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Abstract

In this paper, we study a class of analytical solutions to the compressible Navier-
Stokes equations with density-dependent viscosity coefficients, which describe com-
pressible fluids moving into outer vacuum. For suitable viscous polytropic fluids,
we construct a class of radial symmetric and self-similar analytical solutions in
R

N(N ≥ 2) with both continuous density condition and the stress free condition
across the free boundaries separating the fluid from vacuum. Such solutions exhibit
interesting new information such as the formation of vacuum at the center of the
symmetry as time tends to infinity and explicit regularities and large time decay
estimates of the velocity field.

1 Introduction

The compressible Navier-Stokes equations with density-dependent viscosity coeffi-
cients can be written as

ρt + div(ρU) = 0, (1.1)

(ρU)t + div(ρU⊗U)− div(h(ρ)D(U))−∇(g(ρ)divU) +∇P (ρ) = 0, (1.2)

where t ∈ (0,+∞) is the time and x ∈ R
N , N = 2, 3 is the spatial coordinate,

while ρ(x, t),U(x, t) and P (ρ) = ργ(γ > 1) stand for the fluid density, velocity and
pressure, respectively. And

D(U) =
∇U+t ∇U

2
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is the strain tensor, h(ρ) and g(ρ) are the Lamé viscosity coefficients satisfying

h(ρ) > 0, h(ρ) +Ng(ρ) ≥ 0. (1.3)

In the last several decades, significant progress on the system (1.1)-(1.2) has
been achieved by many authors since it was introduced by Liu, Xin and Yang in
[22]. Meanwhile, in geophysical flows, many mathematical models correspond to
(1.1)-(1.2) (see [21]). In particular, the viscous Saint-Venant system for shallow
water is expressed exactly as (1.1)-(1.2) with N = 2, h(ρ) = ρ, g(ρ) = 0 and γ = 2.
Local smooth solutions or global smooth solutions for data close to equilibrium
were established in [30] and related topics have been extensively studied by many
authors. For one-dimensional compressible Navier-Stokes equations (1.1) and (1.2)
with h(ρ) = ρα, g(ρ) = 0(α ∈ (0, 3

2
)) and free boundary conditions, there are many

literatures on the well-posedness theory of the solutions (see[7], [9], [14], [15], [22],
[27], [32], [39], [40], [41], [20] and references therein). However, few results are avail-
able for multi-dimensional problems. The first multi-dimensional result is due to
Mellet and Vasseur [26], where they had proved the L1 stability of weak solutions
to the system (1.1)-(1.2) based on a new entropy estimate established in [1],[2] in a
priori way, extending the corresponding L1 stability results of [2] and [1]. However,
although L1 stability is considered as one of the main steps to prove existence of
weak solutions, the global existence of weak solutions of Korteweg’s system (see
[2]) and the compressible Navier-Stokes equations with density-dependent viscosity
(1.1)-(1.2) remains open in the multi-dimensional cases. The first successful exam-
ple due to Guo, Jiu and Xin in [8] with spherically symmetric initial data and fixed
boundary conditions and later Guo, Li, and Xin extended it to the free boundary
conditions with discontinuously symmetric initial data ([5]). A local existing result
was given by Chen and Zhang in [3] with spherically symmetric initial data between
a solid core and a free boundary connected to a surrounding vacuum state. Recently,
we have discussed the Lagrangian structure and large time behavior of solutions to
compressible spherically symmetric Navier-Stokes equation with density-dependent
viscosity coefficients both under fixed boundary conditions and free boundary con-
ditions of discontinuous initial data( see [5],[6]).

In particular in [5], we had discussed the global existence, the Lagrangian struc-
ture and large time behavior of solutions to the compressible spherically symmetric
Navier-Stokes equations (1.1)-(1.2) with the following stress free boundary condi-
tions

ργ = ρur, on r = a(t),

with h(ρ) = ρ, g(ρ) = 0 and γ ∈ [2, N
N−2

). Notice that our results in [5] can be also
generalized to multi-dimensional compressible spherically symmetric Navier-Stokes
equations (1.1)-(1.2) with general viscosity coefficients h(ρ) = ρθ and g(ρ) = (θ−1)ρθ

with N−1
N

< θ ≤ 1 with N ≥ 2 the space dimension or supplying with the following
free boundary

ργ = θρθ(ur +
2u

r
), on r = a(t).

On the other hand, there are many references considering the analytical solutions
or blowup solutions to the Navier-Stokes equations, Navier-Stokes-Poisson equations
or Euler-Poisson equations (see [4], [35]-[38]). It is worthy mentioning that, L. H.



Yeung and M. W. Yuen in [38], considered (1.1)-(1.2) with h(ρ) = 0, g(ρ) = ρθ in
radial symmetry and R

N , they looked for a family of solutions of the form

ρ(r, t) =
y( r

a(t)
)

a(t)N
, u(r, t) =

a′(t)
a(t)

r, (1.4)

and derived that a(t), y(z) ∈ C1 are two functions satisfying some ordinary differen-
tial equations. Yet the solvability of such two ordinary differential equations is not
discussed.

