
Analyticity of the Semigroup Associated with the Fluid-Rigid

Body Problem and Local Existence of Strong Solutions∗

November 2, 2010

Yun Wang

The Department of Mathematics and Statistics, McMaster University

1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada

Email: yunwang@math.mcmaster.ca

Zhouping Xin

The Institute of Mathematical Sciences, The Chinese University of Hong Kong

Shatin, N.T., Hong Kong, P. R. China

Email: zpxin@ims.cuhk.edu.hk

Abstract: In this paper, we consider the linear operator associated with fluid-

rigid body problem. The operator was first introduced by T.Takahashi and

M. Tucsnak [23]. For a general 3-dimensional solid body, we prove that the

corresponding semigroup is analytic in L2(R3) and L
6
5 (R3) ∩ Lp(R3)(p ≥ 2).

In particular, when the solid is a ball of R3, the corresponding semigroup is

analytic in L2(R3) ∩ Lp(R3)(p ≥ 6). This yields a local in time existence and

uniqueness of strong solutions in a non-Hilbert space.

Keywords: fluid-rigid body system, semigroup, Navier-Stokes equations, exterior

domain

AMS Subject Classifications: 35Q 76D

∗The research is supported by Zheng Ge Ru Foundation, Hong Kong RGC Earmarked Research Grants

CUHK 4040/06P and CUHK 4042/08P, and Focus Area Scheme Grant from the Chinese University of

Hong Kong.

1



1 Introduction

Many physical phenomena involve interactions between moving structures and fluids. An

interesting problem arising in fluid mechanics is the motion of a rigid body immersed in a

viscous incompressible fluid. The motion of the fluid is governed by the classical Navier-

Stokes equations with the non-slip boundary condition. The motion of the rigid body

consisting of a translation part and a rotation part, is ruled by the conservation of linear

and angular momentum.

Let the region occupied by the homogeneous rigid body at time t be denoted by O(t),

and the domain occupied by the homogeneous fluid be Ω(t) = R3 \ O(t). Let O(0) = O,

and Ω(0) = Ω. For the sake of simplicity, we assume that both the fluid and the solid are

homogeneous with density 1. Then the system modeling the motion of the fluid and the

rigid body is the following,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu+ (u · ∇)u+∇p = 0, (x, t) ∈ Ω(t)× (0, T ),

div u = 0, (x, t) ∈ Ω(t)× [0, T ),

u(x, t) = h′(t) + ω(t)× (x− h(t)), (x, t) ∈ ∂Ω(t)× [0, T ),

mh′′(t) = − ∫
∂Ω(t)(σ(u, p)�n)dΓ, t ∈ [0, T ),

Jω′(t) = − ∫
∂Ω(t)(x− h(t)) × σ(u, p)�ndΓ, t ∈ [0, T ),

u(x, 0) = a(x), x ∈ Ω,

h(0) = 0 ∈ R3, h′(0) = b ∈ R3, ω(0) = c ∈ R3.

(1.1)

Where u = (u1, u2, u3) and p denote the velocity field and the pressure of the fluid respec-

tively; �n(t) is the unit outward normal vector to ∂Ω(t); h(t) and ω(t) denote the position

of the center and the angular velocity of the solid at the time t respectively; m is the mass

of the rigid body, i.e.,

m =

∫
O(t)

dx =

∫
O
dx,

J = (Jkl) is the moment of inertia related to the mass center of the rigid body,

Jkl =

∫
O(t)

[|x− h(t)|2δkl − (x− h(t))k(x− h(t))l
]
dx =

∫
O
|x|2δkl − xkxldx,

where δkl is the Kronecker symbol, and σ(u, p) is the Cauchy stress tensor field,

σ(u, p) = −pId+ 2νD(u),

where Id is the identity matrix and D(u) is the deformation tensor

D(u) =
1

2

[∇u+ (∇u)T ] .
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There have been extensive researches on the problem (1.1) in recent years. The global

existence of weak solutions to (1.1) has already been proved by [12] and [22]. When the

fluid-rigid body system occupies a bounded domain, the existence of weak solutions has

been studied by many mathematicians, see [2, 3, 6, 7, 8, 17]. Furthermore, the collision be-

tween the solid and the domain’s boundary has been investigated, see [9, 10] and references

therein.

However, only a few results are available on the existence and uniqueness of strong

solutions. For the case that the rigid body is a disk in R2, T.Takahashi and M.Tucsnak

[23] showed the existence and uniqueness of global strong solutions. Later, P.C.Santiago

and T.Takahashi [21] extended the global existence result to general rigid body in R2. For

3-dimensional case, they proved the local existence and uniqueness of strong solutions in

C[0, T ;W 1,2(R3)) for general smooth rigid bodies, see also [5] for the local existence of

strong solutions. The research methods in [21, 23] are totally different from that of the

weak solution.

Since the domain occupied by the fluid is varying with time and not a priori known,

it’s a free boundary problem. This can be transformed into an equivalent fixed boundary

problem by moving along the center of the solid body. For example, consider the case that

O is a ball in R3. In this case, let

y = x− h(t), v(y, t) = u(y + h(t), t),

q(y, t) = p(y + h(t), t), l(t) = h′(t),

σ(v, q) = −q(y, t)Id+ 2νD(v)(y, t).

Then the problem (1.1) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− νΔv + (v · ∇)v − (l · ∇)v +∇q = 0, (y, t) ∈ Ω× (0, T ),

div v = 0, (y, t) ∈ Ω× [0, T ),

v(y, t) = l(t) + ω(t)× y, (y, t) ∈ ∂Ω × [0, T ),

ml′(t) = − ∫
∂Ω σ(v, q)�ndΓ, t ∈ [0, T ),

Jω′(t) = − ∫
∂Ω y × [σ(v, q)�n]dΓ, t ∈ [0, T ),

v(y, 0) = a(y), y ∈ Ω,

l(0) = b ∈ R3, ω(0) = c ∈ R3.

(1.2)

Remark 1.1 If O is not a ball in R3, but a general solid, similar linear transformations

can be found to fix the domain. For references, see [19] or [21].
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To study the new system (1.2), the authors of [23] and [21] applied the method of

semigroups. They extended v to a function defined on the whole space by letting v(y, t) =

l(t) + ω(t)× y in O and defined a new linear operator A2 as follows,

D(A2) = {v ∈W 1,2(R3) : div v = 0 in R3, D(v) = 0 in O, v|Ω ∈W 2,2(Ω)},

A2v =

⎧⎨
⎩

−νΔv, in Ω

2ν
m

∫
∂O
D(v)�ndΓ + 2νJ−1

[∫
∂O
y ×D(v)�ndΓ

]
× y, in O

and

A2v = PA2v,

where P is the orthogonal projector from L2(R3) onto its subspace H2
1 , where

H2
1 = {v ∈ L2(R3) : div v = 0 in R3, D(v) = 0 in O}.

Omitting the nonlinear terms (v · ∇)v and (l · ∇)v in the first equation of (1.2), one

can get the corresponding linearized system. Then A2 is the linear operator associated

with this linearized system, since [23] has proved that the linearized system equals to the

following abstract equation in some sense,⎧⎪⎨
⎪⎩

∂tv +A2v = 0,

v(y, 0) =

{
a(y), y ∈ Ω

b+ c× y, y ∈ O

In [21], it was proved that −A2 is the generator of a contraction strongly continuous

semigroup on H2
1 . In our paper, we will prove that −A2 is the generator of an analytic

semigroup {e−tA2} in H2
1 . Moreover, the corresponding operator in H

6
5
1 ∩ Hp

1 (p ≥ 2) is

also the generator of an analytic semigroup. When the solid is a ball in R3, we can even

prove its analyticity in the space H2
1 ∩Hp

1 (p ≥ 6).

