+(1+ %)H

) // (x + 6)’\+1‘Vyu€ — (Vqu)R‘dedy
Qr

+ M(R) (1 + 5) AT e (1 + (1 + %)Afl)mws) //Q (x + )202dady.
R

R
(3.25)
The constants M (R) in (3.22)—(3.25) will be determined by a rescaling technique. Set
Ql/z =(0,1/2) x B(yjy0+1/2(9), Q1= (0,1) x Bi(y)
and assume that ug € C° (51) is a solution of
(@ + 950 ) + AT ) + (42 Dyuolay) =0, (B €@ (326)

17



with € > 0 and satisfying the boundary condition

8u0
oz

Then, it follows from (3.22)—(3.25) that

- (0,9) =0, y € Bi(y). (3.27)

sup |Vyuo|> <Mo(1 + &) // (uo — (uo) )2 + (z + é)zvg)dxdy, (3.28)
Q12 1
sup |Ayug|> <Mo(1 + &) // x + &)%vddxdy, (3.29)
Q12 1
sup |A, Vyuol? <Mo(1 + &) // x + &)%vddxdy, (3.30)
Q1/2 1
sup |95uo|* <Mo(1 + &)™ // ((x + & Vyuo — (Vyuoh|* + (z + 5)2v(2))dxdy (3.31)
Q12 1

with My > 0 depending only on A, A and n, kg = 2m — A —1)(n+4) + A+ Am(n +4) and

8’(1,0 ~

v(,y) = 2=(@y),  (2,y) € Q1.
Now, for any 0 < R < R, set
a(z,y) = ue(Re,j + Ry =), (2,9) € Qu.
It follows from (3.3) and (3.4) that @ € Coo(él) is a solution of (3.26) with £ = ¢/R and satisfying the

boundary condition (3.27). Therefore, 4 satisfies (3.28)-(3.31) with &€ = ¢/R. Coming back to u. we
finally arrive at that for any 0 < R < R,

K
sup |Vyue|? <M (1 + }%) " RI- () ()2 //Q ((u6 - (u6)3)2 + (z+ 5)2v?)dxdy, (3.32)
R

Qr/2
sup | A u:* <M (1 + —) YR ()2 // (z + €)*vidxdy, (3.33)
Qr/2 R Qr
sup |A, Vyue|? <M (1 + 5) " RI-(n0) (12 // (z + &)*v?dxdy. (3.34)
QRr/2 R Qr
sup |32us|2 <M, (1 + E)%O.7%717(”+4>()‘+1)/2
R

Qr/2

((x + MV — (Vyue)r|” + (@ + a)%g)dxdy. (3.35)

%

The equation (3.3) gives

0 0
ox ((x + 5)A+1UE) =—(z+ 5)A+’\Ayu€, %((m + 5)A+1Vyv€) =—(z+ 5)A+’\Ayvyu€, (z,y) € Qr,

which, together with (3.4), (3.33) and (3.34), imply that

2
vZ £\ "o 717(n+4)()\+1)/2// 2 2
<M<1+ ) R + &)*0dady, 3.36
Sgi (x o) =10 R QR(JT ) vZdzdy (3.36)
[Vyve|? EN o1 (nt6)(A+1)/2 2,2
VL <My(14 =) R HOGHD/ + &)%v2dzdy. 3.37
Oy @+ )P 0( R) QR(x ) vzdzdy (3.37)
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Step IV. Estimates in the Campanato space.
Fix 0 < o < R/2 < R < R. From (3.36), (3.32) and the Poincaré inequality, we get that

// (ue — (uE)g)dedy

QQ

SMQQ// UEQda:dy—l-M(Q)‘H// |Vyu5|2dxdy
QQ QQ

§M93+n()\+1)/2 sup ’Ug + Mgl+(n+2)(/\+1)/2 sup |vyu€|2
QRr/2 Qr/2

(1 N %)HOHA( )3+n(/\+1 /2 //Q . 5)2 dedy
R
N M(l )m( )1+ (n+2)(A+1)/2 //Q )2 +(z+ 5)2v§)da:dy
<M(1 N ;)Ho+2)\( )2+n()\+1 /2+ min{1, \} // UE)R)Q . 5)2v§)dxdy.

Similarly, (3.37) and (3.35) yield that

//Q (x + s—:)/\Jrl|Vyu6 - (Vyug)gfdxdy

A+l
§(1 + E) oMt / |Vyue — (Vyu6)9|2dxdy
0 Q,
A+1 A+1
SM(l + E) o // |V ve|?dady + M(l + E) o? D // |8§u€|2dxdy
0 Q, 1Y% Q,

<M(1 —) (1 —) (—) // 202 dd
< +Q +R I QR(x—f—e)vexy

T A1 L £ Ko 1 g IH(n+4)(A+1)/2
w1 0) (10 5) (3)

L (@2 Ve = (Fyual + o+ 2202 ) dady
Qr

A1 £\ Ro+2X /o 2+(n+2)(A+1)/2+ min{1, A}
<u(t+0) (1+5)" (3)

: // ((a: +e)%02 + (x4 )M Vyue — (Vyus)R|2>dxdy.
Qr

Additionally, it follows from (3.36) that

// r +¢)? ) dzdy < M(l + - )Q(AH) (1 + E)HO (ﬁ) D/ //Q (z + )*v?dady.
R

R R
Collecting these three estimates, one gets that for any 0 < o < R/2 < R < R,

//Q ((uE - (ue)g)2 + (z + 5)2(%1;5>2 + (z + a)AH‘Vqu - (Vyue)g|2>dxdy

SM(l N £>2(/\+1) (1 n %>no+2x\ (%)2+n()\+1)/2+ min{1, \}

' //Q ((Ue - (ue)R)2 + (x4 ¢)%02 + (z + )M | Vyue — (Vqu)R‘Q)dxdy,
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which is just (3.5) in the case 0 < o < R/2 < R < R if we take k > ko + 2(A + 1). The estimate (3.5)

is trivial in the case 0 < R/2 < o < R < R provided that M > 22+n(A+1)/2+ min{l, A}~ ppe proof is
complete. O

Now we turn to the inner regularity of solutions of the homogeneous equation (3.1). Apart from
the boundary {0} x Bg,(0), (3.1) is uniformly elliptic. Thus we can investigate this equation directly.
However, the upper and lower bounds of the coefficients of the second order terms depend on the distance
to the boundary {0} x Bpg,(0) and are anisotropic. This leads to the following definition of anisotropic
rectangles to replace the standard ones. For (z,7) € R'™™ and R > 0, denote

Qr(T,7) = (T — 2R, T+ TR) X Byo+n2r(Y). (3.38)
The reason of this definition may be found in the transformation (3.43) in the following lemma.

Lemma 3.2 Assume that A > 1/2, X > 0, (z,y) € (O,min{1/2,R(2)/()‘+1)}) X Bp,/2(0). Let u €
ce (@1/2@, ¥)) be a solution of the equation

0/ Ou ou
(a5 @) + AT @ y) + 2 Dyuley) =0, (0,y) € Qua(@,9): (3.39)
Then for any 0 < o < R <1/2,
2 ou Ju 2 2
// =.1) )97(9’67@)) + (x% - (x%)g(f’g)) + x)\Jrl‘vyu - (Vyu)g7(f7l7)‘ )dmdy
)n // (u— (u)g, ——)2+(x@—(a:%) >2+£A+1‘V u— (Vyu)p ——‘Q)dxdy
Qnl, y) oy 0x  \"0z/ R(.9) vy ( )
3.40
where M > 0 depends only on A, X\, n and Ry, and
(u) ] ulzydad
UR(z9) = A o u(x, y)ardy.
(e meas(QR(x, y)) Qr(z,9)
Proof. First, it suffices to prove that for any solution w € C* (@1/2(1, y)) of
0/ Ow ow B
(25 (@) + AT (@ y) + 2 Du(e,y) =0, (@) € Qua(Ld) (3.41)
and any 0 < p < R < 1/2, it holds that
2. ow ow 2 2
// 1,9) )g’(l’g)) (x% B (x%)g,(l,g)) * }Vyw a (Vyw)g7(17'g)} )dxdy
n // w— (W) g1, —))Q—I—(xa—w_(xa_w) )2—|—‘V w— (Vyw)g, 1 —)|2>dxdy
Qr(1, y) Y Ox Ox R,(1,9) Y Y ALY ’
(3.42)

where M > 0 depends only on A, A\, n and Ry. This is due to that if

A2y —9),  (2.y) € Quya(L.9), (3.43)

then w € C>(Q, 5(1,7)) is a solution of (3.41) and (3.40) follows from (3.42).
In what follows, we will prove (3.42). For convenience, we use M to denote the positive constant
depending only on A and A, while M(-) depends also on the variables in the parentheses.

w(z,y) = u(Tr,§+ 7
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Assume that u. € C*> (@1/2(1, 7)) solves

0 8’(1,5 8“6 A — U
(3.44)
where 0 < ¢ < 1. Note that
% <l+4ez—-1)< g, for each 0 <& <1 and each (z,y) € Q1/2(1,7). (3.45)

Thus (3.44) is uniformly elliptic. For any 0 < o < R < 1/2, let £ € C§°(Qr(1,7)) satisfying £ = 1 in
Qo(1,y) and

0
0ty <1 || < Vi) € g (@) € Qall D).

2
R—yo’
For any L € R, multiplying (3.44) on both sides by —¢?(u. — L) and then integrating by parts over
Qr(1,7) show that

Oue\ 2
//QR(M) ((1 +e(x — 1))52( - ) + (1 +e(x— 1))/\£2|vyus|2)dxdy
_ B _ Ou, g ) B Du.
- 2//1?(1@(14-6(3: D)E(ue — L)~ axdxdy+Ae//R(Ly)£ (ue — L)~ = dady

— 2//QR(17y)(1 +e(x — 1))/\§(u,€ — L)Vyu. - Vy&dxdy.