In the present paper, we will construct a class of global analytical solutions to the
three dimensional compressible Navier-Stokes equations (1.1)-(1.2) with spherically
symmetric initial data and free boundaries separating the fluid from the vacuum.
Here h(ρ) = ρθ, g(ρ) = (θ−1)ρθ in which h(ρ) and g(ρ) satisfying g(ρ) = ρh′(ρ)−h(ρ)
and γ = θ > 1 or γ = 2θ − 1

3
, γ > 1. We assume that there exists a curve which

separate the gas and the vacuum, and that the fluid moves continuously across this
curve into vacuum or jump into vacuum through this curve but keep stress-free (see
(2.10) and (2.11) below ). Motivited by the construction in [38], we will also look for
solutions of the form (1.4) which satisfy (1.1)-(1.2) and (2.10) or (2.11). Indeed, we
can show that a(t) and y(z) ∈ C1 exist globally satisfying two ordinary differential
equations, which yield the desired solution given in the form of (1.4). It should be
emphasized that such a class of analytical solutions are new and exhibit a great deal
of information, such as the formation of vacuum at the center of the symmetry as
time approaches infinity and explicit regularity and decay estimates on the velocity
field, etc.., see Remark 2.2. Our results also imply that the domain, where fluid
is located on, expands outwards into vacuum at an algebraic rate as the time goes
large due to the dispersion effect of the total pressure.

Now we explain more on the motivations of this paper. First, in our previous
work [5], we had obtained the global existence of weak solutions to the system
(1.1)-(1.2) with spherically symmetric discontinuous initial data and N

N−1
< θ ≤

1. But it seems difficult to apply the method in [5] for either the case θ > 1
or more importantly the case of continuous initial density (degenerate boundary
conditions) due to the high degeneracy at vacuum. The present paper provides a
concrete analytic solution to the system (1.1)-(1.2) for both cases. Furthermore,
these analytic solutions yield much more information on the structure of solutions
than the ones given in [5] for the case of spherically symmetric discontinuous initial
data and N

N−1
< θ ≤ 1.

Second, note that in [38], since the viscosity coefficients are given by h(ρ) =
0, g(ρ) = ρθ . Thus an entropy estimate, such as (2.16) in our case, is not expected.
This may explain the reason that there was no existence of global C1 of a(t) in
[38]. However, as discussed as [1],[2], that the choice of viscosity coefficients, h(ρ) =
ρθ, g(ρ) = (θ− 1)ρθ is physically more reasonable , which yields the desired entropy
estimate (2.16). Based on this, the global existence of solution to the free boundary
problem (2.7)-(2.11) can be established as shown in this paper. More importantly,
we obtain the large time behavior of the analytical solution and the free boundary
a(t) to the free boundary problem (2.7)-(2.11) .

The plan of this paper is as follows. In Section 2 we give the main results of this
paper. In Section 3 we will first give the self-similar solution to the equation (1.1),



and then Theorem 2.1 and 2.2 will be proved in the following Section 3.1 and 3.2,
respectively. In Section 4, we will give some examples of blow-up solutions.

2 Notations and main results

Set h(ρ) = ρθ and g(ρ) = (θ − 1)ρθ, N = 3 in (1.1)-(1.2). Then the isentropic com-
pressible Navier-Stokes system with density-dependent viscosity coefficients become

ρt + div(ρU) = 0, (2.1)

(ρU)t + div(ρU⊗U)− div(ρθD(U))− (θ − 1)∇(ρθdivU) +∇P (ρ) = 0 (2.2)

for t ∈ (0,+∞) and x ∈ R
3. Here ρ(x, t),U(x, t) and P (ρ) = ργ(γ > 1) are the

same as in (1.1)-(1.2). The initial conditions of (2.1)-(2.2) are imposed as:

(ρ, ρU)|t=0(x) = (ρ0,m0)(x), 0 ≤ |x| ≤ a0. (2.3)

For simplicity, we will take D(U) = ∇U in (2.2), though the full strain tensor
could be considered without any additional difficulty. The boundary conditions are
imposed as either the stress free condition,

ρθ∇U+ (θ − 1)ρθdivU = P (ρ)I, on x = ∂Ωt, (2.4)

or the continuous density condition

ρ = 0, on x = ∂Ωt, (2.5)

where ∂Ωt = ψ(∂Ω0, t) is a free boundary separating fluid from vacuum. Here,
∂Ω0 = {x ∈ R

3; |x| = a0} is the initial free boundary and ψ is the flow of U:
{
∂tψ(x, t) = U(ψ(x, t), t),x ∈ R

3,
ψ(x, 0) = x.

In this paper, we are concerned with the following spherically symmetric solutions
to the initial-boundary value problem (2.1)-(2.4). To this end, we denote

|x| = r, ρ(x, t) = ρ(r, t),U(x, t) = u(r, t)
x

r
. (2.6)

This leads to the following system of equations for r > 0,

ρt + (ρu)r +
2ρu

r
= 0, (2.7)

(ρu)t + (ρu2 + ργ)r +
2ρu2

r
− θ

(
ρθ(ur +

2u

r
)
)
r
+ (ρθ)r(

2u

r
) = 0, (2.8)

with the initial condition

(ρ, u)|t=0 = (ρ0(r), u0(r)), 0 ≤ r ≤ a0, (2.9)

where a0 > 0 is a constant, and the free boundary condition

ρ(a(t), t) = 0, (2.10)



or

ργ = θρθ(ur +
2u

r
), on a(t), (2.11)

where

a′(t) = u(a(t), t), a(0) = a0, ∀t ≥ 0. (2.12)

It is easy to get the following usual a priori energy estimate for smooth solutions
to (2.7), (2.8) and the boundary condition (2.10) or (2.11):

d
dt

∫ a(t)

0
(1
2
ρu2 + 1

γ−1
ργ)r2dr + (θ − 1)

∫ a(t)

0
ρθ(urr + 2u)2dr

+
∫ a(t)

0
ρθ(u2rr

2 + 2u2)dr ≤ 0, ∀θ ≥ 1. (2.13)

However, the system (2.1)-(2.2) with the boundary conditions ρU = 0 admits an
additional a priori estimate, as observed by Bresch, Desjardins and Lin [2], which
reads as follows

Lemma 2.1. (see [26]) Assume that h(ρ) and g(ρ) are two C2 functions such that

g(ρ) = ρh′(ρ)− h(ρ).