As an application, we apply the Fujita-Kato approach to get the local existence and

uniqueness of strong solutions in H
6
5
1 ∩ Hp

1 (p > 3) space when the solid is a ball in R3.

Similar results hold in H2
1 ∩ Hp

1 (p ≥ 6). Note that the local strong solution derived in

[5] and [21] required the initial data at least belongs to W 1,2(R3), hence we extend the

class of initial data. Their proof relies strongly on the properties of Hilbert spaces, while

our proof applies to more general setting. When the rigid body is a general solid in R3,

the estimates about the semigroup in section 6, combined with the linear transformation

in [21], help to establishing the local existence of local strong solutions. Furthermore, we

believe that the properties of the linear operator derived here is useful for exploring more

information about the original problem.
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2 Main results and Preliminaries

Before stating the main results in this paper, we introduce some function spaces and

notations. Let O be a bounded, simply connected domain of C2 in R3, and Ω be its

exterior domain, Ω = R3 \ O. In this paper, without loss of generality, the center of O is

supposed to be the origin, i.e., ∫
O
ydy = 0 ∈ R3,

otherwise, one can translate coordinates system to achieve this. �n denotes the outer unit

normal of the boundary ∂Ω. Let m =
∫
O dy, and J = (Jkl),

Jkl =

∫
O

[|y|2δkl − ykyl
]
dy.

BR(0) is the ball in R3 centered at 0 and with the radius R. For any linear operator

A, denote the domain of A by D(A) and the range of A by R(A). Denote the complex

conjugate of a function f by f . In the case of non-confusion, we do not distinguish the

notation of vector-valued function space and scalar function space. Lp(Ω) and W k,p(Ω)

are the usual Sobolev spaces defined in the domain Ω. While Lp(R3) and W k,p(R3) are

the usual Sobolev spaces defined on R3. C∞
0,σ(Ω) consists of smooth functions defined on

Ω with compact support and divergence free.

Let

Hp
1 = {u ∈ Lp(R3) : div u = 0 in R3, D(u) = 0 in O},
Gp

1 = {u ∈ Lp(R3) : u = ∇q1, q1 ∈ L1
loc(R

3)},

Gp
2 =

⎧⎨
⎩u ∈ Lp(R3)

∣∣∣∣∣∣
div u = 0 in R3, u = ∇q2 in Ω, q2 ∈ L1

loc(Ω)

u = φ in O, and

∫
O
φ× ydy = −

∫
∂Ω
q2�n× ydΓ

⎫⎬
⎭ .

We have the following characterization of functions in Hp
1 .

Lemma 2.1 Let 1 ≤ p ≤ ∞, and u ∈ Hp
1 . Then

u(y) = lu + ωu × y, in O,

where

lu =
1

m

∫
O
udy and ωu = −J−1

∫
O
u× ydy.

Proof Since div u = 0 and D(u) = 0 in O, u must be a rigid body motion. It means

that there exist some vectors lu and ωu, such that

u(y) = lu + ωu × y in O. (2.3)
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Integrating both sides of (2.3) over the domain O to get∫
O
u(y)dy =

∫
O
ludy +

∫
O
ωu × ydy.

As
∫
O ydy = 0,

lu =
1

m

∫
O
udy.

On the other hand, multiplying both sides of (2.3) by y and integrating over O yield∫
O u(y)× ydy =

∫
O(ωu × y)× ydy

=
∫
O y(ωu · y)− ωu|y|2dy

= −Jωu,

hence,

ωu = −J−1

∫
O
u× ydy.

Recall a theorem about the decomposition of Lp(R3), which was proved in [24],

Lemma 2.2 For 1 < p <∞,

Lp(R3) = Hp
1 ⊕Gp

1 ⊕Gp
2.

Thus, for any u ∈ Lp(R3), one has

u = v +∇q1 +w ∈ Hp
1 ⊕Gp

1 ⊕Gp
2.

Set v = Ppu, where Pp is the projection operator from Lp(R3) onto Hp
1 .

As indicated in the proof of Lemma 2.2, for every u ∈ Lp(R3) ∩ Lq(R3), p 
= q,

Ppu = Pqu. Hence, we will omit the subindex of Pp, and just write P instead in this paper.

Set

D(A 6
5
∩p) =

{
v ∈W 1, 6

5 (R3) ∩W 1,p(R3)

∣∣∣∣∣ div v = 0 in R3, D(v) = 0 in O,

v|Ω ∈W 2, 6
5 (Ω) ∩W 2,p(Ω)

}
. (2.4)

For any v ∈ D(A 6
5
∩p), define

A 6
5
∩pv =

⎧⎨
⎩

−νΔv, in Ω
2ν

m

∫
∂O
D(v)�ndΓ + 2νJ−1

[∫
∂O
y ×D(v)�ndΓ

]
× y, in O

(2.5)

and

A 6
5
∩pv = PA 6

5
∩pv. (2.6)
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Similarly, one can define the space D(A2∩p), the linear operator A2∩p and operator

A2∩p, by replacing 6
5 with 2 in (2.4), (2.5) and (2.6) respectively.

Now our main results read as

Theorem 2.1 The linear operator −A2(defined in section 1) is the infinitesimal

generator of an analytic semigroup {e−tA2} of operators on the space H2
1 .

For non-Hilbert spaces, we have the following generalizations.

Theorem 2.2 For any 2 ≤ p < ∞, the linear operator −A 6
5
∩p is the infinitesimal

generator of an analytic semigroup {e−tA 6
5∩p} of operators on H

6
5
1 ∩ Hp

1 . And for every

t > 0, it holds that

‖e−tA 6
5∩p‖ ≤M1,

∥∥∥Ak
6
5
∩pe

−tA 6
5∩p

∥∥∥ ≤ M1

|t|k (2.7)

with M1 =M1(p,Ω) > 0. Then it follows that for all u ∈ H
6
5
1 ∩Hp

1 ,

lim
t→+∞

∥∥∥e−tA 6
5∩pu

∥∥∥
L

6
5 (R3)∩Lp(R3)

= 0.

The corresponding result for the classical Stokes operator Ãp in the domain Ω was

proved in [1], which reads as

Proposition 2.1 Let 1 < p < ∞, 0 < θ < π
2 . Then for every λ ∈ C with |λ| > 0,

| arg λ| ≤ π
2 + θ, the resolvent (λI + Ãp)

−1 of the operator Ãp exists and it holds

‖(λI + Ãp)
−1‖ ≤ C

|λ| for all |λ| > 0, | arg λ| ≤ π

2
+ θ,

where C = C(p, θ,Ω) > 0. And it follows that the semigroup {e−tÃp} is analytic for t ∈ C,

t 
= 0, and | arg t| < θ.