Using the Cauchy inequality and (3.45) leads to

8u5 €\ 2 2 2
+ |Vyuc|? ) dxdy gM// =) + 14|V, (u. — L)*dady
//Q (1, y) ! ) Qr(L9) ((397) ! )

M // 5
<— (ue — L)*dzdy.
(R =20 Jlonay

Since 5‘5u5 satisfies the same equation (3.44) as u. for each nonnegative integer k, one gets via an iteration
process that

0
OFu, +ak+1€2dd§Mk,,R// c—( dzdy,
//Qg(lw)((ax yU) % u|>xy e 1) QR(L@(U w0y

k=0,1,2---.  (3.46)

Rewrite (3.44) as

82’(1,6 Ou,

Ox? oz
which, together with (3.45) and (3.46), implies that

O u.
ﬂ (1,5) ‘8.132 Y

It follows from (3.46), (3.47) and the Sobolev embedding theorem that

=-(A+Del+el@—1)7 == = (Lte(e = D)) Ayue,  (2,9) € Quy2(1,9),

*dody <Mk, 0, R // — () rp) dedy, k=0,1,2---.  (347)
R

ou,
sup + 1V, u5| < M// — (ue)1)2,01,5)) dxdy. (3.48)
Q1/4(1,9) (( O ) Q1/2( ,y) / y))

21



Now, let w € C‘X’(@l/Q(l,gj)) solve (3.41). For any 0 < R < 1/2, define
U’E(xvy) = w(]' + 2R(£L‘ - 1)) Y+ 2R(y - g))v (QC, y) € Ql/Q(lvg)
Then, u. € C*(Q, /5(1,7)) solves (3.44) with ¢ = 2R. Thus, it follows from (3.48) that
ow\ 2 —(n 2
sup ((8_) + |Vyw|2) < MR +3)// (w— (wW)r,1,5)) dady. (3.49)
Qr/2(1,9) x r(1,9)

Since Vyw satisfies the same equation (3.41) as w, (3.49) yields that

sup (‘ \Y w‘ + |5‘2w| ) < MR~ ("+3)// |Vyw — (Vyw)R7(17g)|2dxdy. (3.50)
Qry/2(1,9) Qr(1,9)

Rewrite (3.41) as

0w _, 0w _ _
W :—(A+1)£L' 1%_1}\ lAywa (xvy) €Q1/Q(Ly)v
which, together with (3.49) and (3.50), implies that
0w (n
sup (8—) < MR~ er)// (W)R, 1, y)) dady + |Vyw — (Vyw) g, 1,9 )dxdy (3.51)
Qr/2(1,9) z? Qr(1,9)

For any 0 < o < R/2 < 1/4, we can prove by using the Poincaré inequality and (3.49)—(3.51) that

n+3
// (w = (W) 1.9)) *dody <M () // (w = (W),1,) dedy,
Qo(L,Y) Qr(1,9)

n+3
// ‘Vw (ng(ly)‘ dxdy<M< // ‘V w—(VwR(ly)‘dxdy
(1,9) Qr(L,9)

and

8w ow 2
//Q (1y Yor (x%)g,u,g)) dudy
n+3 2
u(%) // (0= @) dody + |90 = (V) 1)y
QR(LQ)

From these three estimates, we obtain (3.42) in the case 0 < p < R/2 < 1/4. Additionally, the estimate
(3.42) is trivial in the case 0 < R/2 < p < R < 1/2 provided that M > 2"*3. The proof is complete. [

3.2 Regularity of weak solutions to the nonhomogeneous equation

In this subsection, we establish the regularity of weak solutions to the problem (1.7)—(1.9). As shown in
Lemma 3.1, the optimal Holder continuity of weak solutions depends on the sign of A—1. For convenience,
we just consider the case A > 1, when the degeneracy along y direction is not weaker than the degeneracy
along = direction. For another case 0 < A < 1, we can estimate the optimal Hoélder continuity of weak
solutions in the same way.

Assume that A > 1. For the exponent 0 < v < 1 and the function w defined in €, set

|w|O;Q = Ssup |w(a:,y)|,
(z,y)€EQ
o A—1Da/2 PN ..
. (max{#, #}) ™V (&, §) — w(z, )|
[w]a;ﬂ - sup ~ oy A=Da/2) . Cla ~ e
z,7 T,y Q p— —
AR (max{z, 2}) & — 2" + 19— 9l
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[wllase = lwloe + [w]ge;

wlia = sup  (# ol y)l),
z,y
(A+1)/2 (=1 /2 Ty
=gy () na(2) O () - i)
a;) — A=1)a/2, . a « ’
@50 (max{z,#})" e — 2| + |y gl
lwllgie = lwloe + [w]ae-

Define the Holder spaces
CQ) ={we C(Q): |w|hq < +oo}, CLQ) ={we CY Q) : [lw]q < +oo}.

It can be verified easily that these anisotropic Holder spaces possess the following property.
Lemma 3.3 Assume that wi,ws € C2(Q) and ws € C2, (). Then wiws € CX(Q), wyws € C%(Q), and
[wiws]i.0 < Jwiloe(wa]a.o + [wila.olwslo,
lwiws|oi < [wiloalwslgla,  [wiws]yio < lwiloelws]iia + [wilh.olws|h.

According to the discussion at the beginning of §3.1, it is reasonable to choose C¢(Q) as the Holder
0 — _
space for u, xa—u and 2 TD/2V 4. Tt is noted that 2 +H1/2V u € C¥(Q) is equivalent to V,u € C2,(Q).
x

Therefore, to get the optimal Hélder estimates, we choose C(9) and C,(9) as the Hélder spaces for f;
and fo, respectively.

Theorem 3.1 Assume that g € H*(Bg,(0)), f1 € C*(Q) and f € C*.(Q). Let u € Hy(Q) N L¥(Q) be

the weak solution of the problem (1.7)~(1.9). Then, u,x% € C’f(ﬁ) and Vyu € C%,(Q) with

Q= (0,1/3) x Bg,(0).
Furthermore, there exists a constant M > 0 depending only on A, X\, n and Ry such that
* 8“’ * *% * 1wk
lull+ o5, o+ 190l < M ([l + 210 + ule). (3.52)
Proof.  As shown in Theorems 2.1 and 2.2, the problem (1.7)—(1.9) admits a unique solution u €

H2(Q2), which is the limit of a convergent subsequence of {u.}o<c<1, where u. € C*([0,1) x Bg,(0)) N
H'(Q) is the solution of the problem

0 Oue Oue 0 m e P

(@ +9)52) + AT + @+ Byue = 5-fie(ay) + 2" (@ +e TV, fr(ay), (@y) €
ou,

8V (J?,y) = 07 (J?,y) € (Oa 1) X 8BR0(0)5
ue(1,y) = g(y), y € Br,(0),

Oue

a“ (0,y) =0, y € Bg,(0)

with fic, fa,e € C(Q) wa < fillkha Hﬁ,EH::Q < ||JF2H2*;Q and
lim, [ f1,e = fillz=(@) =0, Jim, (@ +e)MD2|f5 . — folll Loy =0,

and m being the positive integer satisfying m — 1 < A < m. As for the proof of (2.17) in Theorem 2.2,
one can show that

Oug\ 2
2 2 € A+1 2
//Q (u + (z+¢) ( o ) + (z + )V, u.| )dxdy <Oy (3.53)
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with C7 > 0 independent of . Additionally, for any 0 < ¢ < 1/2, it follows from the classical Holder
estimates that

1,a;(5,1-8)x By (0) < C2(9) (3.54)

with C3(d) > 0 depending on § but independent of e. By even extensions, u and u. can be regarded as
the solutions to the corresponding problems in (0,1) x R™. The extended functions will still be denoted
by v and wu..

For convenience, in the proof we use M to denote a generic positive constant depending only on A,
A, n and Ry. The proof of the theorem is given in the following three steps.

Step I. Boundary Campanato estimate.

Fix § € Bp,(0). For any 0 < R < 1, let u.; € C°°(Qr(0,%)) be the solution of the problem

e

9 Du. Du. .

(@ +o T2 ) + AT @+ Ayuen =0, (@y) € U(0,9),

’U,€71($,y) ZUE(J?,y), (a:,y) e&QR(O,g)ﬂQ

Oue _ _
o () =0, () € 925(0,5) N Qr(0,9),

where Qr(0,7) and Qr(0,y) are the domains given by (3.2). Then, u. o = us — ue1 € C‘X’(ﬁR(O,y)) is
the solution of the problem

8%3 ((x +¢) 8152’2) + Aag;’2 + (x4 ) Ayuc s = %flyg(x, y) + 2™ (x4 )NV fae (2, y)

= (1)~ Fie(Ro) + 27 @+ Py (Felwn) — Foc(RD)), () € Qp(0,5),
ue2(,y) =0, (z,y) € 0QR(0,7) N,
He 1,) =0, (2.9) € 924(0,5) N Qr(0,5).

According to Lemma 3.1, for any 0 < ¢ < R,

duc1\?
//Q 0.0 ((u5,1 — (ue1)g0.)” + (z+ 5)2( gxl) + (@ + MY Vyuen — (Vyue,l)g7(07g)|2>dl'dy
o (VY

(1S (1 ) (B L (e i) 2P ()

2
+ (@ 4+ ) Vyuer — (Vyue ) o) )dxdy. (3.55)

As to ue 2, multiplying the equation for u. 2 on both sides by —(x + €)u. 2 and then integrating by parts
over Qr(0,7) yield that

Ou:-2\2 A d(u?y)
2 e, A e, A1 2
//Qﬂm,y) ((x *e) ( o ) y (e =g, = T l@te) T IVyue| )dxdy

8u€,2

= (9u€’2 -
//QR(O’Q) (- (x + €)ue 2 o + (@ +e)(fre — fre(R, 7)) o
+ (fre = fre(R, i) ucs + 2™z + )" (far — forc(R, 7)) - Vyueg)dxdy

e / (Fre(0.9) — f1.2(R.§))ue2(0,y)dy. (3.56)
Bpiv+1),2(9)

=R
— // uidedy
v=0 Qr(0.7)

Integrating by parts gives

A(u?
I wra™ iy = [ (& + €32 o, )y
Qr(0,7) x Bx+1)/2(9)
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< - // u? ydxdy. (3.57)
Qr(0,9)

=0 that

Bx+1)/2(9)

It follows from the Hélder inequality and u. 2(R,-)
|/ (F1.200,9) = fue(R, ) 20, )]
rO+1)/2(7)

12
<(/ (hA&w—ﬁ¢@wa® (/
BR(A+1)/2(37) R(A+1)/2(37)

Oue, 1/2
é(/ (f1.(0,9) = f1.c(R,9))? [7 uﬁ+-x+@ aQ)dd@ . (3.58)
Bx+1)/2(9) Qr(0,7)

Substituting (3.57) and (3.58) into (3.56) and using the Cauchy inequality and A > 1/2, one can get

8U 2 2
ug+x+52i +x+EA+1qu dedy
//QR(OW)( 2T ) ( Ox ) ( )V 2|>
SM//Q ( )((fl’e_fLE(R’g))Q+x2m(l‘+5)/\_2m+l|ﬁ7g—]F275(R,g)|2)dxdy
r(0,y

1/2
ugg(O,y)dy)

+ MR [ (F10.9) — frc(R7)%d
rO+1)/2(Y)
SM // ((fl,s - fl,e(Ra g))Q + x/\+1|f3,s - fz,s(Rv g)|2)dxdy
Qr(0,9)
+ MR [ (f1:0.9) — Fro(R.7)dy
Bpo+1)/2(9)

§M<([f176]3;9)2 + ([E,E]Z,TQ)Q)R1+n()\+1)/2+2a
SM(([fl];:Q)Q + ([JFz]ZfQ)Q)R1+n(k+1)/2+2a. -

It follows from (3.55) and (3.59) that for any 0 < o < R < 1,
2 Ou, 9
// 0.9 ((ug = (ue)g0.5)) + (@ +¢)? ( o ) + (@4 )M Vyue — (Vyue) o.0.9)] )dxdy
o\Usy

éM(l + %)ﬁ( }%) ( )3+n(k+1)/2 //QR(M) ((u5,1 - (u5,1)R,(o,y))2 + (x +¢)? (%)2

(x +¢) )‘Jr |V Ue,1 — (Vyu&l)R’(o,g)‘Q)dxdy

+
8UE2 2 k—‘rl
+ M (u,2+ (x+e) (8—) +(z+¢)" " | Vyue 2| )dxdy
2,(0,9)

(i 5 () () ] (e hmion) e (G2)

+ (z 4+ )MV, ug—(V Ue) R, (0,)] )dxdy

(e L) (7)) (e Geaimia)” ()