Then, the following inequality holds for any smooth solutions of (2.1)-(2.2) with the
fixed boundary condition ρU = 0 and ρ > 0:

d

dt

∫
Ω

(
1

2
ρ|U+∇ϕ(ρ)|2 + 1

γ − 1
ργ)dx+

∫
Ω

∇ϕ(ρ) · ∇ργdx ≤ 0, (2.14)

with ϕ being an enthalpy such that

ϕ′(ρ) =
h′(ρ)
ρ

.

In particular, for three-dimensional spherically symmetric solutions to (2.1)-(2.2)
with the continuous density condition, (2.10), one has

d

dt

∫ a(t)

0

(
1

2
ρ|u+ θρθ−2ρr|2 + 1

γ − 1
ργ)r2dr +

∫ a(t)

0

γθργ+θ−3ρ2rr
2dr ≤ 0. (2.15)

While, for the stress free condition (2.11), Lemma 2.1 is no longer true. Fortunately,
we can obtain the desired entropy estimate for three-dimensional spherically sym-
metric solutions (2.1)-(2.2) with (2.11) in a similar way as Lemma 2.1, and the proof
can be found in [6]. More precisely

Lemma 2.2. If (ρ, u) is a smooth solution to (2.1)-(2.2) with (2.11) and ρ > 0,
then the following inequality holds:

d

dt

∫ a(t)

0

1

2
ρ|u+ θρθ−2ρr|2r2dr +

∫ a(t)

0

γθργ+θ−3ρ2rr
2dr ≤ 0. (2.16)

i.e.,

d
dt

∫ a(t)

0
{1
2
ρu2 + (ρθ)ru+

θ2

2(θ− 1
2
)2
|(ρθ− 1

2 )r|2}r2dr
+
∫ a(t)

0
4γθ

(γ+θ−1)2
((ρ

γ+θ−1
2 )rr)

2dr ≤ 0. (2.17)



Our main result is the following theorem:

Theorem 2.1. Assume that γ = θ > 1. For the radial symmetry compressible
Navier-Stokes equations (2.7)-(2.8), with the continuous density condition (2.10),
there exists a solution of the form

ρ(r, t) =
[1
2
(θ − 1)( r2

a2(t)
− 1)]

1
θ−1

a3(t)
, u(r, t) =

a′(t)
a(t)

r. (2.18)

Where a(t) ∈ C1([0,∞)) is the free boundary satisfying (2.12) and exists for all
t ≥ 0. Furthermore, a(t) tends to +∞ as t→ +∞ with the following rates:

C1(1 + t)
2−α

3(θ−1) ≤ a(t) ≤ C2(1 + t)
9θ−8
3θ−3 , ∀t ≥ 0. (2.19)

Where C1 and C2 are constants and

α =

⎧⎪⎪⎨
⎪⎪⎩

1, if θ > 4
3
,

1 + σ, σ > 0 small , if θ = 4
3
,

5− 3θ, if 1 < θ < 4
3
.

(2.20)

Remark 2.1. The solution (2.18) constructed in Theorem 2.1 satisfies the following
properties:

ρ(0, t) → 0, as t→ +∞, (2.21)

|Ω(t)| = 4

3
πa3(t) → +∞, as t→ +∞, (2.22)

where the domain of the fluid is defined by

Ω(t) = {(r, t) ∈ R
3 × [0,∞)|0 ≤ r ≤ a(t), t ≥ 0}.

On the other hand, for the stress free boundary condition (2.11), we have:

Theorem 2.2. Assume that γ = 2θ − 1
3
, γ > 5

3
. Then the free boundary value

problem for the radial symmetry compressible Navier-Stokes system, (2.7)-(2.8), with
the stress free condition (2.11), has a unique solution with the free boundary r = a(t)
given by

a(t) = f
1
3 (1)

[
ρθ−γ
0 (a0) +

γ − θ

θ
t
] 1

3(γ−θ) , (2.23)

and

ρ(r, t) =
f( r

a(t)
)

a3(t)
, u(r, t) =

a′(t)
a(t)

r =
r

3θρθ−γ
0 (a0) + 3(γ − θ)t

. (2.24)

Where f(z) > 0, f(z) ∈ C([0, 1]) ∩ C1((0, 1]) satisfies

6(γ − 1)

(3γ + 1)2
z − γf(1)

1
3
−γf γ−2(z)f ′(z) +

γ − 1

2
f(1)

1
6
− γ

2 f
3γ−11

6 (z)f ′(z) = 0. (2.25)



Remark 2.2. It can be verified easily that the solution, (2.23) in Theorem 2.2,
satisfies the following properties:

ρ(0, t), ρ(a(t), t) → 0, as t→ +∞, (2.26)

|Ω(t)| = 4

3
πa3(t) → +∞, as t→ +∞. (2.27)

