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ABSTRACT. In this paper, we consider the Boltzmann equation with soft poten-
tials and prove the stability of a class of non-trivial profiles defined as some given
local Maxwellians. The method consists of the analytic techniques for viscous
conservation laws, properties of Burnett functions and energy method through
the micro-macro decomposition of the Boltzmann equation. In particular, one of
the key observations is a detailed analysis of the Burnett functions so that the
energy estimates can be obtained in a clear way. As an application of the main
results in this paper, we prove the large time nonlinear asymptotic stability of
rarefaction waves to the Boltzmann equation with soft potentials.

1. INTRODUCTION
Consider the Boltzmann equation with slab symmetry in one space variable

fe+&fe=Q(f 1), f(0,2,8) = folz,9), (1.1)

where f(t,z,€) is the particle distribution function at time ¢ > 0, position z € R
with velocity € = (&1, &, &3) € R3. Here, the collision operator is given by

Q0O = [ BIEELIAEETEN0E)~FOol6)-T €O} e
= Q}]ain(f? g) + Qzain(fv g) + Qlloss(f7 g) + Ql%)ss(fa g)? (12)
where f(§) = f(t,7,€), w € S? with S? denoting the unit sphere in R?, and

=8-[¢-&) v, &=6L+[-&) ww, (1.3)

which give the relations between velocities of particles before and after an elastic
collision.
For the interaction potential satisfying the inverse power law and under the Grad’s

angular cutoff assumption, the cross-section B(| — &, 9) takes the form

B(|§ _§*|719) = B(§)|€ _§*|77 cos v = ((5 _5*) w)/’§ _§*|7 -3 < Y S 1,

where B(1) satisfies that 0 < B(1)) < const.| cos¥|. Throughout this paper, we will

consider the case with soft potentials, that is, the case when —3 < v < 0.
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We decompose the Boltzmann equation and its solution with respect to the local

Maxwellian [16] as:
[tz 8) = M(t,z, &) + G(t,x,8),

where the local Maxwellian M and G represent the macroscopic and microscopic
component in the solution respectively. Precisely, the local Maxwellian M is de-
fined by the five conserved quantities, that is, the mass density p(¢, x), momentum
m(t,z) = p(t,z)u(t, z), and energy density (E(t,z) + 3|u(t, z)[?):

fRa flt,x f dg,
mZ t z) = [qs 0i(§) f(t x §)d§, for i =1,2,3,
[p(E(t,x) 2|u(t D) = Jo 0a(€) F (1,2, €)d, (1.4)
as
_ _ p(i,l’) |£ — U’(t? .T)|2
M = My up(t,z,&) = Gr R0 )7 exp ( — W) (1.5)

Here 0(t, x) is the temperature which is related to the internal energy E by E = %R@
with R being the gas constant, and u(t, z) is the fluid velocity. It is well known that

the collision invariants 1), () used above are given by

¢0(f) = 17
i(§) =&, for i=1,23,
() = 5lEP (1.6)

satisfying
Vi(§)Q(f, 9)dé =0, for i=0,1,2,3,4.
R3
From now on, the inner product of two functions h and g in LZ(R?) with respect

to a given Maxwellian M is defined by:

)y = [ =h©)ale)de,

when the integral is well defined. If M is the local Maxwellian M , corresponding to
this inner product, the macroscopic space is spanned by the following five pair-wise

orthonormal functions

XO(&) = \/L,*)Ma
Xi(&) = f}T;ZM, for 1 =1,2,3,
u2
X4(§) = 6ip<|£R9‘ - 3>M:
<Xi7 Xji) = 5ij7 Za] = 07 17 27 3a 4. (17)
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In terms of these five basic functions, the macroscopic projection Fy and micro-

scopic projection P; are given by

Poh =30 (hy X5) X5
Plh =h-— Poh

Obviously, they satisfy
PPy=F, PP=P, PF=FP=0.

And, a function h(§) is called microscopic if

/ h(E)W;(£)dE =0, for i=0,1,2,3,4.
R3

Based on this decomposition, the solution f(¢,z,&) of the Boltzmann equation sat-
isfies

Rf =M, hf=GaG,
and the Boltzmann equation becomes

(M + G)t +€1(M+ G)x = Q(Gv M) + Q(Mv G) + Q<G7 G)?

which is equivalent to the following fluid-type system for the macroscopic compo-

nents:

pe + (pur)z =0,
(Pul)t + (pu% + p):): - - fRB éfGCEd57

(o)), = (e - )~ hosicas s

together with the equation for the microscopic component G:

Gi+ Pi(&1G,) + Pi(&M,) = Ly G + Q(G, G), (1.9)
where
G = Ly (Pi(&M,)) + Ly, ©, (1.10)
and
0 =G+ Pi(6,G,) — Q(G,G). (1.11)

Here, L), is the linearized operator of the collision operator with respect to the local

Maxwellian M:
Lyh = Q(h, M) + Q(M, h),
and the null space N of Ly, is spanned by the macroscopic variables, x;, j =

0,1,2,3,4. Moreover, the linearized operator takes the form

(Larh)(§) = —var(§)A(§) + Karh(§)
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where the collisional frequency v/ (§) is defined by

€)= [ 16— 6PME)B@Eds = ¢ [ [E-ePMENE, (112

for some constant ¢ > 0. And K); = Koy — Ky is given by

Kug = [ 16= 6P M(©0(6) BO)E. o (1.13)

Kog = [ 16= &IME0(€) + o) MENBOME o (114)
R°x
Furthermore, it is known that there exists a positive constant og(p, u,6) > 0 such
that for any function h(¢) € N+, cf. [7],
(h, Lpih) < —oo(var(€)h, h). (1.15)

Notice that for the soft potentials with angular cutoff, the collision frequency v, (€)
has the following property
vo(1+ [€ — ul?)"? <wn (&) <ma(1+ [€ = u?)”?, (1.16)

for some positive constants vy and v.
To have a clear representation for the macroscopic variables, we plug (1.10) into
(1.8) to obtain

(et (pur). =0,
(pu)s + (pui +p)a (Aﬁl d)—(&ﬁ%*@©£
()i + (). (fm&@ 51 ) (frstiiliiode) . =23,
((e+ 1)), (m <e+u+pw>)x
= —(fes QlePLI@MAE) — (fpsEilePLTOE) . (117)

To present the main results in this paper, we will use the following notations. Let

\

a and [ be a non-negative integer and a multi-index 5 = [y, B2, 3], respectively.
Denote
05 = 000, 0.2 0.

If each component of 3 is not greater than the corresponding one of 3, we use the
standard notation 3 < 3. And # < ( means that 3 < 8 and |3| < || Cg is
the usual binomial coefficient. We shall use || - || to denote the L? norms in R, or
R, x R} with the weight function ;- and |- ||, to denote the L? norm in R, x R}
with the weight function % where M_ = Mj,_,,__jis a given global Maxwellian.
And v(€) and Ly, denote the collision frequency and linearized collision operator

corresponding to the global Maxwellian M_. In addition, we introduce a weight
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function of € as w(¢) = (14| —u_|?)7/2. And C denotes a generic positive constant
which may vary from line to line.
In this paper, we consider the stability of a given local Maxwellian

My = P (- Tl 1.18
T JenRa( o)) d 2RH(t, ) ) )

when its fluid variables (p(t, z), @(t, ), (¢, x)) satisfy some assumptions given later.
We define (7,7, 6) and G as

ﬁ(t, I) = p(t, l’) - ﬁ(t, $)7
u(t,z) = u(t,z) —u(t, x),
o(t,x) = 0(t,x) — 0(t, ),
G(t,x, &) = G(t,z,&) — G(t, z, ),
where B B
Glt,z,€) = L;}R&M{ & 2_];;’29”0 G _}7;9) e } (1.19)

To show the stability of a given local Maxwellian (1.18), a key step is to estab-
lish some suitable uniform energy estimates. In fact, the following instant energy
functional £(t) will be used:

EM) = @@ O+ Y 0% uw6)(0)]

1<|al<N

+ Y wfascmP+ Y w96t (1.20)
1<]al,lal+[3]<N |B|<N
As usual, the instant energy functional £(t) is assumed to be small enough a priorily.
And this will be closed by the energy estimate in the end.
Correspondingly, the dissipation rate D(t) is given by
D(t) = (B T O) P+ Y 110%(p, 1w, 0) (1)1

2<|a|<N
+ > s+ Y !9, (1.21)
1<]al,|al+[BI<N |Bl<N
As in [16, 17], the following macroscopic entropy S will be estimated for the lower

order energy estimates. Set

—§pS = M In MdE. (1.22)
2 R3
Direct calculation yields
3 3 [ GaM,
S (08) — S(omS). + ( /R (& M)GlE) = /R e )
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and
2 2 5 2
S = —glnp+ln(27rR9)+1, p= §p9:kp3 exp(S), e=¢0, R= 3 (1.24)

Rewrite the conservation laws (1.8) by

0

R §TGAE

my+n, = — f 5 §16GdE

s §163GdE

5 Jrs GIE1PGAS
Here
1
m = (mg, my, Mo, m3>m4)t = (p, pus, puz, PU3>P(§‘U|2 + 9))'5,

t 5, 2 Lo D
m = (nOa ny, N2, N3, n4) = (puh puy + gpea PULU2, PUIUZ, PU1(§|U| + §0)> .