More concretely, taking into accout the result in [15] on the stokes operator on exterior

domains, we can restate Proposition 2.1 as follows:

Proposition 2.1′ Let 1 < p < ∞, 0 < θ < π
2 . Then for every λ ∈ C with |λ| > 0,

| arg λ| ≤ π
2 + θ, and every f ∈ Lp(Ω), the system⎧⎪⎨

⎪⎩
λu− νΔu+∇p = f, in Ω

div u = 0, in Ω

u(y) = 0, on ∂Ω

has a unique solution u ∈W 2,p(Ω) with the following estimates,

|λ| · ‖u‖Lp(Ω) ≤ C(p,Ω)‖f‖Lp(Ω), (2.8)
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‖D2u‖Lp(Ω) + ‖∇p‖Lp(Ω) ≤ C(p,Ω)
[‖f‖Lp(Ω) + ‖u‖Lp(Ω)

]
, (2.9)

where C(p,Ω) is some constant depending only on p and Ω.

Remark 2.1 Comparing Theorem 2.2 with Proposition 2.1, we would like to prove

that −Ap is analytic on Hp
1 . Yet, we can not achieve this at this moment. However, when

O is a ball in R3, we have some refined results.

Theorem 2.3 Suppose O is a ball of radius 1 in R3. For any 6 ≤ p < ∞, the

linear operator −A2∩p is the infinitesimal generator of an analytic semigroup {e−tA2∩p} of

operators on H2
1 ∩Hp

1 . And for every t > 0, it holds that

‖e−tA2∩p‖ ≤M, ‖Ak
2∩pe

−tA2∩p‖ ≤ M

|t|k ,

with M =M(p,Ω) > 0. Then it follows that for all u ∈ H2
1 ∩Hp

1 ,

lim
t→+∞ ‖e−tA2∩pu‖L2(R3)∩Lp(R3) = 0.

Remark 2.2 Theorem 2.2 and Theorem 2.3 are the key estimates for establishing

the local strong solution in H
6
5
1 )∩Hp

1 and H2
1 ∩Hp

1 respectively. The assumption that the

initial data of system (1.2) belongs to H2
1 is necessary in some sense, otherwise we may not

get the uniform bound of the velocity of the solid. Hence Theorem 2.3 seems better and

more reasonable. However, whether the conclusion of Theorem 2.3 holds for 2 < p < 6 is

open.

Remark 2.3 Although there are some differences between 3-dimensional case and

2-dimensional case, our proof of Theorem 2.1 and Theorem 2.3 also applies to the corre-

sponding cases in 2-dimensional space.

As an application of the above properties, we will give the local well-posed results in

the particular case that the solid is the unit ball in R3 for example. Indeed, we have

Theorem 2.4 Assume that O is a unit ball in R3 and p > 3. Let the initial data

v0(y) =

{
a(y), y ∈ Ω,

b+ c× y, y ∈ O.

Suppose v0 ∈ H
6
5
1 ∩Hp

1 , then there exists a unique local strong solution v ∈ C([0, T0];H
6
5
1 ∩

Hp
1 ) to the system (1.2), and v satisfies

t
1
2 v(y, t) ∈ C([0, T0];W

1, 6
5 (R3) ∩W 1,p(R3)).
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3 Proof of Theorem 2.1

To prove Theorem 2.1, we need some basic lemmas in functional analysis.

Lemma 3.1 Suppose X is a Banach space and X∗ is its dual space. Assume that

A is a closed linear operator with dense domain D(A) in X. Let S(A) be the numerical

range of A, that is

S(A) = {〈x∗, Ax〉 : x ∈ D(A), ‖x‖ = 1, x∗ ∈ X∗, ‖x∗‖ = 1, 〈x∗, x〉 = 1},

and let Σ be the complement of S(A) in C. If Σ0 is a component of Σ satisfying ρ(A)∩Σ0 
=
∅, then the spectrum of A is contained in the complement S0 of Σ0, and ∀ λ ∈ Σ0,

‖(λI −A)−1‖ ≤ 1

d(λ, S(A))
.

Here ρ(A) is the resolvent set of A, and d(λ, S(A)) is the distance of λ from S(A).

Lemma 3.2 Suppose X is a Banach space. Let A be a linear dissipative operator

with R(I −A) = X. If X is a reflexive, then D(A) = X.

The above two lemmas can be found in [20].

Next, some basic properties of the operator A2 are studied.

Proposition 3.1 The linear operator A2 is closed and D(A2) = H2
1 , R(I+A2) = H2

1 .

Proof This is proved by Lemma 3.2. We show first that −A2 is dissipative. For any

u ∈ D(A2), one can suppose u = Vu + ωu × y in O. Then

〈A2u, u〉 =

∫
Ω
(−νΔu) · udy +

∫
O

2ν

m

∫
∂O
D(u)�ndΓ · udy

+

∫
O

[(
2νJ−1

∫
∂O
y ×D(u)�ndΓ

)
× y

]
· udy

=

∫
Ω
−2νdiv (D(u)) · udy + 2ν

m

∫
∂O
D(u)�ndΓ · (mVu)

+

(
2νJ−1

∫
∂O
y ×D(u)�ndΓ

)
·
∫
O
y × (ωu × y)dy

= 2ν

∫
Ω
|D(u)|2dy − 2ν

∫
∂O
D(u)u · �ndΓ + 2ν

∫
∂O
D(u)�ndΓ · Vu

+2ν

∫
∂O
y ×D(u)�ndΓ · J−1

∫
O
y × (ωu × y)dy

where the second equality follows from
∫
O ydy = 0, and the third equality is due to the

fact that J−1 is a symmetric matrix.
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Since ∫
O
y × (ωu × y)dy =

∫
O
ωu|y|2 − y(y · ωu)dy = Jωu,

and D(u) is symmetric, then

〈A2u, u〉 = 2ν

∫
Ω
|D(u)|2dy − 2ν

∫
∂O
D(u)u · �ndΓ

+2ν

∫
∂O
D(u)�ndΓ · Vu + 2ν

∫
∂O
y ×D(u)�ndΓ · ωu

= 2ν

∫
Ω
|D(u)|2dy − 2ν

∫
∂O
D(u)u · �ndΓ

+2ν

∫
∂O
D(u)�ndΓ · Vu + 2ν

∫
∂O
D(u)�n · (ωu × y)dΓ

= 2ν

∫
R3

|D(u)|2dy ≥ 0.

Hence −A2 is dissipative.

Next, we show that R(I + A2) = H2
1 . For any f ∈ H2

1 , it suffices to show that there

exists some function u ∈ D(A2) such that

(I +A2)u = f, (3.10)

which means

(I +A2)Reu = Ref, (I +A2)Imu = Imf. (3.11)

Here Reu and Imu are the real and imaginary part of u respectively.

Let

V2 = {v ∈W 1,2(R3) : div v = 0 in R3, D(v) = 0 in O},
and

ReV2 = {v ∈ V2 : ∀ y ∈ R3, v(y) ∈ R3}.
Define the bilinear functional a : ReV2 ×ReV2 → R,

a(u, ϕ) =

∫
R3

u · ϕdy + 2ν

∫
Ω
D(u) : D(ϕ)dy.

Obviously, a is a bounded bilinear functional on ReV2 ×ReV2. And for any u ∈ ReV2,

div u = 0 in R3, D(u) = 0 in O, one has

a(u, u) = ‖u‖2L2(R3) + 2ν‖D(u)‖2L2(R3)

= ‖u‖2L2(R3) + ν‖∇u‖2L2(R3)

≥ min{ν, 1}‖u‖2W 1,2(R3),
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which implies a is coercive.