Moreover, for 0 ≤ r ≤ a(t), we have

|u(r, t)| = |a′(t)|
a(t)

r ≤ |a′(t)| ≤ C(1 + t)
− γ−1

γ− 1
3 → 0, as t→ +∞, (2.28)

|ur(r, t)| = 1

3θρθ−γ
0 (a0) + 3(γ − θ)t

→ 0, as t→ +∞. (2.29)

3 The proofs of the main theorems

First, we will give a self-similar solution to the continuity equation (2.7), which was
derived in [35]:

Lemma 3.1. For any two C1 functions f(z) ≥ 0 and a(t) > 0, define

ρ(r, t) =
f( r

a(t)
)

a3(t)
, u(r, t) =

a′(t)
a(t)

r. (3.1)

Then (ρ, u)(r, t) solves the continuity equation (2.7), i. e.,

ρt + ρru+ ρur +
2ρu

r
= 0. (3.2)

Here, we can choose a(t) as a free boundary which satisfying the condition(2.10)
or (2.11). So in the following we will determine the form of the function f(x) and
then prove the global existence of the free boundary a(t) .

To this end, denoting z = r
a(t)

, one can obtain from (2.8) that

f(z)
a′′(t)
a4(t)

r + γf γ−1(z)f ′(z)
1

a3γ+1(t)
+ (2− 3θ)θf θ−1(z)f ′(z)

a′(t)
a3θ+2(t)

= 0. (3.3)

Next, we will solve (3.3) according to the free boundary conditions (2.10) or (2.11)
respectively.

3.1 The continuous boundary condition

Assume that γ = θ > 1. We require

z = f θ−2(z)f ′(z). (3.4)

Then it follows from (3.3)-(3.4) that

f(z) = [f θ−1(1) +
1

2
(θ − 1)(z2 − 1)]

1
θ−1 , (3.5)

a′′(t) + θa2−3θ(t) + (2− 3θ)θa′(t)a1−3θ(t) = 0. (3.6)



Using the boundary condition (2.10) yields f(z) = [1
2
(θ − 1)(z2 − 1)]

1
θ−1 and then

ρ(r, t) =
[1
2
(θ − 1)( r2

a2(t)
− 1)]

1
θ−1

a3(t)
, u(r, t) =

a′(t)
a(t)

r. (3.7)

Clearly, if a(t) > 0 is a free boundary satisfying the condition (2.10), then it is
straightforward to check that (ρ, u) defined by (3.7) is a solution of (2.7)-(2.8),
where a(t) can be determined by

⎧⎨
⎩
a′(t) = a1 + θa2−3θ

0 − θa2−3θ(t)− θ

∫ t

0

a2−3θ(s)ds,

a(0) = a0, a
′(0) = a1,

(3.8)

with a0 > 0 and a1 be the initial location and slope of the free boundary.
Thus, it remains to solve the boundary value problem (3.8). We start with

estimates on solutions of (3.8).

Lemma 3.2. Let a(t) ∈ C1[0, 1] be a solution to (3.8) for T > 0. Then there exist
two uniform positive constants C1 and C2 > 0, independent of T , such that

C1(1 + t)
2−α

3(θ−1) ≤ a(t) ≤ C2(1 + t)
9θ−8
3θ−3 , for all t ∈ [0, T ], (3.9)

where

α =

⎧⎪⎪⎨
⎪⎪⎩

1, if θ > 4
3
,

1 + σ, σ > 0 small , if θ = 4
3
,

5− 3θ, if 1 < θ < 4
3
.

(3.10)

Proof. We first verify the fact that a(t) ≥ C1(1+ t)
2−α

3(θ−1) for all t ∈ [0, T ]. Note that
(3.7) implies

ρ(a(t), t) = 0, u(0, t) = 0. (3.11)

We introduce

H(t) =

∫ a(t)

0

(
r − (1 + t)u)2ρr2dr +

2

γ − 1
(1 + t)2

∫ a(t)

0

ργr2dr

=

∫ a(t)

0

ρr4dr − 2(1 + t)

∫ a(t)

0

ρur3dr + (1 + t)2
∫ a(t)

0

ρu2r2dr

+
2

γ − 1
(1 + t)2

∫ a(t)

0

ργr2dr. (3.12)

Due to a′(t) = u(a(t), t) and (3.11), a direct computation gives

H ′(t) =
∫ a(t)

0

(ρtr
4 − 2ρur3)dr + (1 + t)2

∫ a(t)

0

(
(ρu2)t +

2

γ − 1
(ργ)t

)
r2dr

+2(1 + t)

∫ a(t)

0

(
ρu2r2 − (ρu)tr

3 +
2

γ − 1
ργr2

)
dr

= I1 + I2 + I3. (3.13)



(2.7) and (3.11) yield

I1 = −
∫ a(t)

0

(
r2(r2ρu)r + 2ρur3

)
dr = −

∫ a(t)

0

(ρur4)rdr = 0.