+ (z+¢) A+1|V U2 — (Vy’U:g?Q)R’(o’g)‘ )dxdy
(9u€,2 2 3 )
+M//QR(0 ) (u 2+ ( ( B ) + (2 +€)°|Vyue o )dmdy
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(15 0 ) () ] (e mos e o2(52)

2
=+ (l‘ + 5)A+1 |Vyu6 - (vyua)ﬁ(ox?)‘ )dxdy

+ 01+ %)R (14 %) ((AJae)” + (o)) BRI O+ /2420, (3.60)

For any 0 < ¢ < 1 and any 0 < ¢ < p, taking R = 0'/? in (3.60), we get from (3.53) that

Oue\ 2
//Q (0,9) ((“E — (U)o 0)" + (@ + 5)2(8%> (@4 ) |Vyue (Vyue)g,(oﬁg)f)dxdy < Cap
o (VY

with C3 independent of ¢ and e. From this and (3.54), it is not hard to prove that there exists a
subsequence of {u.}o<c<1, denoted by itself for convenience, such that

%ue — x? and (z + &) MYV u. — 2OHD/27 4 in L2((0, R) x Bg,(0))
T T
for any 0 < R < 1. Then, letting ¢ — 0% in (3.60) yields that for any 0 < o < R < 1,

Oun 2
//Q (0 7) ((’U, - (U)Q,(O,y))Q —|— xQ(a_Z) —|— xk-'rl‘vyu _ (Vy’u,)g’(oyg)‘Q)dl‘dy
(VY

0\ 3+n(A+1)/2 2 o5 O0u\? Atl 2
SM(E) //QR(O,y) ((“— (Wr0p) + (%) +2" T Vyu = (Vyu)r,09)] )dxdy

+ M(([fl]:;;ﬂ)z + ([ﬁ]ztﬂ)2)R1+n()\+1)/2+2a.

U — u, (x4 ¢)

Due to the iteration lemma (see [12, 13]), for any 0 < p < R < 1,
_ 2 ou 2 2
o~ (1+n(+1)/2420) //Q o ((u — (W) g0m)) + xz(@) + a:”l\vyu _ (VyU)g,(o,g)| )dxdy
o\U,Yy

<MR7(1+n()\+1)/2+2a)//
QR(ng
2 £ 1%

+ M(([Ailae)” + (Rlia)”). (3.61)

We now estimate the first term on the right side of (3.61) with R = 1/2. Fix the cutoff function
¢ € C>(Q:(0,7)) satisfying ¢ = 1 in Q;/5(0,%), ¢ =0 in Q24(0,7) \ 23,4(0,y) and

Hun 2
: ((u - (u)R7(07g))2 + x2<8—Z) + x’\“‘vyu — (Vyu)R7(07g)‘2)dxdy

0<clan) <1, |y <M, V)| <M, @) 20.)

Rewrite the equation of u. as

0 Ou, Ou, N
%((x—f—g) Ox ) A ox @ +e) Ay

:%(fl,e(xvy) - fl,s(lvg)) + xm(x + E)Aimvy (f_é,e(xvy) - fz,s(lvg))a (x,y) € Ql(ovg)a (362)

Multiplying above equation on both sides by —(x +¢)¢?u. and then integrating by parts over Q and using
the Cauchy inequality, one can prove that

Ou\ 2
r+e)?(==) + (x+e) MY Vyu|?)dedy
//wo,m(( P(52) 4 @+ e V)

SM// ((fl,s(xa y) - fl,s(]-a Zj))2 + x)\+1|f;,€(x7y) - fz,s(lvg”z + u?)dmdy
Q1(0,9)
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+M (f1,6(07 y) - fl,s(la g))2dy
B1(y)

SM(([,}CLE]:;;Q) f25 //Q(Oy) dedy

Letting € — 07 yields

I Og)(u2+x2(%)2+w1|vyu|2)dxdySM(<[f1]o;Q)2+([ﬁ]srﬂ)ﬁm%@). (3.63)
1/2

It follows from (3.61) and (3.63) that for any 0 < p <1/2,

_ du A1 -~ 2
// Oy) u (), 0, y)) tz (8 ) +x (Vy“ (Vyu)g’(oﬁg)) )dxdy
SM(([fl]a;Q) + (fslia)” + luldq ) gm0z 120, (3.64)
Step II. Global Campanato estimate.

For any (Z,7) € Q and any 0 < R < 1/2, decompose u = u1 + ug with u; € C™(Qx(Z,7)) being the
solution of the problem

o/ 0 9 0?
{_( 7¢L1>+Aﬂ+xA L0, (2,9) € Qr(@.Y)

Ox \" Oz ox Oy?
ui(z,y) = u(z,y), (z,y) € 0Qr(Z,Y),

while uy € H} (Qr(Z, 7)) solving the problem

2 -
D (o) e adn g B %ﬁ(x,y)mwm(x,y)
— o (fie) — A(@.9) + M (o) - @), (@) € Qals.0),
ug(z,y) =0, (z,y) € 0Qr(Z,7)

and Qr(Z,y) is given by (3.38). Due to Lemma 3.2, it holds that for any 0 < p < R < 1/2,
2 ouy Ouy . ,
//m,y) ((u1 (1) g (a) + ( - ( - ) . )) + 3V — (Vyu) g o) )dxdy

7
SM(%)Wr3 //QR(E@ ((m — (W)rep) + ( o ( aU1)R(x,y )2

+ Vg~ (Vo) n e ) dedy. (3.65)

As to ug, multiplying the equation for us on both sides by —zus and then integrating by parts over
Qr(z,y) show that

8u2 A O(u?) s )
// @) o) - ge e Vsl ey
ou 0 - o
- // — a:ug—Q +x(f1 — fi(z, ))ﬂ + (f1 — L&, 9)ug + 2 (fa — f2(Z, 7)) - vym) dady.
QR(M) Oz oz
Similar to the proof of (3.59), one can get that for any 0 < R < 1/2,

2 .
// w2 + x2<%) I x’\+1|VyuQ|2)dxdy < M(([f1]2;9)2 " ([fz]z#;ﬂ)2)jl+n()\+1)/2+2aRn+1+2a.
e " (3.66)
3.66
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Using (3.65) and (3.66), and repeating the argument for (3.60), we derive that for any 0 < o < R < 1/2,
_ 2 Ou _ ¢ Ou 2 _ 2
. ((“ (We,e.)” + ( I ( 833) . g)) + 27 Vyu = (Vyu)o, a5 )dmd?/
Q n+ 2 ou ou 2
E //QR(Q: 7) u - )R’(j’g)) + (m% B (x%>1%,(;z,g))
+ 2 Vyu — (Vyu) gz, |2)dxdy + M(([fl]Z;Q)Q + ([fz]ZTQ)Q)fl*"(”l)/”mR"““a.

Then, it follows from the iteration lemma that for any 0 < o < R < 1/2,

2 ou ou 2
//E(xy u— (u),,(z, y)) + (x%— (x%)&(i@) +:E)‘+1|Vyu—(Vyu)g7(i7g)|2)dxdy

n+l14+2a 2 8’11, 8U 2
<M() //QW N @ren)+ (057 = (157) o)
+ 2N Vyu = (Vyu) g z.9)| )dwdy + M(([f1]2;9)2 + ([fz]ZTQ)Z)»’f”"(”l)”““@”“”a-

This inequality with R = 1/2 and (3.64) with ¢ = 3%/2 lead to that for any 0 < p < 1/2,
2 du Ou A1 2
u—=(U)oy) +\T5- — (T35 + 2 Vyu — (Vyu) o z,5)| ) ded
I o (= @)+ (55 = (57 o)+ 9= el Yy

SM(TQZ)MHM //621/2(93,.17) ((u - (u)l/l(””v?))Q + (x% a ( 23)1/2 »y>)2

_ 2 . e \2)
+ xk+1|vy“ — (Vyu)1/2,z.9)] )d:r,dy + M(([fl]a;ﬂ) + ([fQ]a;Q) )$1+n(k+1)/2+2a9n+1+2a

n+142a _ as — 2 % - @ ’
=Me //sm/g(o,g)((u (Waz/2.0.9) +(x8x (x8x>3fc/27(07@)>

+ M |Vyu - (Vyu)3a—:/2’(j’g) |2)dxdy + M(([fl];’;;ﬂ)2 + ([E]ZTQ)Q)j1+n(>\+1)/2+2a9n+1+2a
<M (([Alz0)” + (1Fliia) + ulia) (32/2) T
+ M(([fﬂZ;Q)Q i <[ﬁ]ZTQ)2)j1+n(x+1)/2+2agn+1+2a

<M (i)’ + (Fli)” + lulf g )al /2o guetiaa, (3.67

Here we also use the fact
Q1/2(7,9) C Q3z/2(0,y) and 3z/2 <1/2.

Step III. Holder estimates.
We will use the Campanato theorem (see [12, 13]) to get the desired results. It follows from (3.64)
that

[0(0,9) = u(0,9) < M(|filsa + [Blia + luloe)[§ = 52O, g5 € Br,(0)  (3.68)
and

= 0. (3.69)

In addition, for any (z,9), (&,9) € Qn Q1/2(z,y) with some (z,y) € Q, (3.67) yields
[u(@,§) = (@ ) < M([filn + aliia + lulog) (18 — 212 + 2~ O7De25 — g|o), (3.70)
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ou ou

i3 (&,9) — a5 (5 9)| < M([filn + [Bliin + lule) (1 — 27 + 307022l —g1*), (3.71)
V@, §) - Vyu(@, ) < M ([filie + Bl + lulog )3~ 072 (|2 — 2 4 2= O-Da/2)g - gje),
(3.72)
On the one hand, fix (&,7), (Z,7) € Q with # < &. There exists a nonnegative integer &k such that
2ki <3 < 20kl
One gets from (3.70) that
|u(Z, §) — u(Z, §)| < M([fl];n +[falia + IUIo;n) & —&|* (3.73)
in the case k = 0, while that
k: .
(@, g) —u(@ )] <Y (@ 'E,g) - w(@E,g)| + [u(2*E,5) — u(E, )|
j=1
k+1 ]
<M ([fili + (Bl + luloe) D277 18)°
=1
k+1 .
<M ([filiun + Bl + ulog) 30277 @ - )
j=1
k .
=M Y2700 ([fi]hg + [Fliin + lulog) |2 - 21°
=0
<M ([filiu + Bl + lulog) |2 — #° (3.74)

in the case k > 1. On the other hand, fix (zZ,9), (Z,7) € Q. If |§ — g| < 2*+t1/2 then it follows from
(3.70) that

0(,9) — u(z, )] < Mz~ O ([f]5q + (Blie + bl ) 15— 517 (3.75)
while if [§ — 7| > 2A*1/2] then it follows from (3.73), (3.74) and (3.68) that
u(@,9) = u(@,9)| <[u(@,9) = u(0,9)| + [u(Z,§) = w(0,9)] + [u(0,§) — u(0,7)|
<M (filn + [l + lulow)a® + M (11l + [Blia + lulea ) 1§ — g2/ O+)
<Mz~ he/2 ([fl]Z;n + [f2]z*9 + |U|O;Q)f(’\+1)a/2

+ Mg — g~ OO ([1]1 0+ (Bl + uloe) 5 - 91°

<Mz~ (D2 ([fl]?;;g + [Fa)iz + lulowa ) 19— 91 (3.76)
Therefore, for any (&,79), (Z,7) € Q with & < &, it follows from (3.73)(3.76) that
[u(,9) — u(#, 3)|
<[u(#,9) - u(@,§)| + [u(z, 9) - u(z, 7)|
<M ([filie + Bl + lulog )2 — 21 + Ma=C"02([A]:q + (Bl + lulog) 15 - 91°
<M ([Alig + liia + lulow) (12 = &1 + =302 — g,
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[ul?q < M([filin + oo + lulos).