On the other hand, given any f ∈ L2(R3), the mapping

ϕ �−→
∫
Ω
Ref · ϕdy

is linear and bounded on ReV2.

Therefore, by the Lax-Milgram Theorem, there exists a unique v1 ∈ ReV2 which sat-

isfies

a(v1, ϕ) =

∫
Ω
Ref · ϕdy, (3.12)

for every ϕ ∈ ReV2.

Since (3.12) holds for any ϕ ∈ C∞
0,σ(Ω), there exists p1 ∈ D′(Ω), such that

v1 − νΔv1 +∇p1 = Ref, in D′(Ω)

As in the proof of Proposition 4.2 in [23], we deduce that v1 ∈W 2,2(Ω) ∩ V2 and

‖v1‖W 2,2(Ω) ≤ C‖Ref‖L2(R3). (3.13)

Take v1 itself as a test function in (3.12),

‖v1‖W 1,2(R3) ≤ C‖Ref‖L2(R3). (3.14)

In the same way, we can prove that there exists some function v2 ∈ D(A2), such that

v2 +A2v2 = Imf. (3.15)

Let u = v1 + iv2. Then u satisfies that

u+A2u = f,

with the following estimates,

‖v2‖W 2,2(Ω) ≤ C‖Imf‖L2(R3), ‖v2‖W 1,2(R3) ≤ C‖Imf‖L2(R3). (3.16)

It follows from to Lemma 3.2 that D(A2) is dense in H2
1 , i.e., D(A2) = H2

1 .

For an arbitrary sequence {un} in D(A2) satisfying that

un −→ u in H2
1 , A2un −→ f in H2

1 ,

we’ll prove u ∈ D(A2) and A2u = f . Hence A2 is a closed operator.

Let gn = un + A2un, then gn −→ g = u + f in H2
1 . As indicated by the proof above,

for g = u+ f , there exists a unique ũ in D(A2) such that

ũ+A2ũ = g = u+ f.

11



Since {gn} converges to g in H2
1 , then by the estimates (3.13)(3.14)(3.16), {un} converges

to ũ in W 1,2(R3) and W 2,2(Ω). Therefore ũ = u, and A2u = f .

Proof of Theorem 2.1 Theorem 2.1 will be proved by using Lemma 3.1. It suffices

to verify all the assumptions posed in Lemma 3.1 for A2. For each u ∈ D(A2),

〈u,A2u〉 = ν

∫
R3

|∇u|2dy ≥ 0,

hence S(A2) ⊆ R+.

Choose some θ0 such that 0 < θ0 < π/2. Let Σ0 = {λ ∈ C : |argλ| ≥ θ0, |λ| 
= 0}.
Following almost the same proof of R(I +A2) = H2

1 , one can easily get that

{λ ∈ R : λ < 0} ⊆ ρ(A2).

Hence ρ(A2) ∩ Σ0 
= ∅.

According to Lemma 3.1, Σ0 ⊆ ρ(A2), and for any λ ∈ Σ0,

‖(λI −A2)
−1‖ ≤ 1

d(λ, S(A2)
.

When Reλ ≤ 0,

d(λ, S(A2)) ≥ |λ|.
When Reλ > 0,

d(λ, S(A2)) ≥ |Imλ|.
And since λ ∈ Σ0, |argλ| ≥ θ0, if Reλ > 0, then

|Reλ|
|Imλ| ≤ cot θ0,

d(λ, S(A2)) ≥ 1√
1 + (cot θ0)2

|λ|.

Therefore, for any λ ∈ Σ0,

‖(λI −A2)
−1u‖L2(R3) ≤ C(Σ0)|λ|−1‖u‖L2(R3),

which implies the conclusion of Theorem 2.1.
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4 Proof of Theorem 2.2

Let θ0 and Σ0 be the same as those in the proof of Theorem 2.1. In order to show that

−A 6
5
∩p is the infinitesimal generator of an analytic semigroup {e−tA 6

5∩p} of operators on

H
6
5
1 ∩Hp

1 , it suffices to show that Σ0 ⊆ ρ(A 6
5
∩p), and for any λ ∈ Σ0 and f ∈ H

6
5
1 ∩Hp

1 ,

there exists some constant C = C(Σ0, p,Ω) such that

‖(λI −A 6
5
∩p)

−1f‖
L

6
5 (R3)∩Lp(R3)

≤ C|λ|−1‖f‖
L

6
5 (R3)∩Lp(R3)

.

It follows from the proof of Theorem 2.1 that Σ0 ⊆ ρ(A2). Thus, for every λ ∈ Σ0 and

every f ∈ H2
1 , there exists a function u ∈ D(A2), such that

(λI −A2)u = f. (4.17)

Suppose f ∈ H
6
5
1 ∩Hp

1 , we will prove that the solution u ∈ D(A 6
5
∩p), and

‖u‖
L

6
5 (R3)

+ ‖u‖Lp(R3) ≤ C(Σ0, p,Ω)|λ|−1[‖f‖
L

6
5 (R3)

+ ‖f‖Lp(R3)],

with some constant C(Σ0, p,Ω) independent of f . Note that in the proof of Theorem 2.1,

it was shown that

‖u‖L2(R3) ≤ C(Σ0)|λ|−1‖f‖L2(R3).

Suppose that u = Vu + ωu × y in O. Then by Lemma 2.1, one has

|Vu| = 1

m

∣∣∣∣
∫
O
udy

∣∣∣∣ ≤ C‖u‖L2(O) ≤ C|λ|−1‖f‖L2(R3), (4.18)

and

|ωu| =
∣∣∣∣J−1

∫
O
u× ydy

∣∣∣∣ ≤ C‖u‖L2(O) ≤ C|λ|−1‖f‖L2(R3). (4.19)

On the other hand, it follows from (4.17) that

Reλ‖u‖2L2(R3) − ν‖∇u‖2L2(R3) = Re〈f, u〉,

Imλ‖u‖2L2(R3) = Im〈f, u〉.
If Reλ ≤ 0, then by the Hölder’s inequality and the Sobolev imbedding inequality,

ν‖∇u‖2L2(R3) ≤ −Re〈f, u〉
≤ ‖f‖

L
6
5 (R3)

· ‖u‖L6(R3)

≤ C‖f‖
L

6
5 (R3)

· ‖∇u‖L2(R3).
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While for Reλ > 0, then Reλ ≤ cot θ0 · |Imλ|, and

ν‖∇u‖2L2(R3) = Reλ‖u‖2L2(R3) −Re〈f, u〉
≤ C|Imλ|‖u‖2L2(R3) −Re〈f, u〉
= C|Im〈f, u〉| −Re〈f, u〉
≤ C‖f‖

L
6
5 (R3)

· ‖u‖L6(R3)

≤ C‖f‖
L

6
5 (R3)

· ‖∇u‖L2(R3).

Hence, in both cases we have

‖u‖L6(R3) ≤ C‖∇u‖L2(R3) ≤ C‖f‖
L

6
5 (R3)

,

and

|Vu| = 1

m

∣∣∣∣
∫
O
udy

∣∣∣∣ ≤ C‖u‖L6(O) ≤ C‖f‖
L

6
5 (R3)

, (4.20)

|ωu| =
∣∣∣∣J−1

∫
O
u× ydy

∣∣∣∣ ≤ C‖u‖L6(O) ≤ C‖f‖
L

6
5 (R3)

. (4.21)

Based on the relationship between u and f in (4.17), it was shown in [23] that there

exists some p ∈ D′ such that (u, p) satisfies the Stokes type system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λu+ νΔu+∇p = f, in Ω,

div u = 0, in Ω,

u(y) = Vu + ωu × y, on ∂Ω.

