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Abstract. In the first part of this paper, we establish global existence of solutions
of the liquid crystal (gradient) flow for the well-known Oseen-Frank model. The
liquid crystal flow is a prototype of equations from the Ericksen-Leslie system in
the hydrodynamic theory and generalizes the heat flow for harmonic maps into the
2-sphere. The Ericksen-Leslie system is a system of the Navier-Stokes equations
coupled with the liquid crystal flow. In the second part of this paper, we also prove
global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank
model in R2.

1. Introduction

A liquid crystal is a state of matter intermediate between a crystalline solid and
a normal isotropic liquid. Research into liquid crystals is an area of a very suc-
cessful synergy between mathematics and physics. There are a lot of analytical
and computational issues, which arise in the attempt to study static equilibrium
configurations. Numerical and experimental analysis has shown that equilibrium
configurations are expected to have point and line singularities ([K]). Mathemati-
cally, Hardt, Kinderlehrer and Lin in their fundamental papers [HKL1] and [HKL2]
proved the existence of an energy minimizer u of the liquid crystal functional and
showed that a minimizer u is smooth away from a closed set Σ of Ω. Moreover, Σ
has Hausdorff dimension strictly less than one. In [AL], Almgren and Lieb did some
related analysis indicating that the phenomenon is of wider interest. In physical
theory, an equilibrium configuration corresponds to a critical point, not necessarily
an energy minimizer, of the liquid crystal energy. Critical points are much harder to
understand mathematically than minima. From the above result of Hardt, Kinder-
lehrer and Lin, minimizers cannot have line singularities. Following the work of
Bethuel-Brezis-Coron on harmonic maps in [BBC], Giaquinta, Modica and Soucek
[GMS2] found a relaxed energy for the liquid crystal systems, whose minimizers are
also equilibrium configurations. On the other hand, Giaquinta, Modica and Soucek
[GMS1] also proved that minimizers of the relaxed energy for harmonic maps are
smooth away from a 1-dimensional singular set. Further developments on the reg-
ularity results on harmonic maps were surveyed in [GMS3]. There is an interesting
open problem to prove that minimizers of the relaxed liquid crystal energy have
line singularities. The first author in [Ho3] proved partial regularity of minimizers
of the modified relaxed energy of the liquid crystal energy. However, the partial

1991 Mathematics Subject Classification. AMS 35K50, 35Q30.
Key words and phrases. Liquid crystals flow, Navier-Stokes equations.

Typeset by AMS-TEX

1



2 M.-C. HONG AND Z. XIN

regularity of minimizers of the relaxed energy for liquid crystals is still mysteri-
ous. In some related studies of liquid crystals, Bauman, Calderer, Liu and Phillis
[BCCP] studied the Landau-de Gennes free energy used to describe the transition
between chiral nematic and smectic liquid crystal phase, Lin and Pan [LP] used
the Landau-de Gennes models to investigate the magnetic field induced instabili-
ties in liquid crystals, and the existence of infinite many liquid crystal equilibrium
configurations prescribing the same boundary was obtained in [Ho2].

A general description of the static theory of liquid crystals is given by Ericksen in
[Er]. A liquid crystal is composed of rod like molecules which display orientational
order, unlike a liquid, but lacking the lattice structure of a solid. The kinematic
variable in the nematic and cholesteric phase may be taken to the optic axis, which
is a unit vector field u in a region Ω ⊂ R3 occupied by the materials. The liquid
crystal energy for a configuration u ∈ H1(Ω; S2) is given by

(1.1) E(u; Ω) =
∫

Ω

W (u,∇u) dx,

where the Oseen-Frank density W (u,∇u), depending on positive material constants
k1, k2, k3 and k4, is given by

W (u,∇u) = k1(div u)2 + k2(u · curl u)2 + k3|u× curl u|2 + k4[tr(∇u)2 − (div u)2].

Without loss of generality, as in [HKL1] or [GMS3], we rewrite the density

(1.2) W (u,∇u) = a|∇u|2 + V (u,∇u), a = min{k1, k2, k3} > 0,

where

V (u,∇u) = (k1 − a)(div u)2 + (k2 − a)(u · curl u)2 + (k3 − a)|u× curl u|2.

A static equilibrium configuration corresponds to an extremal (critical point) of
the energy functional E in H1(Ω, S2). The Euler-Lagrange system for the general
Oseen-Frank functional (1.1) (see details in Appendix) is:

∇α

[
Wpi

α
(u,∇u)− uluiVpl

α
(u,∇u)

]−Wui(u,∇u) + Wul(u,∇u)ului

+ Wpl
α
(u,∇u)∇αului + Vpl

α
(u,∇u)ul∇αui = 0 in Ω

(1.3)

for i = 1, 2, 3, where we adopt the standard summation convention. In a special
case of k1 = k2 = k3, the system (1.3) becomes the harmonic map equations into
S2. However, the equilibrium system associated to the energy functional (1.1) is
not elliptic for every choice of the constants k1, k2 and k3.

In the first part of this paper, we investigate the liquid crystal flow for a model
with the Oseen-Frank density (1.2). For a domain Ω in R3 or in R2, a map u(x, t) :
Ω× [0,∞) → S2 is a solution of the liquid crystal flow if u satisfies

∂ui

∂t
=∇α

[
Wpi

α
(u,∇u)− uluiVpl

α
(u,∇u)

]−Wui(u,∇u)

+ Wul(u,∇u)ului + Wpl
α
(u,∇u)∇αului + Vpl

α
(u,∇u)ul∇αui

(1.4)
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in Ω× [0,∞) for i = 1, 2, 3.

The flow equation (1.4) is a prototype of equations from the Ericksen-Leslie
system in the hydrodynamic theory (cf. [Er]). The liquid crystal flow (1.4) also
generalizes the heat flow for harmonic maps into the 2-sphere. Since the seminal
work of Eells-Sampson [ES], many work on the heat flow for harmonic maps have
been made. In 2 dimensional case, Struwe [St1] established global existence of the
weak solution of the harmonic maps flow with initial data, where the solution is
smooth except for a finite number of singularities. In higher dimensional cases,
Chen-Struwe [CS] proved global existence of partially regular solutions to the har-
monic map flow. Since (1.4) is not parabolic, the system of the liquid crystal flow
is complicated, so the question on global existence for the liquid crystal flow (1.4)
for the Oseen-Frank model remains unresolved. In this paper, we prove global
existence of solutions of the liquid crystal flow in 2D.

We set

H1
b (R2; S2) :=

{
u : u− b ∈ H1(R2;R3), |u| = 1 a.e. in R2

}

for a constant vector b ∈ S2.

Then, one of our main results in this paper is the following global existence for
this flow in 2D (i.e. u is a constant along a direction in R3):

Theorem A. Let u0 ∈ H1
b (R2;S2) be a given map. Then there exists a global

weak solution u(x, t) : R2 × [0, +∞) → S2 of (1.4) with initial value u(0) = u0

such that u is smooth in Ω × [0, +∞) except for a finite number of singularities
{(xl

i, Tl)}K
l=1 ∈ R2 × [0,+∞) with an integer K > 0 depending on u0. Moreover,

there are two constants ε0 > 0 and R0 > 0 such that each singular point xl
i at the

time Tl is characterized by the condition

lim sup
t↗Tl

E
(
u (t) , BR

(
xl

i

)) ≥ ε0

for any R > 0 with R ≤ R0.

This result can be regarded as an extension of the well-known result of Struwe
in [St1] on the heat flow for harmonic maps in dimension two. Since the liquid
crystal flow is not a parabolic system, the flow (1.4) is more complicated than the
harmonic map flow. In particular, we can not apply the well-known theory of partial
differential equations directly to prove the local existence for the liquid crystal flow.
Instead, we consider a family of Ginzburg-Landau approximation flows to prove
local existence of solutions to (1.4). To prove Theorem A, we need to get a L2-
estimate of ∇2u similarly to one in [St1]. However, the flow (1.4) is not a parabolic
system, so we overcome the difficulties due to the term ∇α[uluiVpl

α
(u,∇u)] by using

the fact that |u| = 1 as observed in [Ho1].

In the second part of this paper, we investigate the Ericksen-Leslie system with
the Oseen-Frank density W (u,∇u) in (1.2). In the 1960’s, Ericksen [Er] and Leslie
[Le] established the hydrodynamic theory of liquid crystals independently. The
Ericksen-Leslie theory describes the dynamic flow of liquid crystals, including the
velocity vector v and direction vector u of the fluid. Let v = (v1, v2, v3) be the
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velocity vector of the fluid and u = (u1, u2, u3) the unit direction vector. The
Ericksen-Leslie system in Ω× [0,∞) is given by (e.g. [L1] and [LL1])

(1.5) vi
t + (v · ∇)vi − ν 4 vi +∇xiP = −λ∇xj (∇xiu

kWpk
j
(u,∇u)),

(1.6) ∇ · v = 0,

ui
t + (v · ∇)ui =∇α

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]−Wui(u,∇u)

+ Wuk(u,∇u)ukui + Wpl
α
(u,∇u)∇αului + Vpk

α
(u,∇u)uk∇αui

(1.7)

for i = 1, 2, 3, prescribing the boundary condition

(1.8) v(x, t) = 0, u(x, t) = u0(x), ∀(x, t) ∈ ∂Ω× (0,∞)

and with initial data

(1.9) v(x, 0) = v0(x), u(x, 0) = u0(x), div v0 = 0 ∀x ∈ Ω.

Here ν, λ are given positive constants, and P is the pressure.

The system (1.5)-(1.7) is a system of the Navier-Stokes equations coupled with
the liquid crystal flow (1.4). The study of the Navier-Stokes equations is of great
interest. Tremendous results on the existence and partial regularity for the Navier-
Stokes equations have been established (e.g. [Sc], [CKN], [L2], [TX]). In this paper,
we are only concentrating on the existence of solutions of the Ericksen-Leslie system.
Since the functional E(u; Ω) in (1.1) with the constraint |u| = 1 is complicated, one
considers Ginzburg-Landau functionals

Eε(u; Ω) =
∫

Ω

[
W (u,∇u) +

1
2ε2

(1− |u|2)2
]

dx

for any function u ∈ H1(Ω;R3). Then, the approximating Ericksen-Leslie system
is given by

(1.10) vi
t + (v · ∇)vi − ν 4 vi +∇xiP = −λ∇xj (∇xiu

kWpk
j
(u,∇u)),

(1.11) ∇ · v = 0,

(1.12) ui
t + (v · ∇)ui = ∇α

[
Wpi

α
(u,∇u)

]−Wui(u,∇u) +
1
ε2

ui(1− |u|2)

for i = 1, 2, 3, prescribing the boundary condition (1.8) and initial condition (1.9).

In the case of k1 = k2 = k3, Lin and Liu [LL1] proved global existence of the the
classical solution of (1.10)-(1.12) with (1.8)-(1.9) in dimension two and the weak
solution of the same system in dimension three. Lin and Liu in [LL2] also analyzed
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the limit of solutions (vε, uε) of (1.10)-(1.12) as ε → 0, but it is not clear that
the limiting solution satisfies the original Ericksen-Leslie system (1.5)-(1.7) with
|u| = 1. Therefore, there is an interesting question to establish the global existence
of solutions of (1.5)-(1.7) with (1.8)-(1.9). The question for the case of k1 = k2 = k3

has been answered by the first author in [Ho3] in R2 and Lin-Lin-Wang [LLW] in
a general case for a domain of R2 independently. The system (1.5)-(1.7) or (1.10)-
(1.12) for the general Oseen-Frank model is more complicated than the system for
the case of k1 = k2 = k3 since there is no maximum principle for the parabolic
system (1.12) in the case k1 6= k2 (see [A]) and the term Wui(u,∇u) in (1.12) will
cause a trouble to prove global existence for the system.

In this paper, we will prove global existence of weak solutions to the Ericksen-
Leslie system (1.5)-(1.7) for a general Oseen-Frank model in R2. More precisely,
we have

Theorem B. Let (u0, v0) ∈ H1
b (R2;S2) × L2(R2,R2) be given initial data with

dvi v0 = 0. Then, there exists a global weak solution (u, v) : R2 × [0,+∞) →
S2 × R2 of (1.5)-(1.7) with initial values (1.9), where the solution (u, v) is smooth
in R2×((0,+∞)\{Tl}L

l=1) for a finite number of times {Tl}L
l=1. Moreover, there are

two constants ε0 > 0 and R0 > 0 such that each singular point
(
xl

i, Tl

) ∈ Σ× {Tl}
is characterized by the condition

lim sup
t↗Tl

∫

BR(xl
i)

|∇u (·, t) |2 + |v (·, t) |2 dx ≥ ε0

for any R > 0 with R ≤ R0.