Similarly, it follows from (3.69) and (3.71) that

[o52]" < M (110 + il + ol

Now we consider V,u, which belongs to a different Hélder space. On the one hand, fix (£,7), (&

Q) with # < #. There exists a nonnegative integer k such that
2F¢ <z <20tz
Similar to the proof of (3.73) and (3.74), we get from (3.72) that
IVyul@, ) = Vyu(@, )| < Ma=O2([filh0 + Bl + lula )12 - 2l

in the case k = 0, while that

k
Vyu(z,y) — Vyu(t, y)| SZ w(2712,5) = Vyu(2'E, )] + [Vyu(22, ) - Vyu(,9)]

+

([fl]a9+[f2aQ+IUIon)Z 0D/

<MV ([1]5 g + (filia + |u|o;a) &l
in the case k > 1. These two estimates, together with the classical Holder estimate, yield also
V@, 5)] < Ma=OD2([fi]g + (Bl + luloa)-
On the other hand, fix (z,9), (z,9) € Q. If [§ — g| < 23D/ then it follows from (3.72) that
IVyu(@,9) = Vyu(a, p) < Ma~ =002 (1] 0 4 (Rl + [uloa )15 - 91
if | — g > 3= A*D/2 then it follows from (3.79) that
Vyul@,9) - Vyu(@,5)| <Ma=C 2[5 + [Fli + lulos)

MO0 02 (]2 0 4 [l + Juloe ) 19— 917

while if zAM1D/2 < | — g| < 37A+1D/2 then it follows from (3.77), (3.78) and (3.72) that
|vyu(j7g) - V (_7Zj)|
<IVyul(,9) = Vyu(lg = 91, 9)] + [Vyu(@, 5) = Vyu(ls — g2/, )
+ [Vyullg = g1/, 9) = Vyu(lg — g/, 9)]

<Ma= D2 ([filng + (foliia + Il ) (19— 9% 07D - 2)
~ - —(A+1)/2—(A—-1 2
+ M (| — g/ D) TOEREOTIR (1)1 o 4 (Bl + uloe) 19— 91°

<Mz~ OHD2 |G — g =ODe D (e o [l + fulo )19 — 91°
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(3.77)

(3.78)

(3.79)

(3.80)

(3.81)



+ M (| — g/ D) TOEREOTIR ([ o 4 (Bl + uloe) 19 - 91°
<MD (1] 0 4[] + lulo ) 1§ — 17 (3.82)
Therefore, for any (#,%), (Z,7) € Q with & < &, it follows from (3.77), (3.78) and (3.80)(3.82) that
IVyu(z,9) — Vyu(z, )| <|Vyu(,9) — Vyu(z, 9)| + [Vyu(z, 9) — Vyu(z, 9)]
<Ma= 2 ([0 + [Fliia + luloe )2 - 2l
+ M OFDRZO D2 (1] o (Fo]tg + uloa ) 1§ — 717

<M= OH2([fi]g + [faliia + lulog) (18 — 21 + 5~ ODer2]g — gle),

i.e.

Vol < M([filan + ol + lulog)

9 — _
Summing up, one gets that w, ma—z € C¥(Q) and Vyu € C2 () satisfying the estimate (3.52). The

proof of the theorem is complete. O

Remark 3.1 Under the assumption of Theorem 3.1, it follows from (3.64) that

Ju
= 1 _— = B .
=0 zirg*xal‘ (x,y) Oa Yy e RO(O)

Ju
Therefore

) o
|52 @) < M((filn + (Bl + lulog )o ™, (@,y) € Q.

4 Application to subsonic-sonic flows in convergent nozzles

Based on the Holder estimates in Theorem 3.1, we investigate the problem (1.2)—(1.5) in this section. As
mentioned in the introduction, the main motivation of the current paper lies in the study on continuous
subsonic-sonic compressible Euler steady flows in a three-dimensional symmetric convergent nozzle with
straight solid wall, which will be described in more details below.

Consider the compressible Euler system of steady flow in a three-dimensional nozzle

div(ptl) = 0, in D,
div(pi @ 4) + VP =0, in D,

where @, P and p represent the velocity, pressure and density of the flow, respectively, and D is the
nozzle. The flow is assumed to be isentropic so that P = P(p) is a smooth function. In particular, for a
polytropic gas with adiabatic exponent v > 1,

1
P — —
(p) il

is the normalized pressure. Assume further that the flow is irrotational, i.e.
curlu =0, inD.
Then the Euler system is transformed into the full potential equation

div(p(|Ve|*)Ve) =0, in D, (4.1)
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where

-1 1/(v=1) 2
p(q2)=(1—7—q2) : 0<q2<m

Vo =, in D.
The sound speed c is defined as

_ v—1
= Plp)=p~" =1-——|Vgl"

2 \1/2
Cy = [ —— ,
('y—l—l)

which is also the sonic speed. Then, the flow is subsonic when |Vy| < ¢, sonic when |Vy| = ¢, and
supersonic when |Vp| > c,.

There have been extensive studies on two kinds of problems on subsonic-sonic flows. One involves
subsonic-sonic flows past a profile ([1, 3, 9, 11]) and the other concerns subsonic-sonic flows in an infinite
nozzle [2, 27]. It was shown that these two kinds of subsonic-sonic flows both can be realized as weak limits
of sequences of strictly subsonic flows associated with some physical quantity, which is the freestream Mach
number for flows past a profile and is the incoming mass flux for flows in an infinite nozzle, increasing to
the critical value [3, 27]. It should be noted that the subsonic-sonic flows in [3, 27] both are weak solutions
and the regularities of these solutions are unknown. In particular, it is unclear about the location of sonic
states. There are also some studies on smooth transonic flows. It is well known that smooth transonic
flows past a profile and smooth transonic flows of Taylor type in a nozzle do not exist in general and are
unstable even they exist ([20, 21, 22] and the books [2, 16]). Some examples of smooth transonic flows
of Meyer type were constructed by using the hodograph plane in which the governing equations become
linear (the books [2, 16]). Moreover, Kuz'min[16] formulated the perturbation problems of accelerating
smooth transonic flows in the nearsonic approximation and solved these perturbation problems by using
the principle of contracting mappings.

It is known that there exist symmetric subsonic-sonic flows in a symmetric convergent nozzle with
straight wall; furthermore, these flows are singular at sonic curves and cannot flow over sonic curves. We
are interested in the perturbation problems of these symmetric flows. More precisely, assume that the
nozzle is symmetric with respect to the z-axis and is converging with straight solid wall whose vertex is
the origin, i.e.

At the sonic state, the sound speed is

D= {(rsinﬂcosﬁ,rsin@sinﬁ,rcos@) i <r <1y, 0<0<),0<9< 27r}

with 71 <73 < 0and 0 < 0y < 7/2. Assume further that the flow is symmetric with respect to the z-axis

such that
2 2
o(x,y,2) = ¢(r,0), r=+/a2+y>+22, 6=arctan :Ci—i—y
z

Then ¢ satisfies (1.1). If the angular velocity ¢y is relatively small compared with the linear velocity ¢,
(1.1) may be approximated by (1.2). Since the flow is symmetric and the wall is solid, ¢ should satisfy
the symmetric and slip conditions (1.3).

In this section we consider the subsonic-sonic solutions of the equation (1.2) with relatively small
angular velocity satisfying the symmetric and slip conditions (1.3), i.e. for a given incoming flow with
small angular velocity, we seek a subsonic-sonic flow whose angular velocity is small and which is sonic
at the outlet and satisfies the symmetric and slip conditions (1.3). Furthermore, if such a subsonic-sonic
flow exists, is it stable with respect to the perturbation of the incoming flow? Note that for a fixed
incoming flow ¢o(r1) = by, it will be clear that there is a unique symmetric subsonic-sonic flow ¢y with
zero angular velocity and speeding up to sonic at the outlet. This symmetric flow is singular at the sonic
curve in the sense that the speed of the flow is only Holder continuous and the acceleration of the flow
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is infinite at the sonic curve. We are interested in whether this symmetric flow is stable, i.e. for a given
incoming flow satisfying (1.4), which is a small perturbation of by, whether there is a subsonic-sonic flow
¢ of the equation (1.2) satisfying the symmetric and slip conditions (1.3) such that it is sonic at the
outlet, i.e. (1.5) holds. Moreover, if such a subsonic-sonic flow ¢ exists, is it singular at the sonic curve
and what is the singularity, and is it sufficiently close to the symmetric flow ¢g? We will prove that
the symmetric flow is stable and the perturbed flow possesses the same singularity at the sonic curve
as the symmetric flow. The key in our analysis is to establish some suitable estimates and regularities
for the perturbations. It is noted that (1.2) is degenerate along the r direction at the sonic curve while
not degenerate along the @ direction. Furthermore, if ¢ is stable as we expected, then the rate of the
degeneracy along the r direction is O((rg —r)Y 2), which is just Holder continuous. Therefore, we choose
a weighted Holder space as the class of the subsonic-sonic flow ¢. However, it seems to be difficult to
get the desired upper and lower bound estimates on the speed ¢, just in this weighted Holder space. To
overcome this difficulty, we need establish the precise regularity of the flow near the sonic curve, which
is done by using the Holder continuity and the Holder estimates in §3.

4.1 Formulation of the perturbation problem and its solvability
We now study the boundary value problem (1.2)—(1.5) in this section. For the special case
b(@)zbo, 0<0<6by

with by € R, the problem (1.2)—(1.5) may be reduced into a two-points boundary value problem of an
ordinary differential equation

(rp((¢6)2)¢6)l = 07 Ty <r<ry, (42)
¢o(r1) =bo, p(r2) = cu. (4.3)
It is clear that the problem (4.2), (4.3) admits a unique solution ¢o € C™([r1,72)) N C*([r1,72]), such
that
¢o(r) = bo +/ go(t)dt, rp((65(r))go(r) =r2p(cD)es, 11 <7 <12,
P A
o(r) = (Zra)?” e , T <71 <ra.
00 G e T e gy T
It is not hard to verify that ¢, satisfies

0 < ¢p(r) <ce, ¢g(r)>0, r <r<ry
2
¢ = 9}(r) = ﬁ< =024 0((r =), 2= 'Zg'm = 66()* + O((r2 = 7)*"%),
4 8
i) = ﬁ( — () +0(1), o (r) = W( — () P+ 0((rs =) h).