Then define an entropy-entropy flux pair (1, q) around a Maxwellian M = M
(u; =0,i=2,3) as

[pw,0]

-3 3 —~ 3 _

2
_ 3 3 — 3 _
q= 9{—§pu15' + §pu15 + §Vm(p5)|m:m(n —7n)}. (1.25)
Since
_ ul* 5 U; 1
(PS)me =S + 00 3 (PS)m, e 1=1,2,3, (pS)m4_07

¢ =win + (w —71)(pf — pb). (1.26)
Note that for m in any closed bounded region in = {m : p > 0, 6 > 0}, there
exists constant C' > 1 such that

CHm—m]* <n < Clm—m

We are now ready to state the assumptions on the macro components (5, @, 6)(t, z):

H1. (p,u,0)(t, x) solves the Euler equations

Py + (p_u1>x =0,
(ptr)¢ + (pui +p)o = 0,

(=), Fmle o) =0 o

where p = Rpf and € = %R@.



H2. @, = u3 = 0, g, > 0 for any (¢,2) € RT x R. And there exist positive
constants p_ >0, 0_ > 0, and 7y > 0, u_ € R? such that for all (¢, z),

1 — _

— su O(t,r) <0_ < inf  0(¢t,x), 1.28

2 (t,x)eRlixR ( ) (t,z)eER4L xR ( ) ( )
’ﬁ(t,l‘) o p*‘ + ‘ﬂ(t7x> - u*| + |§(t,$> - 9*‘ < 7o- (129)

H3. For any p (1 < p < 00), there exists a constant C'(p) > 0 depending on p

such that for some sufficiently large constant tq > 0,
_ 14l
H(ﬁvﬂ> 9)I<t7x)||lzp < C(p)<t+t0) 1+p7

0l _ :
155,20, 2)lle < Cp)(E+ 1) j =2
H4. The following estimate on the entropy-entropy flux (7, ¢) pair in (1.25) holds:

/ [V(m,gm (p, 1, S>t+vﬁﬂi - (p, @, S }dw <g®)lvn ||2 (1.30)
R

where the function g(t) > 0 satisfies [~ g(t)dt < Cye for some small constant € > 0.

As will be shown in the last section, our assumptions are valid for rarefaction

wave profiles. Obviously, they also hold true for the global Maxwellian M pap With

p=p_+e€,u =u_1+ € and 0 = 60_ + ¢ for some small constant ¢; > 0.
For (p, 1, 0)(t,x) satisfying the assumptions H1-H4, we define Z(eq, €, 10; p, W, 0)
to be the set of initial data fy(x, &) satisfying
Z w105 (fo(z, &) — Miz0.2) a0 0.0 I° < €0, (1.31)
|+ B]<N
for any N > 6 and a global Maxwellian M_ satisfying (1.28) and (1.29).

With the above preparation, the main result of this paper can be stated as follows.

Theorem 1.1. Let € and ¢, be suitably small positive constants. Then for each
fo(x,€) € Z(eo, €,m0; P, 1, 0), the Cauchy problem for the Boltzmann equation (1.1)
with initial data fy(z,€) has a unique global solution f(t,x,¢) satisfying, for some

small positive constant 6y > 0 and any t > 0,
t
—|—/ D(s)ds < Cdy, (1.32)
0

and

> a5 (f(t &) = Myag)ll < Cdo. (1.33)

laf+|BI<N

As an important application of Theorem 1.1, we can prove the nonlinear large time
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asymptotic stability of rarefaction waves to the Boltzmann equation with soft po-
tentials as stated in the following theorem.

Theorem 1.2. Let (p,u,0)(t,x) be the smooth rarefaction wave constructed in
(4.6) with (4.8) and (4.9) in section 4. If the initial data fy(z, &) satisfies

Z wa@g(fo(l’af) - M[p(o,x),a(o,x),é(o,x)])H2 < €
laf+[BI<N

for some global Maxwellian M_ = Mi,_u_ ), then when ¢y is small enough, the
problem (1.1) admits a unique global solution f(¢,x,&) satisfying for some small

positive constant §y > 0 and for all ¢,

Z me'ag(f(t,w@ - M[ﬁ,ﬂ,@])” < 0p.

la|-+[BI<N
Moreover, the solution tends to the local equilibrium rarefaction wave profile time
asymptotically in the following sense
limsup > [JwPOG(f(t,w,6) = Mypr unom)llz = 0.

t—o0
2€R | o+ BI<N-1

Here, the global Maxwellian M_ satisfies that for all (¢, ), 30(t,z) < 0_ < 0(t, x),
and |p(t,$) - p—| + |U(t71') - u—| + ’6(t7I) - 9—| < Mo-

In the rest of the introduction, we will first review some previous works related
to this paper. Although there is extensive literature on the mathematical theory
for the Boltzmann equation for hard potentials with angular cutoff, less is known
for the soft potentials. For the study on the wave patterns, around 1980, under the
angular cutoff condition, Nicolaenko, Thurber and Caflisch constructed the shock
profile solutions of the Boltzmann equation in [24] and [4] for v € [0,1]. Recently,
Liu and Yu [18, 31| established the positivity and hydrodynamic limit of shock
profile solutions of the Boltzmann equation for hard sphere model, that is, when
v = 1. On the other hand, the nonlinear stability of rarefaction waves to the
Boltzmann equation was considered in [17, 30] with different boundary conditions
for v € [0,1]. And Huang, Xin and Yang studied the stability of contact waves with
general perturbations for v € [0, 1] in [8]. In addition, the hydrodynamic limits of
contact discontinuities and rarefaction waves were also obtained in [10] and [29],
respectively. Note that the above results are obtained under the assumption when
~v > 0 so that it is has been an interesting problem to consider the corresponding

problems when —3 < v < 0.



For the Boltzmann equation with soft potentials, there are results on the per-
turbation of vacuum and a global Maxwellian. Precisely, global existence of the
renormalized solution with large initial data was constructed in [6] for all v > —3.
This result was partially generalized to the case without angular cutoff in [1]. Caflish
[3] and Ukai-Asano [26] obtained global classical solution near a global Maxwellian
for v > —1. Guo [7, 25] constructed global solutions near a global Maxwellian for
all v > —3 in a torus. The results in the torus were generalized to the case in the
whole space by Hsiao and Yu in [9)].

In this paper, we show that the Boltzmann equation with soft potential admits
a unique global solution when the initial data is a small perturbation of a given
local Maxwellian. In particular, this yields the stability of the rarefaction waves for
the Boltzmann equation for soft potentials. Here, we would like to mention that
for the Navier-Stokes equations, the stability of rarefaction waves with or without
boundary effects has been extensively studied in [14, 15, 21, 22, 23]. Moreover, the
case for the Broadwell model of discrete velocity gas was studied in [19, 28]. The
problem we considered in this paper corresponds to the Navier-Stokes equations with
ideal gas law when p = Rpf with § = 3Re/2. For more works to the compressible
Navier-Stokes equations, see [12, 15, 23] and the references therein.

Finally we would like to make some comments on the analysis of this paper. Since
the solution is a uniform small perturbation of a local Maxwellian, the structure and
properties of the underlying local Maxwellian should play a key role in our analysis.
Thus it is natural to use the general framework based on the deeper analytical
understanding of the compressible Navier-Stokes equations and the macro-micro
decomposition of the solutions to the Boltzmann equation with respect to the local
Maxwellian in [18, 16] as in the case of hard potentials. However, for the case
of soft potentials, the collision operator has a strong singularities for v < 0, thus
elaborated analytical techniques are needed even in the case of perturbation of a
global Maxwellian as Guo has done successfully in [7]. These difficulties are more
pronounced in the case of perturbations of a local Maxwellian. Indeed, one of the
key elements in our energy estimates is to control the bounds on G defined in (1.19)
to deal with the difficulties that ||(@,,0,)|* is not integrable to time ¢. However, in
contrast to the hard potentials [17], now the inverse of the linearized operator L}
is an unbounded operator in L?(R?), which leads to considerable difficulties in our
analysis, in particular, in the lower order estimates in the terms of entropy-entropy

flux pairs, see section 3.2. One of the key observations in this paper is that by
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making use of the Burnett functions and their integrability and decay properties, we
are able to identify a set of functions on which L}; is an bounded operator in suitable
weighted L? spaces, see Lemma 2.5. Furthermore, this makes it possible to calculate
some microscopic terms more precisely and thus to complete the energy estimates in
a systematic and clear way. On the other hand, to overcome the difficulties caused
by the strong singularity in the kernels for the soft potentials, we also employ some
useful techniques and ideas developed by Guo in [7] for a global Maxwellian.

The rest of the paper will be organized as follows. In the next section, we will
give some basic estimates on the collision operator and the Burnett functions. The
global existence of the solution will be proved in the third section. Finally, in the
last section, we will apply our main theorem to the nonlinear stability of rarefaction

waves for the Boltzmann equation.
2. BASIC ESTIMATES

In this section, we will prove some basic estimates on the collision operator and
the Burnett functions for the Boltzmann equation with soft potentials.