The main idea to prove Theorem B is to combine the idea in [Ho3] with the
proofs of Theorem A. The first key step is to prove local existence of solutions of
the system (1.5)-(1.7) by considering the approximation system (1.10)-(1.12). To
prove global existence of solutions to (1.5)-(1.7), one of key steps is to get a L2-
estimate of ∇2u and ∇v in R2 × [0, T ] under a small energy condition as in [St1].
To show the regularity of the weak solution (u, v) of (1.5)-(1.7) in R2 × (0, T ), we
establish a local energy inequality under the small energy condition, which was
first used by Struwe in [St2] for the H-system flow. Finally, we prove regularity
of solutions by controlling L2-estimate of ∇2u and ∇v in R2 for t ∈ (0, T ). Since
(1.7) is not a parabolic system, the proof of Theorem B is more difficult than one
for the case of k1 = k2 = k3 in [Ho3]. We overcome a number of difficulties on
the regularity and uniqueness for the systems by employing the invariance of the
density (1.2) after a rotation.

The rest of the paper is organized as follows. In Section 2, we prove the global
existence for the liquid crystal flow in 2D. Some global estimates for (1.5)-(1.7) are
established in Section 3. Then, we complete a proof of Theorem B in Section 4.
Finally, the regularity issue for the systems is dealt in Section 5.

2. Existence of partial regular solutions of the liquid crystal flow

In this section, we consider the flow (1.4) in R2. For simplicity of notations, u is
assumed to be a constant along x3-direction in R3; i.e. ∂u

∂x3
= 0.
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For any two positive constants τ and T with τ < T , we define

V (τ, T ) := {u : R2×[τ, T ] → S2 | u is measureable and satisfies

ess sup
τ≤t≤T

∫

R2
|∇u(·, t)|2 dx +

∫ T

τ

∫

R2
|∇2u|2 + |∂tu|2 dx dt < ∞}.

Lemma 1. Let u ∈ V (0, T ) be a solution of the system (1.4) with initial value
u0 ∈ H1(R2, S2). Then, for any t1 ∈ [0, T ]

(2.1)
∫

R2×(0,t1)

|∂tu|2 dx dt + E(u(t1)) ≤ E(u0).

Moreover, for all t ∈ [0, T ], x0 ∈ R2 and R > 0, it holds that
∫

BR(x0)

W (u(x, t),∇u(x, t)) dx

≤
∫

B2R(x0)

W (u0(x),∇u0(x)) dx + C
t

R2

∫

R2
|∇u0|2 dx,

(2.2)

where C is a constant.

Proof. Multiplying (1.4) by ∂ui

∂t yields
∫

R2
|∂u

∂t
|2 dx = −

∫

R2
Wpi

α
(u,∇u)

d

dt
∇αui dx−

∫

R2
Wui(u,∇u)

∂ui

∂t
dx.

This implies ∫

R2
|∂u

∂t
|2 dx +

d

dt

∫

R2
W (u,∇u) dx = 0.

(2.1) follows from integrating the above identity.

Let φ ∈ C∞0 (B2R(x0)) be a cut-off function satisfying 0 ≤ φ ≤ 1, |∇φ| ≤ C/R

and φ ≡ 1 on BR(x0). Multiplying (1.4) by ∂ui

∂t φ2 and then using Young’s inequality
yields

∫

R2
|∂u

∂t
|2φ2 dx +

d

dt

∫

R2
W (u(x, t),∇u(x, t))φ2 dx ≤ C

∫

R2
|∂u

∂t
| |∇u||φ∇φ| dx

≤ 1
2

∫

R2
|∂u

∂t
|2φ2 dx + C

∫

R2
W (u,∇u)|∇φ|2 dx.

Then, (2.2) follows from using (2.1) and integrating the above inequality. ¤

It follows from [St1] that

Lemma 2. There are constants C and R0 such that for any u ∈ V (0, T ) and any
R ∈ (0, R0], we have

∫

R2×[0,T ]

|∇u|4 dx dt ≤C ess sup
0≤t≤T,x∈R2

∫

BR(x)

|∇u(·, t)|2 dx

· (
∫

R2×[0,T ]

|∇2u|2 dx dt + R−2

∫

R2×[0,T ]

|∇u|2 dx dt).
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Lemma 3. Let u ∈ V (0, T ) be a solution of (1.4) with initial smooth value u0 ∈ H1.
Then there are constants ε1 and R0 > 0 such that if

ess sup
0≤t≤T,x∈R2

∫

BR(x)

|∇u(·, t)|2 dx < ε1

for any R ∈ (0, R0], then

(2.3)
∫

R2×[0,T ]

|∇2u|2 dx dt ≤ CE(u0) (1 + TR−2),

(2.4)
∫

R2×[0,T ]

|∇u|4 dx dt ≤ Cε1E(u0) (1 + TR−2).

Proof. Multiplying (1.4) by 4ui yields
∫

R2

∂ui

∂t
4 ui dx

=
∫

R2
∇α

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]4 ui dx

−
∫

R2
Wui(u,∇u)(4ui − ukui 4 uk) dx +

∫

R2
Wpk

α
(u,∇u)∇αukui 4 ui dx

+
∫

R2
Vpk

α
(u,∇u)uk∇αui 4 ui dx := I1 + I2 + I3 + I4.

Note that the terms I2 and I3 of the above identity can be controlled by C|∇u|2|4u|.
It suffices to estimate terms I1 and I4. Since |u|2 = 1, −ui 4 ui = |∇u|2. We note

∇α[ukuiVpk
α
(u,∇u)] =∇αukuiVpk

α
(u,∇u) + uk∇αuiVpk

α
(u,∇u)

+ ukui∇αVpk
α
(u,∇u).

Integration by parts twice yields

I1 + I4 =
∫

R2
∇β

[
Wpi

α
(u,∇u)

]∇2
αβui dx +

∫

R2
∇αukuiVpk

α
(u,∇u)4 ui dx

−
∫

R2
uk∇αVpk

α
(u,∇u)|∇u|2 dx.

Note
∇αVpk

α
(u,∇u) = Vpk

αpl
γ
(u,∇u)∇2

γαul + Vpk
αul(u,∇u)∇αul

and
∇βWpi

α
(u,∇u) = Wpi

αpj
γ
(u,∇u)∇2

γβuj + Wpi
αuj (u,∇u)∇βuj .

This implies
d

dt

∫

R2
|∇u|2 dx +

∫

R2
Wpi

αpj
γ
(u,∇u)∇2

αβui∇2
γβuj dx

≤ C

∫

R2
|∇u|2(|∇u|2 + |∇2u|) dx.

(2.5)

Since W (u, p) is convex in p, it satisfies the ellipticity

Wpi
αpj

γ
(u,∇u)∇2

αβui∇2
γβuj ≥ a|∇2u|2

for the constant a > 0. Then, choosing ε1 > 0 to be sufficiently small and applying
Lemma 2 lead to (2.3) and (2.4). ¤
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Lemma 4. Let u ∈ V (0, T ) be a solution of (1.4) with initial value u0 ∈ H1.
Assume that

ess sup
0≤t≤T,x∈R2

∫

BR(x)

|∇u(·, t)|2 dx < ε1

for any R ∈ (0, R0]. Let τ ∈ (0, T ] be any constant. Then it holds for all t ∈ [τ, T ],

(2.6)
∫

R2
|∇2u(x, t)|2 dx ≤ C0,

with a uniform constant depending only on τ , T , R0, and E(u0).

Proof. The proof is similar to [St1; Lemma 3.10]. Using a proper cut-off function
if necessary, we assume in the following proof that

∫ |∂t∇u|2(·, t), dx is finite.

Differentiate (1.4) with respect to t, multiply the resulting identity by ∂tu
i, and

then integrate to obtain

1
2

d

dt

∫

R2
|∂tu|2 dx +

∫

R2
Wpi

αpj
β
(u,∇u)∇α ∂t ui∇β ∂t uj dx

≤ C

∫

R2
(|∂t u|2 |∇u|2 + |∇u| |∂t u| |∇∂t u|] dx

+
∫

R2
∂t ui∇α

[
ui uk Vpk

α
(u,∇∂t u)

]
dx.

Due to the convexity of W (u, p) in p, there exists a positive constant a > 0 such
that ∫

R2
Wpi

αpj
β
(u,∇u)∇α ∂t ui∇β ∂t uj dx ≤ a

∫

R2
|∇∂t u(x, t)|2 dx.

Since |u| = 1, so
∑

i ∂t ui ui = 0. And hence,

∫

R2
∂tu

i∇α

(
ui uk Vpk

α
(u,∇∂t u)

)
dx ≤ C

∫

R2
|∂t u| |∇u| |∇∂t u| dx.

It follows from these and Cauchy’s inequality that

(2.7)
1
2

d

dt

∫

R2
|∂t u(x, t)|2 dx +

a

2

∫

R2
|∇∂t u(x, t)|2 dx ≤ C

∫

R2
|∂t u|2 |∇u|2 dx.

Note that

C

∫

R2
|∂t u|2 |∇u|2 dx

≤ C

(∫

R2
|∂t u|4 dx

) 1
2

(∫

R2
|∇u|4 dx

) 1
2

≤ C

(∫

R2
|∂t u|2 (x, t) dx

) 1
2

(∫

R2
|∂t∇u|2 (x, t)

) 1
2

(∫

R2
|∇u|4 dx

) 1
2

≤ a

4

∫

R2
|∇∂t u(x, t)|2 dx +

(
C

∫

R2
|∇u(x, t)|4 dx

) ∫

R2
|∂t u(x, t)|2 dx.
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This, together with (2.7), yields that for all t ∈ (0, T ],

d

dt

∫

R2
|∂t u(·, t)|2 dx +

a

2

∫

R2
|∇∂t u(·, t)|2 dx

≤
(

C

∫

R2
|∇u(·, t)|4 dx

) ∫

R2
|∂t u(·, t)|2 dt.

(2.8)

It follows from (2.8), (2.4), Lemma 1, and Gronwall’s inequality that for any 0 <
s ≤ t ≤ T ,

∫

R2
|∂t u(·, t)|2 dt ≤

(
eC
R t

s

R
R2 |∇u(·,l)|4 dx dl

) ∫

R2
|∂t u(·, s)|2 dx

≤ eCε1 E(u0)(1+TR−2) ·
∫

R2
|∂t u(·, s)|2 dx.

Combining this with (2.1) shows that for any fixed 0 < τ < T , there exists a
constant C such that

ess sup
τ≤t≤T

∫

R2
|∂t u(·, t)|2 dt ≤ Cτ−1 E(u0) eCε1 E(u0)(1+TR−2),

with a uniform constant C. On the other hand, using (2.5), integration by parts
yields that for any t ∈ [τ, T ],

∫

R2
|∇2u(·, t)|2 dx ≤ C

∫

R2
|∇u(·, t)|4 dx + C

∫

R2
|∂t u(·, t)|2 dx

≤ Cε1

∫

R2
|∇2 u(·, t)|2 dx +

Cε1

R2
0

E(u0) + C

∫

R2
|∂t u(·, t)|2 dx.

Combining this with (2.9) shows that for suitably small ε1, the desired estimate
(2.6) holds with

(2.10) C0 ≡ CE(u0)
( ε1

R2
+ τ−1 eCε1 E(u0)(1+TR−2)

)
.

By the well-known Gagliardo-Nirenberg-Sobolev inequality, we have for any x ∈
R2

|u(x, t1)− u(x, t2)| ≤ C‖u(x, t1)− u(x, t2)‖3/4
H2(B1(x))‖u(x, t1)− u(x, t2)‖1/4

L2(B1(x))

≤ C( sup
τ≤t≤T

‖∇2u(·, t)‖3/4
L2(R2) + 1)|t1 − t2|1/8

(∫ T

0

∫

R2
|∂tu|2 dx dt

)1/8

≤ C|t1 − t2|1/8.