For the general case that b is a small perturbation of by, let ¢ be a solution to the problem (1.2)—(1.5).
Set

w(r,0) = ¢o(r) — ¢(r,0), (r,0) € G.
It follows from (1.2), (4.2) and some tedious calculations that w satisfies
(ho(r)wr)r + ha(r, w)wpwey + ha(r, wy)wew, + hs(r,w.)weg =0, (r,0) € G, (4.4)

where ho(r) and h;(r,w,) (i = 1,2, 3) are given explicitly in the Appendix satisfying the following impor-
tant properties

—Ca(ry — r)1/2 < ho(r) < —=Ci(re — 7")1/2, —Cy < hs(r,0) < =Cy, 11 <r<ry
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with some 0 < C'; < C5, and

2|ra|

ho(r) = — 22 (e, — g (r) + O((r2 1)), hip(r) = eu e — ()" + O(1),

C5 1 —1/2
() = (e = () 4 0((a = 1)), () =0(1). FE(0) = O(ra =) 1),
hQ(Ta 0) = O((TQ - T)_l/Q)a %(T, O) = O((TQ - T)_B/Q)v h3(7“, O) |:2| + O((TQ - T)l/Q)v

. C3 C7
%(T,O) 2|7"2|2( ¢O( )) ! +O(1)ﬂ aah; (7“ O) 4|7“ |3( ¢O( )) 3+O((7“2 _T)il)'

Remark 4.1 In the case v = 2, one has the simplified expressions as

o(r) = s [0 = G0)2]. W) = () =
3 /1 1 o 1 / 2
ha(r, w,) = m%(ﬂ + m%(?“) - Mwm ha(r, w,) = mﬂ((fbo(ﬂ —wy)?)

with ¢2 = 2/3.

For convenience, (4.4) will be rewritten as

0 Ow 0%w ow ow  0%w
E(ao(r)a) talnw) g Falrw) 5 fa) g+ 55 =0, (1) €, (4.5)
with
_ _ho(r) _ ho(r) Ohs
ap(r) = ha(r0)’ as(r) = R2(r,0) Or (r,0), r <r<ry,
~ hi(r,wy) 1 1 i1 L
qi(r,wy) = ha(r, wr)wr + (h:s(?“,wr) ha(r, 0))@ ho(r), r <r<ro,w, €R,i=1,2.
Clearly,
Cs(ry — r)1/2 < ag(r) < Cy(rs — 7’)1/2, L <r<ry (4.6)
1
—Cale. = 9p(r)) ™" < 5ap(r) +as(r) < —Chle. = go(r)) ™", 11 <7< (4.7)

with some 0 < C3 < (4, and

2[ry|?
c

ap(r) =

5
" c

ag(r) = =5 (ex = &4(r) * + O((r2 =) ™"), as(r) = —[ra| + O((r2 = 1)'/?), ay(r) = O((r2 = 1)™"/?).

(e = ¢p(r) + O((r2 = 7)), ag(r) = —|rales(es — d4(r) ™" + O(1),

Due to (1.3)—(1.5) and (4.3), w satisfies the following boundary conditions

wep(r,0) = wg(r,0) = 0, ry <r<rg, (4.8)
w(ry, ) = g(0), 0 <6< by, (4.9)
w,«(rg,e):O, 0 <6 <6y, (410)

where

9(9) =bo — b(e)a RS [Oa 00]
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To study the possible singularities near the sonic curve of solutions to the problem (4.5), (4.8)—(4.10),
we introduce some weighted Holder spaces.
Let oo € (0,1) and k, o € R. Define

lul$fe = sup ((r2 —r)*lu(r,0)]),

Uy, = SUP sup ((min{r2 — P — f})max{k, 0}(

8 )min{k, 0}
0€(0,00) f,f%(;;,m)

max{ro — 7,79 — 7'}

| o
R (O _ pyebua [0 0) — utr, )|)7
0, TE(r1,72) 6,6€(0,60) |0 — 0]«
6+£6
kix k;1 k;3/4 o k -
55 = [l + S Il = %+ 55

Define a weighted Hélder space C(j. *)(G) as

04, (G) = {u e CYG) : |lu| &% < +o0}.

Here, since the degeneracy of (4.5) just occurs along the r direction, the weight for the r direction and
the 6 direction is different. For this weighted Hélder space, we can prove the following property.

Lemma 4.1 Assume that uy € Cf (G) and uy € Clhaiv) (G). Then ujus € Cllr ki) (G) and

|u1u |(k1+k2) < |u |(k1)|u2|(k2) (k1+kaix) < |u |(k1)[ ](k27*) +[ ](k1 *)|U, |(k2)

0o [uiugg
We also denote
|u(7279) _u(f79)| |u(r, é) —U(T, é)|
[U]a;r.c = sup  sup ( P ) [u]a;0,c = sup  sup ?)
o €[0,60] 7 7€lry 72l |7 — | ’ : 7€[r1,72]6,6€10,00] |6 — 6]
THET é;ﬁé

Let us give some explanations on the choices of the weighted Holder spaces. Near the sonic curve,
(4.5) can be approximated as

120w 120w | 0w

or? or 962

which is degenerate along the r direction while not along the 6 direction. In order to study the Holder
estimates of solutions to (4.11), we transform it into an isotropic and uniformly elliptic equation by the
coordinates transformation

Alrg — ) —B(rg —1)~ =0, (A>0,B>0) (4.11)

F=0"Yr—ry), 6=0631.

Via this transformation, (4.11) in (ro — 28,79 — 0) x (—0%/*,8%/%) is transformed to an isotropic and
uniformly elliptic equation in (=2, —1) x (—1,1). See Proposition 4.3 for more details. According to this
analysis, it seems reasonable to choose the following space as the space of solutions of the problem (4.5),
(4.8)—(4.10)

o (Y au « v au o — (92
9(G) ={ue CAG) 1 ue (@), T € Oy (@), 55 € Cloy (©): 5o € Clt oy (@),

0?u N — P . = ou ou
5ra0 € Cl/an(G): 5p3 € Clo(G) and —(, vy 25 00) T 0},




which is a Banach space with the norm

(05%) (1/2; *) (1/4;%) (05 *)

—1/2;%) H

e e ol

However, as mentioned in the beginning of this section, in order to get the existence of solutions in this

space, we need to give precise regularity of solutions near the sonic curve (see Remark 4.3). For u € 4(G),
2

aor2
it is more convenient to investigate the precise regularity of solutions in a new space (7,6) with some
suitable coordinate transformation 7(r) = O((ro —r)*/?). We can choose this transformation as

= ([ ) [ sren an

whose inverse transformation is denoted by 7(7). Simple computations yield

lulloiey =Nl + | 2

ou
the asymptotic behavior of a0 and —— near 7 is like (ry —7)*/2 and (o —7)~'/2, respectively. Therefore,

= ([ 2 = + 0l =),

N c} "1 716—/7“71
#0) = g ([ ) e - ) o),

" - CZ o1 -1 / - -1
T(r) =- 47y |3 (/m ao(t )dt) (ce = 00(r) 2+ O((r2 = 1)71).

Via this transformation, the degeneracy of (4.5) near the sonic curve is transformed to the degeneracy
with a linear rate along the normal direction of the boundary where the equation is degenerate. However,
the degeneracy rate along another direction is superlinear (Proposition 4.4). More precisely, (4.5) is
transformed into (1.7) with A = 2. In this section, we denote

Q= (07 1) X (0560)
and C¥(Q) and C2,(Q) are the spaces defined in §3.2 with A = 2. Set

v . AV
E EC* (Q)7

= ov
=7 € C2(Q), and TIE(I)IJrT 87'( )}(0790) =

for V(1,0) =1~ u(T(T)aH)}a

B(G) = {u cCYG): VT

which is a Banach space with the norm

i H éid
Q 00
and will be used to describe the precise regularity of solutions of the problem (4.5), (4.8)—(4.10) near the

sonic curve.
The main results in this section are as follows.

with V(7,0) = 7~ u(r(1),0), (1,0) € Q

§ v |+
lullsia) = IV lia0 + 75|

Theorem 4.1 (Existence and Stability) Let 0 < oo < 1 and by € R. Assume that b € C*%([0,6p])
with ' (0) = b'(0p) = 0. Then there exists a positive constant dy depending only on v, r1, 2, 6y and «
such that if ||b — bg ) < b0, the problem (1.2)~(1.5) has at least one solution ¢ € C*([r1,r2) x

[0,600]) N C([r1,72] x [0,60]) satisfying
0
() 6 € C20([ri,r2)  [0.60]) with 6 — g0 € F(G) and 52 — 6} € B(C);
(ii) there exists a constant M > 0 depending only on v, r1, 12, 0y and « such that

< M|[b—=boll2.a:(0,60)-

00
6= dollac) + |57 — ]| e,
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Theorem 4.2 (Uniqueness) Let 0 < o < 1 and by € R. There exists a positive constant 6o de-
pending only on v, r1, T2, 0y and « such that the problem (1.2)—~(1.5) admits at most one solution

¢ € C*([r1,m2) x [0,800]) with ¢ — o € 4(G) and satisfying ||¢ — doll«(c) < do-

Remark 4.2 Theorem 4.1 shows that the singularity of ¢ is the same as ¢y near the sonic curve.

4.2 Proof of the solvability

We start with the solvability, while the uniqueness will be proved by energy estimates given at the
end of the subsection. According to the computations in §4.1, the problem (1.2)—(1.5) is equivalent to
the problem (4.5), (4.8)—(4.10). In order to use the Schauder fixed point theorem, we should define a
mapping by solving the corresponding linearized problem in a suitable space. This leads to the following
consideration.

Given w € ¢9(G) with w, € #(G) and

[@llg ) + lirll e <o (4.13)
Consider the linear equation
0 ow 0w ow  Pw
K ow oW _ 4.14
(a0 G ) + 1(r,0) 57 + (a2(r,0) + as(r) G + Z5 = 0, (r,6) € G (4.14)
with the following boundary conditions
ow ow
89 (T 0) 89 (T, 90) - 0) rl < T < 7“2, (415)
w(ry, ) = g(0), 0<6 <6y, (4.16)
ow
E(w,@):o, 0<9<90, (417)
where
ay(r,0) = q1(r, 0. (r,0)), a2(r,0) = g(r, w,(r,0)), (r,0) € G.
Since

ap(r2) = a1(r2,0) =0, 0<6 < by,

(4.14) is degenerate on {ra} x (0,6p), a portion of the boundary.

For notional convenience, throughout this subsection, M and M, denote generic positive constants
depending only on v, r1, r2, 6y and «, while M (-) depends also on the variables in the parentheses.

In order to describe the properties of ag, a1, as and as, we set

o — Ou o . =
() ={u e CHG) 1w € O 13, (@), 5 € Ot 12,y (@), 55 € Cltyasny (@) -
ou c 0
ar 0

%(G) :{u € CY(G) :u e O, (G), (@), Z e /4;*)@}

with the norms

(120 (1/25%) (1/45%) (1;%) (3/45%)
luliesior =Nl G+ |5 + [Sa s Moy = | e
Proposition 4.1 The coefficients of (4.14) possess the following properties
(1) ap € %1(6‘) and az € %Q(G),
(11) a; € %1(G> N %(G), as € %Q(G) and
laillz. ) + laillze) < Mo, |azllz.c) < Mo. (4.18)
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Proof.  'We just prove (ii) since (i) is clear. First, it follows from w € ¢(G) that

aq(r, 0) 1|0 9 [ay(r,0) | 1/2%) 0 ay(r,0)\||1/4%)
< — < _
Hﬁ;r(r,@) a;G _M7 Har(ﬁ)r(r,@)) a;G _M7 Haf)(ﬁ)r(r,@)) a;G
These, w € ¢¥(G) and Lemma 4.1 yield that
ay(r,0) . o

ai(r,0) = Wy (1, 0) wr(r,0) € Claye *)(G),
day 0 rax(r,0)N - aq(r,0) 0w, (r,0) o
or (r,9) or (u?r(r, m)w,«(r, o)+ wy(r,0)  Or € C1/2in) (G),
Oay _ 0 ra(r0)y ay(r,0) 0w, (r,0) o
a0 "= 59 (u?,«(r, 9))“”“(“ O+ 5o a0 Ctjain) (G)

Hence a1 € %1 (G) with

la1llz, @y < M||@]lg @) < Mo.
Similarly, as € #2(G) with
lazllz,c) < M|y < Mo.