By the translation invariant of the collision operator @, it is known that
03Q(f.9) =) CoCIQO5 f,0529) = > COCH [Qpuin (D51 f, 0529)
+anin(agll f? agjg) - Qloss(agll f’ ag;g) - Qloss(agll f? agjg)] (21)

The weighted estimate on the collision operator with derivatives will be given in
the following lemmas. In the proof of the following lemma, we use some ideas due
to Guo in [7].

Lemma 2.1. Suppose that M is defined by (1.5), M_ satisfies (1.28)-(1.29) and
the following inequalities hold for some sufficiently small €, € (0, 79),
1
50(t,x) < 0_ <0(t,x),

\p(t,x) — p—| + |u(t,z) —u_| + 10(t,z) — 0_| < €.
Let M, = M,, . 0,) be either M or M_. Assume (3, + 3 = 3, a; + ap = «, and
18] < 6. If |on| + |B1] < N/2, then

| /mw%(&)cz(aszﬁzjg)%%df\S > ([ v BE g
x{/mw%'<§>v<f>—'a§if§§3'2ds}“{/Rﬁ amelge e
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Similarly, if |as| 4+ |2 < N/2, then

‘/Ra Q5 f aa;g)%%df‘ﬁ /R3 W |aa2* }1/2

a2 |+|/8 |<N-1

< /R ey BT &; Cae) [oweme i ha ™. 2y

Proof. Consider the first loss term @}, in (2.1). If |ag| + |G| < N/2, it follows
that

[ - erB@gse)dss
R3x8S?

<of [ le-ermiea) / - e <(>)| e}
195, 9
su 1/8 529 —
=¢ p{M* <5>¢— /ls &MU de.
Ié’“ 9(&)I”
2\6| o
<C /R3 (&) A dﬁ} x [14 ¢ Al

\az\HB |<N-1
Here the following inequality has been used:

105, F(E)]? 3‘“f(€)|
su 1/8(¢n\ 1751 E: 2\5| . .
5P{M* (©) M.(§) }§C| BN 1/R$ M.(€) RGES 2y

Since M, = My, u, . is M or M_, it follows from the assumptions that
(146 = w)? < CU+ g —uf’)"? < w(§).
This leads to o)
) Qlons (51 1, 0520) = 2o |
| o0 BN

- \ /R PN~ BT 05 0(6 ) s dede.d]
(e BIEI
/Rs 71(¢ TR }
\062|+\5|<N 1
[l e @10 £ s

/R3 2|ﬁ| £,) |aa 5*))| d*}lm{/RsV(f)w (§)|3j\;f*((€))| dg}l/z

< [ vewr©hEa)”, (2.5

which is bounded by the right hand side of (2.3).
11
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Now turn to the case of ||+ |51| < N/2. For this, the (£, &,) integration domain

is split into two parts
(1€ = wl > 1§ —uel 2} U{J€ — ] < [€ — ual/2} = AUB.
For the first region A = {[& — w.| > [§ — w.|/2},
M.(&.) < CMIN(E)M(6).

The term Q,, over the domain A can be bounded by

[ w0l - . BOI0g: FO08z9(6) 1o deds.d]

(©
-| [ w@le - el M*(g*)%@ 31%3) ) g
ol [ wtene-ernieog Bl OTMOL e y
L[ el - ermienro@ L e )
< Csw {M:/”(s)%}{ /R RIGITRG %ﬁ!) a)”
/ MYMA(E,) ’ ))‘ dede. }1/2.

Applying (2.4) to the first term of the last hne concludes the first part A.
Next consider the term Q) over the domain B. We assume further that | —u,| <
1. Since v < 0, [€ — & |7 < C|€ — wy|?, thus

05! 052¢q(&.
| /zmg Ly Wl € BO)VILE) ©) Gpo&) hiE) e

JILE) VL&) VILE
0 . 105 F(E)] |h(&)]
_e /2 52 — 2 A
so/wgl{ [ le—elVALE) —M*(g*)df*}lf wl S AT

|8a11 (6)]2 1/2 2 1/2
<o [, e L )
/ M1/4 f*)| ))| *}1/2

< {/Rg wz\m(@wmf ))]2(15}1/2

o [+]8]|<N—-1 *

(
M..(&
><{/R3 wz\ﬁzl(g*)u(f*)|8g; ((:))Qdi}l/z{/m uﬂﬂf)l/(f)%df}m,



where one has used the inequality

02 O e 195 £(9)]
—u 2 g <(C
{/m_m'g w3 o < eourer /L)

30‘1f 105/ F(I* | 12
/Rg w1 (¢ g} (2.6)

*

|Oc1|+|/3|<N 1
For the last part BN {|¢ — u.| > 1}, it holds that

51 (&) 9579(&)  h(€)
B M, (€, B 8,9
‘/Bﬂ{lﬁ 1) e =& IB) <€)\/M*(ﬁ) VM. (&) / M.(€)

|3§§ 20 105 F(E)] |h(¢)]
C « w — u,|” d
SCJ VM *(5*) A WAk

| 2

)
SC{ Lw”"l'(&)'agf (())' e} [ 3w2'52'<£*>v<£*>'a§5[f((§3 i)

o BEP 172
x /R O )

which is bounded by (2.2). Similarly for the second loss term, one can obtain the

d€dé.de

same estimates.

In what follows we will estimate the first gain term in (2.1). We use the partition
A and B again. In the region A = {|&, — u.| > |§ — u.|/2},

VM.(&) < OMYY (&) M),
and we have

h(€)
M,(£)

/,4 WP () — £ B F(E)052g(€) ) de. dude

95 1(&) 9579(E)  h(¢

26 )
e e BN e T g
105, (&) 105, 9(£)I° 1/2
&\ 1/4 1/16 ﬁl ﬁ2 "
SC{ /RWst € — &P BW) M (&) MVO(€) Ve Mg e dg}
20 Y rl/4 116, 0 [P
X{/wa (©)1€ = & MIHENM ) s de. "

I@Zf (&) 1055 9(ED P
M.(&)  M.(&)

«{ /R v()u? 1(5) mz\;*(gdg}w, (2.7)

<c{ [ le-erBoMSEMIE) dgldudg’} "
R3xR3xS2



where one has used the facts |£[* + [&]2 = [€]2 + [£L]? and |€ — & = |€ — £,
Assuming that |ay| + |f1] < N/2 and using a similar inequality as in (2.4), one can
bound the integral in (2.7) by

/ € — & B(O)MM(e)MIO(E)
R3xR3xS2

1o 105 FEI
<C w2B1 ()0 e
Ioc1|+|%:<N—1 /33 M.(§)

105, F(€I7 195, 9(€D)I7

d¢’ dwd€’
ME) M) Lk

0529(€L) 1
P M2 M3 (¢! B2 de’ de’
e —ap e M) S e e
, aall 2
o 3 [eies *((5))| ie [ areeey et M*((f’))| &

ot [+ TN -1
Therefore for |ay| + |61] < N/2, it holds that

| [ Q0 £ 0

28| ‘ (5)’ Lo 105290 Y12
=0 \a1|+\ﬁ'|<N 1 /R3 A ML) } {R3M*/ &) 7\/5(5;) dg*}
o [ o (f)"f\j*(gdé}m, 2.5)

which is controlled by the right hand side of (2.2) because M./**(£1) < Cw(€/)w?P2!(¢)).
Similarly, if |as| + |F2] < N/2, one has

[ QR 00 ]
218'| |8, g(&))? 1/2 O 2/ (€2 12
=0 |a2|+|5’\<N ; /RS . M.(€) dé} / {/Pl3M/ <€)?\4*—(£’)d£}/
X{/RSV(é)w (€) m]\;*é;dé}m. (2.9)

Since the last inequality in (2.7) is symmetric about ¢’ and &, the second gain term
over such a region admits the same bound as the first one.

Now we consider the first gain term over B = {|{, — u.| < |§ — u.|/2}. Assume
further |§ — u,| < 1. Then |&, — u.| < 1/2 and the gain term is bounded by

|/ €€~ &P BIOS: FE)T50(€) . ]
Bt i<t
LA AT e
<cf /B,M_u*gl“’ (OB)E — .o e dede v

14



RN |13 ORI
«{ /B Ll - 6 e) e )

20 _ 7|a§11 (/)| | ( )’
= C{ /B,|§—u*S1w A M*(g*)
)

<{ [ wometElay”,

where one has used the fact that | — &7 < 277|€ — u,|?. We now estimate the first
factor above. Since &, — u.| < |€ — u.|/2, it follows from (1.3) that

dede.d }1/2

1€ = wal + 160 = ual S CIE — ] + 1€ — ] < CJE — wa. (2.10)
Since v < 0, this implies
€ —w]” <Ol —w]”, € —u] <O —ul, (2.11)
and w?? (&) < Cmin{w?(¢"), w?(¢.)} for > 0. Thus, we have

195 F(E)? 102 g(E)
— 7 dédé,d
‘/m S e v A 7 N VAT B

<c/ min{u? (¢'), w?(€])} B()
&/~ | <C,|¢L —u. |<C
105, f(E)I17 1052 9(€)I7
x min{|& — u,|7, € — u.|” ! 2
4 i § M.(&)  M.(&)
Now changing variables (£/,£.) — (&, &), one can rewrite the right hand side of the

dede, dw.