Take ψ ∈ C∞
0 (R) with

ψ(x) =

{
1, if |x| ≤ 1,

0, if |x| ≥ 2.

Set ψR(y) = ψ(|y|/R), with R large enough such that O ⊂ BR/2(0). Let

v = curl

[
1

2
Vu × yψR(y)

]
− curl

[
1

2
ωu|y|2ψR(y)

]
,

and w = u− v. It’s easy to verify that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λw + νΔw +∇p = f − λv − νΔv, in Ω,

div w = 0, in Ω,

w(y) = 0, on ∂Ω.

(4.22)
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According to Proposition 2.1′, one has

|λ|‖w‖
L

6
5 (Ω)

≤ C(Ω)
[
‖f‖

L
6
5 (Ω)

+ |λ| · (|Vu|+ |ωu|) + |Vu|+ |ωu|
]
,

and

|λ|‖w‖Lp(Ω) ≤ C(p,Ω)
[‖f‖Lp(Ω) + |λ| · (|Vu|+ |ωu|) + |Vu|+ |ωu|

]
.

Collecting all the estimates (4.18), (4.19), (4.20) and (4.21), leads to

|λ|‖w‖
L

6
5 (Ω)

+ |λ|‖w‖Lp(Ω) ≤ C
[
‖f‖

L
6
5 (Ω)

+ ‖f‖Lp(Ω) + ‖f‖L2(R3) + ‖f‖
L

6
5 (R3)

]
≤ C(Σ0, p,Ω)

[
‖f‖

L
6
5 (R3)

+ ‖f‖Lp(R3)

]
.

Consequently,

|λ|‖u‖
L

6
5 (R3)

+ |λ|‖u‖Lp(R3) ≤ |λ||Vu|+ |λ||ωu|+ |λ|‖w‖
L

6
5 (Ω)

+ |λ|‖w‖Lp(Ω)

≤ C(Σ0, p,Ω)
[
‖f‖

L
6
5 (R3)

+ ‖f‖Lp(R3)

]
.

(4.23)

It follows that −A 6
5
∩p is the infinitesimal generator of an analytic semigroup {e−tA 6

5∩p} of

operators on H
6
5
1 ∩Hp

1 , which completes the proof of Theorem 2.2.

5 Proof of Theorem 2.3

In this section, O is a unit ball in R3. The main difference between the proof of Theorem

2.3 and that of Theorem 2.2 is the choice of the cut-off function v.

Proof As before, let θ0, Σ0 be the same as in the proof of Theorem 2.1. For any

λ ∈ Σ0 and any f ∈ H2
1 , since Σ0 ⊆ ρ(A2), there exists some function u ∈ D(A2), such

that

(λI −A2)u = f, (5.24)

and

‖u‖L2(R3) ≤ C(Σ0,Ω)|λ|−1‖f‖L2(R3).

Suppose that f ∈ H2
1 ∩Hp

1 , we will prove that u ∈ D(A2∩p), and

‖u‖L2(R3) + ‖u‖Lp(R3) ≤ C(Σ0, p,Ω)|λ|−1[‖f‖L2(R3) + ‖f‖Lp(R3)]. (5.25)

First, as in the proof of Theorem 2.1, one has

‖u‖L2(R3) ≤ C(Σ0)|λ|−1‖f‖L2(R3), (5.26)

with some constant C depending only on Σ0.
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Suppose that u = Vu + ωu × y in O, then by Lemma 2.1,

|Vu| = 1

m

∣∣∣∣
∫
O
udy

∣∣∣∣ ≤ C‖u‖L2(O) ≤ C|λ|−1‖f‖L2(R3), (5.27)

|ωu| =
∣∣∣∣J−1

∫
O
u× ydy

∣∣∣∣ ≤ C‖u‖L2(O) ≤ C|λ|−1‖f‖L2(R3). (5.28)

While (5.24) implies that

Reλ‖u‖2L2(R3) − ν‖∇u‖2L2(R3) = Re〈f, u〉,

Imλ‖u‖2L2(R3) = Im〈f, u〉.
If Reλ ≤ 0, then by the Hölder’s and Sobolev’s inequalities,

ν‖∇u‖2L2(R3) ≤ |Re〈f, u〉|
≤ C‖f‖L2(R3) · ‖u‖L2(R3)

≤ C|λ|−1‖f‖2L2(R3).

Similarly, for Reλ > 0, one has

ν‖∇u‖2L2(R3) = Reλ‖u‖2L2(R3) −Re〈f, u〉
≤ C|Imλ|‖u‖2L2(R3) −Re〈f, u〉
= C|Im〈f, u〉| −Re〈f, u〉
≤ C‖f‖L2(R3) · ‖u‖L2(R3)

≤ C|λ|−1‖f‖2L2(R3),

where we used the fact that for every λ ∈ Σ0, Reλ ≤ C(Σ0)|Imλ|.
Hence, in both cases we have ‖∇u‖L2(R3) ≤ C|λ|− 1

2 ‖f‖L2(R3).

According to the Sobolev imbedding theorem,

‖u‖L6(R3) ≤ C‖∇u‖L2(R3) ≤ C|λ|− 1
2 ‖f‖L2(R3), (5.29)

and it follows that

|Vu| = 1

m

∣∣∣∣
∫
O
udy

∣∣∣∣ ≤ C‖u‖L6(O) ≤ C|λ|− 1
2 ‖f‖L2(R3), (5.30)

|ωu| =
∣∣∣∣J−1

∫
O
u× ydy

∣∣∣∣ ≤ C‖u‖L6(O) ≤ C|λ|− 1
2 ‖f‖L2(R3). (5.31)
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Then we now consider two separate cases: |λ| < 1
2 and |λ| ≥ 1

2 . When |λ| < 1
2 , set

v(y) = curl

[
1

2
Vu × yψμ1(y)

]
+ curl

[
ωu|y|−1ψμ2(y)

]
,

with some constants μ1, μ2 > 1 to be determined, w = u− v, and ψR being defined in the

proof of Theorem 2.2. Hence w satisfies the following problem,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λw + νΔw +∇p = f − λv − νΔv, in Ω,

div w = 0, in Ω,

w(y) = 0, on ∂Ω.

It follows from Proposition 2.1 and the estimates (5.30) and (5.31) that

|λ|‖w‖Lp(Ω) ≤ C
[‖f‖Lp(Ω) + |λ|‖v‖Lp(Ω) + ‖Δv‖Lp(Ω)

]
≤ C‖f‖Lp(Ω) + C

[
|λ| 12μ

3
p

1 + |λ| 12μ
3
p

2 + |λ| 12μ−1+ 3
p

2

]
· ‖f‖L2(R3)

+C

[
|λ|− 1

2μ
−2+ 3

p

1 + |λ|− 1
2μ

−1+ 3
p

2 + |λ|− 1
2μ

−3+ 3
p

2

]
· ‖f‖L2(R3).

(5.32)

Setting μ1 = |λ|− 1
2 , and μ2 = |λ|−1, then one gets

|λ|‖w‖Lp(Ω) ≤ C‖f‖Lp(Ω) + C
[
|λ| 12− 3

2p + |λ| 12− 3
p

]
‖f‖L2(R3).