It follows from (2.6) and Sobolev embedding theorem that u(x, t) is Hölder con-
tinuous in x uniformly for t ∈ [τ, T ]. Then we get that u is Hölder continuous in
C1/8(R2× [τ, T ]) for any T < T1. Due to Proposition 14 in Appendix, u is in C1, 1

8 .
Hence, u is regular in (0, T1). ¤
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Remark 5. Let u ∈ V (0, T ) be a solution of (1.4) with initial value u0 ∈ H2
b .

Assume that there are constants ε1 and R0 > 0 such that

ess sup
0≤t≤T,x∈R2

∫

BR(x)

|∇u(·, t)|2 dx < ε1

for any R ∈ (0, R0]. Then, for any t ∈ [0, T ] and R ≤ R0, we have
∫

R2
|∇2u(x, t)|2 dx ≤ C1 ≡ C1(||u0||H2

b
, C0).

Theorem 6. (Local existence) For a map u0 ∈ H1
b (R2, S2), there is a solution

u ∈ V (0, t1) of (1.4) with initial value u0 for some t1 > 0.

Proof. For any map u0 ∈ H1
b (R2, S2), it can be approximated by a sequence of

smooth maps in H2
b (R2, S2). Without loss of generality, we assume that u0 ∈

H2
b (R2, S2) is smooth. The liquid crystal flow is not a parabolic system, so one

can not apply the well-known local existence theory. Instead, we prove the local
existence by an approximation of the Ginzburg-Landau flow in the following:

(2.11)
∂ui

ε

∂t
= ∇α

[
Wpi

α
(uε,∇uε)

]−Wui(uε,∇uε) +
1
ε2

ui
ε(1− |uε|2)

with initial value u0 ∈ H2
b (R2, S2) and u0 ∈ C∞. Applying the standard local

existence theory of quasi-linear parabolic systems (cf. [Ei] or [Am]), there is a local
regular solution uε of (2.11) with initial value uε(0) = u0.

For simplicity of notations, we define

Ṽ (τ, T ) =
{

u : R2 × [τ, T ] → R3|u is measurable and satisfies

ess sup
τ≤t≤T

∫

R2
|∇u(·, t)|2 dx +

∫ T

τ

∫

R2
(|∇2u|2 + |∂t u|2) dx dt < ∞

}
,

0 ≤ τ < T < +∞,

eε(u) = W (u,∇u) +
1

2ε2
(1− |u|2)2, Eε(u) =

∫

R2
eε(u) dx.

Taking inner product of (2.11) with ∂t uε, one can obtain that for any s > 0 in the
maximal interval of existence,

(2.12)
∫

R2×(0,s)

|∂t uε|2 dx dt + Eε(uε(s)) ≤ E(u0).

Moreover, repeating similar arguments in Lemma 3 (see below (2.29) below) yields
that the solution uε belongs to Ṽ (0, Tε) for a maximum time Tε and hence is regular
R2× [0, Tε). The maximum time Tε is characterized in the following: For a singular
point x0 at Tε, there are ε0 and R0 > 0 such that

lim sup
t→Tε

∫

BR(x0)

|∇uε(·, t)|2 dx ≥ ε0 > 0
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for any positive R ≤ R0.

Next, we will show that there is a uniform lower bound time t1 > 0 such that
Tε ≥ t1 and uε is bounded in Ṽ (0, t1) uniformly in ε.

A similar argument as in Lemma 1 shows

∫

BR(x0)

eε(uε(x, t)) dx ≤
∫

B2R(x0)

eε(u0(x)) dx + C
t

R2

∫

R2
|∇u0|2 dx

for t ≤ Tε.

It follows from this inequality that for suitably small ε1 and R0, there is a time
t1 uniform in ε with t1 ≤ Tε such that

(2.13) sup
0≤t≤t1

∫

BR(x0)

eε(uε(x, t)) dx < ε1

for R ≤ R0 and thus uε is smooth for [0, t1] for all ε > 0. Next, we claim that for
0 ≤ t ≤ t1

1
2
≤ |uε(x, t)| ≤ 3

2
for all x ∈ R2.

To verify this claim, we re-scale the solution by ũ(x, t) = uε(εx, ε2t). Then ũ
satisfies

(2.14)
∂ũi

∂t
= ∇α

[
Wpi

α
(ũ,∇ũ)

]−Wui(ũ,∇ũ) + ũi(1− |ũ|2)

with initial value u0(εx). Let τ be the maximal time in [0, t1
ε2 ] such that (2.14)

holds, i.e.,

(2.15)
1
2
≤ |ũ(x, t)| ≤ 3

2

for any (x, t) ∈ R2× [0, τ ]. Note that in this case, the basic energy inequality (2.12)
becomes

∫

R2×[0,s]

|∂t ũ|2 dx dt +
∫

R2
(W (ũ,∇ũ)(s) +

1
2
(1− |ũ(s)|2)2)dx ≤ E(u0)

for all s ∈
[
0,

t1
ε2

]
,

(2.16)

and the condition (2.13) turns into

(2.17) ess sup
0≤s≤ t1

ε2 ,x∈R2

∫

B R
ε

(x)

(
|∇ũ(·, s)|2 +

1
2
(1− |ũ|2)2

)
dx < ε1.

for R ≤ R0.
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Multiplying (2.14) by 4ũ and integrating over R2 lead to

1
2

d

dt

∫

R2
|∇ũ|2 dx +

∫

R2
∇α

[
Wpi

α
(ũ,∇ũ)

]4 ũi dx

−
∫

R2
Wũi(ũ,∇ũ)4 ũi dx +

∫

R2
ũi(1− |ũ|2)4 ũi dx = 0.

(2.18)

Note that
∫

R2
ũi(1− |ũ|2)4 ũi dx = −

∫

R2
|∇ũ|2(1− |ũ|2) dx + 2

∫

R2
|∇|ũ|2|2 dx.

Then, combining the above identity with (2.18) yields that for any s, t ∈ [0, τ ] with
s ≤ t,

1
2

∫

R2
|∇ũ(·, t)|2 dx +

∫ t

s

∫

R2
Wpi

αpj
γ
(ũ,∇ũ)∇2

αβ ũi∇2
γβ ũj dx dt

≤ C

∫

R2
|∇u(·, s)|2 dx + C

∫ t

s

∫

R2
|∇ũ|4 + η[(1− |ũ|2)2 + |∇2ũ|2] dx dt

(2.19)

for a sufficiently small η > 0 to be chosen.

On the other hand, it follows from (2.14) and (2.15) that

(2.20)
∫

R2×[s,t]

(1− |ũ|2)2 dx dt ≤ C

∫

R2×[s,t]

(|∂t ũ|2 + |∇ũ|4 + |∇2ũ|)dx dt.

Combining Lemma 2 with (2.17) shows that
(2.21)∫

R2×[s,t]

|∇ũ|4 dx dt ≤ C1 ε1

(∫

R2×[s,t]

|∇2ũ|2 dx dt +
ε2

R2
0

∫

R2×[s,t]

|∇ũ|2 dx dt

)
.

As a consequence of (2.19)-(2.21), (2.16), and suitable choices of η and ε1, one
can get that ũ ∈ Ṽτ , and for any 0 ≤ s ≤ t ≤ τ ,

(2.22)
∫

R2×[s,t]

[|∇2ũ|+ (1− |ũ|2)2] dx dt ≤ CE(u0)(1 + ε2(t− s)R−2
0 ),

(2.23)
∫

R2×[s,t]

|∇ũ(x, t)|4 dx dt ≤ Cε1 E(u0)(1 + ε2(t− s)R−2
0 ).

By a similar argument as in the proof of Lemma 4, one can derive from (2.14)
that there exists a positive uniform constant a such that

1
2

d

dt

∫

R2
|∂t ũ(x, t)|2 dx + a

∫

R2
|∂t∇ũ(x, t)|2 dx +

1
2

∫

R2
|∂t(|ũ(x, t)|2)|2 dx

≤C

∫

R2
|∂t ũ(x, t)|2 |∇ũ(x, t)|2dx +

∫

R2
|∂t ũ(x, t)|2 (1− |ũ(x, t)|2)dx

(2.24)
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Note that

C

∫

R2
|∂t ũ(x, t)|2 |∇ũ(x, t)|2dx

≤ C

(∫

R2
|∂t ũ(x, t)|4 dx

) 1
2

(∫

R2
|∇ũ(x, t)|4 dx

) 1
2

≤ C

(∫

R2
|∂t ũ(x, t)|2 dx

) 1
2

(∫

R2
|∂t∇ũ(x, t)|2 dx

) 1
2

(∫

R2
|∇ũ(x, t)|4 dx

) 1
2

≤ a

2

∫

R2
|∂t∇ũ(x, t)|2 dx + C

(∫

R2
|∇ũ(x, t)|4 dx

) ∫

R2
|∂t ũ(x, t)|2 dx.

Hence,

d

dt

∫

R2
|∂t ũ(x, t)|2 dx + a

∫

R2
|∂t∇ũ(x, t)|2 dx +

∫

R2
|∂t(|ũ(x, t)|2)|2 dx

≤
(

C

∫

R2
|∇ũ(x, t)|4 dx

) ∫

R2
|∂t ũ(x, t)|2 dx + 2

∫

R2
(∂t ũ(x, t)|2(1− |ũ(x, t)|2)dx,

which yields immediately that for any 0 ≤ t ≤ τ ∈ (0, t1
ε2 ],

∫

R2
|∂t ũ(x, t)|2 dx

≤ eC
R t
0

R
R2 |∇ũ(x,t)|4 dx dt

∫

R2
|∂t ũ(x, 0)|2 dx

+
∫ t

0

(
eC
R t
0

R
R2 |∇ũ(x,l)|4 dx dl

∫

R2
|∂t ũ(x, s)|2(1− |ũ(x, s)|2)dx

)
ds.

It follows from this, (2.23), u0 ∈ H2
b , and (2.14) that

(2.25)
∫

R2
|∂t ũ(x, t)|2 dx ≤ C1 ≡ C1(E(u0), ε1, t1, ||u0||H2

b
, R0)

with a positive constant C1 independent τ ∈ (0, t1
ε2 ) given by

(2.26) C1 = C(||u0||H2
b
) e

ε1 E(u0)(1+
t1
R2

0
)
.

Using (2.18), an integration by parts yields implies that for all t ∈ (0, τ ],

∫

R2
|∇2ũ(·, t)|2 dx ≤ C

∫

R2
|∇ũ(x, t)|4 dx+C

∫

R2
(1−|ũ|2)2 dx+C

∫

R2
|∂t ũ(x, t)|2 dx

Due to Lemma 2, and (2.17), one has

C

∫

R2
|∇ũ(x, t)|4 dx ≤ ε1

∫

R2
|∇2 ũ(x, t)|2 dx +

Cε1 ε2

R2
0

E(u0).
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Thus one can get that for all t ∈ (0, τ).

(2.27)
∫

R2
|∇2 u(x, t)|2 dx ≤ CE(u0)(1 +

ε1 ε2

R2
0

) + CC1.

By the Sobolev embedding theorem, ũ is β-Hölder continuous in x uniformly in
all t ∈ [0, τ ] with β < 1. Repeating the similar analysis as in the proof of Lemma 4
and using Proposition 13 in Appendix, we get ũ ∈ C1, 1

8 on R2 × (0, τ). If there is
a x1 ∈ R2 such that either |ũ(x1, t)| < 1

2 or |ũ(x1, t)| > 3
2 . By the uniform Hölder

continuity of ũ, there exists a constant C2 with the property that 1
4C2

< R0
ε , and

(1− |ũ(x, t)|2)2 ≥ 1
4
, x ∈ B 1

4C2
(x1).

Hence,

(2.28)
∫

B 1
4C2

(x1)

(1− |ũ(x, t)|2)2 dx ≥ 1
4
|B 1

4C2
(0)| > 2ε1.

which contradicts to (2.17) for suitably small ε1. Here we have used the fact that
C2 depends only the upper bound of C1, which may be chosen to be independent
of ε1 by the choice of t1. This implies that 1

2 ≤ |ũ(x, t)| ≤ 3
2 for all t ∈ [0, τ ]. By

the continuity of u at τ and the maximal choice of τ , τ must be the value t1
ε2 . This

shows that (2.14) holds for all t ∈ [0, t1].