Similarly, one has

I2 = (1 + t)2
∫ a(t)

0

(
ρtu

2 + 2ρuut +
2γ

γ − 1
ργ−1ρt

)
r2dr

= (1 + t)2
∫ a(t)

0

(− (r2ρu)ru
2 − 2ρu2urr

2 − 2ur2(ργ)r + 2γur2[ργ(ur +
2u

r
)]r

−4(ργ)ru
2r − 2γργ−1

γ − 1
(r2ρu)r

)
dr

= (1 + t)2
∫ a(t)

0

{
[2γργ(uurr + 2u2r)− 4ργu2r]r − (r2ρu3)r − (

2γργur2

γ − 1
)r

−2γργu2rr
2 + (4− 8γ)ργu2 + (8− 8γ)ργuurr

}
dr

= −4(γ − 1)(1 + t)2
∫ a(t)

0

ργ(urr + u)2dr + (4− 6γ)(1 + t)2
∫ a(t)

0

ργ(u2rr
2 + 2u2)dr

≤ (4− 6γ)(1 + t)2
∫ a(t)

0

ργ(u2rr
2 + 2u2)dr.

Next, I3 can be treated as follows.

I3 = 2(1 + t)

∫ a(t)

0

{
3ρu2r2 + (ρu2)rr

3 + (ργ)rr
3 + [(2− 2γ)ργur2 − γργurr

3]r

+(3γ − 2)ργ(urr
2 + 2ur) +

2

γ − 1
ργr2

}
dr

= 2(1 + t)

∫ a(t)

0

[
(3γ − 2)ργ(urr

2 + 2ur) +
5− 3γ

γ − 1
ργr2

]
dr.

Thus, substituting above estimates into (3.13) and using the Cauchy-Schwarz’s in-
equality, one may deduce

H ′(t) =
2(5− 3γ)

γ − 1
(1 + t)

∫ a(t)

0

ργr2dr + 2(3γ − 2)(1 + t)

∫ a(t)

0

ργurr
2dr

+4(3γ − 2)(1 + t)

∫ a(t)

0

ργurdr − 4(3γ − 2)(1 + t)2
∫ a(t)

0

ργu2dr

−2(3γ − 2)(1 + t)2
∫ a(t)

0

ργu2rr
2dr

≤ 2(5− 3γ)

γ − 1
(1 + t)

∫ a(t)

0

ργr2dr +
3(3γ − 2)

2

∫ a(t)

0

ργr2dr, (3.14)

where one has used

2(1 + t)

∫ a(t)

0

ργurr
2dr ≤ 2(1 + t)2

∫ a(t)

0

ργu2rr
2dr +

1

2

∫ a(t)

0

ργr2dr,

4(1 + t)

∫ a(t)

0

ργurdr ≤ 4(1 + t)2
∫ a(t)

0

ργu2dr +

∫ a(t)

0

ργr2dr.



Note also that the conservation of total mass implies that∫ a(t)

0

ρr2dr =

∫ a0

0

ρ0r
2dr = 1.

In the case γ ≥ 5
3
, (3.14) yields

H ′(t) ≤ 3(3γ − 2)(γ − 1)

2
E0, E0 =

∫ a0

0

(
1

2
ρ0u

2
0 +

ργ0
γ − 1

)r2dr, (3.15)

and so

H(t) ≤ H(0) +
3(3γ − 2)(γ − 1)

2
E0t. (3.16)

and consequently
∫ a(t)

0

ργr2dr ≤ C(1 + t)−1. (3.17)

Thus, as a consequence of (3.17) and the conservation of mass, it holds that for any
t > 0,

1 =

∫ a(t)

0

ρr2dr ≤
(∫ a(t)

0
ργr2dr

) 1
γ
(∫ a(t)

0
r2dr

)γ−1
γ ≤ Ca(t)3−

3
γ (1 + t)−

1
γ ,

which implies

a(t) ≥ C(1 + t)
1

3(γ−1) . (3.18)

While for 1 < γ < 5
3
, (3.14) gives

(H(t)(1 + t)3γ−5)′ ≤ 3(3γ − 2)(γ − 1)

2
E0(1 + t)3γ−5,

which yields

H(t) ≤ C(1 + t)α, (3.19)

where

α =

⎧⎪⎪⎨
⎪⎪⎩

1, if 4
3
< γ < 5

3
,

1 + σ, σ > 0 small , if γ = 4
3
,

5− 3γ, if 1 < γ < 4
3
.

(3.20)

As in (3.16)-(3.18), one can show that

a(t) ≥ C1(1 + t)
2−α

3(γ−1) . (3.21)

Next, we derive a upper bound for a(t). It follows from (3.8), (3.21) and α ∈ [1, 2)
that

a′(t) ≤ |a1|+ θa2−3θ
0 + θC1(1 + t)

3θ−2
3θ−3 + θC1

∫ t

0

(1 + s)
3θ−2
3θ−3ds

≤ C2(1 + t)
6θ−5
3θ−3 .

This yields (3.9) and completes the proof of lemma 2.2.



We are now ready to give the existence and uniqueness of the solution to the
boundary value problem (3.8).

Lemma 3.3. There exists a sufficiently small T such that (3.8) has a solution a(t),
which is unique in C1[0, T ] and satisfies with 0 < 1

2
a0 < a(t) < 2a0.

Proof. The lemma can be proved by a fixed point argument. In fact, set

g(a(t)) = a1 + θa2−3θ
0 − θa2−3θ(t)− θ

∫ t

0

a2−3θ(s)ds.

Then (3.8) can be rewrited as

da(t)

dt
= g(a(t)), a(0) = a0, g(a(0)) = a′(0) = a1.

Let T1 be a positive small constant to be determined. Define

X = {a(t) ∈ C1[0, T1], 0 <
1

2
a0 < a(t) < 2a0, ∀t ∈ [0, T1]}.