Since p ≥ 6 and |λ| ≤ 1
2 , combining the estimates (5.27), (5.28) and (5.32), one gets

|λ|‖u‖Lp(R3) ≤ |λ|‖w‖Lp(Ω) + |λ|‖v‖Lp(Ω) + C|λ|[|Vu|+ |ωu|]
≤ C

[‖f‖L2(R3) + ‖f‖Lp(R3)

]
.

(5.33)

On the other hand, when |λ| ≥ 1
2 , let

v = curl

[
1

2
Vu × yψ1(y)

]
− curl

[
1

2
ωu|y|2ψ1(y)

]
,

and w = u− v. It’s easy to verify that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λw + νΔw +∇p = f − λv − νΔv, in Ω,

div w = 0, in Ω,

w(y) = 0, on ∂Ω.

By virtue of Proposition 2.1′,

|λ|‖w‖Lp(Ω) ≤ C
[‖f‖Lp(Ω) + |λ| · (|Vu|+ |ωu|) + |Vu|+ |ωu|

]
≤ C

[‖f‖Lp(R3) + ‖f‖L2(R3)

]
.

(5.34)
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Collecting the estimates (5.27), (5.28) and (5.34), we conclude that

|λ|‖u‖Lp(R3) ≤ |λ| [‖w‖Lp(Ω) + ‖v‖Lp(Ω)

]
+ C|λ| [|Vu|+ |ωu|]

≤ C
[‖f‖Lp(R3) + ‖f‖L2(R3)

]
.

(5.35)

Therefore, (5.25) follows, which completes the proof.

Remark 5.1 In the case of two-dimensional motion, we just need to take the function

v(y) as ∇⊥
[
Vu · y⊥ψ|λ|−1/2(y)− ωu ln |y| · ψ|λ|−1(y)

]
.

6 Lq-Lr Estimates

In this section, we give some Lq −Lr estimates associated with the semigroup {e−tA 6
5∩p},

which will be the key for the proof of the local well-posedness of the problem. In section

6 and section 7, we will write A for A 6
5
∩p for simplicity .

Proposition 6.1 Assume that 2 ≤ p <∞, and q satisfies that⎧⎪⎨
⎪⎩

q ∈ [p,∞], if 2 ≤ p < 3,

q ∈ [p,∞), if p = 3,

q ∈ [p,∞], if p > 3.

Then there exist some positive constants C1(Ω, p) and C2(Ω, p, q) such that, for any u0 ∈
H

6
5
1 ∩Hp

1 and t > 0,∥∥∇e−tAu0
∥∥
L

6
5 (R3)∩Lp(R3)

≤ C1(Ω, p)(1 + t−
1
2 )‖u0‖

L
6
5 (R3)∩Lp(R3)

, (6.36)

and ∥∥e−tAu0
∥∥
Lq(R3)

≤ C2(Ω, p, q)
(
1 + t

− 3
2
( 1
p
− 1

q
)
)
‖u0‖

L
6
5 (R3)∩Lp(R3)

. (6.37)

Proof Let u ∈ D(A) be given. First, we derive an estimate on ‖∇u‖
L

6
5 (R3)∩Lp(R3)

in

terms of ‖u‖
L

6
5 (R3)∩Lp(R3)

and ‖Au‖
L

6
5 (R3)∩Lp(R3)

. Suppose

−u−Au = f,

and

u(y) = Vu + ωu × y, in O.

As in section 4, there exists some p ∈ D′ such that (u, p) satisfies the system⎧⎪⎨
⎪⎩

−u+ νΔu+∇p = f, in Ω,

div u = 0, in Ω,

u(y) = Vu + ωu × y, on ∂Ω.
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Following the proof of Theorem 2.2, we choose some R large enough such that O ⊂
BR(0). Let

v = curl

[
1

2
Vu × yψR(y)

]
− curl

[
1

2
ωu|y|2ψR(y)

]
,

and w = u− v. Then w is the solution to the problem⎧⎪⎨
⎪⎩

−w + νΔw +∇p = f + v − νΔv, in Ω,

div w = 0, in Ω,

w(y) = 0, on ∂Ω.

By virtue of Proposition 2.1′, one has

‖w‖
W 2, 65 (Ω)∩W 2,p(Ω)

≤ C
[
‖f‖

L
6
5 (Ω)∩Lp(Ω)

+ ‖v‖
W 2, 65 (Ω)∩W 2,p(Ω)

+ ‖w‖
L

6
5 (Ω)∩Lp(Ω)

]
≤ C

[
‖f‖

L
6
5 (Ω)∩Lp(Ω)

+ |Vu|+ |ωu|+ ‖u‖
L

6
5 (Ω)∩Lp(Ω)

]
≤ C

[
‖f‖

L
6
5 (R3)∩Lp(R3)

+ ‖u‖
L

6
5 (R3)∩Lp(R3)

]
≤ C‖f‖

L
6
5 (R3)∩Lp(R3)

,

where the last inequality comes from Theorem 2.2 by letting λ = −1.

Then

‖u‖
W 2, 65 (Ω)∩W 2,p(Ω)

≤ ‖w‖
W 2, 65 (Ω)∩W 2,p(Ω)

+ ‖v‖
W 2, 65 (Ω)∩W 2,p(Ω)

≤ C
[
‖f‖

L
6
5 (R3)∩Lp(R3)

+ |Vu|+ |ωu|
]

≤ C
[
‖f‖

L
6
5 (R3)∩Lp(R3)

+ ‖u‖
L

6
5 (R3)∩Lp(R3)

]
≤ C‖f‖

L
6
5 (R3)∩Lp(R3)

.

By the interpolation inequality,

‖∇u‖
L

6
5 (Ω)∩Lp(Ω)

≤ C‖u‖
1
2

L
6
5 (Ω)∩Lp(Ω)

· ‖u‖
1
2

W 2, 65 (Ω)∩W 2,p(Ω)

≤ C‖u‖
1
2

L
6
5 (Ω)∩Lp(Ω)

· ‖f‖
1
2

L
6
5 (R3)∩Lp(R3)

≤ C‖u‖
1
2

L
6
5 (Ω)∩Lp(Ω)

·
[
‖u‖

L
6
5 (R3)∩Lp(R3)

+ ‖Au‖
L

6
5 (R3)∩Lp(R3)

] 1
2
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Consequently,

‖∇u‖
L

6
5 (R3)∩Lp(R3)

≤ ‖∇u‖
L

6
5 (Ω)∩Lp(Ω)

+ ‖∇u‖
L

6
5 (O)∩Lp(O)

≤ ‖∇u‖
L

6
5 (Ω)∩Lp(Ω)

+ C|ωu|

≤ C‖u‖
1
2

L
6
5 (R3)∩Lp(R3)

·
[
‖u‖

L
6
5 (R3)∩Lp(R3)

+ ‖Au‖
L

6
5 (R3)∩Lp(R3)

] 1
2

+C‖u‖
L

6
5 (R3)∩Lp(R3)

≤ C‖u‖
1
2

L
6
5 (R3)∩Lp(R3)

‖Au‖
1
2

L
6
5 (R3)∩Lp(R3)

+ C‖u‖
L

6
5 (R3)∩Lp(R3)

.