Finally, it follows from w € ¢(G) and w, € B(G) that

2o gl FaGegaless lGEega)l. <
Due to these, w, € #(G) with (4.13) and Lemma 3.3, one can conclude from
al(r(:)ﬂ) _ 2)1((:((;))2)) wT(T(TT)’H)’ (r.0) € Q
that a1 € #(G) with
laillze) < Mlwr|zc < Mo.
The proof is complete. O

Proposition 4.2 There exists o1 > 0 depending only on v, r1, 12, 6y and «, such that for any 0 <
o < o1 and any g € C*°([0,600]) with ¢'(0) = ¢'(60) = 0, the problem (4.14)~(4.17) admits a solution
w € C%%([ry,r2) x [0,600]) with w, € C(G), and the solution also satisfies the following three estimates

lwl|2,0:0r1,0) % (0,00) < M(T)|9ll2,0500,00), 7 € (11,72), (4.19)
9w o)l < ar 1/2 9) € G
‘ or (7“, )‘ = HQHQ,(){;(O,GO)(TQ - T) ’ (7“, ) SHEH (4'20)
ow\ 2 9w\ 2 0w \ 2
_oN\—3/2 _ /2 — <
/G ((TQ T) (8T> + (TQ T) ((97"2 ) + ((97"(99) )drda = MHQ”Q,&;(O,Go)' (421)

Proof. Extend the functions ag, a1, a2 and as to the domain Gy = (r1 — 1,72) X (0,6p) such that
the extended functions, denoted by themselves for convenience, belong to C1([r; — 1,72) x [0, 6]) and
possess the same properties and estimates as the ones of the original functions.

It can be shown that there exist a1 € (0,1), kK > 0 and 73 € (r1,72) such that for any 0 < o < 71,

ao(r) + ay(r,0) > k(ra — )2, (r,0) € G, (4.22)
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% (ag(r) + as(r, 0) + ag(r)) < —k(rs — )32, (1,0) € (r3,72) % (0,60), (4.23)

where 71, k and r3 depend only on v, r1, 12, 0y and a. For 0 < ¢ < 1, consider the following approximating
problem

2

0 Jwe 0“w. ow,  0*w.

E(aoﬁ(r)w) tare(n8) g + (2e(r ) £ ase(r) 55+ SoE =0, (O €G, (424)
%(7’, 0) = %(7’, th) = 0, r <71 <7 (4.25)
we(r1,0) = g(0), 0 <6< by, (4.26)
8;5 (r2,0) =0, 0< 6 < b, (4.27)

where ag ¢, a1, a2, a3 € CH*(G) with

ao:(r) = ao(r —e), ase(r)=as(r—e), r <r<rs,
a1e(r,0) = a1(r —e,0), age(r,0) =az(r —e,0), (r,0) € G.

Then, (4.24) is uniformly elliptic in G due to (4.22). According to the classical theory, the problem
(4.24)-(4.27) admits a unique classical solution w. € C%%(G).

We now estimate the solution w, of the problem (4.24)-(4.27).

First, the maximal principle yields

[wellLoe@) < llgllL>(c)- (4.28)

Second, by even extension with respect to # = 0 and 6 = 6y, w. may be regarded as a solution of the
equation in the domain (r1,72) x (—6p, 260p). Therefore, for any r € (r1,r3), it follows from the classical
Schauder theory and (4.28) that

[[well2,a:0m,7) % (0,00) < M (r)([[wellLoe (@) + 19112,0500,00)) < M (1)l gll2,050,60) - (4.29)
Next, set
Owe —
uE(T, 0) = or (7", 9)7 (Ta 0) eG and G'0 = (7’0,7“2) X (0790),

where o € (r3,72) will be determined below. Then, u. € C*(G)) is a solution of the problem

2
% ((aoﬁ(r) + a1,(r,0)) %Q:f) + % ((agﬁ(r) +as(r,0) + a3’€(r))u€) n 38611; —0, (r0)€Go,
ou o (4.30)
896 (r,0) = 896 (r,0p) =0, ro <71 < ro, (4.31)
u(r9,0) = go(0), 0< < b, (4.32)
u(rg, 0) =0, 0 <6< b, (4.33)

where 5
w
0 (0) = . (r0.0) =
For 0 < € < g9 < min{l,79 — 73}, (4.22) and (4.23) guarantee that the comparison principle is valid for

the problem (4.30)-(4.33). We estimate u. near r = ry by constructing barrier functions. Define

(7‘0,0), OSHSHQ

ro—r+e (rg — 1 4 e)lte/?

a.(r) ao,(r)

(7, 0) =Mollgll (0,00 ). (r0)eGo
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with My > 0 to be determined below. Then
o, 0 _ anE
) + ((a’i),e(r) + a275(7', 9) + GB,E(T))UE) + 902

0

ar ((ao,e(r) + a1.(r,0)) = >

0? _ 0 O, _ 0%,
(G’OE( )uf) + 4 or (a’l 5(7' 9) 8 + ag E(T 9)“6 + ag 6( ) 6) + W

“or2
o (07
(1 * 5)M0H9||27a;(0700)(7'2 —r )it/

) . _ _
+ 5 <a1 (r,0) 5= + az.o(r, )T + aB,E(r)uE), (r,0) € Go. (4.34)

We now estimate the second term on the right side of (4.34). First, owing to a1 € Z#1(G) N AB(G) with

(4.18), we have that

ay(r, 0) (ro — )21 ai(r,0)
= < < < .
‘ 7(r) ‘ 7(r) ‘(7"2 1/2‘ Mllarllz ) < Mo < Moy, (r,0) € G (4.35)
and
\Tﬁ(m)\ < Jla1]l g™ < Mot® < Moyr®,  (r,0) € Q. (4.36)
It follows from (4.36) that
Cll(?”, 9) al(T(T)a 0)
’&( T(?") )’:‘ ITHE( T >T=T(7")
<Moy(ra — ) 27719 (r) < Moy (ry —r) T2, (r,0) € G. (4.37)
Combining (4.35) with (4.37) yields that
(4.38)

ai 5(7”79)’ ‘ aie(r,0) ’ —14+a/2
— | <M — )< M —r+ a/ 0 Go.
‘ T(r—e)l = oL 5‘r( T(r—e) ) < Moy(ry =1 +¢) » (n0) €Go
Here r(-) and 7(-) are the transformations defined in §4.1. Additionally, one has that

—¢) Tlr=e)(ra—r+ 6)@6,5(7“))

e _ T(r
T(r — 6)5 =— M0H9||2,a;(o,90)( 20207 + 20
+ Mol|gll2,a:(0,60) (re — 7+ g)e/?
aT(r—e) T(r—e)(ra —7r+ 5)%,5(7')
. ((1 + 2) aO,e(T) + G(Q)’E(T) )7 (’I“, 0) € Gp.
Note that
‘T(r)‘gjm ‘T(r)(rz—r) ‘<M .
ao(r) ag(r)
and
0 T(T) —1/2 0 7'(7") (TQ — 7")0,6 (7’) “1/2
—_ < . . < . .
e (r))‘*M(” N 5 20 ) =M =n)2 <<
Therefore,
(4.39)

o
r— 5)8—:‘ S MMOHQHQ,O(;(O,GO)a (7", 9) S GOv
a -
)| < MMollglaaon (2 = 7 +2) 742 (1,0) € Go. (4.40)
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It follows from (4.38)—(4.40) that

3 (0 50) | <525 g (- 50| e - 05 (523

<M1 Mo|gl2.0:(0,60)01 (T2 — 7 + )72 (r,0) € G. (4.41)

Second, due to az € Z2(G) and (4.18), it holds that

— M 6“’6 _ 8@2 e
< = >
‘ 8’[“ (a2’6 (T’ Q)UE) _‘a276 (T’ 9) ar uE 87‘ (T; 9)‘
<MM0||g| 2’a;(0700)0'(7‘2 r 5)71/2

<M My||gl|2,050,60)01 (T2 — 7+ ) 712 (r,0) € Go.

Third, direct calculations yield

or

S ‘a375(7") + |a§3,s(r)a5| S M3M0Hg||2,a;(0,90) (TQ —r+ 6)_1/25 (T7 9) S GO-

‘% (ase(r)u.)

Now we determine o1, ro, €9 and My in turn. First fix 0 < 01 < 61 and max{rs,ro — 1} < ro < 1o
such that

« « 16 M.
< - (14 = _ —(l-a)/2 5 O3
01—4(M1+M2+1)( +2)’ (r2 = o) “al2+a)’

then fix 0 < g9 < min{rg — r3, 79 — 72 + 1} such that

S M-
_ (a2 _8Ms
(r2 =70+ €0) T al4a)

With o1, 79 and ¢¢ so fixed, finally choose My > 0 sufficiently large such that
Ue(r0,0) > [lgollL=(0,60), 0 <8< b

for all 0 < € < gg. Then, for any 0 < € < €9, . is a supersolution of the problem (4.30)—(4.33). It is
clear that —7. is a subsolution. The comparison principle leads to

—Ue (Ta 0) < Ue (7", 9) < (7", 9)7 (7“, 9) € GO;

which yields
ow,

or
Finally, since u. € C1*(Gy) is the solution of the problem (4.30)-(4.33),

(7, 9)’ = |uc(r,0)| < M||gll2,a:(0,60)(r2 — 7 + e)V2, (r,0) € Go. (4.42)

8’(1,5 8C , 8C 8“5 8C
/Go ((GO,E(T) +ai . (r, 9)) o or + (ao,e(r) +ag(r,0) + a376(7"))u6 B + 50 5‘9)drd0

0o . /
+ /0 ((aoyg(r) + ay (r, 9)) 8(% + (aoﬁe(r) +ag(r,0) + a376(r))u5)g

o =0 (4.43)

T=To

for any ¢ € C'(Go) with ((rs, ~)‘(0 o) = 0. Take ¢ = u. in (4.43) to get

»Y0

0 :/G ((ao,e(r) +ay (r, 9)) (%7;6)2 + (a(/),e(r) +ag(r,0) + agﬁs(r))ue% + (E);;)Q)drda

de

=70

) u
+ [ ((@0c0) + ar(026) e e+ () 02,1, 0) (1))

41



[ (ot o ) (2 (000t )+ () Y

0o
+ /0 ((aoﬁ( ) + a1 (r, 9)) 8(% Ue + %(a(’)!g(r) +as.(r,0) + a375(7“))u§> dé.

