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1 Introduction

In this paper, we consider the following compressible and isentropic Navier-Stokes equations
with density-dependent viscosity{

ρt + (ρu)x = 0, x ∈ R, t > 0,
(ρu)t +

(
ρu2 + p(ρ)

)
x

= (μ(ρ)ux)x,
(1.1)

where ρ(t, x) ≥ 0, u(t, x) represent the density and the velocity of the gas, respectively. Assume
that the pressure and viscosity function is given by

p(ρ) = Aργ , μ(ρ) = Bρα, (1.2)
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where γ > 1 denotes the adiabatic exponent, α > 0 and A,B > 0 are the gas constants. Without
loss of generality, we assume that A = B = 1.

We consider the Cauchy problem (1.1) with the initial values

(ρ, ρu)(0, x) = (ρ0,m0)(x) → (ρ±,m±) as x→ ±∞, (1.3)

where ρ±, m± are given constants. Here we assume that there is no vacuum at the far field, i.e.,
ρ± > 0, thus we can define the far field velocity by u± = m±

ρ± .

The large time asymptotic behavior of solutions to (1.1) is expected to be closely related to
that of the corresponding Euler system⎧⎨

⎩ ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = 0,
(1.4)

The Euler system (1.4) is a strictly hyperbolic one for ρ > 0 whose characteristic fields are both
genuinely nonlinear, that is, in the equivalent system⎛

⎝ ρ

u

⎞
⎠

t

+

⎛
⎝ u ρ

p′(ρ)/ρ u

⎞
⎠

⎛
⎝ ρ

u

⎞
⎠

x

= 0,

the Jacobi matrix ⎛
⎝ u ρ

p′(ρ)/ρ u

⎞
⎠

has two distinct eigenvalues

λ1(ρ, u) = u−
√
p′(ρ), λ2(ρ, u) = u+

√
p′(ρ)

with corresponding right eigenvectors

ri(ρ, u) = (1, (−1)i
√
p′(ρ)
ρ

)t, i = 1, 2,

such that

ri(ρ, u) · ∇ρ,uλi(ρ, u) = (−1)i
ρp′′(ρ) + 2p′(ρ)

2ρ
√
p′(ρ)

�= 0, i = 1, 2.

Define the i−Riemann invariant (i = 1, 2) by

Σi(ρ, u) = u+ (−1)i
∫ ρ

√
p′(s)
s

ds

such that
∇(ρ,u)Σi(ρ, u) · ri(ρ, u) ≡ 0, ∀ρ > 0, u.

There are two families of rarefaction waves to the Euler system (1.4). Here we only consider
2−rarefaction wave, which is characterized by the fact that 2−Riemann invariant Σ2(ρ, u) is
constant in (x, t) and 2−characteristic speed, λ2(ρ, u) is increasing in x. Suppose that the end
states (ρ±, u±) of the initial values of (1.4) satisfy

Σ2(ρ−, u−) = Σ2(ρ+, u+), λ2(ρ+, u+) > λ2(ρ−, u−),
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Then the state (ρ−, u−) can be connected to the state (ρ+, u+) by a 2−rarefaction wave. The
2−rarefaction waves for (1.4) connecting (ρ−, u−) to (ρ+, u+) converge to each other time-
asymptotically in supreme norm. For definiteness, we choose a particular 2-rarefaction wave
(ρ̄, ū)(t, x) of (1.4) defined by (2.3) in the next section.

In the present paper, we are interested in the large time-asymptotic stability of the above
rarefaction wave to the density-dependent Navier-Stokes equation (1.1) with large initial values
which may contain vacuum states.

There have been large literature on the global existence and the large time behavior of
solutions to the system (1.1) and even in the higher dimensional case when the viscosity μ(ρ)
is constant. We refer to [7], [15], [17], [19], [20], [23], [24] and the references therein. However,
the possible appearance of the vacuum is one of the major difficulties to the global existence
of the solutions to the compressible Navier-Stokes equations with constant viscosity. Hoff and
Smoller [13] proved that weak solutions of the compressible Navier-Stokes equations in 1D case
do not contain vacuum states in finite time if there is no vacuum initially. On the other hand,
Xin [30] proved that there is no global smooth solution to the Cauchy problem to compressible
Navier-Stokes equations with a nontrivial compactly supported initial density, which means that
the solution will blow up in finite time in the presence of the vacuum states. Moreover, Hoff [11]
proved the results of the failure of the continuous dependence of the weak solutions containing
vacuum states on the initial values.

Thus, when the solution may contain vacuum states, it is natural to consider the compressible
Navier-Stokes equations with density-dependent viscosity, as was derived from Chapman-Enskog
expansions from the Boltzmann equation where the viscosity depends on the temperature and
thus on the density for isentropic flows. Moreover, a one-dimensional viscous Saint-Venant
system for the shallow water, derived rigorously from the incompressible Navier-Stokes equation
with a moving free surface by Gerbeau-Perthame recently in [8], is expressed exactly as in
(1.1)-(1.2) with α = 1 and γ = 2.

There are many literatures on mathematical studies on (1.1)-(1.2). If the initial density is
assumed to be connected to vacuum with discontinuities, Liu, Xin and Yang first obtained in [21]
the local existence of weak solutions. The global existence of weak solutions was obtained later
by [14], [15], [27], [31] respectively. If the initial density connects to vacuum continuously, then
new difficulty is encountered since no positive lower bound for the density is available. This case
is studied by [6],[29],[31] and [32] respectively. However, most of these results concern with free
boundary problems. Recently, initial-boundary-value problems for one-dimensional equations
(1.1)-(1.2) with μ(ρ) = ρα(α > 1/2) was studied by Li, Li and Xin in [18] and the phenomena
of vacuum vanishing and blow-up of solutions were found there. The global existence of weak
solutions for the initial-boundary-value problems for spherically symmetric compressible Navier-
Stokes equations with density-dependent viscosity was proved by Guo, Jiu and Xin in [9]. More
recently, there are some results on Cauchy problem (1.1)-(1.3). The existence and uniqueness of
global strong solutions to the compressible Navier-Stokes equations (1.1)-(1.3) were obtained by
Mellet and Vasseur [25] where no vacuum is permitted in the initial density. However, the a priori
estimates obtained in [25] depends on the time interval thus does not yield the time-asymptotic
behavior of the solutions. The first result about the time-asymptotic behavior of the solutions
to the Cauchy problem (1.1)-(1.3) is obtained by Jiu-Xin [16], where the global existence, large
time-asymptotic behavior, the vanishing of the vacuum and the blow-up phenomena of the weak
solutions were considered in the case that ρ+ = ρ− and u+ = u− = 0. It is well-known that the
large time-asymptotic behavior of solutions to the system (1.1)-(1.3) with different far field states
of the initial values is closely related to the corresponding Euler system (1.4). Rarefaction wave
is one of the fundamental wave patterns to the Euler system (1.4). A natural question is how
about the stability of rarefaction waves to the compressible Navier-Stokes equations (1.1)-(1.3)
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in the framework of weak solutions which may contain vacuum states.
In the case ρ± > 0, that is, the rarefaction wave does not contain vacuum, we study in

this paper the global existence, large time-asymptotic behavior, vanishing of the vacuum and
the blow-up phenomena of weak solutions to the Cauchy problem (1.1)-(1.3). First we will
construct a class of approximate solutions satisfying some uniform estimates and furthermore
prove the global existence of weak solutions for Cauchy problem of (1.1)-(1.3). Moreover, the
time-asymptotic behaviors of weak solutions are investigated. More precisely, it is proved that
the density ρ tends to a rarefaction wave as t → ∞. As a consequence, there exists a time
T0 > 0 such that when t > T0, the vacuum states vanish and the global weak solution becomes
a unique strong one. Moreover, the stability of the rarefaction wave is obtained in some weak
sense.

Notations. Throughout this paper, positive generic constants are denoted by c and C, which
are independent of ε, t and T , without confusion, and C(·) stands for some generic constant(s)
depending only on the quantity listed in the parenthesis. For function spaces, Lp(Ω), 1 ≤ p ≤ ∞,
denote the usual Lebesgue spaces on Ω ⊂ R := (−∞,∞). W k,p(Ω) denotes the kth order Sobolev
space, Hk(Ω) := W k,2(Ω), ‖ · ‖:=‖ · ‖L2(Ω), and ‖ · ‖k:=‖ · ‖Hk(Ω) for simplicity. The domain Ω
will be often abbreviated without confusion.

2 Preliminaries and Main Results

2.1 Rarefaction waves

Consider the solution to the following Cauchy problem for Burgers equation⎧⎨
⎩
wt + wwx = 0, t > 0, x ∈ R,

w0(x) := w(0, x) =
w+ + w−

2
+
w+ − w−

2
Kq

∫ ηx

0
(1 + y2)−q dy.