Then, for any a1(t) and a2(t) ∈ X, since θ > 1, we have

|g(a1(t))− g(a2(t))| = |θa2−3θ
2 (t)− θa2−3θ

1 (t) + θ

∫ t

0

(a2−3θ
2 (s)− a2−3θ

1 (s))ds|

≤ θ| 1

a3θ−2
2 (t)

− 1

a3θ−2
1 (t)

|+ θ

∫ t

0

| 1

a3θ−2
2 (s)

− 1

a3θ−2
1 (s)

|ds

≤ θ(
1

2
a0)

4−6θ|a1 − a2|3θ−2(t) + θ(
1

2
a0)

4−6θ

∫ t

0

|a1(s)− a2(s)|3θ−2ds

≤ θ(
1

2
a0)

4−6θ(1 + T1) sup
0≤t≤T1

|a1(t)− a2(t)|3θ−2 ≤ L sup
0≤t≤T1

|a1(t)− a2(t)|,

where L = θ33(θ−1)(1
2
a0)

1−3θ(1 + T1) is a constant.
We now define a mapping on X as

Ta(t) = a0 +

∫ t

0

g(a(s))ds, ∀t ∈ [0, T1].

Then Ta(t) ∈ C1[0, T1], and for any t < T1, one can deduce that

Ta(t) ≤ a0 + t(|a1|+ θa2−3θ
0 ) ≤ 2a0, if t ≤ a0

|a1|+ θa2−3θ
0

= T2,

and

Ta(t) ≥ a0 − |a1|t− θ

∫ t

0

a2−3θ(s)ds− θ

∫ t

0

∫ s

0

a2−3θ(τ)dτds

≥ a0 − |a1|t− θ(2a0)
2−3θt− θ

2
(2a0)

2−3θt2 ≥ 1

2
a0,

if
θ

2
(2a0)

2−3θt2 + (|a1|+ θ(2a0)
2−3θ)t ≤ 1

2
a0 ⇐⇒ 0 < t ≤ T3,



where T3 =

√
[|a1|+θ(2a0)2−3θ ]2+θa0(2a0)2−3θ−(|a1|+θ(2a0)2−3θ)

θ(2a0)2−3θ . Thus, if T1 ≤ min{T2, T3},
then Ta(t) ∈ X.

Furthermore, since

|Ta1(s)− Ta2(s)| = |
∫ t

0

g(a1(s))ds−
∫ t

0

g(a2(s))ds|
≤ LT1 sup

0≤t≤T1

|a1(t)− a2(t)|,

thus, T will be a contraction mapping if (1 + T1) < θ−1(1
2
a0)

3θ−133(1−θ), i.e., T1 <√
1 + 4θ−1(1

2
a0)3θ−133(1−θ)−1 = T4 ( i.e. LT1 < 1). The above argument shows that

T : X → X is a contraction with the sup-norm for any T1 = min{T2, T3, T4}. By
the contraction mapping theorem, there exists a unique a(t) ∈ C1[0, T1] such that
Ta(t) = a(t) and then a′(t) = g(a(t)), which yields (3.8). This completes the proof
of the lemma.

Now, Theorem 2.1 follows from Lemma 3.3, the a priori estimates, Lemma 3.2,
and the stand continuity argument. This completes the proof of Theorem 2.1.

3.2 The stress free boundary condition

First, it follows from the free boundary (2.11) and the equation (2.7) that

ρ(a(t), t) =
[
ρθ−γ
0 (a0) +

γ − θ

θ
t
] 1

θ−γ . (3.22)

Using the ansatz in (3.1) shows that

a(t) = f
1
3 (1)

[
ρθ−γ
0 (a0) +

γ − θ

θ
t
] 1

3(γ−θ) . (3.23)

Then (3.1) becomes

ρ(r, t) =
f( r

a(t)
)

a3(t)
, u(r, t) =

r

3θρθ−γ
0 (a0) + 3(γ − θ)t

, (3.24)

Set α = f(1), and then (3.23) tells us that α > 0. Recall the assumption that
θ = 1

2
(γ + 1

3
), γ > 5

3
. Then (3.3) becomes

6(γ − 1)

(3γ + 1)2
z − γα

1
3
−γf γ−2(z)f ′(z) +

γ − 1

2
α

1
6
− γ

2 f
3γ−11

6 (z)f ′(z) = 0. (3.25)

Denoting g(z) = ( f(z)
α
)
3γ−5

6 for any z ∈ [0, 1], then (3.25) becomes

⎧⎪⎨
⎪⎩
g′(z){g 3γ−1

3γ−5 (z)− γ − 1

2γ
} =

α
2
3 (γ − 1)(3γ − 5)z

γ(3γ + 1)2
,

g(1) = 1.

(3.26)

Next, we will prove that the equation (3.26) can be solved on [0, 1]. To this end, we
start with the a-priori estimates and the uniqueness.



Lemma 3.4. For any γ > 5
3
, let g(z) be a solution to the system (3.26) in C([0, 1])∩

C1((0, 1]). Then

(
γ − 1

2γ
)
3γ−5
3γ−1 < g(z) ≤ 1, (3.27)

for all z ∈ (0, 1]. Furthermore, such a solution is unique.

Proof. If g
3γ−1
3γ−5 (z)− γ−1

2γ
= 0, then (3.26) implies that z must be zero, i.e., g

3γ−1
3γ−5 (0) =

γ−1
2γ

. Namely, if z �= 0, then one has g
3γ−1
3γ−5 (z) �= γ−1

2γ
.