(6.38)

For any u0 ∈ H
6
5
1 ∩Hp

1 , applying (6.38) to e−tAu0 yields

‖∇e−tAu0‖
L

6
5 (R3)∩Lp(R3)

≤ C‖e−tAu0‖
1
2

L
6
5 (R3)∩Lp(R3)

‖Ae−tAu0‖
1
2

L
6
5 (R3)∩Lp(R3)

+ C‖e−tAu0‖
L

6
5 (R3)∩Lp(R3)

.

Note that

‖e−tAu0‖
L

6
5 (R3)∩Lp(R3)

≤M1‖u0‖
L

6
5 (R3)∩Lp(R3)

,

and

‖Ae−tAu0‖
L

6
5 (R3)∩Lp(R3)

≤ M1

t
‖u0‖

L
6
5 (R3)∩Lp(R3)

.

Hence,

‖∇e−tAu0‖
L

6
5 (R3)∩Lp(R3)

≤ C1(p,Ω)
(
1 + t−

1
2

)
‖u0‖

L
6
5 (R3)∩Lp(R3)

.
(6.39)

Let u(t) = e−tAu0, and u(t) = lu(t) + ωu(t)× y in O. When 2 ≤ p < 3, and q ∈ [p,∞],

using the Sobolev embedding inequality, one can get

‖u(t)‖Lq(R3) ≤ ‖u(t)‖Lq(Ω) + ‖u(t)‖Lq(O)

≤ C‖u(t)‖θLp(Ω) · ‖u(t)‖1−θ
W 2,p(Ω)

+ C [|lu(t)|+ |ωu(t)|]
≤ C‖u(t)‖θLp(Ω) ·

[‖u(t)‖Lp(Ω) + ‖Au(t)‖Lp(Ω)

]1−θ
+ C‖u(t)‖Lp(O)

≤ C‖u(t)‖θLp(R3) ·
[‖u(t)‖Lp(R3) + ‖Au(t)‖Lp(R3)

]1−θ
+ C‖u(t)‖Lp(R3)

≤ CM1‖u0‖θ
L

6
5 (R3)∩Lp(R3)

·
[
‖u0‖

L
6
5 (R3)∩Lp(R3)

+ t−1‖u0‖
L

6
5 (R3)∩Lp(R3)

]1−θ

+CM1‖u0‖
L

6
5 (R3)∩Lp(R3)

≤ C(p, q,Ω)
[
1 + t

− 3
2
( 1
p
− 1

q
)
]
‖u0‖

L
6
5 (R3)∩Lp(R3)
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where θ satisfies 1
q = θ

p +
(
1
p − 2

3

)
(1− θ).

When p = 3, q ∈ [p,∞), or p > 3, q ∈ [p,∞], using the Sobolev embedding inequality,

we have
‖u(t)‖Lq(R3) ≤ C‖u(t)‖θLp(R3) · ‖∇u(t)‖1−θ

Lp(R3)

≤ C(p, q,Ω)
(
1 + t−

3
2
( 1
p
− 1

q
)
)
‖u0‖

L
6
5 (R3)∩Lp(R3)

,

where θ satisfies 1
q = θ

p +
(
1
p − 1

3

)
(1− θ).

Therefore, we complete the proof of Proposition 6.1.

Remark 6.1 Comparing to the estimates of the classical Stokes semigroup in [11], we

were not able to get the corresponding decay estimates of ∇e−tAu0. In section 7 we will

see that Proposition 6.1 is the key estimate to guarantee the local existence of a strong

solution. However, without decay estimates on ∇e−tAu0, we can not get any global strong

solution even when the initial data is small.

Remark 6.2 When O is a ball in R3, applying Theorem 2.3 instead of Theorem 2.2,

we can prove the corresponding result for the case e−tA2∩p , p ≥ 6.

7 Local Existence of Strong Solutions

Assume that O is a unit ball in R3. We treat this particular case as an example to

investigate the local existence of strong solutions to the system (1.2).

The proof of Theorem 2.4 is in spirit similar to those given in [14]. In fact, it was

proved in [23], the system (1.2) can be rewritten in the abstract form

∂tv +Av + P(v · ∇v)− P(lv · ∇v) = 0,

with the initial data

v(y, 0) = v0(y) =

{
a(y), y ∈ Ω,

b+ c× y, y ∈ O.

Here P is the projection operator mentioned in section 2, and lv is associated with v such

that v = lv + ωv × y in O.

The above equation can be converted into the integral equation

v(y, t) = e−tAv0 −
∫ t

0
e−(t−s)A[P(v̂ · ∇v)− P(l̂v · ∇v)](s)ds,

where f̂ denotes the restriction of f on the domain Ω, i.e.,

f̂(y) =

{
f(y), y ∈ Ω,

0, y ∈ O.
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Suppose that ‖v0‖
L

6
5 (R3)∩Lp(R3)

= K, and set

XT0 =

⎧⎨
⎩u(y, t) :

div u = 0 in R3, D(u) = 0 in O, ‖u‖
L∞(0,T0;L

6
5 (R3)∩Lp(R3))

≤ NK,

and ‖t 12∇u‖
L∞(0,T0;L

6
5 (R3)∩Lp(R3))

≤ NK.

⎫⎬
⎭

where N ≥ 4max{M1, C1} and T0 is to be determined later. Set

‖u‖XT0
= max

{
‖u(t)‖

L∞(0,T0;L
6
5 (R3)∩Lp(R3))

, ‖t 12∇u(t)‖
L∞(0,T0;L

6
5 (R3)∩Lp(R3))

}
.

For any u ∈ XT0 , and u = lu + ωu × y in O, define the map L,

Lu = e−tAv0 −
∫ t

0
e−(t−s)A[P(û · ∇u)− P( ̂lu · ∇u)](s)ds.

We will show that, for suitable T0, L maps XT0 int XT0 and L is a contraction mapping.

Lu can be estimated as the sum of three parts. Thanks to the estimates (2.7) and

(6.36), one has

‖e−tAv0‖
L

6
5 (R3)∩Lp(R3)

≤M1K,

and

‖∇e−tAv0‖
L

6
5 (R3)∩Lp(R3)

≤ C1(1 + t−
1
2 )K.

Since P is a bounded operator from L
6
5 (R3)∩Lp(R3) to H

6
5
1 ∩Hp

1 , then it follows from

the definition of XT0 and Sobolev’s inequality that∥∥∥∥
∫ t

0
e−(t−s)AP(û · ∇u)(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤
∫ t

0
M1‖P(û · ∇u)(s)‖

L
6
5 (R3)∩Lp(R3)

ds

≤
∫ t

0
CM1‖u(s)‖L∞(R3) · ‖∇u(s)‖L 6

5 (R3)∩Lp(R3)
ds

≤
∫ t

0
CM1s

− 3
2p (NK)2s−

1
2ds

≤ 2p

p− 3
CM1(NK)2t

1
2
− 3

2p

= C3(NK)2t
1
2
− 3

2p ,

where C3 = C3(p,Ω) depends only on p and Ω.
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∥∥∥∥∇
∫ t

0
e−(t−s)AP(û · ∇u)(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤
∫ t

0

∥∥∥∇e−(t−s)AP(û · ∇u)(s)
∥∥∥
L

6
5 (R3)∩Lp(R3)

ds

≤
∫ t

0
CC1[1 + (t− s)−

1
2 ]‖(u · ∇u)(s)‖

L
6
5 (R3)∩Lp(R3)

ds

≤
∫ t

0
C[1 + (t− s)−

1
2 ]‖u(s)‖L∞(R3) · ‖∇u(s)‖L 6

5 (R3)∩Lp(R3)
ds

≤
∫ t

0
C[1 + (t− s)−

1
2 ]s−

1
2 s−

3
2p (NK)2ds

≤ C4(p,Ω)(NK)2
[
t
1
2
− 3

2p + t
− 3

2p

]
.