(2.1)

Here q ≥ 2 is some fixed constant, and Kq is a constant such that Kq

∫ ∞
0 (1 + y2)−qdy = 1, and

η is a small positive constant to be determined later. It is easy to see that the solution to the
above Burgers equation is given by

w(t, x) = w0(x0(t, x)), x = x0(t, x) + w0(x0(t, x))t. (2.2)

Then the following properties hold (see [24]).
Lemma 2.1 Let 0 ≤ w− < w+, Burgers equation (2.1) has a unique smooth solution w(t, x)

satisfying
i) w− < w(t, x) < w+, wx(t, x) > 0,
ii) For any p (1 ≤ p ≤ ∞), there exists a constant Cpq such that

‖ wx(t) ‖Lp≤ Cpq min
{
δrη

1− 1
p , δ

1
p
r t

−1+ 1
p
}
,

‖ wxx(t) ‖Lp≤ Cpq min
{
δrη

2− 1
p , η(1− 1

2q
)(1− 1

p
)δ

− (p−1)
2pq

r t−1− (p−1)
2pq

}
,

where δr = w+ − w−,
iii) sup

x∈R
|w(t, x) − wr(x

t )| → 0, as t→ ∞.
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Define a 2−rarefaction wave (ρ̄, ū)(t, x) by

λ2(ρ±, u±) = w±, w− < w+,

λ2(ρ̄(t, x), ū(t, x)) = w(1 + t, x),

Σ2(ρ̄(t, x), ū(t, x)) = Σ2(ρ±, u±),

(2.3)

Thus (ρ̄, ū)(t, x) satisfies the system⎧⎨
⎩ ρ̄t + (ρ̄ū)x = 0

(ρ̄ū)t + (ρ̄ū2 + p(ρ̄))x = 0,
(2.4)

Lemma 2.2 The 2−rarefaction wave (ρ̄, ū)(t, x) satisfies

i) ρ̄x > 0, ūx > 0;
ii) For any p (1 ≤ p ≤ ∞), there exists a constant Cpq such that

‖(ρ̄x, ūx)(t, ·)‖Lp(R) ≤ Cpq min{δη1− 1
p , δ

1
p (1 + t)−1+ 1

p },
‖(ρ̄xx, ūxx)(t, ·)‖Lp(R) ≤ Cpq min{δη2− 1

p , η(1− 1
2q

)(1− 1
p
)δ−

p−1
2pq (1 + t)−1− p−1

2pq + δ
1
p (1 + t)−2+ 1

p },

where δ = |ρ+ − ρ−| + |u+ − u−| is the strength of the rarefaction wave;
iii) lim

t→∞ sup
ξ∈R

∣∣(ρ̄, ū)(t, x) − (ρr, ur)( x
1+t )

∣∣ = 0.

Remark: For any 1 < p ≤ +∞,∫ T

0
‖(ρ̄xx, ūxx)(t, ·)‖Lp(R)dt ≤ C,

where C is independent of T . Note that in the case p = 1, the constant C in the above estimates
is not uniform in T .

Moreover, the following estimate holds:
∫ T

0
‖(ρ̄xx, ūxx)(t, ·)‖L∞(R)dt ≤ Cη

2
4q+1

∫ T

0
(1 + t)−1− 1

4q+1 dt ≤ Cη
2

4q+1 ,

2.2 Main Results

Set
Ψ(ρ, ρ̄) =

∫ ρ

ρ̄

p(s) − p(ρ̄)
s2

ds

=
1

(γ − 1)ρ

[
ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)

]
.

(2.5)

The initial data are assumed to satisfy:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ0 ≥ 0; m0 = 0 a.e.on {x ∈ R|ρ0(x) = 0};
(ρ

α− 1
2

0 )x ∈ L2(R), ρ0Ψ(ρ0, ρ̄0) ∈ L1(R);

ρ0(
m0

ρ0
− ū0)2 ∈ L1(R), ρ0(

m0

ρ0
− ū0)3 ∈ L1(R),

(2.6)
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where α > 1
2 and (ρ̄0, ū0) := (ρ̄, ū)(0, x) is the initial values of the 2−rarefaction wave (ρ̄, ū)(t, x)

constructed in section 2.1. Note that (2.6) implies that ρ0 ∈ C(R) which is the space of
continuous functions.

Before stating the main results, we give the definition of weak solutions to (1.1)-(1.3) asso-
ciated with 2−rarefaction wave (ρ̄, ū)(t, x) in (2.4).

Definition 2.1. A pair (ρ, u) is said to be a weak solution to (1.1)-(1.3) towards the rarefaction
wave (ρ̄, ū)(t, x) in (2.4), provided that

(1) ρ ≥ 0 a.e., and

ρ ∈ L∞(0, T ;L∞(R))) ∩ C([0,∞);W 1,∞(R)∗),

(ρα− 1
2 )x ∈ L∞(0, T ;L2(R)),

√
ρ(u− ū) ∈ L∞(0, T ;L2(R)),

where W 1,∞(R)∗ is the dual space of W 1,∞(R);
(2) For any t2 ≥ t1 ≥ 0 and any ζ ∈ C1

0 (R × [t1, t2]), the mass equation (1.1) holds in the
following sense: ∫

R
(ρ− ρ̄)ζdx|t2t1 =

∫ t2

t1

∫
R

[(ρ− ρ̄)ζt + (ρu− ρ̄ū) · ζx]dxdt; (2.7)

(3) For any ψ ∈ C∞
0 (R × [0, T )), it holds that∫

R
(m0 − ρ̄0ū0)ψ(0, ·)dx +

∫ T

0

∫
R
{√ρ[√ρ(u− ū)] + (ρ− ρ̄)ū}ψt (2.8)

+{[√ρ(u− ū)]2 − 2
√
ρ
√
ρ(u− ū)ū+ (ρ− ρ̄)ū2 + (ργ − ρ̄γ)}ψxdxdt

+ < ρα(u− ū)x, ψx > +
∫ T

0

∫
R
ραūxψxdxdt = 0, (2.9)

where the diffusion term makes sense when written as

< ρα(u− ū)x, ψ >= −
∫ T

0

∫
R
ρα− 1

2
√
ρ(u− ū)ψxdxdt

− 2α
2α− 1

∫ T

0

∫
R
(ρα− 1

2 )x
√
ρ(u− ū)ψdxdt. (2.10)

Our main results read as
Theorem 2.1 (Existence of a weak solution) Let α and γ satisfy that

1
2
< α ≤ γ + 1

2
. (2.11)

Suppose that (2.6) holds. Then the Cauchy problem (1.1)-(1.3) admits a global weak solution
(ρ(x, t), u(x, t)) satisfying

ρ ∈ C(R× (0, T )), (2.12)

ρ ≥ 0, max
(x,t)∈R×[0,T ]

ρ ≤ C, (2.13)

sup
t∈[0,T ]

∫
R

(|√ρ(u− ū)|2 + (ρα− 1
2 )2x +

1
γ − 1

[ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)]dx

+
∫ T

0

∫
R

([(ρ
γ+α−1

2 − ρ̄
γ+α−1

2 )x]2 + Λ(x, t)2)dxdt ≤ C, (2.14)
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where C is an absolute constant depending on the initial data and Λ(x, t) ∈ L2(R × (0, T ))
satisfying

∫ T

0

∫
R

Λϕdxdxt = −
∫ T

0

∫
R
ρα− 1

2
√
ρ(u− ū)ϕxdxdt

− 2α
2α− 1

∫ T

0

∫
R

(ρα− 1
2 )x

√
ρ(u− ū)ϕdxdt. (2.15)

Remark 1: Obviously, the case of shallow water equation, i.e. α = 1, γ = 2, is included in our
theorem.

Theorem 2.2 Suppose that (ρ(x, t), u(x, t)) is a weak solution of the Cauchy problem (1.1)-
(1.3) satisfying (2.12), (2.13) and (2.14). Then we have

lim
t→∞ sup

x∈R
|ρ− ρ̄| = 0. (2.16)

Based on Theorem 2.2, it is easy to deduce that under the assumption that the approximate
rarefaction wave satisfies infx,t ρ̄(t, x) > 0, there exists a time T0 > 0 after which the density has
a positive lower bound and the vacuum states vanish. Moreover, it will be shown that after the
time t = T0, the weak solution becomes a unique strong one. Precisely, we have

Theorem 2.3 Suppose that the assumptions of Theorem 2.1 hold. Let (ρ(x, t), u(x, t)) be a
weak solution of the Cauchy problem (1.1)-(1.3) satisfying (2.12),(2.13) and (2.14). Then for
any 0 < ρ1 < inft,x ρ̄(t, x), there exists a time T0 such that

0 < ρ1 ≤ ρ(x, t) ≤ C, (x, t) ∈ R× [T0,∞), (2.17)

where C is a constant same as in (2.13). Moreover, for t ≥ T0, the weak solution becomes a
unique strong solution to (1.1)-(1.3), satisfying

ρ− ρ̄ ∈ L∞(T0, t;H1(R)), ρt ∈ L∞(T0, t;L2(R)),
u− ū ∈ L2(T0, t;H2(R)), ut ∈ L2(T0, t;L2(R))

and

sup
x∈R

|ρ− ρ̄| + ‖ρ− ρ̄‖Lp(R) + ‖u− ū‖L2(R) → 0 (2.18)

as t→ ∞, where 2 < p ≤ ∞.
Remark 2: It is interesting to note that there is no requirement on the sizes of the strength of
the rarefaction wave and the perturbations. The class of initial perturbations given by (2.6) is
quite large compared with those for the constant viscosity case, [20], [23], [24].

In addition, similar to [18], we can obtain some results on the blow-up phenomena of the
solution when the vacuum states vanish, which will be presented in Section 5.

3 Existence of a weak solution

We first study the following approximate system:{
ρt + (ρu)x = 0, x ∈ R, t > 0,
(ρu)t +

(
ρu2 + p(ρ)

)
x

= (με(ρ)ux)x,
(3.1)
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where με(ρ) = ρα + ερθ, ε > 0, θ ∈ (0, 1
2).

The initial values can be regularized in the following way. Due to (2.6), we have

lim
x→±∞ρ0(x) = ρ±.

For any suitably small constant λ > 0, there exists M > 0 such that if |x| ≥M , then

ρ0(x) ≥ λ.

For definiteness, we can choose and fix λ = ρ−
2 .