Next, it follows from (2.12) and (2.22)-(2.23) that uε are uniformly bounded in
Ṽ (0, t1) for all ε and

(2.29)
∫ t1

0

∫

R2

[
|∇2 uε(x, t)|2 +

1
ε2

(1− |uε(x, t)|2)2
]

dx dt ≤ CE(u0)(1 +
t1
R2

0

),

(2.30)
∫ t1

0

∫

R2
|∇uε(x, t)|4 dx dt ≤ Cε1 E(u0)(1 +

t1
R2

0

).

Letting ε → 0, we can prove local existence of a solution of (1.4) in V (0, t1). ¤

Now we complete the proof of Theorem A.

Proof of Theorem A. By Theorem 7, there is a local solution u on [0, t1) for some
t1 > 0. By Lemma 3 and Lemma 4, the solution can be extended to [0, T1) for a
maximal time T1 > 0 such that there is a singular set Σ at T1. Each singularity
x1

i ∈ Σ at T1 is characterized by the condition

lim sup
t↗T1

E
(
u (t) , BR

(
x1

i

)) ≥ ε0

for any R > 0 with R ≤ R0. It is easy to see the solution u ∈ V is regular for all
t ∈ (0, T1). By Lemma 1, we can show that the singular set Σ and the singular
times are finite (See [St1]). Theorem A is thus proved. ¤

Remark. There is an open problem to prove the uniqueness of the weak solutions.
But, we can prove the uniqueness of smooth solutions (see Lemma 11 below in
Section 3).
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3. Global existence for the Ericksen-Leslie system

In this section, we derive a-priori estimates for solutions to the Ericksen-Leslie
system (1.5)-(1.7). Without loss of generality, we assume that ν = λ = 1 in (1.5).

For the case Ω = R2, we still consider (1.5)-(1.7) in R3 by taking ∂v
∂x3

= 0, ∂u
∂x3

=

0. In this case, ∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
= 0 in (1.6) is well-defined.

For two positive constants τ and T with τ < T , we denote

V (τ, T ) := {u : R2×[τ, T ] → S2 | u is measureable and satisfies

ess sup
τ≤t≤T

∫

R2
|∇u(·, t)|2 dx +

∫ T

τ

∫

R2
|∇2u|2 + |∂tu|2 dx dt < ∞}

and

H(τ, T ) := {v : R2×[τ, T ] → R2 | v is measureable and satisfies

ess sup
τ≤t≤T

∫

R2
|v(·, t)|2 dx +

∫ T

τ

∫

R2
|∇v|2 dx dt < ∞}.

For each pair (u, v), define

e(u, v) = W (u,∇u) +
1
2
|v|2, E(u, v) =

∫

R2
e(u, v)dx.

Lemma 7. Let (u, v) ∈ V (0, T )×H(0, T ) be a solution of (1.5)-(1.7) with initial
values u0 ∈ H1(R2; S2) and v0 ∈ L2(R2;R3). Then for t ∈ (0, T ],

∫

R2
e(u(·, t), v(·, t)) dx +

∫ t

0

∫

R2
(|ut + (v · ∇)u|2 + |∇v|2) dx dt

=
∫

R2
e(u0, v0) dx.

(3.1)

Proof. Multiplying (1.5) by v and using (1.6), one gets

(3.2)
1
2

d

dt

∫

R2
|v|2 dx +

∫

R2
|∇v|2 dx =

∫

R2
∇jv

i∇iu
kWpk

j
(u,∇u) dx.

Multiplying (1.7) by ut + (v · ∇)u yields

∫

R2
(ui

t + (v · ∇)ui)
(∇α

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]
) dx

+
∫

R2
(ui

t + (v · ∇)ui)(−Wui(u,∇u) + Wuk(u,∇u)ukui
)
dx

+
∫

R2
(ui

t + (v · ∇)ui)
(

+ Wpk
α
(u,∇u)∇αukui + Vpk

α
(u,∇u)uk∇αui

)
dx

=
∫

R2
|ut + (v · ∇)u|2 dx.

(3.3)
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Note that |u|2 = 1 implies

ui∂tu
i = 0, ui∇xαui = 0.

Integration by parts yields

∫

R2
ui

t

(∇α

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]−Wui(u,∇u) + Vpk
α
(u,∇u)uk∇αui

)
dx

= −
∫

R2
∇αui

t

[
Wpi

α
(u,∇u)

]− ui
tWui(u,∇u) dx = − d

dt

∫

R2
W (u,∇u) dx.

(3.4)

Using (1.6) and integrating by parts, we get

∫

R2
(v · ∇)ui(∇α

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]−Wui(u,∇u)

+ Vpk
α
(u,∇u)uk∇αui) dx

= −
∫

R2
∇αvk∇kuiWpi

α
(u,∇u) + vk[∇k∇αuiWpi

α
(u,∇u) +∇kuiWui(u,∇u)] dx

= −
∫

R2
∇αvk∇kuiWpi

α
(u,∇u) dx.

(3.5)

It follows from (3.3)-(3.5) that

d

dt

∫

R2
W (u,∇u) dx +

∫

R2
|ut + (v · ∇)u|2 dx = −

∫

R2
∇αvk∇kuiWpi

α
(u,∇u) dx.

(3.6)

Therefore, (3.1) follows from integrating (3.2) and (3.6) in t. ¤

By the same proof as in [St1; Lemma 3.1], there exists a constant C1 such that
for any f ∈ H(0, T ) and any R > 0, it holds that

∫

R2×[0,T ]

|f |4 dx dt ≤C1 ess sup
0≤t≤T,x∈R2

∫

BR(x)

|f(·, t)|2 dx

·
(∫

R2×[0,T ]

|∇f |2 dx dt + R−2

∫

R2×[0,T ]

|f |2 dx dt

)
.

(3.7)

Then, we have

Lemma 8. Let (u, v) ∈ V (0, T )×H(0, T ) be a solution of (1.5)-(1.7) with initial
values u0 ∈ H1 and v0 ∈ L2. Then there are constants ε1 and R0 > 0 such that if

ess sup
0≤t≤T,x∈R2

∫

BR(x)

e(u(·, t), v(·, t)) dx < ε1
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for any R ∈ (0, R0], then

(3.8)
∫

R2×[0,T ]

|∇2u|2 + |∇v|2 dx dt ≤ C (1 + TR−2)
∫

R2
e(u0, v0) dx,

(3.9)
∫

R2×[0,T ]

(|∇u|4 + |v|4)dx dt ≤ Cε1(1 + TR−2)
∫

R2
e(u0, v0)dx

Proof. Multiplying 4ui with (1.7) yields
∫

R2
(
∂ui

∂t
+ (v · ∇)ui)4 ui dx

=
∫

R2
∇α

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]4 ui dx

−
∫

R2
Wui(u,∇u)4 uidx +

∫

R2
uk ui Wuk(u,∇u)4 ui dx

+
∫

R2
Wpk

α
(u,∇u)∇αukui 4 ui dx +

∫

R2
Vpk

α
(u,∇u)uk∇αui 4 ui dx.

As in the proof of Lemma 3, one can derive

d

dt

∫

R2
|∇u|2 dx +

∫

R2
Wpi

αpj
γ
(u,∇u)∇2

αβui∇2
γβuj dx

≤ C

∫

R2
(|∇u|2 + |v|2)(|∇u|2 + |∇2u|) dx

≤ b

4

∫

R2
|∇2u|2 dx + C

∫

R2
(|∇u|4 + |v|4) dx.

Applying (3.7) and Lemma 2 again shows
∫

R2×[0,T ]

|∇u|4 + |v|4 dx dt

≤C1ε1

∫

R2×[0,T ]

|∇2u|2 + |∇v|2 dx dt + C1 ε1 R−2

∫

R2×[0,T ]

|∇u|2 + |v|2 dx dt.

Then (3.8) and (3.9) follow by choosing ε1 = b
4C1

. ¤

Lemma 9. Let (u, v) be a solution of (1.5)-(1.7) with initial values (u0, v0) with
u ∈ V (0, T ) and v ∈ H(0, T ). Assume that there exist constants ε1 > 0 and R0 > 0
such that

sup
x∈R2,0≤t≤T

∫

BR0 (x)

|∇u(x, t)|2 + |v (·, t) |2 dx < ε1.

Then for all t ∈ [0, T ], x0 ∈ R and R ≤ R0, it holds that

∫

BR(x0)

e(u(·, t), v(·, t)) dx +
∫ t

0

∫

BR(x0)

(|∇v|2 +
1
2
|∂t u + v · ∇u|2)dx dt

≤
∫

B2R(x0)

e(u0, v0) dx + C2
t

1
2

R
(1 +

t

R2
)

1
2

∫

R2
e(u0, v0)dx,

(3.10)
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where C2 is a uniform positive constant.

Proof. Let φ ∈ C∞0 (B2R(x0)) be a cut-off function with φ ≡ 1 on BR(x0) and
|∇φ| ≤ C

R , |∇2φ| ≤ C
R2 for all R ≤ R0.

Multiplying (1.5) by vφ2 and integrating show∫

R2
vt · vφ2 + (v · ∇)v · vφ2 −4v · vφ2 +∇P · vφ2 dx

=
∫

R2
∇xi

ukWpk
j
(u,∇u)∇xj v

iφ2 dx +
∫

R2
∇xiu

kWpk
j
(u,∇u)vi∇xj

φ2 dx.

Integrating by parts yields∫

R2
(vt · vφ2 −4v · vφ2) dx =

1
2

d

dt

∫

R2
|v|2φ2 dx +

∫

R2
∇v · ∇(vφ2) dx

=
1
2

d

dt

∫

R2
|v|2φ2 dx +

∫

R2
|∇v|2φ2 dx−

∫

R2
|v|2(|∇φ|2 + φ4 φ) dx.

Integrating by parts and using (1.6) give∫

R2
∇xi

Pviφ2 dx = −2
∫

R2
Pviφ∇xi

φ dx

and ∫

R2
vk∇xk

viviφ2 =
1
2

∫

R2
vk∇xk

(|v|2)φ2 = −
∫

R2
vk|v|2φ∇xk

φdx.

Hence,

1
2

d

dt

∫

R2
|v|2φ2 dx +

∫
|∇v|2φ2 dx

=
∫

R2
(|v|2 + 2P + |∇u|2)viφ∇xiφdx +

∫

R2
|v|2(|∇φ|2 + φ4 φ) dx

+
∫

R2
∇xiu

kWpk
j
(u,∇u)∇xj v

iφ2 dx +
∫

R2
∇xiu

kWpk
j
(u,∇u)vi∇xj φ

2 dx.

(3.11)

Multiplying (1.7) by (ui
t + (v · ∇)ui)φ2 and using |u| = 1 lead to∫

R2
|ut + (v · ∇)u|2φ2 dx

=
∫

R2
(ui

t + vl∇lu
i)∇α[Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)]ϕ2 dx

+
∫

R2
(ui

t + vl∇lu
i)(−Wui(u,∇u) + Vpk

α
(u,∇u)uk∇αui)φ2 dx.

Integration by parts yields∫

R2
ui

t∇α[Wpi
α
(u,∇u)− ukuiVpk

α
(u,∇u)]φ2 dx

+
∫

R2
ui

t(−Wui(u,∇u) + Vpk
α
(u,∇u)uk∇αui)φ2 dx

= −
∫

R2
[∇αui

tWpi
α
(u,∇u) + ui

tWui(u,∇u)]φ2 dx−
∫

R2
ui

tWpi
α
(u,∇u)∇αφ2 dx

= − d

dt

∫

R2
W (u,∇u)φ2 dx− 2

∫

R2
ui

tWpi
α
(u,∇u)φ∇αφdx.
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Integrating by parts twice and using (1.6), we obtain∫

R2
vl∇lu

i∇α[Wpi
α
(u,∇u)− ukuiVpk

α
(u,∇u)]φ2 dx

+
∫

R2
vl∇lu

i(−Wui(u,∇u) + Vpk
α
(u,∇u)uk∇αui)φ2 dx

= −
∫

R2
(∇αvl∇lu

i + vl∇l∇αui)Wpi
α
(u,∇u)φ2 dx

−
∫

R2
(vl∇lu

i)Wpi
α
(u,∇u)∇αφ2 dx−

∫

R2
vl∇lu

iWui(u,∇u)φ2 dx

= −
∫

R2
∇αvl∇lu

iWpi
α
(u,∇u)φ2 dx−

∫

R2
(vl∇lu

i)Wpi
α
(u,∇u)∇αφ2 dx

+ 2
∫

R2
vlW (u,∇u)φ∇lφdx.