above inequality as

c / min{w?(€), w?(£.)} B(9) min{[¢ w7, |€, "}
|6 —ux | <C,|&x—us|<C

OB AP 10530(6)
M.(&)  M.(&)
For |aq| + |51 < N/2, (2.12) is bounded by

d¢de, dw. (2.12)

|05, f(&)I? 1052 9(&.)[?
C — | d —2 ¢,
/K_MC O =P e M)
105! f(&)]? 10529(&)|?
C su 22— dE,
= |gfsu}\)gc M.(§) /5 —un<e Mi(&) <
1o 105 FEOI 10529(&)
2| w? (w25 .

loa|+[B'[<N-1

which is bounded by the right hand side of (2.2).
15



Similarly, if |as| 4 |F2| < N/2, we have

|3a29(§*)! 95 F(©)I”
C 2|,8| )L g 20 B1 de,
) m.wzm/ e e g

<{ [ weme) “j\j(!) dg}“. (2.14)

Since (2.12) is symmetric about £ and &, the second gain term over such a region
has the same bound as the first one.
It remains to estimate the gain terms over the region BN {|{ —u,| > 1}. The first

gain term will be controlled by

[ e~ SB35
< [ Q-+ it~y VL@ B0 L IS i
<ol fwe + e wirn) BLELIEIEOR i fuge) "
<{ [ur©+ g~ ulynie) il a.ac)
< C{ / w?(€)(1+ ¢ —u*\)VB("t?)Wil;*((g,))P |a§4<(§)) § dg*dwdf}m
<{ [uemoliIhac " (2.15)

due to |€ — &7 < 477(1 + |€ — u.|)?. Next we estimate the first factor in the last
inequality. It follows from (2.10) and (2.11) that
(14 1€ = w.])” < Cmin{(1 +|¢" — w.])7, (1 + 1€ — w.])"},

w?(€) < wPl(€) < CutPEw (). (2.16)
Assume that |aq| + |81 < N/2. Using these estimates and the change of variable
(€, 8) — (&, &) gives

8061 6062

(5’) (5’)

df*dwdf

105 (€17 10529(E0)I?
2\51| 2\ﬂ2| _ v ﬁl 8,9 W
< C/ (1 + |§ |) B(lg) ( ) M*(ffk) d&.dwd&
| L1 1052 98]
_ w2PL(£)q21P2! —u. N 2 w

16



<C’/ 2\51| | ﬁllf |2d§ / 2\ﬁ2\ g((g)”zdg*.

Similarly, if |as| + |G2| < N/2 we have from (2.16) that

8041 2 8062 /
/ (€)1 + ¢ — u) BW) ég,))" ((g,*)” 06 e
92 £(E)[2 |59 (E)
2|/31| 2|/32| y /31 w
/ €1+ 1§ = w.]) BO) s T e
98 F (O 02 g E)
2|51| Q\ﬁz\ N W
/ D1+ 1€ = w7 Bo) o e dde
8111 2 2
SC/ (317 (5)' f\} e / (s ' ((g*)” dé..

It follows from the above two 1nequahtles and (2.15) that the first gain term in the
last case can bounded by (2.2) and (2.3). Similarly, the second gain term has the
same bound as the first one. This concludes the proof of the lemma.

Similar arguments for Lemma 2.1 yield the following lemma.

Lemma 2.2. Under the assumptions of Lemma 2.1, it holds that
29 M M
‘ / Q(f, 9s( )h(£) dg‘
R3

M-
< on /ng (& A<4 SOF 1 [ GG ELe
Moreover, if |a] > 1, then
‘/ Q(f, 05(M — M_ ))h(f)d€’
(107 (p,u.0)] + Z 107" (o, 0, )10 (.10, 0) | 4 v+ (s 02,62
1<|o/|< el
2 1/2 w20 () 2 1/2

d e QA e\ (| QOO 1 (51
(/RS f’?ﬁ é)dg‘ (2.19)

< C(p_,u_,e_){/m )A(j*)!f( )!2d§}1/2{/m w29(5)ﬁ)yh(g)‘zd€}1/z7
where M, is either M or M_.

This lemma together with the dissipative property of the linearized collision op-

erator yields immediately the following lemma.
17



Lemma 2.3. Under the assumptions in Lemma 2.1, for h(£) € N, there exists

a constant o = o1(p_,u_,0_) > 0 such that

hLah V(E)h?
/F{3—d§> /R S ge. (2.20)

Proof. Due to (1.15) and Lemma 2.2, one has

> 0p

(2.21)

Choose 1y > 0 small enough SO that o1 =09 — C’no > (0. Then the lemma follows.

The Holder inequality and Lemma 2.3 imply that for h(£) € Nt it holds that

v(€)|Lay b / L
——= —d¢<C ——d 2.22
/R <o | TP (2.22)
Now recall the Burnett functions, cf. [2, 5, 13, 27], defined as :
A _ ’5‘2 -9 » _ 15 2 s
(8 = =5—¢& and By(§) = &¢& — o4l¢l” ford,j=1,2,3. (2.23)
Because AjM and EijM are in L?(R?) with the weight function %, there exist

functions A;(¢) and B;;(§) in L*(R?) with the weight function % such that PyA; =
0, P(]Bl'j = 0, and

A](%) — L3} (Aj(f/;z_;‘)z\@ and B,]<€/;{_Z) — I} (Bij(%)M).

Before going further, we list some elementary but important properties of the Bur-

nett functions summarized in the following lemma, cf. [5, 13].

Lemma 2.4. The Burnett functions have the following properties:

° —(fllM , A;)ar is positive and independent of

o (A;M, Ay =0 for any @ # j;

° </12M, Bjk)m = 0 for any i, j, k;

e (ByM, Bu)x = (BuM, B;j)y = (BjiM, Byy) s, which is independent of i, j for
fixed k, [;

° —(B%-M, Bij)u, is positive and independent of ¢, j when i # j;

° —(éiiM, Bj;)m, is positive and independent of i, j when i # j;

° —(B”M , Bii)ur, is positive and independent of ¢

(BijM, By)yr = 0 unless either (4, 7) = (k,1) or (I, k), or i = j and k = [;
18



A~ A ~

[} <B”M, B“>M — <B“M, Bjj>M = 2<BHM7 BU)M holds fOI' any 7 7& j

In terms of Burnett functions, the viscosity coefficient p(f) and the heat conduc-

tivity coefficient k() can be represented by

S Sy S AL
w(0) = —R6 RzBU(\/_G)B”(\/_@)dé>O’ i # 7, (2.24)
o E-u g -
k(0) = —R°0 RSAJ(\/_G)AJ(\/_Q)d§>O. (2.25)

Notice that these coefficients are independent of the density function p and they are
positive smooth functions of the temperature 6.
To study the decay and regularity of the Burnett functions, we prove the following

lemma which will be used frequently in the later energy estimates.

Lemma 2.5. Under the assumptions in Lemma 2.1, for any || > 0 and o > 0

1954;($35) 195 Bis($55)1°
/ (1+|§—u_|)GJT@dg+/ (14 1€ = u_ ) ——3 R dé < oo.
R3 — R3 —
Proof. By using (2.22), one obtains that
/ V(f)lAj(%;)leg _/ ’/(f)leT}(flj(é;l%ﬁ)ﬂwﬂzd5
R3 M_ R3 M_
v &) A (S2L) M2
SC/ ) J\JJ(@) | g < Ci(p—,u—,6-). (2.26)
R3 _

For any || = 1, it holds that
03, Aj = 05, L/ (A;M) = Ly} 05, (A;M) = 2L} Q(A;, D5, M).

Due to (2.22), we obtain

/ u(g)|L;;aﬁl(Ajzw)|2d5 _ 0/ u*l(f)lc%l(fle)IQClgS c
R? R?

M- M_
By (2.22), (2.26) and Lemma 2.2, one has

V(I QAL 0 MIP o [ v HOIQA;, 95 M)P
T e e
V()14
< C/R3 ng < (. (2.27)
o U(©)/ 03 A
/Ra ng < C. (2.28)

19



By repeating the above procedure inductively, we can obtain for any || € N that

_ v/ 4 j
/ (1 + |§ U_|2> 2|85A]|2d€ S C/ Mdf S CW\(Pﬂuﬂef)- (229)
R3 R?

M_ M_
We claim that for any ¢ > 0, it holds that
1 —u_|?)?]05A;]?
R3 M_

In fact, for any m € N and 3] € N, (2.29) implies that

/RJ% a6 = [ [Pl (1 (g~ [P)2)054, P
- / (T D)l PRI (1 g |€ —u |?)7/7(05A,dé
R3
= [ PRI (L A (Lt €~ P05 )
R3

—U— 2 —
- Z 0515253/ elemu-l/2H0 851(1 + 1€ — u—‘z)’ym@@Aja%Ajd&
R3
B1,82,83
where a; (i = 0,1,..m) are some positive numbers, 3; (j = 1,2,3) are some multi-

indices. It is clear that
10, (1+ |€ —u_?)?| < C(L+ € — u_]?)/2.

Hence, for any o > 0, there exists m € N such that

(L4 1€ = u- )[04,
[

: / (a0 + ar|é = u* + ... 41§ — u_ ™)l PR (1 | — u_|?)772|054,2dg
RS
1/2
< |é—u_[2/2R0_ o [2)7/2 12
_023{/R; (L 1€ = u_ 72195, 4 de }

1/2
x{ /R elé—u-IP2R0—(1 4 ¢ — uf)v/?yaﬁSAdeg} < 0.