Define

ρ1
0(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ0(x) + ε

1
2α−2θ , if |x| ≤M,

ρ0(x) + ε
1

2α−2θ [(M + 1) ∓ x], if M ≤ ±x ≤M + 1,

ρ0(x), if |x| ≥M + 1

Then, ρ1
0(x) is a continuous function in R and ρ1

0(x) ≥ min{ρ−
2 , ε

1
2α−2θ } = ε

1
2α−2θ for suitably

small ε. Also,

0 ≤ ρ1
0(x) − ρ0(x) = (ρ1

0(x) − ρ0(x))1||x|≤M+1 ≤ 2(M + 1)ε
1

2α−2θ .

Set
ρ0ε(x) = (ρ1

0 − ρ̄0) ∗ jε(x) + ρ̄0(x).

Hence, ρ0ε ∈ C∞(R) and lim
x→±∞ ρ0ε = ρ± uniformly in ε. So for ρ−

2 > 0, there exists M1 > 0

such that
ρ0ε ≥ ρ−

2
, if |x| ≥M1.

Note that ρ0ε has a lower bound in the domain |x| ≤ M1. Indeed, since (ρ1
0 − ρ̄0) ∈ C(R), it

follows that
(ρ1

0 − ρ̄0) ∗ jε → ρ1
0 − ρ̄0, in C(|x| ≤M1)

uniformly as ε→ 0. Hence
ρ0ε → ρ1

0(x) in C(|x| ≤M1)

uniformly as ε→ 0.
This implies that

ρ0ε(x) ≥ 1
2
ε

1
2α−2θ if |x| ≤M1.

Thus
ρ0ε(x) ≥ min{ρ−

2
,
1
2
ε

1
2α−2θ } =

1
2
ε

1
2α−2θ , ∀x ∈ R

for suitably small ε.
Moreover,

ρ0εΨ(ρ0ε, ρ̄0) → ρ0Ψ(ρ0, ρ̄0) in L1(R), (ρα−1/2
0ε )x → (ρα−1/2

0 )x in L2(R).

Therefore, it holds that

ε2[(ρ
θ− 1

2
0ε )x]2 = (

θ − 1
2

α− 1
2

)2ε2ρ2θ−2α
0ε [(ρ

α− 1
2

0ε )x]2 ≤ C
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uniformly in ε.
To regularize m0, one sets

F0 = ρ0(
m0

ρ0
− ū0)3 ∈ L1(R)

and
F0ε = F0 ∗ jε.

Then,
F0ε → F0, a.e.

and
F0ε → F0, in L1(R).

Now we define

m0ε = ρ0ε

(
ū0 +

(
F0ε

ρ0ε

) 1
3 )
.

Then
ρ0ε(

m0ε

ρ0ε
− ū0)3 → ρ0(

m0

ρ0
− ū0)3 in L1(R)

and
ρ0ε(

m0ε

ρ0ε
− ū0)2 → ρ0(

m0

ρ0
− ū0)2 in L1(R).

For any fixed T > 0 and for any fixed ε > 0, there exists a unique smooth approximate
solution to (3.1) in the region (x, t) ∈ R× (0, T ) with initial data

(ρ, ρu)(0, x) = (ρ0ε,m0ε). (3.2)

We refer to [26] for the wellposedness of the global strong solution to the approximate system
(3.1) with (3.2).

The following estimates are crucial to prove our main results, which are based on the usual
energy estimates and a new entropy estimates (see [1]-[4]).

Lemma 3.1 Let
1
2
< α ≤ γ + 1

2
, (3.3)

Suppose that (ρε, uε) is a smooth solution to (3.1) satisfying ρε > 0. Then for any T > 0 and
ε > 0 satisfying

√
ε ln(1 + T ) ≤ ε

1
4 , the following estimates hold:

sup
t∈[0,T ]

∫
R

{
ρε(uε − ū)2 +

[( ρα− 1
2

ε

α− 1
2

)
x

]2
+ ε2

[( ρθ− 1
2

ε

θ − 1
2

)
x

]2
+ ρεΨ(ρε, ρ̄)

}
(x, t)dx

+
∫ T

0

∫
R

{
ūx

[
p(ρε) − p(ρ̄) − p′(ρ̄)(ρε − ρ̄)

]
+ ρε(uε − ū)2ūx + (ρα

ε + ερθ
ε)

[
(uε − ū)x

]2

+
[
(ρ

α+γ−1
2

ε − ρ̄
α+γ−1

2 )x
]2

+ ε
[
(ρ

θ+γ−1
2

ε − ρ̄
θ+γ−1

2 )x
]2}

(x, t)dxdt

≤ C,

(3.4)

where C is an universal constant independent of ε and T .
In the following, the subscript ε in the approximate solution (ρε, uε)(t, x) will be omitted for

simplicity.
Proof: Step 1. Energy Equality
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It follows from (3.1)2 that

ρut + ρuux + p(ρ)x = (με(ρ)ux)x. (3.5)

Subtracting (3.5) from the second equation of (2.4) gives

ρ(u− ū)t +ρu(u− ū)x +(p(ρ)−p(ρ̄))x +(ρ− ρ̄)ūt +(ρu− ρ̄ū)ūx = (με(ρ)(u− ū)x)x +(με(ρ)ūx)x,
(3.6)

Multiplying (3.6) by u− ū, we get

[ρ(u− ū)2

2

]
t
+

[ρu(u− ū)2

2

]
x

+ (u− ū)(p(ρ) − p(ρ̄))x −
[
με(ρ)(u− ū)(u− ū)x

]
x

+με(ρ)
[
(u− ū)x

]2
=

[
με(ρ)

]
x
ūx(u− ū) + με(ρ)ūxx(u− ū) −

[
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx

]
(u− ū).

(3.7)
Note that Ψ(ρ, ρ̄) defined in (2.5) satisfies[

ρΨ(ρ, ρ̄)
]
t
+

[
ρuΨ(ρ, ρ̄)

]
x

+ (u− ū)x(p(ρ) − p(ρ̄)) + ūx

[
ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)

]
= −p(ρ̄)x

ρ̄
(ρ− ρ̄)(u− ū).

(3.8)

It follows from (3.7) and (3.8) that

[ρ(u− ū)2

2
+ ρΨ(ρ, ρ̄)

]
t
+H1x(t, x) + με(ρ)

[
(u− ū)x

]2
+ ūx

[
ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)

]
=

[
με(ρ)

]
x
ūx(u− ū) + με(ρ)ūxx(u− ū) −

[
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx +

p(ρ̄)x
ρ̄

(ρ− ρ̄)
]
(u− ū),

(3.9)
where

H1(t, x) =
ρu(u− ū)2

2
+ ρuΨ(ρ, ρ̄) + (u− ū)(p(ρ) − p(ρ̄)) − με(ρ)(u− ū)(u− ū)x.

Since
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx +

p(ρ̄)x
ρ̄

(ρ− ρ̄) = ρ(u− ū)ūx,

we obtain[ρ(u− ū)2

2
+ ρΨ(ρ, ρ̄)

]
t
+H1x(t, x) + με(ρ)

[
(u− ū)x

]2
+ ūx

[
ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)

]
+ρ(u− ū)2ūx =

[
με(ρ)

]
x
ūx(u− ū) + με(ρ)ūxx(u− ū).

(3.10)

Step 2. New Entropy Equality
Rewrite (3.6) as

ρ(u− ū)t +ρu(u− ū)x +(p(ρ)−p(ρ̄))x +(ρ− ρ̄)ūt +(ρu− ρ̄ū)ūx =
[
(ρα−1 +ερθ−1)ρux

]
x
. (3.11)

Note that [
(ρα−1 + ερθ−1)ρux

]
x

= −ρ(ϕα,θ
ε (ρ))xt − ρu(ϕα,θ

ε (ρ))xx, (3.12)

where ϕα,θ
ε (ρ), 0 < θ < 1

2 , is defined by

ϕα,θ
ε (ρ) =

⎧⎪⎨
⎪⎩

ρα−1

α− 1
+ ε

ρθ−1

θ − 1
, if α �= 1, α > 0,

ln ρ+ ε
ρθ−1

θ − 1
, if α = 1.
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Thus (3.11) becomes

ρ(u− ū)t +ρu(u− ū)x +(p(ρ)−p(ρ̄))x +(ρ− ρ̄)ūt +(ρu− ρ̄ū)ūx = −ρ(ϕα,θ
ε (ρ))xt−ρu(ϕα,ε

ε (ρ))xx.
(3.13)

Multiplying (3.13) by (ϕα,θ
ε (ρ))x shows that

[ρ(ϕα,θ
ε (ρ))2x
2

]
t
+

[ρu(ϕα,θ
ε (ρ))2x
2

]
x

+
[
ρ(u− ū)(ϕα,θ

ε (ρ))x
]
t
+

[
ρu(u− ū)(ϕα,θ

ε (ρ))x
]
x

−(u− ū)
[
ρ(ϕα,θ

ε (ρ))xt + ρu(ϕα,θ
ε (ρ))xx

]
+ (ϕα,θ

ε (ρ))x(p(ρ) − p(ρ̄))x

+(ϕα,θ
ε (ρ))x

[
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx

]
= 0.

(3.14)

Combining (3.13) with (3.14) yields

{1
2
ρ

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2 }

t
+

{1
2
ρu

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2 }

x
+ (u− ū)(p(ρ) − p(ρ̄))x

+(ϕα,θ
ε (ρ))x(p(ρ) − p(ρ̄))x + (u− ū)

[
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx

]
+(ϕα,θ

ε (ρ))x
[
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx

]
= 0.