Combing above three identities yields

d

dt

∫

R2
W (u,∇u)φ2 dx +

∫

R2
|ut + (v · ∇)u|2φ2 dx

= −
∫

R2
∇αvk∇kuiWpi

α
(u,∇u)φ2 dx−

∫

R2
(ui

t + vk∇kui)Wpi
α
(u,∇u)∇αφ2 dx

+ 2
∫

R2
vkW (u,∇u)φ∇kφdx

≤ −
∫

R2
∇αvk∇kuiWpi

α
(u,∇u)φ2 dx +

1
2

∫

R2
|ut + (v · ∇)u|2φ2 dx

+ C

∫

R2
|∇u|2|∇φ|2 dx + 2

∫

R2
vk W (u,∇u)φ∇k φ dx.

(3.12)

Integrating (3.11) and (3.12) in t on [0, s] leads to

∫

R2
e(u(·, s), v(·, s))φ2 dx +

∫ s

0

∫

R2
(|∇v|2 +

1
2
|ut + (v · ∇)u|2)φ2 dxdt

≤
∫

R2
e(u0, v0)φ2 dx +

∫ s

0

∫

R2
(|v|2 + |∇u|2 + 2P )viφ∇xiφ dxdt

+ 2
∫ s

0

∫

R2
(v · ∇)ukWpk

i
(u,∇u)φ∇xiφdxdt + 2

∫ s

0

∫

R2
vlW (u,∇u)φ∇lφdx

+ C

∫ s

0

∫

R2
(|v|2 + |∇u|2)(|∇φ|2 + |φ| | 4 φ|) dxdt.

(3.13)

This, together with (3.1), shows immediately that

∫

BR(x0)

(|v(·, s)|2 + |∇u(·, s)|2) dx +
∫ s

0

∫

R2
(|∇v|2 +

1
2
|ut + (v · ∇)u|2)φ2 dxdt

≤
∫

B2R(x0)

(|v0|2 + |∇u0|2) dx + C

∫ s

0

∫

R2
(|v|2 + |∇u|2 + |P |)|v||φ||∇φ| dxdt

+ C
s

R2

∫

R2
(|v0|2 + |∇u0|2) dx.

(3.14)
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It follows from Hölder inequality, (3.1) and (3.9) that
∫ s

0

∫

R2
(|v|2 + |∇u|2)|v||φ||∇φ| dxdt

≤ C

∫ s

0

∫

R2
(|v|2 + |∇u|2) |v|

R
dxdt

≤ C

(∫ s

0

∫

R2
(|v|4 + |∇u|4)dx dt

) 1
2

(∫ s

0

∫

R2

|v|2
R2

dx dt

)

≤ Cε
1
2
s

1
2

R

(
1 +

s

R2

) 1
2

∫

R2
e(u0, v0)dx.

(3.15)

Similarly,

∫ s

0

∫

R2
|P ||v||φ||∇φ| dxdt ≤C

∫ s

0

∫

R2
|p| |v|

R
dx dt

≤C

(∫ s

0

∫

R2
|P |2 dx dt

) 1
2

(∫ s

0

∫

R2

|v|2
R2

dx dt

) 1
2

≤C
s

1
2

R

(∫

R2
e(u0, v0)dx

) 1
2

(∫ s

0

∫

R2
|P |2 dxdt

) 1
2

(3.16)

for R ≤ R0.

On the other hand, it follows from the relation that

4P = −∇xixj

[
∇xiu

kWpk
j
(u,∇u) + vjvi

]
on R2 × (0, T ],

due to (1.5), and the Calderon-Zygmund estimate (cf. [CKN]) that
∫ s

0

∫

R2
|P |2 dx dt ≤ C

∫ s

0

∫

R2
(|∇u|4 + |v|4) dx dt ≤ C ε1

(
1 +

s

R2

)∫

R2
e(u0, v0)dx.

This, together with (3.16), yields

(3.17)
∫ s

0

∫

R2
|P | |v| |ϕ| |∇φ| dx dt ≤ C

s
1
2

R

(
1 +

s

R2

) 1
2

ε
1
2
1

∫

R2
e(u0, v0)dx.

The desired estimate (3.10) now follows from (3.14), (3.15) and (3.17). ¤

Lemma 10. Let u ∈ V (0, T ) and v ∈ H(0, T ) be a solution of (1.5)-(1.7) with
initial value (u0, v0) ∈ H1

b (R2, S2)×L2(R2,R3) and div v0 = 0. Assume that there
are constants ε1 and R0 > 0 such that

ess sup
0≤t≤T,x∈R2

∫

BR(x)

|∇u(·, t)|2 + |v (·, t) |2 dx < ε1

for any R ∈ (0, R0]. Let τ be any positive constant. Then, for t ∈ [τ, T ], it holds
that

(3.18)
∫

R2
|∇2u(x, t)|2 + |∇v(x, t)|2 dx ≤ C τ−1(1 + TR−2).
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Moreover, u and v are regular for all t ∈ (0, T ).

Proof. Note that, in a-priority,
∫
R2 |4 v|2 and

∫
R2 |∇3u|2 might not be finite. How-

ever, by a standard cut-off argument, we can assume that
∫
R2 |4v|2 and

∫
R2 |∇3u|2

are finite without loss of generality in the following proof.

Multiplying (1.5) by 4vi and integrating by parts, we obtain

1
2

d

dt

∫

R2
|∇v|2 dx +

∫

R2
| 4 v|2 dx

=
∫

R2
(v · ∇vi)4 vi dx +

∫

R2
∇j [∇iu

kWpk
j
(u,∇u)]4 vi dx

≤ 1
4

∫

R2
| 4 v|2 dx + C

∫

R2
|v · ∇v|2 dx + C

∫

R2
(|∇2u|2 + |∇u|4)|∇u|2 dx.

(3.19)

Differentiating (1.7) in xβ , multiplying the above equation by ∇β 4 ui and then
integrating by parts, one can obtain

− 1
2

d

dt

∫

R2
| 4 u|2 dx +

∫

R2

[
(∇βv · ∇)ui + (v · ∇)∇βui

]∇β 4 ui dx

=
∫

R2

[∇β∇α

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]−∇βWui(u,∇u)
]∇β 4 ui dx

+
∫

R2
∇β [Wuk(u,∇u)ukui + Wpk

α
(u,∇u)∇αukui]∇β 4 ui dx

+
∫

R2
∇β [Vpk

α
(u,∇u)uk∇αui]∇β 4 ui dx.

(3.20)

The first term on the righthand side of (3.20) is a bit more complicated. Since
W (u, p) is quadratic in p, we have

∇2
γβWpi

α
(u,∇u) = ∇γ [Wujpi

α
(u,∇u)∇βuj + Wpi

α
(u,∇∇βu)]

= Wujpi
α
(u,∇u)∇2

γβuj + Wujukpi
α
(u,∇u)∇γuk∇βuj

+ Wpj
l pi

α
(u,∇∇βu)∇3

βγlu
j + Wujpi

α
(u,∇∇βu)∇γuj .

(3.21)

Then, integrating by parts and using Young’s inequality, we have

∫

R2
∇β∇αWpi

α
(u,∇u)∇β 4 ui dx =

∫

R2
∇2

γβWpi
α
(u,∇u)∇3

γβαui dx

≥ a

4

∫

R2
|∇3u|2 dx− C

∫

R2
|∇u|2(|∇u|4 + |∇2u|2) dx.

(3.22)

Note that |u|2 = 1 implies

ui∇β 4 ui +∇βui 4 ui = −∇β |∇u|2.
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By this identity, one can estimate the second term and the last term on the right-
hand of (3.20) as follows:

∫

R2
∇β [∇α

(
ukuiVpk

α
(u,∇u)

)− Vpk
α
(u,∇u)uk∇αui]∇β 4 ui dx

=
∫

R2
∇2

αβ

(
ukVpk

α
(u,∇u)

)
ui∇β 4 ui dx

+
∫

R2
∇βui∇α

(
ukVpk

α
(u,∇u)

)∇β 4 ui dx

≤a

4

∫

R2
|∇3u|2 dx + C

∫

R2
|∇u|2(|∇2u|2 + |∇u|4) dx.

(3.23)

The other terms can be estimated easily in (3.20). Then it follows from (3.20)-(3.23)
that

1
2

d

dt

∫

R2
| 4 u|2dx +

a

4

∫

R2
|∇3u|2 dx

≤C

∫

R2
|∇v|2|∇u|2 + |v|2|∇2u|2 + (|∇2u|2 + |∇u|4)|∇u|2 dx.

(3.24)

It follows from −u · 4u = |∇u|2, (3.18) and (3.24) that

d

dt

(∫

R2
|∇2u|2 + |∇v|2

)
+

a

4

∫

R2

(|∇3u|2 + |∇2v|2) dx

≤C

∫

R2
(|v|2 + |∇u|2) (|∇v|2 + |∇2u|2) dx.

(3.25)

By the Gagliardo-Nirenberg-Sobolev inequality, one has

C

∫

R2
(|v|2 + |∇u|2)(|∇v|2 + |∇2u|2)dx

≤ C

(∫

R2
(|v|4 + |∇u|4)dx

) 1
2

(∫

R2
(|∇v|4 + |∇2u|4)dx

) 1
2

≤ C

(∫

R2
(|∇v|2 + |∇2u|2)dx

) 1
2

(∫

R2
(|∇2v|2 + |∇3u|2)dx

) 1
2

·
(∫

R2
(|v|4 + |∇u|4)dx

) 1
2

≤ a

8

∫

R2
(|∇2v|2 + |∇3u|2)dx +

(
C

∫

R4
(|v|4 + |∇u|4)dx

)

·
(∫

R2
(|∇v|2 + |∇2u|2)dx

)
.

This, together with (3.25), shows that for t ∈ (0, T ),

d

dt

∫

R2
(|∇v(x, t)|2 + |∇2u(x, t)|2)dx +

a

8

∫

R2
(|∇2v(x, t)|2 + |∇3u(x, t)|2)dx

≤
(

C

∫

R2
(|∇u|4 + |v|4)dx

) ∫

R2
(|∇v(x, t)|2 + |∇2u(x, t)|2)dx.

(3.26)
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It follows from (3.9), (3.26), and Gronwall’s inequality that for any s and t with
τ ≤ s < t ≤ T ,

∫

R2
(|∇v|2 + |∇2u|)(x, t) dx

≤
(
eC
R t

s

R
R2 (|∇u|4+|v|4)(x,t) dx dl

)(∫

R2
(|∇v|2 + |∇2u|2)(x, s) dx

)

≤
(

eC ε1(1+TR−2)

∫

R2
e(u0, v0)dx

) ∫

R2
(|∇v|2 + |∇2u|2)(x, s)dx

(3.27)

Thanks to (3.8), (3.27), and the mean value theorem, we conclude that

sup
τ≤t≤T

∫

R2
(|∇2u|+ |∇v|2)(·, t)dx

≤Cτ−1(1 + TR−2)E(u0, v0) eC ε1(1+TR−2)E(u0,v0)

(3.28)

for any τ > 0. Then, by a similar proof as in Lemma 4, we can show that u belongs
to C1/8(R2 × [τ, T ] for any τ > 0. In the appendix below (Section 5), we can show
that (u, v) is regular for all t ∈ (0, T ]. ¤

Remark. Let u ∈ V (0, T ) and v ∈ H(0, T ) be a solution of (1.5)-(1.7) with initial
values u0 ∈ H2

b (R2; S2), v0 ∈ H1(R2;R2) and div v0 = 0. Assume that there are
constants ε1 and R0 > 0 such that

ess sup
0≤t≤T,x∈R2

∫

BR(x)

|∇u(·, t)|2 + |v (·, t) |2 dx < ε1

for any R ∈ (0, R0]. Then, for t ∈ [0, T ], we have

sup
0≤t≤T

∫

R2
(|∇2u(x, t)|2 + |∇v(x, t)|2) dx

≤ C3(1 + TR−2)E(u0, v0) eCε1(1+TR−2)E(u0,v0),

(3.29)

with C3 = C(||u0||H2
b

+ ||v0||H1).