Therefore, the claim (2.30) has been proved. Since B;;(&) shares the similar prop-
erties as A;(§), the above argument works also for B;;(€), and this completes the

proof of the lemma.

By the similar arguments as Lemma 2.2 and Lemma 2.5, we can obtain

Corollary 2.6. Under the assumptions in Lemma 2.1, for any |3| > 0 and o > 0,

10545 (7)1 105Bi; (4751
/Rg(l—k\f—u\)“ﬁT@déJr/Ra(l—Hf—u])”BT@dé < o0, (2.31)

20



S C{ /R3 w? ( >V]$4*>|f< 3 df}l/Q{/RB w2z(§)u(§)|h(§)|2d§}1/2’ 2
where M, is either M or M_.

w? (5)Q(f s A;) f s Bij)h(€)
‘/R 8 dé“ +‘/R i d&"

Lemma 2.7. Assume that 1 < |a| < N. Under the assumptions in Lemma 2.1
and the assumption H3, it holds that for any A > 0

/R . 9"Q(G, M—M_)%dﬁd:c < C(VE)+m0+e) D(t)+C| (P Tna, 02| s

CA+1 //R |_h|2d£dx. (2.33)

Proof. Since 1 < |a| < N, one has

QG M~ M_) = Q(G, 0" (M — M_)) + Q(G, 0 (M — M_)) +Q(°G, (M — M.))

+ Y CQOOMG, 07T (M — M), (2.34)
1< | <]

For the first term on the right hand side of (2.34), Lemma 2.2 implies that

o h (&)n V(9GP
/ RSQG@ (M—M-)) dgd <)\//R3 s dfdx%—CA/R s d¢

(107w, OF + 32 1077 (p,w, OPIO (0,0, O) + .+ (e, 03) )

1<]e/[<|a

(2.35)
To estimate the last term in (2.35), we will consider the first and the last products
as the other products can be treated similarly.
First, since for any function g(z) € H'(R) C L*(R),

sup g ()] < Cllg (@)1l gs(x)]'2. (2.36)

Hence

G2
/|ﬂm7uxa |2°"/ L||dfdfcﬁC\I(pmuac,(%c)\l‘“'H(pm,um,Gm)H‘“'

/ dgd < CELIH)D(t) < CVEM)D(t (2.37)
RS M,

Here, one has used the fact that the a priori assumption that £(t) is sufficiently

small.
21



To handle the first product, one has that for 1 < |a| < N/2,

g [ PICT o [ [ M1
<
/R|8 (p,u,9)|/ i ———dédr < C’sup|8 (p,u, )| . M, ———d{dx

G2
<o)l 1ot [ [ D9 dgar, 2y
R3 —_

which is bounded by CE(¢)D(t). On the other hand, if |a| > N/2, it holds that

N R e L s T,

2 1/2 2 1/2
< C0%(p,u, )| // 3 dgd // A'f o| dgdx} . (239
R3 —

It is clear that

//R Af " deds <c//m ]\LG ® gede *C//m Af s

Moreover, it follows from (1.19) that

— . \/mw f_u — g_u
G(t,z, &) = NG Al(\/ﬁ)%-ulen(@)?

which implies that

“=" "Ur' " e Um)

v R vm T ve e v
— §—U Elmux’ / §—U ﬂlxeac / f—u
+u1$1311(@>_ \/ﬁ 11(@)_2m311(@)‘ (240)

Here, we have represented the term G, precisely by using the Burnett functions so
that its estimates can be calculated by using the properties of Burnett functions.

It follows from Lemma 2.5 that

//R ]\f I2dgdx}1/zgC(H@M,Em)n+||(a1x,§m>.(uw,ex)u>. (2.41)

Thus, we obtain

/|aa pu, 0 / ()‘G’ngd < C(VE(t) + E()D(t) < C\/EW)D(1)

where the assumption H3 has been used for some constant ¢y > 0 large enough.
Then

/R [ .- M))Midgdx <A /R i V(f\yhpdgdx + CVEBD®)
22




By Lemma 2.2, one has

/ Q(G, 0" (M — M_>>hd§dx

M-

< A/R/R %dedx+q/ /R %df(\@a(p, u, 0)[?

10T 0w ORI (9w O) P (s, 0) P ) (2.42)

1<l |<] e
As before, for the last term in (2.42), it suffices to estimate the first and last
products. For the last product, one has from the assumption H3 and Lemma 2.5
that

GQ
//3 ]\4| | d£| P> Ugs >|2|ad$<02/ ’ Uiy, 0 )’ |(:0967u:ra )|2‘a|dx
R —

|al=1

N
< Ol (Pas iz 074 + CeD() +C D ([P tts Oa) 11| (s s Ou) |1 (W, 6217

|af=2

< Cll(Prs Wi, 02) 14 + C(VE() + €)D(2). (2.43)
Here, one has used the assumption H3 for some constant ¢, > 0 large enough.

For the first product in second term on the right hand side of (2.42), one has from
the assumption H3 and Lemma 2.5 that

)G?
//R3 ]\/)_l d§lo” (p, u, 0)|2dx<02/ (ra, 0,)[210% (p, w, 0)2da

laj=1

< OB Ta, 02) |74 + C(VE() + €)D(2). (2.44)
Finally, we estimate the fourth term on the right hand side of (2.34). It follows
from (2.38), (2.39) and Lemma 2.2 that

Q0G0 (M — M_
> [/ ( Db e

M-

1<]a|< e

|ao¢1G|2 a—aq 2
<)\/ g M, P dedurcn 3 // (|a (p,,)|

1<]a1|< ]

Y 1T (ORI (o, )P + o (s, 0) P Y

1</ [<|a—au |

" dedr.
M, §

C(VE() +¢€)D —i—)\/
R3



Notice that the third term on the right hand side of (2.34) can be estimated di-
rectly by using Lemma 2.2. This completes the proof of the lemma.

The following lemma gives an estimate for the term studied in the above lemma

with differentiations and the weight in the velocity variables.

Lemma 2.8. Let |a|+|5| < N with |a] > 1 and |3] > 1. Under the assumptions
in Lemma 2.7, it holds that for any A >0,

// w8Q(G, M — M)—dgd:p<0w/ t)+10+€)D(t) + C| By Wi, 02) [ 14
R3

w28l K12
C(A+mno / / ‘ ‘ dédzx.
R3 _
Proof. It is clear that

D5Q(G, M — M_) =" CPQ(95,G. 05 5, (M — M_)) + Q(95,G, 95, (M — M_))
B1<p
+Q(05,G,05—p, (M = M_))+ > CoQ(05'G,05 5 (M — M_))]. (2.45)
1§‘O¢1|<‘O¢|
For the first term on the right hand side of (2.45), one can use Lemma 2.2 and a
similar argument as for (2.37), (2.38) and (2.39) to get

/ / w2‘B|Q(Gglé,8g_ﬁl(M—M_))Ldfdx
RS

218) |2 w?! ’
SA// () Id dgdx+0// 95,C dg(\a“(p,u,e)l2
R R? M-
T D 1+ P )ds

1<]o/|<|a]

< C(VED) + D +A//3 m'h'z ded.

For the second term on the right hand side of (2. 45) it follows from Lemma 2.2,
Lemma 2.5 and a similar argument for (2.43) and (2.44) that

/ / wmﬂl@(aﬁla’ ag—ﬁl(M - M,)) h
R3

21811 p |2 w?lB1l 2
< A// s ) i dfdw+0// 9,1 dg(\aa(p,u,e)ﬁ
R R3 M_
+ Z 107" (p, u,0) 0" <p,u,e>|2+...+|<px,ux,em>|2'a‘>df

1<’ | <

< OH(ﬁxaﬂlmaw)Hi‘l;’ C(VE[R) +€)D(t)



For the third term on the right hand side of (2.45), one can apply Lemma 2.2 to get

/ / ?UMIQ(aglGaaﬁﬂl(M—M))Midfdl’
R JR3 _

2\ﬂ1\‘aa P 2|6||h|2
< Cno dédz + Cg W e de.
R3 M_ R3 M_

By Lemma 2.2, finally, the last term on the rlght hand side of (2.45) is bounded
by

> [ wsc.a 0 - M) g-deas

1<as |<]al

YN QUL e, o | /R 2|BIPMGPdf(|a“<p,u,9)!2

3 10 (o 0) P10 (p, u ) + .+ ](px,um,ex)]ma‘)da:

1<]a’|<]al

< C(VED + D +A//3 m"h'z ded.

And this completes the proof of the lemma.

The following four lemmas give the corresponding estimates of the above lemmas
when Q(G, M — M_) is replaced by Q(G, G).