(3.15)
Step 3. A Priori Estimates
It follows from (3.8) and (3.15) that

{1
2
ρ

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2

+ ρΨ(ρ, ρ̄)
}

t
+

{1
2
ρu

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2

+ ρuΨ(ρ, ρ̄)

+(u− ū)(p(ρ) − p(ρ̄))
}

x
+ ūx

[
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ− ρ̄)

]
+ ρ(u− ū)2ūx

+(ϕα,θ
ε (ρ))x

[
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx + p(ρ)x − p(ρ̄)x

]
= 0.

(3.16)

Now we deal with the last term on the left hand side of (3.16). Note that

(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx + p(ρ)x − p(ρ̄)x = ρ(u− ū)ūx +
[
p(ρ)x − ρp(ρ̄)x

ρ̄

]
, (3.17)

and
(ϕα,θ

ε (ρ))x = ρα−2ρx + ερθ−2ρx. (3.18)

Thus
(ϕα,θ

ε (ρ))x
[
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx + p(ρ)x − p(ρ̄)x

]
=

(ρα

α
+ ε

ρθ

θ

)
x
(u− ū)ūx + (ρα−2ρx + ερθ−2ρx)

[
p(ρ)x − ρp(ρ̄)x

ρ̄

]
.

(3.19)

Direct computations show

ρα−2ρx

[
p(ρ)x − ρp(ρ̄)x

ρ̄

]
=

4γ
(α+ γ − 1)2

[
(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )x

]2
+

[ 8γ
(α+ γ − 1)2

(ρ̄
α+γ−1

2 )x(ρ
α+γ−1

2 − ρ̄
α+γ−1

2 )

− 2γ
α(α+ γ − 1)

(ρ̄
α+γ−1

2 )xρ̄
γ−α−1

2 (ρα − ρ̄α)
]
x
− 8γ

(α+ γ − 1)2
(ρ̄

α+γ−1
2 )xx(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )

+
2γ

α(α+ γ − 1)

[
(ρ̄

α+γ−1
2 )xρ̄

γ−α−1
2

]
x
(ρα − ρ̄α).

(3.20)
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and

ρθ−2ρx

[
p(ρ)x − ρp(ρ̄)x

ρ̄

]
=

4γ
(θ + γ − 1)2

[
(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )x

]2
+

[ 8γ
(θ + γ − 1)2

(ρ̄
θ+γ−1

2 )x(ρ
θ+γ−1

2 − ρ̄
θ+γ−1

2 )

− 2γ
θ(θ + γ − 1)

(ρ̄
θ+γ−1

2 )xρ̄
γ−θ−1

2 (ρθ − ρ̄θ)
]
x
− 8γ

(θ + γ − 1)2
(ρ̄

θ+γ−1
2 )xx(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )

+
2γ

θ(θ + γ − 1)

[
(ρ̄

θ+γ−1
2 )xρ̄

γ−θ−1
2

]
x
(ρθ − ρ̄θ).

(3.21)
Substituting (3.19)-(3.21) into (3.16) gives{1

2
ρ

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2

+ ρΨ(ρ, ρ̄)
}

t
+H2x(t, x) + ūx

[
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ− ρ̄)

]
+ρ(u− ū)2ūx +

(ρα

α
+ ε

ρθ

θ

)
x
(u− ū)ūx +

4γ
(α+ γ − 1)2

[
(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )x

]2

+ε
4γ

(θ + γ − 1)2
[
(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )x

]2
=

8γ
(α+ γ − 1)2

(ρ̄
α+γ−1

2 )xx(ρ
α+γ−1

2 − ρ̄
α+γ−1

2 )

+ε
8γ

(θ + γ − 1)2
(ρ̄

θ+γ−1
2 )xx(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 ) − 2γ

α(α+ γ − 1)

[
(ρ̄

α+γ−1
2 )xρ̄

γ−α−1
2

]
x
(ρα − ρ̄α)

−ε 2γ
θ(θ + γ − 1)

[
(ρ̄

θ+γ−1
2 )xρ̄

γ−θ−1
2

]
x
(ρθ − ρ̄θ),

(3.22)
where

H2(t, x) =
1
2
ρu

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2

+ ρuΨ(ρ, ρ̄) + (u− ū)(p(ρ) − p(ρ̄))

+
8γ

(α+ γ − 1)2
(ρ̄

α+γ−1
2 )x(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )

− 2γ
α(α+ γ − 1)

(ρ̄
α+γ−1

2 )xρ̄
γ−α−1

2 (ρα − ρ̄α)

+ε
8γ

(θ + γ − 1)2
(ρ̄

θ+γ−1
2 )x(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )

−ε 2γ
θ(θ + γ − 1)

(ρ̄
θ+γ−1

2 )xρ̄
γ−θ−1

2 (ρθ − ρ̄θ).

(3.23)

Multiplying (3.22) by α and then adding up to (3.10) and noticing that
[
με(ρ)

]
x

= (ρα)x+ε(ρθ)x
in the right hand side of (3.10), we get{α

2
ρ

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2

+
ρ(u− ū)2

2
+ (α+ 1)ρΨ(ρ, ρ̄)

}
t
+

[
αH2(t, x) +H1(t, x)

]
x

+(α+ 1)ūx

[
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ− ρ̄)

]
+ (α+ 1)ρ(u − ū)2ūx + (ρα + ερθ)

[
(u− ū)x

]2

+
4αγ

(α+ γ − 1)2
[
(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )x

]2
+ ε

4αγ
(θ + γ − 1)2

[
(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )x

]2

= ραūxx(u− ū) + ε
[
ρθūxx(u− ū) + (1 − α

θ
)(ρθ)x(u− ū)ūx

]
+

8αγ
(α+ γ − 1)2

(ρ̄
α+γ−1

2 )xx(ρ
α+γ−1

2 − ρ̄
α+γ−1

2 )

+ε
8αγ

(θ + γ − 1)2
(ρ̄

θ+γ−1
2 )xx(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 ) − 2γ

(α+ γ − 1)

[
(ρ̄

α+γ−1
2 )xρ̄

γ−α−1
2

]
x
(ρα − ρ̄α)

−ε 2αγ
θ(θ + γ − 1)

[
(ρ̄

θ+γ−1
2 )xρ̄

γ−θ−1
2

]
x
(ρθ − ρ̄θ)

:=
6∑

i=1

Ii.

(3.24)
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Integrating (3.24) over [0, t] × R with respect to t, x gives∫
R

{α
2
ρ

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2

+
ρ(u− ū)2

2
+ (α+ 1)ρΨ(ρ, ρ̄)

}
(t, x)dx

+
∫ t

0

∫
R

{
(α+ 1)ūx

[
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ− ρ̄)

]
+ (α+ 1)ρ(u − ū)2ūx

+(ρα + ερθ)
[
(u− ū)x

]2
+

4αγ
(α+ γ − 1)2

[
(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )x

]2

+ε
4αγ

(θ + γ − 1)2
[
(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )x

]2}
dxdτ

=
∫ t

0

∫
R

6∑
i=1

Iidxdτ.

(3.25)

We now estimate the right hand side of (3.25) terms by terms. First,∫ t

0

∫
R
I1dxdτ =

∫ t

0

∫
R
ραūxx(u− ū)dxdτ

=
∫ t

0

∫
R

√
ρ(u− ū)ρα− 1

2 ūxxdxdτ

=
∫ t

0

∫
R

√
ρ(u− ū)ρα− 1

2 ūxx[1|{0≤ρ≤2ρ+} + 1|{ρ≥2ρ+}]dxdτ

:= J1
1 + J2

1 ,

(3.26)

where 1|Ω is the characteristic function of a set Ω ⊂ (0, t) × R.
Using Lemma 2.2 (and its Remark), noting that α > 1

2 , we have

J1
1 ≤ C

∫ t

0
‖√ρ(u− ū)‖L2(R)‖ūxx‖L2(R)dτ

≤ C sup
t∈[0,T ]

‖√ρ(u− ū)‖L2(R)

∫ t

0
‖ūxx‖L2(R)dτ

≤ C sup
t∈[0,T ]

‖√ρ(u− ū)‖L2(R),

(3.27)

and

J2
1 =

∫ t

0

∫
R

√
ρ(u− ū)(ρα− 1

2 − ρ̄α− 1
2 )ūxx1|{ρ≥2ρ+}dxdτ +

∫ t

0

∫
R

√
ρ(u− ū)ρ̄α− 1

2 ūxx1|{ρ≥2ρ+}dxdτ

≤ C sup
t∈[0,T ]

‖√ρ(u− ū)‖L2(R) sup
t∈[0,T ]

‖(ρα− 1
2 − ρ̄α− 1

2 )1|{ρ≥2ρ+}‖L2(R)

∫ t

0
‖ūxx‖L∞(R)dτ

+C sup
t∈[0,T ]

‖√ρ(u− ū)‖L2(R)

∫ t

0
‖ūxx‖L2(R)dτ

≤ Cη
2

4q+1 sup
t∈[0,T ]

‖√ρ(u− ū)‖L2(R) sup
t∈[0,T ]

‖(ρα− 1
2 − ρ̄α− 1

2 )1|{ρ≥2ρ+}‖L2(R)

∫ t

0
(1 + τ)−1− 1

4q+1dτ

+C sup
t∈[0,T ]

‖√ρ(u− ū)‖L2(R)

≤ Cη
2

4q+1

[
sup

t∈[0,T ]
‖√ρ(u− ū)‖2

L2(R) + sup
t∈[0,T ]

‖(ρα− 1
2 − ρ̄α− 1

2 )1|{ρ≥2ρ+}‖2
L2(R)

]
+ Cη.

(3.28)
Note that if α and γ satisfy

0 < 2(α− 1
2
) ≤ γ, i.e.,

1
2
< α ≤ γ + 1

2
, (3.29)
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then

lim
ρ→+∞

(ρα− 1
2 − ρ̄α− 1

2 )2

ρΨ(ρ, ρ̄)
= lim

ρ→+∞
(γ − 1)(ρα− 1

2 − ρ̄α− 1
2 )2

ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)

≤ C.