We are not able to prove the uniqueness of solutions to (1.5)-(1.9) for initial
value in H1 × L2 as one in [St1; Lemma 3.12]. However, we obtain

Lemma 11. Let (u1, v1), (u2, v2) ∈ V (0, T ) × H(0, T ) be two smooth solutions
of (1.5)-(1.7) with smooth initial values (u0, v0) ∈ H2

b (R2; S2) × H1(R2;R2) and
div v0 = 0. Then (u1, v1) = (u2, v2).

Proof. Following the proof of Proposition 15 in the Appendix, we can assume that

|∇u1|+ |∇u2|+ |v1|+ |v2| ≤ C

for a constant C > 0. For simplicity, we set in (1.7)

B(u,∇u) :=−Wui(u,∇u) + Wuk(u,∇u)ukui + Wpk
α
(u,∇u)∇αukui

+ Vpk
α
(u,∇u)uk∇αui
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It follows from (1.7) that

1
2

d

dt

∫

R2
|(u1 − u2)|2 dx +

∫

R2
(Wpi

α
(u1,∇u1)−Wpi

α
(u2,∇u2))∇α(ui

1 − ui
2) dx

=
∫

R2
(uj

1u
i
1Vpj

α
(u1,∇u1)− uj

2u
i
2Vpj

α
(u2,∇u2))∇α(ui

1 − ui
2) dx

−
∫

R2
[−B(u1,∇u1) + B(u2,∇u2) + (v1 · ∇u1)− (v2 · ∇)u2] · (u1 − u2) dx

:= I5 + I6.

(3.30)

By Young’s inequality, the last term on the right hand of the above identity can be
estimated as

I6 = −
∫

R2
[−B(u1,∇u1) + B(u2,∇u2) + (v1 · ∇u1)− (v2 · ∇)u2] · (u1 − u2) dx

≤ C

∫

R2
|u1 − u2|2 + |v1 − v2|2 dx +

a

4

∫

R2
|∇(u1 − u2)|2 dx.

The difficult part is to estimate I5. Using an uniform open ball covering of R2, we
can estimate only the local integral

∫

Br0 (x0)

(uj
1u

i
1Vpj

α
(u1,∇u1)− uj

2u
i
2Vpj

α
(u2,∇u2))∇(u1 − u2) dx.

Now we can think about in the equation (1.7) with ∂u
∂x3

= 0 in a domain of R3.

After a rotation R ∈ O(3), the integrand (1.2) has the following invariant property:

W (Ru,R∇uRT ) = W (u,∇u).

Therefore, the system (1.5)-(1.7) is invariant for a rotation. Without loss of general-
ity, we can assume that u0(x0) = (0, 0, 1). Since u1 and u2 are uniformly continuous
in (x, t) ∈ R2 × [0, τ ] for some τ > 0, there exists a constant r0 > 0 such that for
any (x, t) ∈ Br0(x0)× [0, τ ]

|u1(x, t)− u0(x0)| ≤ ε, |u2(x, t)− u0(x0)| ≤ ε.

Then
∫

Br0 (x0)

(uj
1u

i
1Vpj

α
(u1,∇u1 −∇u2)∇α(ui

1 − ui
2) dx

≤ Cε

∫

Br0 (x0)

|∇(u1 − u2)|2 dx + C

∫

Br0 (x0)

|∇(u3
1 − u3

2)|2 dx.

It follows from |u| = 1 that

u3∇lu
3 = −u1∇lu

1 − u2∇lu
2.
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Then an elementary calculation shows that

|∇(u3
1 − u3

2)| ≤ C|u1 − u2|+ Cε|∇(u1 − u2)|.

By a covering argument, we apply all above estimates to obtain

I5 ≤ Cε

∫

R2
|∇(u1 − u2)|2 dx + C

∫

R2
|(u1 − u2)|2 dx.

Therefore, choosing ε sufficiently small yields
(3.31)
1
2

d

dt

∫

R2
|(u1− u2)|2 dx +

a

2

∫

R2
|∇(u1− u2)|2 dx ≤ C

∫

R2
|(u1− u2)|2 + |v1− v2|2 dx

Using (1.5) and (1.6), one can obtain

1
2

d

dt

∫

R2
|v1 − v2|2 dx +

∫

R2
|∇(v1 − v2)|2 dx

≤ C̃

∫

R2
(|v1 − v2|2 + |u1 − u2|2 + |∇(u1 − u2)|2) dx +

1
2

∫

R2
|∇(v1 − v2)|2 dx.

(3.32)

Combining (3.31) with (3.32) gives

1
2

d

dt

∫

R2
(C̃|u1 − u2|2 +

a

4
|v1 − v2|2) dx ≤ C

∫

R2
(C̃|u1 − u2|2 +

a

4
|v1 − v2|2) dx.

(3.33)

Integrating (3.33) in t and applying the Gronwall inequality, we conclude
∫

R2
(C̃|u1−u2|2 +

a

4
|v1−v2|2)(·, t) dt ≤ C

∫

R2
(C̃|u1−u2|2 +

a

4
|v1−v2|2)(·, 0) dt = 0.

This proves our claim. ¤

4. Local existence and Proof of Theorem B

In this section, we prove local existence of solutions of (1.5)-(1.7) and complete
the proof of Theorem B. Recall the notation that Ṽ (τ, t) denotes the space V (τ, t)
where S2 is replaced by R3.

Lemma 12. For a pair (u0, v0) ∈ H1
b (R2, S2)×L2(R2,R2) with div v0 = 0 in R2 in

the sense of distribution, there is a local regular solution (uε, vε) ∈ Ṽ (0, T )×H(0, T )
of (1.10)-(1.12) with initial data (1.9) for some T > 0.

Proof. Although Lin-Liu proved only the global existence of the solution to (1.10)-
(1.12) with initial data (1.9) for the case of k1 = k2 = k3, their proofs still work for
the local existence for the system (1.10)-(1.12). Thus we omit the details and refer
readers to [LL1] and [LL2]. ¤
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Theorem 13. (Local existence) For a pair (u0, v0) ∈ H1
b (R2, S2) × L2(R2,R3)

with div v0 = 0 in R2 in the sense of distribution, there is a local solution (u, v) ∈
V (0, t1)×H(0, t1) of (1.5)-(1.7) with initial value (u0, v0) for some t1 > 0.

Proof. For any map u0 ∈ H1
b (R2, S2), one can approximate it by a sequence of

smooth maps in H1
b (R2, S2). Without loss of generality, we assume that u0 ∈

H2
b (R2, S2) and v0 ∈ H1(R2,R3) with div v0 = 0 in R2 are smooth. Then thanks

to Lemma 12, there is a local regular solution (uε, vε) ∈ Ṽ ×H of (1.10)-(1.12) with
initial data (1.9).

For each pair (u, v), set

eε(u, v) = W (u,∇u) +
1

2ε2
(1− |u|2)2 + |v|2, E(u, v) =

∫

R2
eε(u, v)dx.

Then same calculations as for (3.1) give
(4.1)

E(uε(·, t), vε(·, t)) + 2
∫ t

0

∫

R2
(|∂t uε + (vε · ∇uε)uε|2 + |∇vε|2)2 dx dt = E(u0, v0).

By a similar analysis as in the proof of Lemma 8 and Lemma 7, one can show
that there exist uniform positive constants R0 and ε1, and a positive time Tε =
T (ε,R0, ε1) such that the problem (1.10)-(1.12) with initial data (1.9) has a regular
solution (uε, vε) ∈ Ṽ (0, Tε) × H(0, Tε) for each fixed ε > 0, and furthermore, it
holds that

(4.2) sup
0≤t≤Tε

∫

BR(x0)

|∇uε(·, t)|2 + |vε(·, t)|2 +
1

2ε2
(1− |uε(·, t)|2)2 dx < ε1

for any positive R ≤ R0.

Next, we will show that there is a constant t1 > 0, independently of ε, such that
Tε ≥ t1 and the solutions (uε, vε) is bounded in Ṽ (0, t1)×H(0, t1) uniformly in ε.

First, we claim that for all t ∈ [0, min{1, Tε}]

(4.3)
1
2
≤ |uε(x, t)| ≤ 3

2
.

To verify (4.3), we re-scale the solution by

ũ(x, t) = uε(εx, ε2t), ṽ(x, t) = εvε(εx, ε2t), P̃ (x, t) = ε2Pε(εx, ε2t).

Then (ũ, ṽ) solves the following approximate Ericksen-Leslie system

(4.4) ṽi
t + (ṽ · ∇)ṽi −4ṽi +∇xi P̃ = −∇xj (∇xi ũ

k Wpk
j
(ũ,∇ũ)),

(4.5) ∇ · ṽ = 0,
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(4.6) ũi
t + (ṽ · ∇)ũi = ∇α

[
Wpi

α
(ũ,∇ũ)

]−Wui(ũ,∇ũ) + ũi(1− |ũ|2)

for i = 1, 2, 3, with initial data

(4.7) ṽ(x, 0) = ṽ0(x), ũ(x, 0) = ũ0(x), ∀x ∈ R2,

where ũ0(x) = u0(εx) and ṽ0(x) = εv0(εx) satisfy
∫

R2
e(ũ0(x), ṽ0(x)) dx =

∫

R2
e(u0(x), v0(x)) dx.

The condition (4.2) becomes

(4.8) ess sup
0≤t≤Tε

ε2 ,x∈R2

∫

B R
ε

(x)

|∇ũ(·, t)|2 +
1
2
(|1− |ũ(·, t)|2)2 + |ṽ|2 dx < ε1

for any R ∈ (0, R0]. While the basic energy identity (4.1) becomes

∫

R2

[
W (ũ,∇ũ) +

1
2
(1− |ũ|2)2

]
(·, t)dx

+
∫ t

0

∫

R2
(|∂t ũ|2 + |∂t ũ + (ṽ · ∇)ũ|2)(·, t)dx dt = E(u0, v0)

(4.9)

for all t ∈ (0, Tε

ε2 ).

Without loss of generality, we assume Tε ≤ 1. Let τ be the maximal time in
[0, Tε

ε2 ] such that

(4.10)
1
4
≤ |ũ(x, t)| ≤ 2.

By (4.1) and similar arguments as for Lemma 8, one can derive from (4.4)-(4.6)
that there exists a uniform constant C0 such that

C0

∫ τ

0

∫

R2

(|∇2ũ|2 + |∇ṽ|2) dx dt

≤ −
∫ τ

0

∫

R2
4ũ · ũ(1− |ũ|2) dx dt + C

∫

R2
|∇u0|2 + |v0|2 dx

+ C

∫ τ

0

∫

R2
|∇ũ|4 + |ṽ|4 dx dt.

(4.11)

Integration by parts yields

−
∫ τ

0

∫

R2
4ũ · ũ(1− |ũ|2) dx dt

=
∫ τ

0

∫

R2
|∇ũ|2(1− |ũ|2) dx dt− 1

2

∫ τ

0

∫

R2
|∇|ũ|2|2 dxdt

(4.12)
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By Young’s inequality and using (4.1), (4.6) and (4.10), one can obtain

∫ τ

0

∫

R2
|∇ũ|2(1− |ũ|2) dx dt ≤ η

∫ τ

0

∫

R2
(1− |ũ|2)2 dx dt + C

∫ τ

0

∫

R2
|∇ũ|4 dx dt

≤ η

∫ τ

0

∫

R2
|∇2u|2 dx dt + C

∫ τ

0

∫

R2
|∇ũ|4 dx dt + C

∫

R2
(|∇u0|2 + |v0|2) dx

(4.13)

for a small constant η.

Combining (4.11)-(4.13) and choosing ε1 sufficiently small in (4.2) with Lemma
2, we conclude that
(4.14)∫ τ

0

∫

R2

(|∇2ũ|2 + |∇ṽ|2) dx dt+
∫ τ

0

∫

R2
(1−|ũ|2)2 dx dt ≤ C(1+

τε2

R2
)
∫

R2
e(u0, v0) dx

for any R ≤ R0.

It follows also from Lemma 2, (4.8), (4.9), and (4.14) that

(4.15)
∫ τ

0

∫

R2
(|∇ũ|4 + |ṽ|4) dx dt ≤ C ε1

(
1 +

τε2

R2

)
E(u0, v0)

for any R ≤ R0.