Lemma 2.9. Let M, be either M or M_. Under assumptions of Lemma 2.7, it
holds that for any A > 0,

h
| | ac.osp

2 2
COA+¢) // VL sein + 00+ 0 // M‘G’ dédz.
R3 M_ R3 _

Proof. Recalling that G = G + G, one has

Q(G,G) = Q(G,G) +2Q(G,G) + Q(G,G). (2.46)

(pam ﬂlxa gd}) ||Zi4

It follows from Lemma 2.1 that

/ R? B<N-1
><{/R3%G|2 5}1/2{/1{3 ”(%de}l/gdx. (2.47)
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By (1.19), Lemma 2.5 and Corollary 2.6, we can obtain that for any |3 > 0 and
o> 0,

_ o 2 _
| e O e < cipme (2.48)
R3 *

Due to (2.47) and (2 48), one can obtain that

23 Gl
Q(G, (B, U, 0) || 70+ A —;—dédx.
R3 R3 M_

By (2.31) and (2. 32) we have
‘ )(/R/R —”(f\yG‘Qdex+AAS AP i),

| f 0@t <on
< Ce/R/RS V(i\)/['_é‘Qdfda:—l—Ce/R/RS ”%'_dedx.

Thanks to (2.2), one has that

/ RSQGG)

el P ©IGP P
|B’\<N 1/ /R3 ﬂ }{/R3 VT*df}der)\/R/R?) VT*dgdx

w2819, G2 1/2 2181194 (7|2 1/2
o3 (L,
8| <N-1 re M- RJR? -
v(§)|G? / v(€)[h[?
X d&dx + A d&
/1:; R3 M_ R3 M_

< OV(VEW® + E0)D( +/\/ /R ’h|2dgdx. (2.49)

T

Here one has used (2.40) and (2.41). Combining the above inequalities completes

the proof of the lemma.

Lemma 2.10. Let 1 < |a| < N. Under assumptions of Lemma 2.7, it holds that

|| rec.e A’} VEDD()
R JR3

2 le} 2
C(A+e) // Ol dédzx + Ce // Do —————d&dx.
R3 _ R3 M_

Proof. Since 1 < |a| < N, it holds that

QG C) = 20(G,°G) + Y CIQOME,TNG).  (2.50)
1<]a < |
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By Corollary 2.6 and the expression of G, one has

/R RBQ(E,@Q) //R |8jG|2d§d +//R i dfd)
<C//Rs ]‘\ﬁfGPdgd +0//Rg ‘_h|2dgdx.

It follows from Lemma 2.1 and a similar argument as for (2.38) that

/RRgQ(é,aa) VEMD)D(t) +>\//Rg |h|2d§d

Similarly, Lemma 2.1 and a similar argument as for (2.38) and (2. 39) lead to

2
/ QOG0 O“G) dﬁdaj < C\WE[)D(t —}-A/ / Ol dédzx.
R3 R3

T

In summary, the above mequahtles yield the estimate given in the lemma.

Lemma 2.11. Let 1 < |5] < N. Under assumptions of Lemma 2.7, it holds that

h —
| /R w?9,0(6, G)M EDD() + Cul (7. 1. D)
18] |B1]
C(Ae) // v |h‘2dgdx+062// w’ |aﬂ G|2d£d:c.
R3 M-

B1<B

Proof. Since 1 < || < N, one has

05Q(G,G) =Y CFQ(05,G,05-5,G) = > C3(Q(9,G,055,G)
Bi<p B1<pB

+Q(05,G,95_5,G) + Q(95,G, 95_5,G) + Q(93,G, 955, G)).

Due to Lemma 2.1, Lemma 2.5, Corollary 2.6 and the expression of G, it is clear

that
2\ﬂ||h|2
TR / / v e,

/ / QWQ 851G aﬁ 51 )
R3

By (2.42), (2.43) and Lemma 2.5, Corollary 2.6, one can obtain

/ / wQ(05,G, 05, )
R3
w?2lBil 2 w28l B2
<Csup] (0, U1y // |861G‘ dédx —|—// v(&)wTIh® §d:v>,
R3 M_ R3 M_
// w?'Q(95,G, 95, )
R3
w2861l 2 w28l k|2
<Csupy 0,,U1,)| // 955G dédx +// —|h| fd:c).
R3 7 R3 ,
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Then finally, by using Lemma 2.1 and a similar argument as for (2.38) and (2.39),

one has

//R w1 Q(05,G, 955, )—dfd:c< C\WEM)D(L) +)\/ /R

Collecting all the inequalities above completes the proof of the lemma.

2Iﬁ||h|2 dede

Lemma 2.12. Let |a|+|F] < N—1 with |a| > 1 and || > 1. Under assumptions
of Lemma 2.8, it holds that

h
wPo2Q(G, G
2|5‘|h|2 2%'18& ar.
)\+6// ————d&dx + Ce // dédzx.
R3 _ B <,@ R3 _

Proof.

QG G) = > O (Q5,G. 95-5,G) + Q3,6 055,G)
B1<pB

||(px7ﬂ1x7§50)||i4

+Q(85,G, 95_5,G) + Q(95,C.95_5G) + > cng(ag;G,ag:g;G)). (2.51)

0<ar<a

By Lemma 2.5, Corollary 2.6 and the expression of G, it is straightforward to show

that
/ / 2|6‘Q aa G aﬁ B1 )
R3

2|m||aa el 2|B||h|2
< Csup] 0,1, // dédx —|—// §dx>.
R3 M_ R3 M_

By using Lemma 2.1 and a similar argument as for (2.38) and (2.39), one has

wPlQ(05 G, 0p_s,
//R3 5G9 )M

< O\(VETD + EB)D(H) + A / / 3 2|B||h|2d§dx,

2\ﬂ||h|2
X Z.
3 //R wQ05 G, 0575 G) 3 - dgd < CE(t //R d¢d

O<a;<a _
Since the third and fourth terms on the right hand side of (2.51) can be treated

similarly, the proof of the lemma is completed.

As in [7], a similar argument gives
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Lemma 2.13. Let [3| > 0 and # > 0. For any n > 0, there exists C,, > 0 such
that

w019,GOsLy G ~ e G
Y P I S M e Ry A i
R JR3 - 1B11<]8]

Here, we omit its proof for brevity.
3. GLOBAL EXISTENCE

For the local existence of solutions to the Boltzmann equation (1.1) around the
local Maxwellian M = M5, weset f=F+ M. Then equation (1.1) becomes

=Ly F+Q(F,F)4+2Q(F,M — M_) — (M, +&M,), (3.1)
with F(0,z,£) = Fy(z,€). Here the global Maxwellian M _ satisfies (1.28) and (1.29).
Without the last two terms of right hand side in (3.1), the local in time existence
was constructed by Guo [7]. By using the conditions H2 and H3 on M and the
properties of the nonlinear collision operator given in the previous section, a slightly
modified argument used in [7] gives the following local existence theorem. Here, we

omit the details of its proof for brevity.

Theorem 3.1. For any sufficiently small ¢y > 0, there exists 7% > 0 such that if
Z ||”‘if‘5|a§f‘ﬁo||2 < €o, (3.2)
lo|+|B|<N
then there is a unique classical solution F'(¢,z,¢) to (3.1) in [0,7%) x R x R? such
that
sup Z ||7MU|B|8;,‘F(t)||2 < Cey.
0<t<T*
lo|+IBI<N
Moreover, if fo(z,&) = M50 502800 T Fo(®,§) > 0, then

f(t,2,8) = Mz 2 a(.2) 00 + Folt, 2,§) =2 0.

In the following, we will perform the energy analysis and establish a uniform en-
ergy estimate by using the the assumptions H1-H4. Then the standard continuity
argument combining the local existence theorem with the uniform energy estimates

gives the statement in Theorem 1.1.
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3.1. Basic estimates. To obtain the lower order estimates, we first estimate ||, ||?
and || (7r, s, 6,)||2. For this, we will use some techniques from [11, 16]. First, we

prove the following lemma.

Lemma 3.2. Under assumptions of H1-H3 and Lemma 2.1, there exists a con-

stant C' > 0 such that
1

5“/72“2 < = | Wpede + | (@, 00)|12 + |G 12 + e(t + to) ™ + /E[)D(1),
R
and
1.~ B -
all 0 10, )12 < €t +10) ™ + ([ (s U, 02) |17 + 1G22 + VER)D().
Proof. It follows from (1.8) and (1.27) that (7,7, 8)(t, z) satisfies
ﬁt + (ﬁﬁl)x = _Hb (3'3)
_ o 2~ 20 _ 2Q,
U1t + U U1y + _ex + 5 Pz = — fl dg - H27 (34)
3 3p R3 1%
Wit + W Uiy = — SIS dé — i, 1=2,3, (3.5)
R P
~ 2~ = -u— 3[¢€°) G,
0; + =0ty + w6, = — SIS 13w d¢ — Hs, (3.6)
3 R3 P
where
Hy = (pur + U1p)a, (3.7)
o m
Hy = wt, + wu, + %_w (3.8)
PP
9 - _ o -

Multiplying (3.4) by p, and integrating with respect to x yield

20 _ - - 2~ _
/ —|pm|2dl’ = _/ ultpacdx - / Ululxpzdm - / _eacpmdx
R 3P R R R 3

Y
- / §iCPs ey / Hop,ds. (3.10)
RJR3 P R

The Holder inequality and assumption H3 give

2~ _ _ ~
| [ 307uds| < NI + G,
R

£ Gap -
[ S ] < a6l + M
RJR P

| / Wipede| < AP+ Co/EDD()
R
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| [ Hada| < MBI + Gl + e + 1) % + CVE@D()
R
For the first term of the right hand side of (3.10), one uses (3.3) and the integration

by part to get
-~ d -~ - -
_/ ultpxdx: - Ulpxdff—/ leﬂtdm
dt R

—_/ T 7nd 4 A2 + CallT |2 + et + o)~ + C/EDDW).  (3.11)

Combining (3.10) and (3.11) yields the first estimate in Lemma 3.2.
By using equations (3.3)-(3.6) and the assumptions H1-H3, a similar argument

gives the second estimate. And this completes the proof of the lemma.