(3.30)

Thus if 1
2 < α ≤ γ+1

2 , then

sup
t∈[0,T ]

‖(ρα− 1
2 − ρ̄α− 1

2 )1|{ρ≥2ρ+}‖2
L2(R) ≤ C sup

t∈[0,T ]
‖ρΨ(ρ, ρ̄)‖L1(R) (3.31)

for some uniform constant C > 0.
Combining (3.27)-(3.31) together shows that∫ t

0

∫
R
I1dxdτ ≤ Cη

2
4q+1

[
sup

t∈[0,T ]
‖√ρ(u− ū)‖2

L2(R) + sup
t∈[0,T ]

‖ρΨ(ρ, ρ̄)‖L1(R)

]
+Cη. (3.32)

Next, we estimate
∫ t
0

∫
R I2dxdτ which can be rewritten as∫ t

0

∫
R
I2dxdτ = ε

∫ t

0

∫
R

[
ρθūxx(u− ū) + (1 − α

θ
)(ρθ)x(u− ū)ūx

]
dxdτ

= −ε
∫ t

0

∫
R

[
ρθūx(u− ū)x +

α

θ
(ρθ)x(u− ū)ūx

]
dxdτ

:= J1
2 + J2

2 ,

Using Young inequality, one has

J1
2 = −ε

∫ t

0

∫
R
ρθūx(u− ū)xdxdτ

≤ ε

4

∫ t

0

∫
R
ρθ[(u− ū)x]2dxdτ + ε

∫ t

0

∫
R
ρθū2

xdxdτ.

By Lemma 2.2, one can obtain

ε

∫ t

0

∫
R
ρθū2

xdxdτ = ε

∫ t

0

∫
R
ρθ(1{0≤ρ≤2ρ+} + 1{ρ≥2ρ+})ū2

xdxdτ

≤ Cε

∫ t

0

∫
R
ū2

xdxdτ + ε

∫ t

0

∫
R

(ρθ − ρ̄θ)1{ρ≥2ρ+}ū2
xdxdτ

≤ Cε ln(1 + T ) + Cε sup
t∈[0,T ]

‖(ρθ − ρ̄θ)1{ρ≥2ρ+}‖L1(R)

∫ t

0
‖ūx‖2

L∞(R)dτ

≤ Cε ln(1 + T ) + Cε sup
t∈[0,T ]

‖ρΨ(ρ, ρ̄)‖L1(R)

due to the fact that

lim
ρ→+∞

|(ρθ − ρ̄θ)|1{ρ≥2ρ+}
ρΨ(ρ, ρ̄)

= 0.

Moreover, direct estimates show

J2
2 = − εθ

θ − 1
2

∫ t

0

∫
R

(ρθ− 1
2 )xūx

√
ρ(u− ū)dxdτ

≤ C
√
ε sup

t∈[0,T ]
‖√ε(ρθ− 1

2 )x‖L2(R) sup
t∈[0,T ]

‖√ρ(u− ū)‖L2(R)

∫ t

0
‖ūx‖L∞(R)dτ

≤ C
√
ε ln(1 + T )

[
sup

t∈[0,T ]
‖√ε(ρθ− 1

2 )x‖2
L2(R) + sup

t∈[0,T ]
‖√ρ(u− ū)‖2

L2(R)

]
.
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Thus the term I2 is estimated as∫ t

0

∫
R
I2dxdτ ≤ C

√
ε ln(1 + T )

[
1 + sup

t∈[0,T ]
‖√ε(ρθ− 1

2 )x‖2
L2(R) + sup

t∈[0,T ]
‖√ρ(u− ū)‖2

L2(R)

]
+Cε sup

t∈[0,T ]
‖ρΨ(ρ, ρ̄)‖L1(R). (3.33)

The term I3 can be estimated as follows.∫ t

0

∫
R
I3dxdτ =

∫ t

0

∫
R
I3(1{|ρ−ρ̄|≤ ρ−

2
} + 1{|ρ−ρ̄|> ρ−

2
})dxdτ

:= J1
3 + J2

3 .

(3.34)

Direct estimates lead to

J1
3 =

∫ t

0

∫
R

8αγ
(α+ γ − 1)2

(ρ̄
α+γ−1

2 )xx(ρ
α+γ−1

2 − ρ̄
α+γ−1

2 )1{|ρ−ρ̄|≤ ρ−
2

}dxdτ

≤ C sup
t∈[0,T ]

‖(ρα+γ−1
2 − ρ̄

α+γ−1
2 )1{|ρ−ρ̄|≤ ρ−

2
}‖L2(R)

∫ t

0
‖(ρ̄α+γ−1

2 )xx‖L2(R)dτ

≤ C‖√ρΨ(ρ, ρ̄)‖L2(R),

(3.35)

where one has used the fact that

‖(ρα+γ−1
2 − ρ̄

α+γ−1
2 )1{|ρ−ρ̄|≤ ρ−

2
}‖L2(R) ≤ C‖

√
ρΨ(ρ, ρ̄)‖L2(R).

Moreover, due to the facts that

lim
ρ→0+

|ρα+γ−1
2 − ρ̄

α+γ−1
2 |1{|ρ−ρ̄|> ρ̄

2
}

ρΨ(ρ, ρ̄)
= ρ̄

α−γ−1
2 ≤ C,

and for
α+ γ − 1

2
≤ γ, i. e., α ≤ γ + 1, (3.36)

lim
ρ→+∞

|ρα+γ−1
2 − ρ̄

α+γ−1
2 |1{|ρ−ρ̄|> ρ−

2
}

ρΨ(ρ, ρ̄)
≤ C,

we can estimate J2
3 as

J2
3 =

∫ t

0

∫
R

8αγ
(α+ γ − 1)2

(ρ̄
α+γ−1

2 )xx(ρ
α+γ−1

2 − ρ̄
α+γ−1

2 )1{|ρ−ρ̄|> ρ−
2

}dxdτ

≤ C sup
t∈[0,T ]

‖(ρα+γ−1
2 − ρ̄

α+γ−1
2 )1{|ρ−ρ̄|> ρ−

2
}‖L1(R)

∫ t

0
‖(ρ̄α+γ−1

2 )xx‖L∞(R)dτ

≤ Cη
2

4q+1 ‖ρΨ(ρ, ρ̄)‖L1(R).

(3.37)

The term I4 can be handled similarly because 0 < θ < 1
2 < α ≤ γ + 1. Now we turn to

∫ t

0

∫
R
I5dxdτ =

∫ t

0

∫
R
I5(1{|ρ−ρ̄|≤ ρ−

2
} + 1{|ρ−ρ̄|> ρ−

2
})dxdτ

:= J1
5 + J2

5 .
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One has

J1
5 =

∫ t

0

∫
R

2γ
(α+ γ − 1)

[
(ρ̄

α+γ−1
2 )xρ̄

γ−α−1
2

]
x
(ρα − ρ̄α)1{|ρ−ρ̄|≤ ρ−

2
}dxdτ

≤ C sup
t∈[0,T ]

‖(ρα − ρ̄α)1{|ρ−ρ̄|≤ ρ−
2

}‖L2(R)

∫ t

0
‖
[
(ρ̄

α+γ−1
2 )xρ̄

γ−α−1
2

]
x
‖L2(R)dτ

≤ C sup
t∈[0,T ]

‖
√
ρΨ(ρ, ρ̄)‖L2(R),

and

J2
5 =

∫ t

0

∫
R

2γ
(α + γ − 1)

[
(ρ̄

α+γ−1
2 )xρ̄

γ−α−1
2

]
x
(ρα − ρ̄α)1{|ρ−ρ̄|> ρ−

2
}dxdτ

≤ C sup
t∈[0,T ]

‖(ρα − ρ̄α)1{|ρ−ρ̄|> ρ−
2

}‖L1(R)

∫ t

0
‖
[
(ρ̄

α+γ−1
2 )xρ̄

γ−α−1
2

]
x
‖L∞(R)dτ

≤ Cη
2

4q+1 sup
t∈[0,T ]

‖
√
ρΨ(ρ, ρ̄)‖L1(R),

where the following facts have been used:

lim
ρ→0+

|ρα − ρ̄α|1{|ρ−ρ̄|> ρ−
2

}
ρΨ(ρ, ρ̄)

= ρ̄α−γ ≤ C,

lim
ρ→+∞

|ρα − ρ̄α|1{|ρ−ρ̄|> ρ−
2

}
ρΨ(ρ, ρ̄)

≤ C, for
1
2
< α ≤ γ. (3.38)

Finally, I6 can be estimated as for I5. In fact, we note that the term I5 involves the index α
and I6 involves the index θ. Since 0 < θ < 1

2 < α, when we make the estimate in the case
ρ→ +∞(see (3.38)), the order of α will be dominant and hence the estimate of I6 is much more
direct.