If for any z ∈ (0, 1], g
3γ−1
3γ−5 (z) belongs to [0, γ−1

2γ
), then (3.26) implies that g′(z) ≤ 0

and thus

1 ≤ g(z) <
(γ − 1

2γ

) 3γ−5
3γ−1 < 1.

which is a contradiction. Thus we can deduce that g
3γ−1
3γ−5 (z) > γ−1

2γ
for all z ∈ (0, 1]

and together with (3.26) to get g′(z) ≥ 0 and consequently

(γ − 1

2γ

) 3γ−5
3γ−1 < g(z) ≤ 1, ∀z ∈ (0, 1]. (3.28)

It remains to prove the uniqueness.
To this end, let ḡ(z) ∈ C([0, 1]) ∩ C1((0, 1]) be another solution to (3.26) with

ḡ(1) = 1 and
(
γ−1
2γ

) 3γ−5
3γ−1 < ḡ(z) ≤ 1 for all z ∈ (0, 1].

Define w(z) = g(z)− ḡ(z). Then w(z) solves the following problem:

⎧⎨
⎩

d

dz

{
w(z)− γ(3γ − 5)

3(γ − 1)2
{[w(z) + ḡ(z)]

6(γ−1)
3γ−5 − (ḡ(z))

6(γ−1)
3γ−5 }} = 0,

w(1) = 0, ḡ(1) = 1.

(3.29)

Set
I = {z ∈ [0, 1]|w(ξ) ≡ 0, z ≤ ξ ≤ 1}.

Here I �= ∅ because of 1 ∈ I. Define z0 = inf I and then z0 ∈ [0, 1]. Obviously, the
uniqueness of solutions to the system (3.26) will be showed by proving that z0 ≡ 0
and continuity argument.

If not, then z0 ∈ (0, 1], and w(z0) = 0. For any z ∈ (0, z0) , (3.27) tells us that

(γ − 1

2γ

) 3γ−5
3γ−1 < ḡ(z) ≤ 1, ∀z ∈ (0, z0). (3.30)

Integrating (3.29) over [z, z0] shows

w(z)− γ(3γ − 5)

3(γ − 1)2
{[w(z) + ḡ(z)]

6(γ−1)
3γ−5 − (ḡ(z))

6(γ−1)
3γ−5 } = 0. (3.31)

Since for any γ > 5
3
and then 6(γ−1)

3γ−5
> 2, Taylor expansion gives

[w(z) + ḡ(z)]
6(γ−1)
3γ−5 − (ḡ(z))

6(γ−1)
3γ−5

=
6(γ − 1)

3γ − 5
[ḡ(z)]

3γ−1
3γ−5w(z) +O(1)w2(z) (3.32)



for sufficiently small w(z). Putting (3.32) into (3.31) and using the fact w(z0) = 0,
one has

{1− 2γ

γ − 1
[ḡ(z)]

3γ−1
3γ−5 }w(z)− γ(3γ − 5)

3(γ − 1)2
O(1)w2(z) = 0, (3.33)

for z close to z0. Notices that

1− 2γ

γ − 1
[ḡ(z)]

3γ−1
3γ−5 < 0, ∀z ∈ (0, z0)

by virtue of (3.30). Then one can easily deduce that w(z) ≡ 0, ∀z ∈ (z0 − δ, z0) for
some δ > 0. This contradicts to z0 = inf I. Thus z0 ≡ 0 and the proof of Lemma
3.4 is completed.

Now we are ready to give an existence result to system (3.26).

Lemma 3.5. For any γ > 5
3
, there is a positive function y = g(z) in C([0, 1]) ∩

C1((0, 1]) satisfying (3.26).

Proof. We can rewrite (3.26) as follows:
⎧⎪⎪⎨
⎪⎪⎩
g′(z) = G(g(z), z) =

α
2
3 (γ−1)(3γ−5)z

γ(3γ+1)2

g
3γ−1
3γ−5 (z)− γ−1

2γ

,

g(1) = 1.

(3.34)

We look for a solution to (3.34) such that

g(z) ∈ C([0, 1]) ∩ C1((0, 1]), (
γ − 1

2γ
)
3γ−5
3γ−1 < g(z) ≤ 1, ∀z ∈ (0, 1]. (3.35)

Set
R = {(z, g(z))|0 ≤ 1− z ≤ a, 0 ≤ 1− g(z) ≤ b}

for small a ∈ (0, 1), b ∈ (0, 1− (γ−1
2γ

)
3γ−5
3γ−1 ). Then we can easily deduce that

|G(g(z), z)| ≤M, ∀(z, g(z)) ∈ R,

where M is a positive constant only depends on γ, a, b.
Since G(g(z), z) is continuous in R, by choosing h = min{a, b

M
} and one can

show that the solution to the initial value problem (3.33) exists in the neighborhood
0 ≤ 1− z ≤ h.

Similarly, we can extend this solution from the left of the neighborhood 0 ≤
1 − z ≤ h step by step. Let the maximum interval of the existence of solutions be
(α, 1] for some α ≥ 0 and g(z) ∈ C([α, 1]) ∩ C1((α, 1]), we will show that α ≡ 0.