Similarly, ∥∥∥∥
∫ t

0
e−(t−s)AP( ̂lu · ∇u)(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤
∫ t

0
CM1|lu(s)| · ‖∇u(s)‖

L
6
5 (R3)∩Lp(R3)

ds

≤
∫ t

0
CM1‖u(s)‖L∞(R3) · ‖∇u(s)‖L 6

5 (R3)∩Lp(R3)
ds

≤
∫ t

0
CM1s

− 3
2p (NK)2s−

1
2ds

≤ 2p

p− 3
CM1(NK)2t

1
2
− 3

2p

= C5(p,Ω)(NK)2t
1
2
− 3

2p ,∥∥∥∥∇
∫ t

0
e−(t−s)AP( ̂lu · ∇u)(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤
∫ t

0

∥∥∥∇e−(t−s)AP( ̂lu · ∇u)(s)
∥∥∥
L

6
5 (R3)∩Lp(R3)

ds

≤
∫ t

0
CC1[1 + (t− s)−

1
2 ]‖(lu · ∇u)(s)‖

L
6
5 (R3)∩Lp(R3)

ds

≤
∫ t

0
C[1 + (t− s)−

1
2 ]‖u(s)‖L∞(R3) · ‖∇u(s)‖L 6

5 (R3)∩Lp(R3)
ds

≤
∫ t

0
C[1 + (t− s)−

1
2 ]s−

1
2 s−

3
2p (NK)2ds

≤ C6(p,Ω)(NK)2
[
t
− 3

2p + t
1
2
− 3

2p

]
.

Hence

‖Lu(t)‖
L

6
5 (R3)∩Lp(R3)

≤M1K + (C3 + C5)(NK)2t
1
2
− 3

2p ,
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and ∥∥∥t 12∇Lu(t)
∥∥∥
L

6
5 (R3)∩Lp(R3)

≤ C1(1 + t
1
2 )K + (C4 + C6)(NK)2

[
t
1− 3

2p + t
1
2
− 3

2p

]
.

If T0 is chosen to be sufficiently small such that

T0 ≤ T1 = min
{
[(C3 + C5)NK]

− 2p
p−3 , [(C4 + C6)NK]

− 2p
p−3 , 1

}
,

then L maps XT0 to XT0 .

Furthermore, for any u, ũ ∈ XT0 ,

Lu− Lũ = −
∫ t

0
e−(t−s)A

[
P(û · ∇u)− P( ̂lu · ∇u)

]
(s)ds

+

∫ t

0
e−(t−s)A

[
P(̂̃u · ∇ũ)− P( ̂lũ · ∇ũ)

]
(s)ds

=

∫ t

0
e−(t−s)AP

[
̂(ũ− u · ∇)ũ

]
(s)ds+

∫ t

0
e−(t−s)AP

[
̂(u · ∇)(ũ− u)

]
(s)ds

+

∫ t

0
e−(t−s)AP

[
̂(lu − lũ · ∇)u

]
(s)ds+

∫ t

0
e−(t−s)AP

[
̂(lũ · ∇)(u− ũ)

]
(s)ds

For each term on the right hand side, we have the following estimates,∥∥∥∥
∫ t

0
e−(t−s)AP

[
̂(ũ− u · ∇)ũ

]
(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤
∫ t

0
CM1‖ũ(s)− u(s)‖L∞(R3) · ‖∇ũ(s)‖L 6

5 (R3)∩Lp(R3)
ds

≤
∫ t

0
CM1s

− 1
2 (NK)s

− 3
2pds · ‖u− ũ‖XT0

≤ C7(p,Ω)(NK)t
1
2
− 3

2p ‖u− ũ‖XT0

Similarly,∥∥∥∥
∫ t

0
e−(t−s)AP

[
̂u · ∇(ũ− u)

]
(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤ C8(p,Ω)(NK)t
1
2
− 3

2p ‖u− ũ‖XT0
,

Note that

|lu − lũ| =
∣∣∣∣ 1m

∫
O
(u− ũ)dy

∣∣∣∣ ≤ C‖u− ũ‖L∞(R3),

then∥∥∥∥
∫ t

0
e−(t−s)AP

[
̂(lu − lũ · ∇)u

]
(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤ C9(p,Ω)(NK)t
1
2
− 3

2p ‖u− ũ‖XT0
,

and∥∥∥∥
∫ t

0
e−(t−s)AP

[
̂(lũ · ∇)(u− ũ)

]
(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤ C10(p,Ω)(NK)t
1
2
− 3

2p ‖u− ũ‖XT0
.
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Hence, for every t ∈ [0, T0],

‖Lu(t)− Lũ(t)‖
L

6
5 (R3)∩Lp(R3)

≤ (C7 + C8 + C9 + C10)NKt
1
2
− 3

2p ‖u− ũ‖XT0
.

Furthermore,∥∥∥∥∇
∫ t

0
e−(t−s)AP

[
̂(ũ− u · ∇)ũ

]
(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤
∫ t

0
CC1(t− s)−

1
2 ‖ũ(s)− u(s)‖L∞(R3) · ‖∇ũ(s)‖L 6

5 (R3)∩Lp(R3)
ds

≤
∫ t

0
CC1(t− s)−

1
2 s−

1
2 (NK)s−

3
2pds · ‖u− ũ‖XT0

≤ C11(p,Ω)(NK)
[
t
1
2
− 3

2p + t
− 3

2p

]
‖u− ũ‖XT0

.

Similarly,∥∥∥∥∇
∫ t

0
e−(t−s)AP

[
̂u · ∇(ũ− u)

]
(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤ C12(p,Ω)(NK)t
− 3

2p ‖u− ũ‖XT0
,

∥∥∥∥∇
∫ t

0
e−(t−s)AP

[
̂(lu − lũ · ∇)u

]
(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤ C13(p,Ω)(NK)t−
3
2p ‖u− ũ‖XT0

,

and ∥∥∥∥∇
∫ t

0
e−(t−s)AP

[
̂(lũ · ∇)(u− ũ)

]
(s)ds

∥∥∥∥
L

6
5 (R3)∩Lp(R3)

≤ C14(p,Ω)(NK)
[
t
1
2
− 3

2p + t−
3
2p

]
‖u− ũ‖XT0

.

Let T2 = min
{
[(C7 + C8 + C9 + C10)NK]

− 2p
p−3 , [(C11 + C12 + C13 + C14)NK]

− 2p
p−3

}
.

Combining the above estimates, we obtain that when T0 ≤ min{T1, T2}, L is a contraction

mapping on XT0 . Therefore, there exists a fixed point v ∈ XT0 of L, i.e., Lv = v. It

is clear that the fixed point v(y, t) ∈ XT0 is a strong solution to the system (1.2). The

uniqueness of the solution is implied in the proof of verifying the contraction property of

L.

Remark 7.1 Following almost the same proof of Theorem 2.4 and applying Theorem

2.3, we can also get a local strong solution starting from H2
1 ∩Hp

1 , p ≥ 6.
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