Now for α and γ satisfying (3.3), we can obtain

sup
t∈[0,T ]

∫
R

{
ρ

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2

+ ρ(u− ū)2 + ρΨ(ρ, ρ̄)
}

(x, t)dx

+
∫ T

0

∫
R

{
ūx

[
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ− ρ̄)

]
+ ρ(u− ū)2ūx + (ρα + ερθ)

[
(u− ū)x

]2

+
[
(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )x

]2
+ ε

[
(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )x

]2}
(x, t)dxdt

≤ C + C
√
ε ln(1 + T )

{
1 + sup

t∈[0,T ]

∫
R

[
ρ(u− ū)2 + ρ(ϕα,θ

ε (ρ))2x
]
dx

}
≤ C + C

√
ε ln(1 + T )

{
1 + sup

t∈[0,T ]

∫
R
ρ(u− ū)2 + ρ

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2
dx

}
(3.39)

where C > 0 is the constant independent of ε and t.
Choosing ε such that

√
ε ln(1 + T ) ≤ ε

1
4 and ε small enough, we arrive at

sup
t∈[0,T ]

∫
R

{
ρ

[
(u− ū) + (ϕα,θ

ε (ρ))x
]2

+ ρ(u− ū)2 + ρΨ(ρ, ρ̄)
}

(x, t)dx

+
∫ T

0

∫
R

{
ūx

[
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ− ρ̄)

]
+ ρ(u− ū)2ūx + (ρα + ερθ)

[
(u− ū)x

]2

+
[
(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )x

]2
+ ε

[
(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )x

]2}
(x, t)dxdt

≤ C

(3.40)
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Consequently, combining (3.29), (3.36) and (3.38) shows that for α and γ satisfying (3.3), it
holds that

sup
t∈[0,T ]

∫
R

{
ρ(u− ū)2 +

[( ρα− 1
2

α− 1
2

)
x

]2
+ ε2

[( ρθ− 1
2

θ − 1
2

)
x

]2
+ ρΨ(ρ, ρ̄)

}
(x, t)dx

+
∫ T

0

∫
R

{
ūx

[
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ− ρ̄)

]
+ ρ(u− ū)2ūx + (ρα + ερθ)

[
(u− ū)x

]2

+
[
(ρ

α+γ−1
2 − ρ̄

α+γ−1
2 )x

]2
+ ε

[
(ρ

θ+γ−1
2 − ρ̄

θ+γ−1
2 )x

]2}
(x, t)dxdt

≤ C.

(3.41)

Thus lemma 3.1 is proved.
The following lemma is the key point to get the existence of the approximate solution

(ρε, uε)(t, x).
Lemma 3.2 There exist an absolutely constant C and a positive constant C(ε, T ) depending

on ε and T such that

0 < C(ε, T ) ≤ ρε ≤ C. (3.42)

Proof: First, we derive the upper bound for ρε(x, t).
It follows from the entropy estimate that

(ρ
α− 1

2
ε (x, t) − ρ̄α− 1

2 (x, t))2 =
∫ x

−∞
[(ρ

α− 1
2

ε − ρ̄α− 1
2 )2]xdx

= 2
∫ x

−∞
(ρ

α− 1
2

ε − ρ̄α− 1
2 )(ρ

α− 1
2

ε − ρ̄α− 1
2 )xdx

≤ 2(
∫ x

−∞
|(ρα− 1

2
ε − ρ̄α− 1

2 )|2dx) 1
2 (

∫ x

−∞
[(ρ

α− 1
2

ε − ρ̄α− 1
2 )x]2dx)

1
2

≤ C +
∫ x

−∞
|(ρα− 1

2
ε − ρ̄α− 1

2 )|2[1|{|ρε−ρ̄|< ρ̄
2
} + 1|{|ρε−ρ̄|≥ ρ̄

2
}]dx

≡ C + I1(t) + I2(t), (3.43)

for any fixed t ∈ [0, T ]. Note that for |ρε − ρ̄| < ρ̄
2 , that is, ρ̄

2 < |ρε| < 3
2 ρ̄, one has

|ρα− 1
2

ε − ρ̄α− 1
2 |2 ≤ C|ρε − ρ̄|2 ≤ CρεΨ(ρε, ρ̄).

Hence,

I1(t) ≤ C‖ρεΨ(ρε, ρ̄)‖L1(R) ≤ C. (3.44)

If |ρε − ρ̄| ≥ ρ̄
2 , then

lim
ρε→0+

|ρα− 1
2

ε − ρ̄α− 1
2 |21|{|ρε−ρ̄|≥ ρ̄

2
}

ρεΨ(ρε, ρ̄)
= ρ̄2α−1−γ ≤ C,

and

lim
ρε→+∞

|ρα− 1
2

ε − ρ̄α− 1
2 |21|{|ρε−ρ̄|≥ ρ̄

2
}

ρεΨ(ρε, ρ̄)
≤ C,

if 1
2 < α ≤ γ+1

2 .

17



Hence

I2(t) ≤ C‖ρεΨ(ρε, ρ̄)‖L1(R) ≤ C. (3.45)

It follows from (3.43), (3.44), (3.45) that

(ρ
α− 1

2
ε − ρ̄α− 1

2 )2 ≤ C, (3.46)

which implies that

|ρε| ≤ C. (3.47)

The upper bound of the approximate solution ρε(t, x) is proved.
Next we derive a lower bound for ρε(t, x). Since limρ→0 ρΨ(ρ, ρ̄) = ρ̄γ , then ρεΨ(ρε, ρ̄)

is bounded away from 0 on [0, 1
2 ρ̄]. Thus we can deduce from the bound on ρεΨ(ρε, ρ̄) in

L∞(0, T ;L1(R)) that there exists a constant C1 = C1(T ) > 0, such that for all t ∈ [0, T ],

meas{x ∈ R|ρε(x, t) ≤ 1
2
ρ̄(x, t)} ≤ 1

infρ∈[0, 1
2
ρ̄] ρΨ(ρ, ρ̄)

∫
{x∈R|ρε(x,t)≤ 1

2
ρ̄(x,t)}

ρεΨ(ρε, ρ̄)(x, t)dx ≤ C1.

Therefore, for every x0 ∈ R, there exists M = M(T ) > 0 large enough, such that∫
|x−x0|≤M

ρε(x, t)dx ≥
∫
{|x−x0|≤M}∩{x∈R|ρε(x,t)> 1

2
ρ̄(x,t)}

ρε(x, t)dx

≥ 1
2

inf
(x,t)

ρ̄(x, t)meas
{
{|x− x0| ≤M} ∩ {x ∈ R|ρε(x, t) >

1
2
ρ̄(x, t)}

}
=

1
2
ρ−meas

{
{|x− x0| ≤M} ∩ {x ∈ R|ρε(x, t) ≤ 1

2
ρ̄(x, t)}c

}
≥ 1

2
ρ−(2M − C1) > 0,

for all t ∈ [0, T ].
From the continuity of ρε, there exists x1 ∈ [x0 −M,x0 +M ] such that

ρε(x1, t) =
∫
|x−x0|≤M

ρε(x, t)dx ≥ 1
2
ρ−(2M − C1).

Thus,

ρ
θ− 1

2
ε (x0, t) = ρ

θ− 1
2

ε (x1, t) +
∫ x0

x1

(ρ
θ− 1

2
ε )x(x, t)dx

≤ [
1
2
ρ−(2M − C1)]θ−

1
2 + ‖(ρθ− 1

2
ε )x(·, t)‖L2(R)|x1 − x0|

1
2

≤ [
1
2
ρ−(2M − C1)]θ−

1
2 + CεM

1
2 ,

where we have used the fact 0 < θ < 1
2 . Consequently, we can get that

ρε(x0, t) ≥
{

[
1
2
ρ−(2M − C1)]θ−

1
2 + CεM

1
2

} 2
2θ−1 := C(ε, T ).

for any x0 ∈ R and t ∈ [0, T ].
With the lower and upper bounds on ρε, we can get the existence of the approximate solution

(ρε, uε)(t, x) by a similar argument as in [26]. In order to pass the limit ε → 0, we need the
following higher estimates on the momentum.
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Lemma 3.3 There exists a positive constant C(T ) independent of ε, such that

sup
t∈[0,T ]

∫
R
ρε|uε − ū|3(t, x)dx+

∫ T

0

∫
R

(ρα
ε + ερθ

ε)[(uε − ū)x]2|uε − ū|dxdt ≤ C(T ).

Proof: Multiplying by (u− ū)|u− ū| on the both sides of (3.6) yields

(2
3
ρ|u− ū|3)

t
+

(2
3
ρu|u− ū|3)

x
+ (p(ρ) − p(ρ̄))x(u− ū)|u− ū|

+[(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx](u− ū)|u− ū|
= [(ρα + ερθ)ux(u− ū)|u− ū|]x − (ρα + ερθ)[(u− ū)x]2|u− ū|
−(ρα + ερθ)ūx(u− ū)x|u− ū| − (ρα + ερθ)ux(u− ū)(|u− ū|)x.

(3.48)

Note that
(|u− ū|)x = sgn(u− ū)(u− ū)x.

Thus (2
3
ρ|u− ū|3)

t
+H3x(t, x) + 2(ρα + ερθ)[(u− ū)x]2|u− ū|

= −(u− ū)|u− ū|
[
(ρ− ρ̄)ūt + (ρu− ρ̄ū)ūx + (p(ρ) − p(ρ̄))x

]
−2(ρα + ερθ)ūx(u− ū)x|u− ū|,

(3.49)

where
H3(t, x) =

2
3
ρu|u− ū|3 − (ρα + ερθ)ux(u− ū)|u− ū|.

This, together with (3.17), implies

(2
3
ρ|u− ū|3)

t
+H3x(t, x) + 2(ρα + ερθ)[(u− ū)x]2|u− ū| + ρ|u− ū|3ūx

= −p(ρ)x(u− ū)|u− ū| + ρ
p(ρ̄)x
ρ̄

(u− ū)|u− ū| − 2(ρα + ερθ)ūx(u− ū)x|u− ū|

:= I7 + I8 + I9.