Now following the calculation for (3.25), one can derive that for any t ∈ (0, τ),

d

dt

(∫

R2
(|∇2 ũ|2 + |∇ṽ|)(·, t)dx

)
+

a

4

∫

R2
(|∇3ũ|2 + |∇2ṽ|)(·, t)dx

≤ C

∫

R2
(|ṽ|2 + |∇ũ|2)(|∇ṽ|2 + |∇2ũ|2)(·, t)dx

+ C

∣∣∣∣
∫

R2
∇β(ũi(1− |ũ|2)) · ∇β 4 ũi dx

∣∣∣∣ + C

∫

R2
|∇ũ|6 (·, t)dx.

(4.16)

Note that

C

∣∣∣∣
∫

R2
∇β(ũi(1− |ũ|2)) · ∇β 4 ũi dx

∣∣∣∣

= C

∣∣∣∣
∫

R2
4(ũi(1− |ũ|2)) · 4ũi dx

∣∣∣∣

≤ C

∫

R2
|∇2ũ(·, t)|2dx + C

∫

R2
|∇ũ(·, t)|4 dx

(4.17)

and

C

∫

R2
|∇ũ(·, t)|6 dx = − C

∫

R2
|∇ũ(·, t)|4 ũ · 4ũ dx− C

∫
∇α(|∇ũ|4)ũ · ∇α ũ dx

≤ C

2

∫

R2
|∇ũ(·, t)|6 dx + C

∫

R2
|∇ũ(·, t)|2 |∇2ũ(·, t)|dx.

(4.18)
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It follows from (4.16)-(4.18) that

d

dt

(∫

R2
(|∇2ũ|2 + |∇ṽ|2)(·, t)dx

)
+

a

4

∫

R2
(|∇3ũ|2 + |∇2ṽ|2)(·, t)dx

≤C

∫

R2
(|ṽ|2 + |∇ũ|2)(|∇ṽ|2 + |∇2ũ|2)dx + C

(∫

R2
(|∇2ũ(·, t)|2 + |∇ũ(·, t)|4)dx

)

Using the Gagliardo-Nirenberg-Sobolev’s inequality, one can get

C

∫

R2
(|ṽ|2 + |∇ũ|2)(|∇ṽ|2 + |∇2ũ|2)dx

≤ C

(∫

R2
(|ṽ|4 + |∇ũ|4)dx

) 1
2

(∫

R2
(|∇ṽ|4 + |∇2ũ|4)dx

) 1
2

≤ C

(∫

R2
(|∇ṽ|2 + |∇2ũ|2)dx

) 1
2

(∫

R2
(|∇2ṽ|2 + |∇3ũ|2)dx

) 1
2

·
(∫

R2
(|ṽ|4 + |∇ũ|4)dx

) 1
2

≤ a

8

∫

R2
(|∇2ṽ|2 + |∇3ũ|2)dx +

(
C

∫

R2
(|ṽ|4 + |∇ũ|4)dx

)

·
∫

R2
(|∇ṽ|2 + |∇2ũ|2)dx.

This, together with (4.18), shows that

d

dt

∫

R2
(|∇2ũ|2 + |∇ṽ|2)(·, t)dx +

a

8

∫

R2
(|∇3ũ|2 + |∇2ṽ|)(·, t)dx

≤
(

C

∫

R2
(|ṽ|4 + |∇ũ|4)(·, t)dx

) ∫

R2
(|∇2ũ|2 + |∇ṽ|2)(·, t)dx + h(t)

(4.19)

with

(4.20) h(t) = C

∫

R2
(|∇2ũ|2 + |∇ũ|4)(·, t)dx.

It then follows from (4.14), (4.15), (4.19)-(4.20), and Gronwall’s inequality that
for all t ∈ (0, τ),

∫

R2
(|∇2ũ|2 + |∇ṽ|2)(·, t)dx

≤ eC
R t
0

R
R2 (|ṽ|4+|∇ũ|4)(·,l)dx dl ·

∫

R2
(|∇2u0|2 + |∇v0|2)dx

+
∫ t

0

eC
R t

s

R
R2 (|∇ũ|4+|ṽ|4)(·,l)dx dl · h(s) ds

≤ eCε1(1+
τε2

R2 ) E(u0,v0)

(
||u0||2H2 + ||v0||2H1 +

∫ t

0

h(s)ds

)

≤
(
||u0||2H2 + ||v0||2H1 + C

(
1 +

τε2

R2

)
E(u0, v0)

)
eCε1(1+

τε2

R2 ) E(u0,v0).

(4.21)
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Suppose that there is a x1 ∈ R2 such that |ũ(x1, t)| < 1/2 (or |ũ(x1, t)| > 3
2 )

with some t ∈ [0, τ ]. It follows from (4.21) that ũ is C
1
8 -continuous uniformly in

(x, t). Then, there is a constant C4 so that for x ∈ B1/4C4(x1) with 1
4C4

< R0
ε , we

have
(1− |ũ(x, t)|2)2 ≥ 1

2
.

Then
1
2

∫

B 1
4C4

(x1)

(1− |ũ(x, t)|2)2 dx ≥ 1
8
|B 1

4C4
(0)| > ε1

which contradicts (4.8) for a sufficiently small ε1. This shows that our claim (4.3)
holds for all t ∈ [0, Tε

ε ].

Finally, we show that (uε, vε) is bounded in Ṽ (0, min{Tε, 1})×H(0,min{Tε, 1})
uniformly for any positive ε < 4C4R0.

For any t ≤ min(1, Tε), it follows from (4.14) and (4.15) that

∫ t

0

∫

R2
(|∇2 uε|2 + |∇vε|2)(x, t)dx dt +

1
4ε4

∫ t

0

∫

R2
(1− |uε|2)2 dx dt

≤ C

(
1 +

t

R2

)
E(u0, v0),

(4.22)

(4.23)
∫ t

0

∫

R2
(|∇uε|4 + |vε|4)(x, t)dx dt ≤ C ε1

(
1 +

t

R2

)
E(u0, v0).

Let ϕ be the cut-off function as in the proof of Lemma 9. Then by a similar
analysis as in (3.14)-(3.17) and using (4.22)-(4.23), one can get

∫

R2
e(uε(·, t), vε(·, t))ϕ2 dx +

∫ t

0

∫

R2
(|∇vε|2 +

1
2
|∂t uε + vε · ∇uε|2)ϕ2 dx dt

≤
∫

R2
e(u0, v0)ϕ2 dx + C

t
1
2

R

(
1 +

t

R2

) 1
2

E(u0, v0)

+
∫ t

0

∫

R2

1
2ε2

(1− |uε|2)2 |vε · ∇(φ2)|dx dt.

(4.24)

On the other hand,
∫ t

0

∫

R2

1
2ε2

(1− |uε|2)2 |vε · ∇(ϕ2)| dx dt

≤ C

(∫ t

0

∫

R2

1
4ε4

(1− |uε|2)4 dx dt

) 1
2

(∫ t

0

∫

R2

|vε|2
R2

dx dt

) 1
2

≤ C
t

1
2

R

(∫

R2

1
4ε4

(1− |uε|2)2 dx dt

) 1
2

(E(u0, v0))
1
2

≤ C
t

1
2

R

(
1 +

t

R2

) 1
2

E(u0, v0)

(4.25)
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where one has used (4.1) and (4.22).

Hence,
(4.26)∫

BR(x0)

eε(uε(x, t), vε(x, t)) dx ≤
∫

BRR(x0)

e(u0, v0)dx + C
t

1
2

R

(
1 +

t

R2

) 1
2

E(u0, v0)

for any R ≤ R0. First, choosing R1 > 0 so that

(4.27)
∫

B2R1 (x0)

e(u0, v0)dx <
ε1

2

for all x0 ∈ R2. Then, set

(4.28) t1 = min
{

R1,
ε1 R1

4C(ε1 + E(u0, v0))
.

}

Then for t ≤ t1, ∫

BR(x0)

eε(uε(x, t), vε(x, t))dx < ε1

for all x0 ∈ R2 and R ≤ R1. Consequently, we have shown that there is a uni-
form t1 ≤ min{Tε, 1} such that (uε, vε) is bounded in Ṽ (0, t1) × H(0, t1) with t1
independent of ε. Letting ε → 0, we can prove the local existence of solution
(u, v) ∈ V (0, t1)×H(0, t1) with initial data (1.9). ¤

Now we complete the proof of Theorem B.

Proof of Theorem B. By Theorem 13, there is a local solution (u, v) ∈ V (0, t1) ×
H(0, t1) of (1.5)-(1.7) in R2 × [0, t1] with initial conditions (1.9) for some t1 > 0.
By Lemmas 10-11, the solution can be extended in [0, T1) for a maximal times T1

such that at T1, there is at least a singular point x1
i ∈ R2 such that

lim sup
t↗T1

∫

BR(x1
i )

e(u, v)(·, t) dx ≥ ε0

for any R ≤ R0 for some R0 > 0 and ε0 > 0. It is easy to see the solution
(u, v) ∈ V × H is regular for all t ∈ (0, T1). Then there exists a sequence of
{tn} such that the sequence (u(tn), v(tn)) converges weakly to (u(T1), v(T1)) in
H1(R2; S2)× L2(R2;R3) satisfying

∫

R2
e(u(T1), v(T1)) dx ≤

∫

R2
e(u0, v0) dx− ε0, div v(T1) = 0.

Using the energy identity, there is a finite number of singular times {Tl}L
l=1 in

Theorem B. ¤
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5. Appendix: The liquid crystal flow and regularity issue

In this section, we formulate the liquid crystal heat flow and discuss C1,α-
regularity issues for solutions of the liquid crystal flow (1.4) and the system (1.5)-
(1.7).

The liquid crystal equilibrium system in a form of vectors and tensors was derived
by Hardt, Lin and Kinderlehler in [HLK] using the Lagrange multiplier method,
but we need a precise form of (1.3) in coordinates.

Let φ be a smooth functional in C∞0 (Ω,R3). We consider a variation

ut(x) =
u + tφ

|u(x) + tφ(x)| =
u + tφ

(1 + 2tu · φ + t2φ2)1/2

and compute
dut

dt
= φ− (u + tφ)(u · φ + t|φ|2)

(1 + 2tu · φ + t2φ2)1/2
.

To derive the Euler-Lagrange equations, we compute

d

dt

∫

Ω

W (ut,∇ut) dx

∣∣∣∣
t=0

= 0.

This implies ∫

Ω

(
Wuj

duj
t

dt
+ Wpi

α

d∇αui
t

dt

)∣∣∣∣∣
t=0

dx = 0,

where Wpi
α
(u, p) = ∂W

∂pi
α

and Wui = ∂W
∂ui . Note

dui
t

dt

∣∣∣∣
t=0

= φi − ui(u · φ),
d∇αui

t

dt

∣∣∣∣
t=0

= ∇αφi −∇αui(u · φ)− ui∇α(u · φ).

We conclude that
∫

Ω

Wuj (u,∇u)
[
φj − uj(u · φ)

]

+ Wpi
α
(u,∇u)

[∇αφi −∇αui(u · φ)− ui∇α(u · φ)
]

dx = 0

(5.1)

for any φ ∈ C∞0 (Ω,R3). Therefore, we call that u ∈ H1(Ω, S2) is a weak solution
to the liquid crystal system if u satisfies

−∇α

[
Wpi

α
(u,∇u)− ukuiWpk

α
(u,∇u)

]
+ Wui(u,∇u)

−Wuk(u,∇u)ukui −Wpk
α
(u,∇u)∇αukui −Wpk

α
(u,∇u)uk∇αui = 0

in the sense of distribution. Note |u|2 = 1, then ui∇ui = 0. This system is the
exact form of (1.3).

Then, the liquid crystal flow can be formulated as in (1.4), i.e.,

∂ui

∂t
=∇α

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]−Wui(u,∇u)

+ Wuk(u,∇u)ukui + Wpk
α
(u,∇u)∇αukui + Vpk

α
(u,∇u)uk∇αui.
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Next, we will prove that a Hölder continuous solution of (1.4) belongs to C1,α

for some α with 0 < α < 1. For any point z0 = (x0, t0) ∈ Ω× [0,R) and any number
R > 0, we use standard notations:

B(x0, R) = {x ∈ R3 : |x− x0| < R}, Q(z0, R) = B(x0, R)× (t0 −R2, t0),

SR(z0) = B(x0, R)× {t0 −R2} ∩ ∂B(x0, R)× (t0 −R2, t0).