If not, then α ∈ (0, 1). By Lemma 3.4, one has g(α) > (γ−1
2γ

)
3γ−5
3γ−1 and (3.34)1

is well defined in the small neighborhood of z = α for C1 function g(z). Thus the
similar arguments as above show that the solution of this initial value problem (3.33)
in the neighborhood |α− z| ≤ h0 for small h0 > 0 exists. This is to say, the solution
g(z) can be extended to the interval [α − h0, 1] which contradicts to the fact that
(α, 1] is the maximum interval of the existence of solutions. Then we have obtained
a C([0, 1]) ∩ C1((0, 1]) solution g(z) to the system (3.26).



Finally, by virtue of (3.24) and Lemma 3.4-3.5, we have obtained the global
existence of y = f(z) ∈ C([0, 1]) ∩ C1((0, 1]) to the equation (3.25) and the proof

of Theorem 2.2 is complete. In according to Lemma 3.4, f(0) > (γ−1
2γ

)
6

3γ−1 f(1), and

f(z) = ρ(r, t)a3(t), we can deduce from (3.22)-(3.23) that

Corollary 3.1. The density at the origin of the center has the following estimate:

(
γ − 1

2γ
)

6
3γ−1

[
ρ

1−3γ
6

0 (a0) +
3γ − 1

3γ + 1
t
] −6

3γ−1 < ρ(0, t) =
f(0)

f(1)

[
ρ

1−3γ
6

0 (a0) +
3γ − 1

3γ + 1
t
] −6

3γ−1

and then
ρ(0, t) → 0, as t→ +∞.

4 Examples of blow-up solutions

In this section, we will look for some examples of blow-up solutions to (2.7)-(2.8)
without a(t) to be the free boundary and the boundary conditions (2.10) or (2.11).

To this end, letting γ = θ = 1, it can be deduced from (3.3) -(3.4) that

ρ(r, t) =
e

1
2
( r2

a2(t)
−1)

a3(t)
, u(r, t) =

a′(t)
a(t)

r, (4.1)

solve the system with (2.7)-(2.8), with a(t) ∈ C2[0, T ) satisfying the following ordi-
nary differential equation:

a′′(t) + a−1(t)− a′(t)a−2(t) = 0, a(0) = a0 > 0, a′(0) = a1. (4.2)

As in Lemma 2.2, we can prove that a(t) exists for small T0 and t ∈ [0, T0]. Let
[0, T ) be the largest interval of existence of positive solutions to (4.2). The following
lemma gives the condition on the initial data for T to be finite.

Lemma 4.1. If the initial data in (4.2) satisfies

a1 + a−1
0 < 0,

then T < +∞ and a(T−) = 0.

Proof. First, integrating (4.2) over [0, t] yields

a′(t) = a1 + a−1
0 − 1

a(t)
−
∫ t

0

1

a(s)
ds, ∀t ≥ 0. (4.3)

So, if a1 + a−1
0 < 0, one has that a′(t) < 0 for all t ≥ 0 and then

a(t) < a0, a1 + a−1
0 − 1

a(t)
−

∫ t

0

1

a(s)
ds < 0, ∀t ≥ 0.

That is to say

1

a(t)
+

∫ t

0

1

a(s)
ds− (a1 + a−1

0 ) > −a1 − a−1
0 > 0. (4.4)



Thus, for t ≥ 0, one has

t =

∫ t

0

ds =

∫ a(t)

a0

1

a1 + a−1
0 − 1

a(t)
− ∫ t

0
1

a(s)
ds
da(s)

=

∫ a0

a(t)

1
1

a(t)
+
∫ t

0
1

a(s)
ds− (a1 + a−1

0 )
da(s)

≤
∫ a0

a(t)

1

−(a1 + a−1
0 )

da(s) =
a(t)− a0

a1 + a−1
0

≤ a0

−a1 − a−1
0

< +∞.

This implies limt→T− a(t) = 0 for a finite time T and completes the proof of lemma.

As γ = 1, θ = 2
3
, one can verify that

ρ(r, t) =
1

a3(t)
, u(r, t) =

a′(t)
a(t)

r, a(t) = mt+ n,m �= 0, n > 0, (4.5)

is a family of solutions to (2.7)-(2.8). Obviously, Ifm < 0, limt→T0 a(t) = 0, T0 = − n
m

and then ρ(r, t) blows up. While as if m > 0, then the family solutions (4.5) exist
globally with the following properties:

ρ(r, t) → 0, ur(r, t) → 0, ∀r ≥ 0,

as t→ +∞.
Collecting all the conclusion above, we have

Theorem 4.1. If γ = θ = 1, there exists a blow-up solution to the system (2.7)-(2.8)
of the form

ρ(r, t) =
e

1
2
( r2

a2(t)
−1)

a3(t)
, u(r, t) =

a′(t)
a(t)

r, (4.6)

with a(t) ∈ C2[0, T ) solving the following problem:

a′′(t) + a−1(t)− a′(t)a−2(t) = 0, a(0) = a0 > 0, a′(0) = a1 (4.7)

for finite T > 0 and limt→T− a(t) = 0 as if a1 + a−1
0 < 0.

If γ = 1, θ = 2
3
, then there exist a family of solutions to the system (2.7)-(2.8) of

the form:

ρ(r, t) =
1

(mt + n)3
, u(r, t) =

mr

mt + n
,m �= 0, n > 0, (4.8)

where if m < 0, T0 = − n
m

and ρ(r, t) blows up as t tends to T0. While as if m > 0,
then the family of solutions (4.8) exist globally with the following properties:

ρ(r, t) → 0, ur(r, t) → 0, ∀r ≥ 0,

as t→ +∞.
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