To obtain the high order estimates, we need to estimate ||0%p,||* and ||0%(ps, us, 0;)||*

as follows.

Lemma 3.3. Under assumptions H1-H3 and Lemma 2.1, there exists some
constant C' > 0 that

1 d
Glooull <~ [ 00 puda + 19,00

+|0%C||? + €(t + to) Y3 + C\/E)D(t)
and
1
5||3“(pt,ut70t)ll2 < [0 (P e O)||* + |0°G|2 + €t + o)™ + C/E(t)D(2)

where 1 < |a] < N —1.

Remark 3.4. We will use Lemma 3.2 and 3.3 to close the energy estimate.
Furthermore, we will not use the temporal derivatives in the subsequent energy
analysis with the help of these two lemmas and integration by part about time t so
that we do not impose the temporal derivatives on the initial data and thus improve
that in [16, 17].

Proof of Lemma 3.3. It follows from (1.8) that

2 20 2G,
Uy + ULUL, + —Qz + — Pz = — 51 df, (313)
3 3p RS P
Uit + UL Ui = — %df, 1= 2, 3, (314)
R P
2 cu— €A G,
Gt -+ —Gum + Ulex = — 51(5 Y 2 |§| ) d£ (315)
3 R3 P
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Taking 0% (1 < |a] < N —1) of (3.13) in x variable and multiplying the resulting
equation by 0%p, lead to

20 2
/ —10%p,|Pdx = —/ 8au1t80‘pzdx—/ 8a(u1ulz)8apxdx—/ —0%0,0 ppdx
R 3P R R R 3

2
- > o / 6aa/(§—9)8alpx8°‘pmdm— / aapmaa(ﬁ)dgdx
p p

o’ |<la R e
d
S - / O*u 0% ppdx + N 0% p||* + CA||0 (ug, 6,)||?
R

H|O G2 + Ce(t + o) ™3 + C\/E)D().
Taking A > 0 small enough gives the first estimate of the lemma.
Applying 0% (1 < |a] < N —1) to (3.12)-(3.15) in x variable and then taking the
inner product in L?, one gets the second estimate of the lemma by straightforward

calculations. And this completes the proof of the lemma.

3.2. Lower Order Estimates. The lower order estimates can be obtained by the
entropy-entropy flux analysis as done in [16, 17]. Here for soft potentials, the differ-
ences comes from the calculations of some microscopic terms very precisely by using
the Burnett functions and their properties obtained in the previous section so that
the estimates can be derived in a clear and systematic way, which is one of the main
observations in this paper.

Due to (1.25), one can obtain

+/R3 [fl(glnM)x—;ﬂmﬁ]Gdf—i—{/R3 glélnM—%glygﬁ—;gfal)adg}x. (3.16)

Integrating the above equation over R yields

d I e
E Rn(t)dﬂf = /R [V(ﬁ,ﬂ,é)n ’ (pv U, S)t + v(ﬁ,ﬂ,?)q ’ (pa U, S)a::| dx

[ [ [a@wan, - S cacas (3.17)

First, we estimate the second term on the right hand side of (3.17). By using (1.10)
and the self-adjoint property of L;j, one has

/ [gl(ém M)x—;ﬂuﬁf] Gde = / Li P& (@In M)xM—;ﬂmng]
R3 R?

Noticing that

_ P - lg{"f _ Pz 30, (£ —u)%0, & Uiz (& — w;)
M. = ((27r39)3/26 " )x_M(p 20 2R +Z R > (3.18)
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one can show that

_ € —ulle  (—u) u
R&M, = PG M{ B+ S (3.19)
_ € —uPb, | (E—u) W € —uPb,  (E—u) -
= PaM{B o+ S e RaM{ B+ S
VRO, - £ —u Ou, ~ &—u VRO, S 0u; - -
= A M+—B M+ A +Y —IB(>—=—)M.
va M mg M s Pl \/RH) Vi \/RH) O vl
A direct calculation yields
P&y@ M) M — 2 P &M = P&ME.In M+ REMB(n M), — & P, £ M
__7 §—uf - [E—ufle  (—w)u 3,
= O PGM S + PG M{ Bt + S P, €M
7 §—ul* 3, _ 2 |§—u|2§$ (€ —u) - u,
= —0.P &M 5SRO §P1U1x§1M + P151M{ ¥l + 7 }
€ — u|25w (§—u)-u, Y € —ul0, | (=) u,
+RaM{ B+ S e { B R }
— ou,; \/_9«9 —u ou;
= VR0, Ay (—) M+0 By, = M0 S2By (=M.
) Z e Z e
Note that
— 3
L]TjPl [1(0In M), — §ﬂ11,§f]M
8u S — u \/_6’9 ou;
= VROO, A ( +0 !By, = ]B —
It follows from the two equahtles above and Lemma 2.4 that

_ 5 B (eI
/Rg Ly P& (6T M)o M — éﬂuﬁfM] %d&

WO 5 K05 o5 K05 6O g p0) Oy p(0)

 Rf RO? RO ° " RO? 3R ox| TR
Op(0) 0ty Ouy — pu(0)0 = OT1; Ouy  Ap(0) Oy Oty Ap(0)6 Oy uy

3RO Oz Ox R o dx Ox 3R OJx Oz 3RO Ox Ox
Here, one has used the expressions (2.24) and (2.25) of () and x(6). Since p(6)

and k(6) are smooth functions of @, by the assumption of Lemma 2.1, there exist

positive constants k; and ko such that p(6), x(0) € [k1, k2]. Thus,

£(0) 7 p(0) Oty n  p() - / ~ 2,172
_ < _
| g+ B G + B e < = [ (G + e
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Setting ¢(0) = one gets

/ / J(0)8dx + / {(0)0.8.0dx + / 0(0)0,.0dx
R R R
< ClOI210a0 N0 + 118acllr) + CHOM 218 [2116]] - 1162

< C021102 )1 + et + to) 2. (3.20)

A similar argument as for (3.20) implies that

/ Li'p [51(5111 M), M — 3
R3

P (&M,
éﬂle%M] el (&

)
Mo %
< —Ky / ([te]? + 10,2 )dz + CER)D(E) + €(t + to) /3. (3.21)

Note that
= V Rezt 5— u - V Rezet 5— u
G==—77 "om) v )

_\/mxA,(f—U) Uy _\/ﬁxetA,(f—U)g_U
Vo U VROVRI V9 VRO 2VROP
s Bn(g_u>_ﬂlzut ,(f—u)_ U0, ,(f—u)‘
“TUNVRT VRO Y VRO oVREP VRO

One can apply assumption H3, Lemma 3.2 and Corollary 2.6 to obtain

fL S

< Celt + to) ™3 + Cel|(pr, T, 0,) || + C(VE() + E(1))D(¢
< Ce(t +to) ™% + Cel| (P, Wy, 0,) > + Cel| G2 + C(VE[) + E)D(2),

/ / ‘L;}Pl[gl(@lnM)xM—%ﬂué%M]
R JR3 M

< O (U, 0| + Cet + to) ™3 + C(VE(L) + E(1)D(t).

Thus, one obtains

/ / ARG @0 M).M ~ D5, EM) td&dx
R3

‘L P& anM) — 30,6 M|
<)\// dde+C,\/
R3

< Ce(t+1o) 4/3+C(6+A)(||(Px,u$, )||2+||G I5)+C(VER) +E)D(1). (3.22)

(ulxta xt)||2 + CH(ulx; :v) ) (utygt)”Q

2

déda < O (@, 0)|1* + 110 - (s, 02)[1%)

R3



Moreover, integration by parts over t gives

/ / A RIGE0 MM — D5, EM) tdfdx
R3

SO mipla@nn. - Sagm o
_// ( Mlplfl anM]\)/; —%ﬂlxﬁM]> édfdm.
R JR3 t

For the second term on the right hand side of the above equation, it follows from
Lemma 3.2 and 3.3 that

‘// (LX}PJ&(@IHM)IM—%%5?%) (N}dgdx‘
R3 t

M
ol LI
R3

Lyt P& (BIn M), M — 3u,,&2M
M
< Ol Fat, Out)I* + Cll (T, 02) - (o1, 10, 01 + Call (B Te) - (g, 02|
OO - (p1y e, 02) + (U, )12 + CAll0 - (e, 00 |* + N G2
< Cr([[(pres taws O )I* + | Giall2) + MG + Ce(t + to) ™2 + Cav/E(R)D(t)

Finally, one can show that

‘//R 1Py (6, (@10 M), M 3%51 ] td@“dm‘

d
S //RL P Py[& (0 M), M ulxﬁl ]—dédx)—l—C,\(H(pm,um,em)|]2—|—|\GmHz)

+Ce(t+t0) " + Cle+ ) (|| T, 00)IP + Gl + 1GN2) + CAV/EDD (). (3.23)
Similarly, it holds that

[ Eat Rl @m0 - Sa,gtv] S ]

< CON|(T, 0) |1 + C(VE[R) + E@))D(t) + Celt + to) ™3 + Cr|| Ga|>.