Proposition 14. Let Ω be a domain in R3 with smooth boundary ∂Ω. Let u be a
weak solution of (1.4) and Hölder continuous in Ω × [0, T ). Then, ∇u is (locally)
Hölder continuous with the same exponent in Ω× [0, T ).

Proof. Assume that u(x, t) is Hölder continuous with exponent β, 0 < β < 1.
Let (x0, t0) ∈ Ω × (0, T ) with Q4R0(z0) ⊂ Ω × (0, T ) for some R0 > 0. Note
u(x0, t0) = e ∈ S2. After a rotation, we can assume that e = (0, 0, 1).

It follows from |u| = 1 and Cauchy’s inequality that

(5.2) |u3|2 |∇u3|2 ≤ (1− |u3|2)|∇u|2 ≤ 2|u− u(x0, t0)||∇u|2.

Denote
p̃ = (pj

α)3×2.

Using the structure of W (u, p), we can write

Wp̃(u,∇u) = W̃p̃(u,∇u1,∇u2) + f(u,∇u3),

where |f(u,∇u3)| ≤ C|∇u3|.
Let ṽ = (v1, v2) be the solution of the Cauchy-Dirichlet problem

vi
t = ∇α

[
Wp̃i

α
(e,∇v1,∇v2)

]
in QR(z0)

vi = ui on SR(z0).

(5.3)

for i = 1, 2. Since (5.3) is a parabolic system with constant coefficients, it follows
from Proposition 1.2 in [GS; Proposition 1.2] that for all ρ ≤ R ≤ R0

∫

Qρ

|∇ṽ|2 dz ≤ C
( ρ

R

)5
∫

QR

|∇ṽ|2 dz

and ∫

Qρ

|∇ṽ − (∇ṽ)ρ|2 dz ≤ C
( ρ

R

)7
∫

QR

|∇ṽ − (∇ṽ)R|2 dz.

Set w̃ = ũ− ṽ. Then for all ρ < R, we have

(5.4)
∫

Qρ

|∇u|2 dz ≤ C
( ρ

R

)5
∫

QR

|∇u|2 dz + C

∫

QR

|∇w̃|2 dz + C

∫

QR

|∇u3|2 dz
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and

∫

Qρ

|∇u− (∇u)ρ|2 dz ≤C
( ρ

R

)7
∫

QR

|∇u− (∇u)R|2 dz + C

∫

QR

|∇w̃|2 dz

+ C

∫

QR

|∇u3|2 dz.

(5.5)

Note that u is β-Hölder continuous in Ω× [0, T ) and u(x0, t0) = (0, 0, 1).

Although there is no maximum principle for the parabolic system (5.3) with
constant coefficients, Giaquinta-Struwe in [GS; page 445] obtained that

sup
QR

|v − u(x0, t0)| ≤ C sup
QR

|u− u(x0, t0)|

with a constant C independent of R and u. This implies

(5.6) |w̃| ≤ |u− u(x0, t0)|+ |v − u(x0, t0)| ≤ CRβ .

Multiplying the difference between (5.3) and (1.4) by w̃i (i = 1, 2) and integrating
over QR lead to

∫

BR

|w̃|2(·, t0) dx +
∫

QR

2∑

i=1

∇αw̃iWp̃i
α
(e,∇w̃) dx

≤
∫

QR

2∑

i=1

|∇αw̃i| |W̃p̃i
α
(e,∇ṽ)− W̃p̃i

α
(u,∇ũ)| dx + C

∫

QR

|∇u3||∇w̃| dx

+
∫

QR

2∑

i=1

3∑

k=1

∇αw̃iuiukVpk
α
(u,∇u) + C

∫

QR

|w̃||∇u|2 dx.

(5.7)

Since u is β-Hölder continuous and u(x0, t0) = (0, 0, 1), we have |ui| ≤ CRβ for
i = 1, 2. Applying Young’s inequality and (5.2) yields

(5.8)
∫

QR

|∇w̃|2 dz ≤ CRβ

∫

QR

|∇u|2 dz.

It follows that for all ρ < R,

(5.9)
∫

Qρ

|∇u|2 dz ≤ C
( ρ

R

)5
∫

QR

|∇u|2 dz + CRβ

∫

QR

|∇u|2 dz.

We claim the following Cacciopoli’s inequality

(5.10)
∫

Q(z0,R)

|∇u|2 dz ≤ C
1

R2

∫

Q(z0,2R)

|u− u2R|2 dz ≤ CR3+2β .

for any z0 ∈ Ω× (0,∞) and R ≤ R0, where u2R is the average of u in Q2R(x0, t0).
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Next, we prove this claim. Let ξ be a cut-off function in C∞0 (B2R(x0)) with
0 ≤ ξ ≤ 1, ξ ≡ 1 in BR(x0) and |∇ξ| ≤ C

R . Let τ ∈ C∞(R,R) be a function depends
only on t with 0 ≤ τ ≤ 1, τ ≡ 1 on [t0 − R2, t0] and τ ≡ 0 on (−∞, t0 − 4R2) and
|∂tτ | ≤ C/R2.

Testing (1.4) with φ = (ui − ui
2R)ξ2τ2I(−∞,t0) for i = 1, 2, where I(−∞,t0) is the

characteristic function of (−∞, t0), we have

∫

B2R(x0)

|u(·, t0)− u2R|2ξ2τ2(t0) dx +
∫

Q2R(z0)

2∑

i,j=1

Wpi
αpj

β
∇αui∇αujξ2τ2 dz

≤ 2
∫

Q2R(z0)

[
Wpi

α
(u,∇u)− ukuiVpk

α
(u,∇u)

]∇αξ(ui − ui
2R)ξτ2 dz

+ C

∫

Q2R(z0)

|∇u|2|u− u2R|ξ2τ2 dz + 2
∫

Q2R(z0)

|u− u2R|2ξ2τ∂tτ dz

+
∫

Q2R(z0)

ukuiVpk
α
(u,∇u)∇α(ui − ui

2R)ξ2τ2 dz + C

∫

Q2R(z0)

|∇u3|2ξ2τ2 dz.

Since u is β-Hölder continuous and u(x0, t0) = (0, 0, 1), u(x, t)−u2R can be chosen
sufficiently small when R0 is small and |u1| + |u2| is also small. We need to deal
with the above last term. By (5.2), the term |∇u3|2 is also good. By Young’s
inequality, the claim (5.10) is proved.

Using (5.9) and (5.10), a standard iteration (cf. [G], Chapter III, Lemma 2.1)
yields that for all ρ ≤ R0, one has

(5.11)
∫

Qρ

|∇u|2 dz ≤ Cρ3+3β ,

where C depends on R0. An iteration by (5.9) and (5.10) yields that for any σ < 1,

∫

Qρ

|∇u|2 dz ≤ Cρ3+2σ.

Using (5.2) and (5.8) yields

∫

Qρ

|∇u− (∇u)ρ|2 dz ≤ C
( ρ

R

)7
∫

QR

|∇u− (∇u)R|2 dz + CRβ

∫

QR

|∇u|2 dz

≤ C
( ρ

R

)7
∫

QR

|∇u− (∇u)R|2 dz + CR3+2σ+β .

Choose σ sufficiently close to 1 so that 2σ + β > 2. Then, for all ρ ≤ R
2 , we have

∫

Qρ

|∇u− (∇u)ρ|2 dz ≤ Cρ5+2σ1

for some σ1 with 0 < σ1 < 1. This implies ∇u ∈ C1,σ1
loc and then ∇u ∈ C1,β (cf

[GS]). ¤
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Proposition 15. Let (u, v) be a weak solution of (1.5)-(1.7) in R2 × [0, T ] and
assume that u is Hölder continuous in R2 × [0, T ). Let τ be any positive constant.
For t ∈ [τ, T ], we have

∫

R2
|∇2u(x, t)|2 + |∇v(x, t)|2 dx ≤ C τ−1(1 + TR−2).

Then, (u, v) is smooth in R2 × (0, T ).

Proof. By Sobolev’s embedding Theorem, we have
∫

B1(x0)

|∇u(x, t)|p + |v(x, t)|p dx

for any p > 1 and for x0 ∈ R2 and t > τ . By a similar way to one in Lemma 5, we
can show that u is Hölder continuous in R2 × [τ, T ].

To get the higher order regularity, we rewrite (1.7) as

(5.12) ui
t −∇α

[
Wpi

α
(u,∇u)

]
= −ukui∇α

[
Vpk

α
(u,∇u)

]− (v · ∇)ui + B̃(u,∇u),

where B̃(u,∇u) is given by

B̃(u,∇u) =−Wui(u,∇u) + Wuk(u,∇u)ukui + Wpk
α
(u,∇u)∇αukui

+ Vpk
α
(u,∇u)uk∇αui −∇α

[
ukui

]
Vpk

α
(u,∇u).

Since W (u, p) is quadratic and convex in p, we can write

Wpi
α
(u,∇u) = aij

αβ(u)∇αuj .

Since u is uniformly Hölder continuous, the left-hand term of (5.12) is a parabolic
operator. Let ξ(x) be a cut-off function in BR(x0) and let τ ∈ C∞(R,R) be a
function depends only on t with 0 ≤ τ ≤ 1, τ ≡ 1 on [t0 − 1

4R2, t0] and τ ≡ 0 on
(−∞, t0 −R2) and |∂tτ | ≤ C/R2. Set φ = τξ. Multiplying (5.12) by φ, we have

(uφ)i
t −∇α

[
aij

αβ(u)∇α(ujφ)
]
− uiφt

= −ukui∇α

[
Vpk

α
(u,∇u)

]
φ− [(v · ∇)ui + B̃(u,∇u)]φ.

(5.13)

By the assumption, we have

(v · ∇)u ∈ Lp(QR(x0)), |∇u|2 ∈ Lp(QR(x0)) ∀p > 1

But the first term on the righthand of (5.13) is not a ‘good’ term, which need more
analysis. Using the fact that |u| = 1, we have

u3∇2
αβu3 = −(∇βu · ∇u + u1∇2

αβu1 + u2∇2
αβu2), u3u3

t = −(u1u1
t + u2u2

t ).

Without loss of generality, we regard the solution in R3. By a rotation, we assume

u(x0, t0) = (0, 0, 1).
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Since u is Hölder continuous, there exists a small R such that

|u(x, t)− u(x0, t0)| ≤ ε

for a sufficiently small constant ε > 0. Therefore

|∇2u3| ≤ C|∇u|2 + 2ε(|∇2u1|+ |∇2u2|)

Apply the classical Lp-estimate of parabolic systems (c.f. [Ei], [LSU]) to (5.13)
for i = 1, 2, we have

‖ũtφ‖Lp(QR(x0)) + ‖∇2(ũφ)‖Lp(QR(x0)) ≤ C‖φ∇2u3‖Lp + Cε‖φ∇2u‖Lp(QR(x0))

+ C(‖u‖L2p(QR(x0)) + ‖v‖L2p(QR(x0)) + 1),

where ũ = (u1, u2). Choosing ε sufficiently small, we obtain

‖utφ‖Lp(QR(x0)) + ‖∇2(uφ)‖Lp(QR(x0)) ≤ C.

To estimate v in (1.5), it follows from Hölder’s inequality that

∫

R2×[τ,T ]

|(v · ∇)v|p dx ≤
(∫

R2×[τ,T ]

|∇v|4 dx dt

)p/4 (∫

R2×[τ,T ]

|v| 4
4−p dx dt

) 4−p
4

for any p with 3 < p < 4. By the Lp-estimate of Stoke’s operator (e.g. [So]), vt and
∇2v are in Lp for 3 < p < 4. This implies that v is Hölder continuous.

Differentiating in xl in (5.12), we have

(∇xl
ui)t −∇α

[
aij

αβ(u)∇α(∇xl
uj)

]

= −ukui∇α

[
Vpk

α
(u,∇∇xl

u)
]
+ v#∇2u +∇v#∇u +∇u#∇2u.

By applying the Lp-theory, a similar argument yields that ∇u is uniformly contin-
uous. Then, a standard bootstrap method implies that (u, v) are smooth. ¤
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