=70

This, together with (4.22), (4.23) and (4.29), leads to

Oug\ 2 ou
/GO (o =r+0)2(F2) + 2 =7+ 22+ ( ao) Jdrds < Mlgl,a0.00)- (4.44)

Using the a priori estimates (4.28), (4.29), (4.42) and (4.44), one may complete the proof of the
proposition by a standard limiting process, so the details are omitted. O

Remark 4.3 It is noted that in deriving (4.42), one has used the fact that not only w € Z(G) but also
W, € B(GQ). Indeed, ar just belongs to Z1(G) if w € Z(G) while W, ¢ B(G). Then instead of (4.41),
one just gets that
0 Jt. _
|5 (010002 )| < Mlgla.astoaoi (2 =7 +2)7", (1,6) € Go,

which is not sufficient to show that u. is a supersolution of (4.30).

Proposition 4.3 Assume that 0 < o < o1, g € C%%([0,6p)) with ¢'(0) = ¢'(6y) = 0 and w €
C%%([r1,m2) x [0,60]) with w, € C(G) is the solution of the problem (4.14)~(4.17) obtained in Propo-
sition 4.2. Then there exists oo > 0 depending only on vy, r1, ra, 0y and o, such that for any 0 < o <
min{oy, 02}, w € Y(G) with

||w||(9'(G) < MHgHQ,a;(O,GO)- (445)

Proof. Set

u(r,0) = %—Q:(r, 9), (r,0)€q.

Then, Proposition 4.2 implies that u € C1([ry,72) x [0, 60]) N C(G) is a weak solution of

o 5‘u) 0 =0, (r0) eaq. (4.46)

o ((aotr) + ar(r8)50) + 57 ((6h) + aa(r,0) + asr))us) + 52
For 0 < 6 < 6 =min {(ro —71)/2, (90/2)4/3} and §%/% < 0 < 0y — 63/, denote

E = (ry— 26,19 —8) x (6 — 6%*,0 4 5°/4).
Rewrite (4.46) as

2’LL
E(p(r 9)‘; (r, 9)) g 75 (1.0) = %(r, 6), (r6)¢q, (4.47)

where
p(r,0) = ao(r) + a1(r,0), f(r,0) = —(af)(r) + as(r,0) + ag(r))u(r, 0), (r,0) € G.
Introduce the coordinates transformation
r=ro4+0F, 0=0+087*0, (7,0) € E=(-2,-1)x(-1,1)

and the functions transformation

(7, 0) = u(ry + 67,0 4 6°/40), p(7,0) = p(ro + 67,0 + 6°/*0), f(7,0) = f(ry + 67,0 4+ 6°/*0), (7,0) € E.
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Then, @ € Cl(E) is a solution of the equation

0 - Ou,_ ~ 0%t ~ 8f ~ -

—(07V2p(7,0) == (.6 0) = o'/? i,0) € E.

57 (6720 0) 52 (.0)) + =5 (7,0) = 8T (7.0), (70)
From ay € %#1(G) with (4.18), there exist o5 > 0 and 0 < k1 < k2 depending only on 7, r1, r2, 6y and «,
such that for any 0 < 0 < 09 and any 0 < d < d1,

p

<6 V25(7,6) < ‘5 1/29P
K1 p(7,0) < Ka, 5

(7. 0)] + |6 1/287;( D <m GHeL

Thus, the classical Holder estimates yield

onu o1 1/2 5 20 F - 4|5 -
[ ](’E+{8TLE 87"0;13 [agLE ‘ag OE (6 [f] B+ |f|0?E+|u|O?E)'
Transform this estimate into the (r,0) coordinates to get
ou ou ou
o 3a/4 1+a 1430/4 ou
0 [U]Q;T’E—’_é [ ]a9E+5 |:8’I"i|arE 6 |:8’I":|at9E 0 8T‘O;E
ou ou
§3/4+a 1 §3/4+30/4 3/4‘
+ |:80:|a’l"E [80LeE+ 00 lo;E
M (8% flair. + 025/ flovg, i + 61| flop + lulos ).
which implies
5—1/2+a[u] . 5—1/2+3a/4[u] o+ oL/t {@} 1 §1/2+3a/4 [31&} 4 61/2 @‘
ar st orlarE orla0.E orlo.e
51/4+a|:aui| 51/4+3a/4{8u} 1/4 @
00 a;r, B 00 a0, E 00 0;E

§M<5a [(ah + a2 +ag)u] , . + 6% [(ah + a2 + az)u] 4 + | (ah + a2 + ag)ul ., + 571/2|U|0;E)
<M6*(|ap + az + aslo.5lulasrs + [ah + az + aslar.lulo:s)
+ M53“/4(|a6 +as + aslo.g[u] a0, + [al + a2 + a3]a;9,E|U|O;E)

1/2

+ Mlag + az + azlo.e|ulo,z + M6~ *|ulo,m

<M (52 gy + 62 ] g+ 52 o)

Additionally, it follows from the interpolation inequalities that

ou ou
o 1+ ) 3a/4 < 3/44+3a/4 )
0[] p < €0 [ LmE FME)|ulos, 2 uasr < €0 [ML 5T MOl
with € > 0. These, together with (4.20), yield
571/2+a[u] ' E+571/2+3a/4[u] .0E+51/2+a{@] 51/2+3a/4[8u] L5l @‘
T at or a;r, B or a6, FE or 0;E

du

0
89} arE 9

00 1ok

_ Ou _
Based on this estimate, on can claim that v € C?", , .\ (G), o € Ch j20) (G),

1 §l/ata { 1 §l/at3a/4 {8’“ 1/4

. < M6~ luloie < Mlglloasoen. (448)

ou

ag S 08/4*)(@) and

(1/4;%)

(1/2;%)
s o W

[l < M||gll2,0:(0,60)> (4.49)
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which is assumed to hold for this moment. Thus,

2—1: =u€ Clly g (@), ?)271; = (;u € Cl1/23) (@), 88:;)6 = gz € Cll /a3 (@),
and .
w(r,0) = g(0) +/T Z—i}(t,é))dt € C*(G).
Additionally, (4.14) and Lemma 4.1 imply that
0w 0*w dw

—(ao(r) + a1(r,0)) 57 (ap(r) + aa(r,0) + a3(r)) 5~ € Cioy (G),

002~ or
and thus .

ow 0w o =

o (r6) = /0 O (r. 1)t € sy (G).

These, together with (4.15) and (4.49), yield w € ¢(G) with (4.45).

Finally, it remains to prove the claim that we prove that u € CE{UQ;*)(@), % € Cli /2. (@), % €
08/4;*)(6‘) and (4.49) holds. By even extension with respect to 8 = 0 and 6 = 6y, u may lze regarded as
a solution of the equation in the domain (rq,r2) x R. Therefore, (4.48) holds for all 0 < 6 < 6y and we

may assume that 6y > 2((r2 — r1)/2)%/*. Under this assumption, §; = (ry — r1)/2. Here, we note that

the weight of u has negative exponent, while the ones for 5‘_7: and a—z are positive. This difference leads
to different proofs.
As for u, first, (4.20) implies
[u(r, 8)] < Mllgll2,a;0.00) (r2 = 7)V/2, (r,6) € G. (4.50)

Second, let 7,7 and @ satisfy 1y <7 <7 <7y and 0 < 6 < . If ro — 7 > (ro — #)/2, then it follows from
(4.48) with § = (ro — 7)/2 that

|’LL(’IQ7 é) - ’LL(’F, é)' < M(TQ - f)l/Q_aHgHQ,a;(O,GO) |72 - 7;|a;
while if ro — 7 < (ro — #)/2, then ro — 7 < 2|7 — 7| and thus (4.50) yields
u(,8) — u?, )] <fu(r. )] + |u(r. 0)] < Mllgllzon ((r2 — 9" + (r2 —7)/2)
SM(TQ - "Q)l/ziotHgHZ,oz;(O,GO)|72 - 7;|a.
Hence

W) < M|glla,ax0,60)- (4.51)

a;r,Go

Third, let 7, f and 6 be given such that r < 7 < ry and 6,0 € (0,60). If |§ — ] < 2(ry — 7)3/*, then
(4.48) yields that

[ulF, 0) — u(7,0)] < M(rs = )72 gl|2, 000,00/ 10 — 61
while if |6 — 6] > 2(ry — 7)3/%, then it follows from (4.50) that

Ju(,0) = u(r,0)] <[u(F,0)| + [u(, 0)] < Ml|gll2,a:0,00) (r2 = )"/

SM(TQ - 77)1/2_30(/4||g| 2,a;(0,00)|é - é|0(
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Thus
—1/2;3/4
[l o < M gl2.050.00) (4.52)

It follows from (4.50)—(4.52) that u € C¢" (G) and satisfies

(—1/2;%)

12*
lull a5 < Mlglla,ax0.60)-

. ou . . ..
Next we consider —. For given (ry +12)/2 < r < ra, there exists a nonnegative integer & such that

or

r < T — 2k+1(r2 —r) < =(r1 +72).

N =

For any integer j satisfying 0 < j < k, it follows from (4.48) that

0 0 . ,
81::(7“2 — ZJ(TQ — 7“) 9) — 8—1;(7“2 — 2J+1(’I‘2 — 7“),9)‘ < MHgHQ’a;(OﬁO)Q_j/Q(TQ — 7“)_1/2, 0<6 <0y

Summing up leads to

ou ou _
S2(1,0) = S (r2 = 21 (12 = 1),0)| < Mlglla.ason (2 = 1) 7V2, 0< 0 < b

This, together with (4.19), shows

ou

S 020)] < Mllgls.asonn (r2 =) 72, (r,6) €G. (4.53)

On the one hand, consider 7, # and @ such that r1 <7 <7 <19 and 0 < § < 6. If ro — 7 > (ro —7)/2,
then it follows from (4.48) that

S, 0) = S, 0)| < Mra = )72 = ) gl .00 |7 — 717

while if ro — 7# < (ro — #)/2, then 1o — 7 < 2|F* — 7| and thus (4.53) yields

ou . - - -
O (70— T2 0)] <| 95, 0] + | 227, 0)] < Moo (2 = 7)772 4 (2 = 7))
<M(rz - >1”< =) gll2,s00,00) |7 = 71
Hence
Ouq (1/2:1)
ar =M 5(0,00)- 454
(5 < Mgl (54)

On the other hand, let 7, § and 6 be given satisfying 71 < 7 < ro and 6,6 € (0,0p). If |§—é| < 2(ry—7)3/4,
then it follows from (4.48) that

< M(ra = 7)1 272 g 13,000,000 10 — 017

while if |6 — 6] > 2(ry — 7)3/4, then (4.53) yields that

0]+ |50 <

SM(W — 7)1 3a/4||9||2,a;(0,90)|9 - 9|a-

ou,_ » ou
E(Tﬂ)—g(

(ro —7)" 1/2
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Thus

< M||g|

du1(1/2:3/9)
=] 2 (0.60)- (4.55)

orJa:0,Go

u

or
|5
ou

Similarly, one can prove that — € C{} 4., (Gyp) and satisfies

06

As a consequence of (4.53)—(4.55), € 08/2;*)(@0) and satisfies

(1/25%)
< M||9H27a;(0790)'

a;Go

H@ (1/4;%)
00 lla;a

The proof is complete. O

< Ml|g|

2,;(0,60)

Proposition 4.4 Assume that 0 < o < min{oy,02}, g € C%%([0,6y]) with ¢'(0) = ¢'(6p) = 0 and
w € C%%([ry,ra) x [0,00]) Y (G) is the solution of the problem (4.14)—(4.17) obtained in Proposition 4.2.
Then there exists o3 > 0 depending only on vy, r1, r2, 6y and «, such that for any 0 < o < min{oy, 02,03},

ow

o € B(G) with
ow
- < . . )
H or H%’(G) = M”QHQ,@,(O,GO) (4 56)
Proof. Set
u(r,0) = %—Q:(r, ), (r,0)€d.