(3.50)

Integrating (3.50) over [0, t] × R with respect to t, x gives
∫
R

2
3
ρ|u− ū|3(t, x)dx+

∫ t

0

∫
R

[
2(ρα + ερθ)[(u− ū)x]2|u− ū|δ + ρ|u− ū|3ūx

]
dxdτ

=
∫ t

0

∫
R

(I7 + I8 + I9)dxdτ.
(3.51)

Now we estimate such term on the right hand side of (3.51). First, integrating by parts with
respect to x gives ∫ t

0

∫
R
I7dxdτ = 2

∫ t

0

∫
R
p(ρ)(u− ū)x|u− ū|dxdτ

≤
∫ t

0

∫
R
ρα[(u− ū)x]2dxdτ +

∫ t

0

∫
R
ρ2γ−α−1ρ|u− ū|2dxdτ

≤ C

(3.52)
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uniformly with respect to ε if

2γ − α− 1 ≥ 0, i. e. α ≤ 2γ − 1. (3.53)

In fact, the relation (3.4) guarantees (3.53) because γ+1
2 < 2γ − 1.

Next, ∫ t

0

∫
R
I8dxdτ =

∫ t

0

∫
R
ρ
p(ρ̄)x
ρ̄

(u− ū)|u− ū|dxdτ

≤ C sup
t∈[0,T ]

∫
R
ρ|u− ū|2(t, x)dx

∫ T

0
‖ρ̄x‖L∞(R)dt

≤ C sup
t∈[0,T ]

∫
R
ρ|u− ū|2(t, x)dx

∫ T

0
(1 + t)−1dt

≤ C1 ln(1 + T ).

(3.54)

Finally,∫ t

0

∫
R
I9dxdτ =

∫ t

0

∫
R
−2(ρα + ερθ)ūx(u− ū)x|u− ū|dxdτ

≤
∫ t

0

∫
R

(ρα + ερθ)[(u − ū)x]2|u− ū|dxdτ +
∫ t

0

∫
R

(ρα + ερθ)ū2
x|u− ū|dxdτ.

(3.55)
One also has ∫ t

0

∫
R

(ρα + ερθ)ū2
x|u− ū|dxdτ

≤
∫ t

0

∫
R
ρ|u− ū|3dxdτ + C

∫ t

0

∫
R

(ρ
3α−1

2 + ε
3
2 ρ

3θ−1
2 )ū3

xdxdτ

≤
∫ t

0

∫
R
ρ|u− ū|3dxdτ + C

∫ t

0
‖ūx‖3

L3(R)dτ

≤
∫ t

0

∫
R
ρ|u− ū|3dxdτ + C

∫ t

0
(1 + τ)−2dτ

≤
∫ t

0

∫
R
ρ|u− ū|3dxdτ + C

(3.56)

if α, θ ≥ 1
3 . Without loss of generality, we can set θ = 1

3 .

Substituting (3.52)-(3.56) into (3.51) implies Lemma 3.3.
Now with these uniform in ε estimates in hand, we can pass the limit process ε→ 0, obtain

the existence of the weak solution (ρ, u)(t, x), and get the uniform in time estimates in Theorem
2.1.

4 Asymptotic behavior of weak solutions

In this section, we will study the asymptotic behavior of the weak solution (ρ, u)(t, x) obtained
in previous section. We assume that the solution is smooth enough. The rigorous proof can be
obtained by using the usual regularization procedure.

Proof of Theorem 2.2. Since 0 ≤ ρ ≤ C, 0 < ρ− < ρ̄ < ρ+, it holds that

C−1
1 (ρ− ρ̄)2 ≤ ρΨ(ρ, ρ̄) ≤ C1(ρ− ρ̄)2 (4.1)

for some constant C1 > 0 which may depend on C, ρ−, ρ+.
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In the following, we denote by C > 0 a universal constant. For any s ≥ 1, Lemma 3.2 implies

|ρs − ρ̄s|2 ≤ C|ρ− ρ̄|2.
Hence ∫

R
|ρs − ρ̄s|2dx ≤ C

∫
R
|ρ− ρ̄|2dx ≤ C. (4.2)

Similarly, ∫
R
|ρs − ρ̄s|2λdx ≤ C

∫
R
|ρ− ρ̄|2λdx ≤ C (4.3)

for any λ ≥ 1. Moreover, one has∫
R
|[(ρs − ρ̄s)2λ]x|dx = 2λs

∫
R
|(ρs − ρ̄s)2λ−1[ρs−1ρx − ρ̄s−1ρ̄x]|dx

≤ 2λs(2α − 1)
2

(
∫
R

(ρs − ρ̄s)2(2λ−1)ρ2s+1−2αdx)
1
2 (

∫
R

[(ρα− 1
2 )x]2dx)

1
2

+2λs(
∫
R
|ρs − ρ̄s|2(2λ−1)dx)

1
2 (

∫
R
ρ̄2(s−1)|ρ̄x|2dx)

1
2

≤ C.

It follows from (4.3) that for any fixed t,

ρs − ρ̄s → 0 (4.4)

as |x| → ∞. By Lemma 3.1, it holds that∫ t

0

∫
R

[(ρ
γ+α−1

2 − ρ̄
γ+α−1

2 )x]2dxdt ≤ C, (4.5)

with C an absolute constant depending only on the initial data. Set b = γ+α−1
2 . Then∫ t

0

∫
R

[(ρb − ρ̄b)x]2dxdt ≤ C. (4.6)

Choosing s > b+ 1, one has

(ρs − ρ̄s)2(t, x) =
∫ x

−∞
[(ρs − ρ̄s)2]xdx = 2

∫ x

−∞
(ρs − ρ̄s)(ρs − ρ̄s)xdx

= 2s
∫ x

−∞
(ρs − ρ̄s)(ρs−1ρx − ρ̄s−1ρ̄x)dx

=
2s
b

∫ x

−∞
(ρs − ρ̄s)[(ρb − ρ̄b)xρs−b + (ρ̄b)x(ρs−b − ρ̄s−b)]dx

≤ C‖ρs − ρ̄s‖L2(R)‖(ρb − ρ̄b)x‖L2(R) + C

∫
R

(ρ̄b)x(ρs − ρ̄s)(ρs−b − ρ̄s−b)dx

≤ ‖ρs − ρ̄s‖L2(R)‖(ρb − ρ̄b)x‖L2(R) + C

∫
R
ūx[ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)]dx

where in the last inequality, we have used the fact that

(ρ̄b)x(ρs − ρ̄s)(ρs−b − ρ̄s−b)

= bρ̄b−1ρ̄x(ρs − ρ̄s)(ρs−b − ρ̄s−b)

=
bρ̄b√
p′(ρ̄)

ūx(ρs − ρ̄s)(ρs−b − ρ̄s−b)

≤ Cūx[ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)].

(4.7)
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Consequently,∫ t

0
sup
x∈R

(ρs − ρ̄s)4dt ≤ C sup
t∈[0,T ]

‖ρs − ρ̄s‖2
L2(R)

∫ t

0
‖(ρb − ρ̄b)x‖2

L2(R)dt (4.8)

+C sup
t∈[,T ]

∫
R

[ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)]dx
∫ t

0

∫
R
ūx[ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)]dxdτ (4.9)

≤ C. (4.10)

Moreover, applying (4.3) leads to
∫ t

0

∫
R

(ρs − ρ̄s)4(ρs − ρ̄s)2ldxdt

≤
∫ t

0
[sup
x∈R

(ρs − ρ̄s)4
∫
R

(ρs − ρ̄s)2ldx]dt

≤ sup
t

∫
R

(ρs − ρ̄s)2ldx

∫ t

0
sup
x∈R

(ρs − ρ̄s)4dt ≤ C, (4.11)

where l ≥ 1 is any real number. Hence∫ t

0

∫
R

(ρs − ρ̄s)4+2ldxdt ≤ C. (4.12)

Denote f(t) =
∫
R(ρs − ρ̄s)4+2ldx. Then f(t) ∈ L1(0,∞) ∩ L∞(0,∞) due to (4.3) and (4.12).

Furthermore, direct calculations show that

d

dt
f(t) = (4 + 2l)s

∫
R

(ρs − ρ̄s)3+2l(ρs−1ρt − ρ̄s−1ρ̄x)dx

= −(4 + 2l)s
∫
R

(ρs − ρ̄s)3+2l[ρs−1(ρu)x − ρ̄s−1(ρ̄ū)x]dx

= (4 + 2l)(3 + 2l)s
∫
R

(ρs − ρ̄s)2+2l(ρs − ρ̄s)x(ρs−1ρu− ρ̄s−1ρ̄ū)dx

+(4 + 2l)s(s− 1)
∫
R

(ρs − ρ̄s)3+2l(ρs−2ρxρu− ρ̄s−2ρ̄xρ̄ū)dx

= (4 + 2l)(3 + 2l)s
∫
R

(ρs − ρ̄s)2+2l(ρs − ρ̄s)x(ρsu− ρ̄sū)dx

+(4 + 2l)s(s− 1)
∫
R

(ρs − ρ̄s)3+2l(ρs−1ρxu− ρ̄s−1ρ̄xū)dx

= (4 + 2l)(3 + 2l)s
∫
R

(ρs − ρ̄s)2+2l(ρs − ρ̄s)xρs(u− ū)dx

+(4 + 2l)(3 + 2l)s
∫
R

(ρs − ρ̄s)2+2l(ρs − ρ̄s)xū(ρs − ρ̄s)dx

+(4 + 2l)s(s− 1)
∫
R

(ρs − ρ̄s)3+2lρs−1ρx(u− ū)dx

+(4 + 2l)s(s− 1)
∫
R

(ρs − ρ̄s)3+2lū(ρs−1ρx − ρ̄s−1ρ̄x)dx

:= J1(t) + J2(t) + J3(t) + J4(t).