Then, Propositions 4.2 and 4.3 imply u € %1 (G) is a weak solution of

0%u

0 8u> 9 8u) 9 s =0 (hHeG.

E(ao(r)ﬁ + E(al(r, 9)5 + E((a{)(r) + as(r,0) + cm(r))u) +

Set 5
o(7.0) = u(r(r),0) = S-(r(7).6). (7.0) €T

where 7(-) is the transformation defined in §4.1. Then, v is a weak solution of

9%v ov

eo(T)W + 60(7)8—87_ (61(7', 9)E> + 60(7-)8—87_(7——11;) + 30(7)8—87_(62(7', 9)1}) + 0°v

wzo, (T,H)EQ,

(4.57)

where




Then, it follows from (4.19)—(4.21) that

IV I1,0:r.1)% (0,000 < M(T)[|9ll2,0:(0,60), T € (0,1), (4.58)
oV oV
2
(0.60)> /(V T (aT) T (ae))

Furthermore, (4.57) can be rewritten as

3 T2 3 2
0 ( 8‘/) OV 20l (/ ! )dt> 20V 9 p 2P B0, (o) e, (160)

(4.59)

ar\' or or c? ap(t 062 Ot 00
where
ov
Fi(r,0) = — ey (T, 49)7'8—(7'7 0) — (61(7', 0) + Tex (T, 9))V(T, 0), (1,0) € Q
T
23 [ 1 3 1 \oV
_ _ ov Q0
Fa(r.0) =( 2 ( / ao(t) ) Teo(T)) o6 "0 (r.6) €
Thus, V' € H2(2) N L>°(Q) is a weak solution of (4.60). Further, V satisfies the boundary condition
ov ov
89(7 0) = 89(7 6o) =0, T€(0,1).
By Theorem 3.1 and Remark 3.1, one gets that
VI at [rom| s + || < 8 (1F)a + [l + 1VIne) (4.61)
and
ov ov
. = li - = 4.62
T o (Ta 9) =0 TIL%I+T or (Ta 9) 0, b€ (Oa90)7 ( 6 )

where Q = (0,1/3) x (0,6p). For 0 < 7 < 1/3, set
Ql = (Oa%) X (Oa90) C Qa Q2 = (7~—7 1) X (Oa90)

It follows from (4.61) and Lemma 3.3 that

Wi, + 5|, + |5

;1
SMWWﬁ[mm2MM@Hmmﬁwm)
T % v ||+ .
SMOHelHa;Ql TE Q) +M0 TE a'Qg+MO( )HV”a;Ql
2|ro|? /7"2 1 3 Lo qov =
M, M, ‘ dt) — 9
+ Mo( ) + Mol =2 ( w0 ) 7eo() oo 1196 llaccr,
e/ [T 1 N3 1 e AV
MH (/ dt) - 9 MoV [o:00- 4.63
0 c2 o Go(t) Teo () s, 11 00 a;92+ o[Vloe ( )

One can verify that

Ta{)(r(T))/Tm#dt—l, rag(r(r)), 2“"2'3(/:2 dt) - e ¢ ([0,1)

(t) 2 ao(t) Teo(T)

and all vanish at 7 = 0, while

T

ao(r(7))

e ([0, 1)), T2‘32L7)’Z) e CL(Q).



These, together with (4.13) and (4.18), lead to

] * 2|7“2|3 1 3 -
ag(r / ——dt -1 + [|Tasz(r —|—H / dt < Milme
|rab (7)) o R RO ( o ) - o |, <17
ar(r(r),0) 7 az(r(7),0) r( (r ) o) "
i A, | s <
HelHa,Ql + ||Ta2(’l"(7') )Ha,Ql T G,o(T(’T)) e + 7“(7'),9) T T g
Therefore, there exist o3 > 0 and 7 > 0 sufficiently small such that
213 / 1 \3 1o 1
dt) — < —.
||61Ha Kh * HT@QHQ Kh * H ( r1 ao(t) ) ’7'60(7’) ;g - 2M0
For such 7 € (0,1/3), (4.63), together with (4.58), leads to
oV ||
VI, H Al H— <M ). 4.64
H ||o¢,Ql + |7 87_ e 89 0 = ( ; ) ( )
oV o oV o =
Then, we get from (4.64), (4.58) and (4.59), we get that V,Ta— € CX(Q), 20 € C(Q) and
T
. oV || ov
HV”a;Q"_HTE a,Q+HW 0 < M|gll2,0:(0,00)-

0
This, together with (4.62), shows 8—1: € A(G) with the desired estimate (4.56). The proof is complete.
(]

Proposition 4.5 Assume @ € 9(G) with ||0||4q) < 0. Then there exists o4 > 0 depending only on r,
r1, 2, Oy and a, such that for any 0 < o < oy the problem (4.14)—(4.17) admits alt most one solution
w € Y(QG).

Proof.  Assume that wy, ws € 9(G) are two solutions of the problem (4.14)—(4.17). Define
w(r,0) = wi(r,0) —wa(r,0), (r,0)€q.
Then, w € 4(G) is the solution of

0 ow 9w ow 0w

E(ao(r) — )+ a(0)5y 5+ (a2(r,0) + as(r) T + S35 =0, (r,0) € G (4.65)

satisfying the following boundary conditions

?;Z)} (r,0) = ZZ) (r,0p) =0, 1 <71 < T, (4.66)

w(m,@) =0, 0<0<by. (467)

0
Multiplying (4.65) by _5‘_1: and then integrating over (1, s) x (0,6p), we get that

/ /90 —% r) + a1 (r, 9));((%—?)3 — (ag(r) + az(r,0) + as(r)) (Z_@:)Q ?;;;} %w>d df =0,

where 71 < s < ry. Integrating by parts and using (4.66) and (4.67) lead to

- /: /000 (%af)( ;('98@1 (r,0) + az(r,0) + as(r )) (%_Q:)erdg
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=S

_1/90( ()+a1(r9))(?;: S+%/000(
//00 20 ;aaal(r@—i—agr@ ) +as(r )( )drd@

_5/0 (ao(r) + ar (1, 9))(?9—":)26197"23

=T

T™=7T1

Therefore,

- /: /000 (%af)( ;%al (r,0) + az(r,0) + as(r )) (Z—I:Ydrde

S% /000 (ao(r) + a1 (r,0)) (gw) de T %/000 (ao(r) + a1(r,0)) (?j:) do

From (4.6), (4.7) and w € ¢4(G) with ||@]| ) < o, there exists 04 > 0 depending only on v, r1, 72, o
and «, such that for all 0 < o < 04,

K1(re — r)1/2 < ao(r) 4+ ai(r,0) < ka(re — r)l/Q, (r,0) € G (4.69)

(4.68)

T="r1

and
1 8@1
2 Or

where 0 < k1 < ko are two constants depending only on ~, r1, r2, p and a. Additionally, w € ¢(G)
implies

—ka(rg —7)H2 < %ag( ) — (r,0) + ag(r,0) + az(r) < —ki(ra —7)"Y2, (r,0) € G,  (4.70)

ow
50| < lullge(ra =)"2, (r,6) € G, (4.71)

By (4.69)—(4.71), letting s — r5 in (4.68) yields

/G (g—f)z(r, 0)drd < 0,

ow
or
Then, it follows from this and (4.67) that

w(r,0) =0, (r,0)e€q.

which implies

(r,0) =0, (r,0)€d.

The proof is complete. O

Finally, we can prove the main results (Theorem 4.1 and Theorem 4.2).

Proof of Theorem j.1. As shown at the beginning of this subsection, this theorem on the
problem (1.2)—(1.5) is equivalent to the corresponding one on the problem (4.5), (4.8)—(4.10). Denote

M= {u € C2([r1,72) x [0,60)); |[ullg(c) + H = H min{01,02,03,04}}.

B(G)

For any w € M, Propositions 4.2-4.5 imply that the problem (4.14)-(4.17) admits a unique solution
0

w € 9(G) with a—i’ € B(G) and

ow
lollg@ + |5, ) < Mollgl.aso0: (4.72)

@(G)
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Take

1
0o = — min{oy,09,03,04}.
0= {o1,02,03,04}
Then, the theorem can be proved by using the Schauder fixed point theorem in a standard way, so the
details are omitted. Thus, the proof of Theorem 4.1 is considered complete. O

Proof of Theorem 4.2.  Assume that ¢1,¢2 € C%%([r1,72) x [0,6p]) are two solutions of the
problem (1.2)—(1.5) satisfying

|61 — dollgc) <0, o2 — dollwc) <9 (4.73)

with some § > 0 determined below. Let

’U}(’I“, 0) =¢1 (’I") - ¢2(T7 9)7 (T7 9) €G.
Then, it follows from (1.2) and direct computations that

ow ow ow ow 82_11)

%(QO(T)W) + % ((ao(r,0)+ 1 (r.0) 5= ) + (@2(r,0) +s(r,0)) S +as(r) 5= + 5 = 0, (r,6) € G,

where ag(r) and a3(r) are given as in (4.5), while a;(r,0) (i = 0,1,2,3) can be given explicitly in terms
of ¢1 and ¢o. In fact, the detailed expressions of a; (¢ = 0,1,2,3) are not important. It suffices to note
that they possess the following estimates

or

o (r, 6)] + |iia (r, 6)] < M6(rp — )72, (r.6)] + %(r, 0) < Mo(rs=1)V2, (no)eC

and
laa(r, 0)] + |as(r, )] < Mo, (r,0) € G

for some M > 0 depending only on ~, r1, r, #p and «, which can be verified directly. Then, via an
energy estimate as in the proof of Proposition 4.5, we may prove

w(r,d) =0, (r,0)e€q,

provided that § is sufficiently small. This completes the proof of the theorem and we omit the details. [J

Appendix

The coefficients ho(r) and h;(r,w,) (i = 1,2,3) in (4.4) can be given explicitly as follows

r

or) == o((64)?) + 20/ (@) @0)7]. 1 <7 <ra
0 0r) = = T (0)2)0h + s (652 -+ L) (200)° = B+ 3u2)
- (o) | (= O + (1= 1)(6 — )i
- (2(90)* = 3dpwr +wP), T <7r <79, wy ER,
halrny) = = =2 (0 (66)2)60) + s (0 (60)°))
i w,) (20r(60)2) = () w, + )

p(c2)
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2r !
— 5 |1 00 (00 + (1= )00 — w0 )(2(h)? = 3, + u)
2r
+ M]Q(T, wy)Pp 6’(2(%)2 — 3ppw, + wf), ry <r<ry, wy €R,
1
hs(r, w,) :Wp((% —wy)?), 1 <r<ry, w, €R,
with
1 ! / /\2 / 2 / /\2
s < L[] 060+ =06 —wde = (@3] w0
b ) — T
— 0" ((6)*) 90, w, =0
and
1 ' 1" /\2 / 2 " /\2
oo = L e - @ —woti = ()] w0,
k) ) — T
— "' ((6)*) %0, wy = 0.
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