(4.13)
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Now we claim that Ji(t) ∈ L2(0,+∞), (i = 1, 2, 3, 4). In fact,

J1(t) =
(4 + 2l)(3 + 2l)s2

b

∫
R

(ρs − ρ̄s)2+2lρs(u− ū)
[
ρs−b(ρb − ρ̄b)x + (ρs−b − ρ̄s−b)(ρ̄b)x

]
dx

=
(4 + 2l)(3 + 2l)s2

b

∫
R

(ρs − ρ̄s)2+2l√ρ(u− ū)ρ2s−b− 1
2 (ρb − ρ̄b)xdx

+
(4 + 2l)(3 + 2l)s2

b

∫
R

(ρs − ρ̄s)2+2l√ρ(u− ū)ρs− 1
2 (ρs−b − ρ̄s−b)(ρ̄b)xdx

≤ C‖√ρ(u− ū)‖L2(R)‖(ρb − ρ̄b)x‖L2(R)

+C‖√ρ(u− ū)‖L2(R)‖(ρs − ρ̄s)2+2l(ρs−b − ρ̄s−b)(ρ̄b)x‖L2(R)

≤ C‖√ρ(u− ū)‖L2(R)‖(ρb − ρ̄b)x‖L2(R)

+C‖√ρ(u− ū)‖L2(R)‖ūx[ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)]‖L2(R)

(4.14)
Thus,∫ t

0
|J1(t)|2dt ≤ C sup

t∈[0,T ]
‖√ρ(u− ū)‖2

L2(R)

∫ t

0
‖(ρb − ρ̄b)x‖2

L2(R)dt

+C sup
t∈[0,T ]

‖√ρ(u− ū)‖2
L2(R)

∫ t

0
‖ūx[ρρ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)]‖2

L2(R)dt

≤ C sup
t∈[0,T ]

‖√ρ(u− ū)‖2
L2(R)

∫ t

0
‖(ρb − ρ̄b)x‖2

L2(R)dt

+C sup
t∈[0,T ]

‖√ρ(u− ū)‖2
L2(R) sup

t∈[0,T ]
‖ρΨ(ρ, ρ̄)‖L1(R)·∫ t

0

∫
R
ūx[ργ − ρ̄γ − γρ̄γ−1(ρ− ρ̄)]dxdt

≤ C.

(4.15)

The fact that Ji(t) ∈ L2(0,+∞), (i = 2, 3, 4) can be shown similarly.
Hence

d

dt
f(t) ∈ L2(0,+∞). (4.16)

Combining the obtained fact that f(t) ∈ L1(0,+∞) ∩ L∞(0,+∞), one has

f(t) → 0, t→ +∞. (4.17)

Letting m ≥ 1 be any real number to be determined later, we have

|(ρs − ρ̄s)m| = |
∫ x

−∞
[(ρs − ρ̄s)m]xdx|

= |m
∫ x

−∞
(ρs − ρ̄s)m−1(ρs − ρ̄s)xdx|

= |m
∫ x

−∞
(ρs − ρ̄s)m−1

[ s

α− 1
2

(ρα− 1
2 )xρs−α+ 1

2 − sρ̄s−1ρ̄x

]
dx|

≤ C‖(ρs − ρ̄s)m−1‖L2(R)

[
‖(ρα− 1

2 )x‖L2(R) + ‖ρ̄x‖L2(R)

]
≤ C‖(ρs − ρ̄s)m−1‖L2(R).

(4.18)

Choose 2(m− 1) = 4 + 2l to get

sup
x∈R

|(ρs − ρ̄s)m| ≤ Cf
1
2 (t) → 0 (4.19)
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as t→ +∞.
Therefore,

lim
t→+∞ sup

x∈R
|ρs − ρ̄s| = 0.

Now we prove that lim
t→+∞ sup

x∈R
|ρ− ρ̄| = 0. Using the fact that

|ρ− ρ̄|s = |ρ− ρ̄|s1{0≤ρ≤ ρ−
2

} + |ρ− ρ̄|s1{ρ>
ρ−
2

}

≤ C|ρs − ρ̄s|1{0≤ρ≤ ρ−
2

} + C|ρs − ρ̄s|s1{ρ>
ρ−
2

}.

Therefore, we have

sup
x∈R

|ρ− ρ̄|s ≤ C sup
x∈R

|ρs − ρ̄s| + C sup
x∈R

|ρs − ρ̄s|s → 0,

as t→ +∞, which implies that
lim
t→∞ sup

x∈R
|ρ− ρ̄| = 0.

The proof of the lemma is finished.

5 Vanishing of vacuum states and blow-up phenom-

ena

In this subsection, we first give a sketch of proof of Theorem 2.3 and then give some remarks
on the blow-up phenomena of the solutions when the vacuum states vanish. These results are
similar to those in [18] in which the initial-boundary value problem and periodic boundary value
problem are studied.

Proof: [Sketch of proof of Theorem 2.3]
It follows from Theorem 2.2 that for any 0 < ρ1 < inft,x ρ̄(t, x), there exists a time T0 > 0

such that

0 < ρ1 ≤ ρ(x, t) ≤ C, (x, t) ∈ R× [T0,∞). (5.1)

Therefore, for t ≥ T0, the density is bounded away from the zero and the vacuum states vanish.
Using the estimate in (2.14) and the standard theory for linear parabolic equations, one can
obtain that for t ≥ T0, the weak solution becomes a strong solution to (1.1)-(1.2), satisfying⎧⎨

⎩ ρ− ρ̄ ∈ L∞(T0, t;H1(R)), ρt ∈ L∞(T0, t;L2(R)),

u− ū ∈ L2(T0, t;H2(R)), ut ∈ L2(T0, t;L2(R)).
(5.2)

The detail of the proof is referred to [18] and is omitted it here. Furthermore, the asymptotic
behaviors limt→∞ supx∈R |ρ−ρ̄| = 0 and limt→∞ ‖ρ−ρ̄‖Lp = 0 for 2 < p ≤ ∞ follow directly from
(2.16) and the estimate ‖ρ − ρ̄‖L2 ≤ C. The asymptotic behavior on the velocity limt→∞ ‖u −
ū‖L2 = 0 follows from the standard arguments, see [28] for instance.

It should be remarked that we also have finite blow-up phenomena for the weak solutions of
the Cauchy problem (1.1)-(1.3) at the time when the vacuum states vanish if the density contains
vacuum states at least at one point. These are similar as in [18] in which the 1D initial-boundary
value problem and periodic problem are investigated. To be more precise, we note that, if the
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density contains vacuum states at least at one point, due to the facts that ρ ∈ C(R × [0, T ])
for any T > 0 and limt→∞ supx∈R |ρ − ρ̄| = 0, there exists some critical time T1 ∈ [0, T0) with
T0 > 0 given by (5.1) and a nonempty subset Ω0 ⊂ R such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρ(x, T1) = 0, ∀x ∈ Ω0,

ρ(x, T1) > 0, ∀x ∈ R\Ω0,

ρ(x, t) > 0, ∀(x, t) ∈ R × (T1, T0].

(5.3)

From (5.2), it is easy to know that for any δ > 0,∫ T0

T1+δ
‖ux‖L∞ds ≤

∫ T0

T1+δ
‖(u− ū)x‖L∞ds+

∫ T0

T1+δ
‖ūx‖L∞ds <∞.

However, one has the following blow-up result of the solution.
Theorem 5.1 Let (ρ, u) be any global weak solution, which contains vacuum states at least at

one point for some time, to the Cauchy problem (1.1)-(1.3) satisfying (2.13)-(2.14). Let T0 > 0
and T1 ∈ [0, T0) be the time such that (5.1) and (5.3) holds respectively. Then, the solution
(ρ, u) blows up as vacuum states vanish in the following sense: for any η > 0, it holds

lim
t→T+

1

∫ T1+η

t
‖ux‖L∞ds = ∞. (5.4)

On the other hand, if there exists some T2 ∈ (0, T0) such that the weak solution (ρ, u) satisfies

‖u− ū‖L1(0,T2;W 1,∞(R)) <∞,

then, there is a time T3 ∈ [T2, T0) such that

lim
t→T−

3

∫ t

0
‖ux‖L∞ds = ∞. (5.5)

The proof of Theorem 5.1 is completely similar to that in [18]. For completeness, we just
sketch it here.

Proof It suffices to prove (5.4) since the proof of (5.5) is similar. If (5.4) is not true, then
there exists a fixed constant η > 0, such that∫ T1+η

T1

‖ux‖L∞ds <∞. (5.6)

Thanks to (5.2) and (5.6), the particle path x(s) = X(s; t, x) through (x, t) ∈ R × (T1, T1 + η]
can be well defined by solving⎧⎨

⎩
∂
∂sX(s; t, x) = u(X(s; t, x), s), T1 ≤ s < T1 + η,

X(t; t, x) = x, T1 ≤ t < T1 + η, x ∈ R.
(5.7)

Then by the continuity equation (1.1), one has

ρ(x, t) = ρ(X(T1; t, x), T1) exp{−
∫ t

T1

uy(y, s)|y=X(s;t,x)ds} (5.8)

for any (x, t) ∈ R × (T1, T1 + η]. It follows from (5.6) and (5.7) that for x1 ∈ Ω0 defined by
(5.3), which satisfies ρ(x1, T1) = 0, there exists a trajectory x = x1(t) ∈ R for t ∈ [T1, T1 + η]
so that X(T1; t, x1(t)) = x1. Thus, due to (5.8) and (5.6), one has that ρ(x1(t), t) = 0 for all
t ∈ (T1, T1 + η], which is a contradiction to (5.3). (5.4) is then proved and the proof of the
theorem is finished.
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