For the term involving the collision term, if follows from H3 and Lemma 2.9 that

‘/ / Ly P& (0n M), M — gﬂlele] QG G) dé“dx‘
R JR3

5IM@M+M@M

M
< Ce(t +to) 2 + COA+ ) (||(Te, 0) > + | Gll) + CVERD(). (3.24)
In addition, by the assumption H4, one has

[ [Fowsn 3.0.30+ Vius0 GuS)]de < g IVaDI (.29
R
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Collecting all the estimates (3.21), (3.23), (3.24) and (3.25) and taking A > 0 and
¢ > 0 small enough, we have from (3.17) and Lemma 3.2 that

/ t)de— / /R Lyt P8I M), M 3%51 ];dgdHO(Me) /R ﬂlﬁwdx>

+ds | (B, T 01> < GOV DO + CUN(Prs s O |” + G2 + |Gl 2)
+CON+ |G|+ Ce(t + 1)~ "? + C/E)D(1). (3.26)

To complete the lower estimates, one needs to estimate the microscopic component
G. Since ||G||? is not integrable with respect to the time ¢. Thus, we will first derive

the lower order estimates from (1.9) for the microscopic part G. Note that G solves

2R92 RO

—P(6G.) +Q(G,G) - G, (3.27)
Multiplying (3.27) by G /M_ and integrating its product with over R x R? yield

GQ(M — M_,G Go"Q(G,G)
2 2 )
2dt||GH +O||GI? <C// A déd +//R —dfd

G — L G=20(M — M_.G) — P, [gl( )M]

T

GP1 51 2R02 =+ ERG GP &G GG
dgd / / Lol dgd / / tdgdx
//1;3 R3 M_ R3 M_

By Lemma 2.2, the first term on the right hand side of (3.28) is bounded by

/R/RS éQ(M]\;M’é)dfdl’SCUo/R/Rg %@Fdfdx.

Noticing that

€ —ul?d, -7,
2 R6A? RO

\/}_%0$A 5

{—u
N

= M+Zuijlj g M.

P M| =

one can get

GP1 51 ‘52;'9;% + Slay )y _ N
/ / | dgdr < Cyl|(n, 8| + CAIC2.
R3

It follows from H3 and Lemma 2.9 that

// GQ]V?Gdgd < CVEMD(t) + Celt +to) ™ + C(A + o) ||GI2.
R? -
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Since
_ o 4
Pl(élGx) = élGa: + gle - Z<£1Gm Xj>Xj>
=0

one can obtain

//R Gél_ déda </\//Rs I_GIngd Lo //R ygl_| Col g
//R GG GG 6 g, <)\//RB \GPdgd *C//Rs HOIGEL 1y,

By Lemma 2.5 and the Sobolev imbedding, one gets

AL _ .
/ /R3 o ’51’ )‘ | dgdm S C(H(ukv:mea:x”Q + ||(u1x79:c) : (uwvel’)HQ)

< CE)D(t) + Ce(t +to) 3.

Then it follows that

2
// Gthgdx</\||G||2+O// |Gt| T déda

NG + Ce(t +1o) ™ + Cel| (P, U, ) | + Cel| Gll2 + C(VE() + (1)) D(E).

Combining the estimates above and choosing €, 1y and A small enough, we have
d ~ -
ZIGIP + CIGIE < CVEDDE)

+Ce(t + t0) ™ + C(| (s s 00)|* + 1Gall2)- (3.30)

In summary, a suitable linear combination of (3.26) and (3.30) gives the following

lower order estimates

Lo _
%{HGHQ + Cl / dx — / / 1P1 51 QIHM) lefl :|—d€dl‘
R3
+C’()\+e)/ Wnpede) b+ di (1w i, 0) |12 + 1G2)
R

< Cyg)IVnNI* + CUl(pres e Oua) |* + G llZ + 1Gal2)

+Ce(t +to) ™3 + Ca/E()D(1), (3.31)

where C; > 0 is a constant that can be large.
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3.3. High order estimates on spatial derivatives. In what follows we will es-
timate 0°G with 1 < |a] < N — 1. To this end, we apply 9% to (1.9) to have

0°Gy + 0Py (&1Gy) + 0“Py (& M,)
=Ly 0°G 4+20°Q(G, M — M_) 4+ 0°Q(G,G). (3.32)
Multiplying (3.32) by 0“G/M_ and integrating the resulting equality over R x R3
yield

||aac;||2 + Ol < c/ /

[ [ BRsGG //Rﬁﬂfl Coer.

Then the right hand side of (3.33) can be estimated term by term as follows. First,

Q(G, M — M_ )aaG+aaQ(G GG

dédz

by using Lemma 2.7, one can obtain

‘//RS aaQ(G,MMt M_)0O‘Gd§dx

S COWEW[) +m+€e)D +C||(Pz,ulx, lzs + CA+m0)[0°GII;
<C \/ t) + 10+ €)D(t) + Ce(t + to) > + C (A +m0)||0°G[}.
For the second term of (3.33), it follows from H3 and Lemma 2.10 that

‘// 3QQ(G7G)aaGd§dx‘gCM/S(t)D(t)+C()\+€)HaaGH12r
R JR3 M

For the third term of (3.33), since

aapl(glG ) glaaG Z Z C«alcxgagaalxj/ glaagG aa;,»(X]) 5

7=0 a1+aztaz=«a
it suffices to consider the second term on the right hand side of the above equation
because the first term vanishes after integration. For this, there are the following

three cases to be investigated:

Case 1. When [ay, an, a3] = [0, v, 0], it is straightforward to have
XjaaG fe) X o Y)|2 1oy 2
m—d §10°Go(77)d€ ) dz < M|O°G|l, + CA[|0°Ga[;-
L LA (] aregpa)
Case 2. When [y, g, 3] = [1, e, 0] or [a, g, az] = [0, g, 1], one has

/R</R am]ﬁaa as) 510Q2Gx(%)d£)+( i xga"‘ LTC ) nglawaxaas(%)dgdgj

R 1|Ma |2 /R 2/ V(§)|60‘2G$|2
<
A/ /5 3 dédx 4+ C), \(pm,um,Qxﬂ \ —M_ dédx

< MOGIS + Ca(VE() + E(1)D().
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Case 3. When [ay, ag, as] = [1, az, 1], it holds that

/R ( /R 3 aalj’\(fa ) ( nglamaza%(%)dg)dx

G2 12 v(€)]072G, 2 12
gc/ 0,0, / v(©Io°GE /—wd o
10 >\{R3 e | {R3 e |
< O (pas t1as ) || (P thns o) |7 G 211072 G| 2

< O(VE) + )Pt

Since the other cases can be discussed similarly, we thus have

ap. o
/ / PRUECTC st < CoJEODW) + Ol G2 + CA I G
R3

M-
For the fourth term on the right hand side of (3.33) since
VRO, . €— {—u
P& M. ZA )M + umB i M,
then

o p. M. o
/ / : 1(%4 PG s < NG GI2+C10 (s s 62
R3

CaV/E)D(t) + Ce(t +t) ™43,

By combining the above estimates and choosing A, 79 and € small enough, one gets
d
TGP+ Cl°GIl; < C(VE() +mo + €)D(1)

+Ce(t 4 o) ™3 4 C||0%(pa, s, 02) |* + C|O“Go|?. (3.34)
For any 1 < |o|] < N — 1, the summation of (3.34) over |a| through a suitable
linear combination gives

> [SloGI? + CloGIE] < COV/ED +mo+ DN

1<]al<N-1

FO(t+ 1) P+ C N 0w 0P C Y G (3.35)

1</l <N-1 lof=N

To have the dissipative estimate on the N-order derivative of the microscopic
component G, we consider the original equation for f(¢,x,&). Applying 9% (2 <
|a| < N) to (1.1) and integrating its product with 9*f/M_ over R x R? lead to

0“G Ly 0¢ O“MO*LyG
sl [ [ g [ [ TR g
R3 7
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B 0°Q(G, M — M_)0°G °Q(G,G)o" f
=2 /R /R 3 e dédx + /R /R 3 T dédz.  (3.36)

We now estimate (3.36) term by term as follows. (1.15) implies that

0°G Ly 0°G
—// 2T T dede > 0 ]|0°G) 3
R M

By Lemma 2.7 and 2.10, one can get

/ / aaQ(G, M — M_)aafdé.dx < C( /8({;) + no + E)D t
R Jrs M_

+COe(t +to) 2 + C(A + o) (0% (p u, 0)||* + [|0°GI2),

and

/ / PQUC S g < C(JED + 1m0 + YD)
R JR? M

+Ce(t +10) "+ OO+ )(10%(p, w. 0)|* + 0°G ), (3.37)
where one has used the fact that
10°FII7 < CllO*GI5 + CllO* (p, w, O)|I* + Celt + to) ™ + C(VE() + mo + )D(2).
For the third term of the left hand side of (3.36), noting that
0%LyG = Ly0°G + 2 Z CHQOMG, 0" (M — M_)),

ap <o

and Py (0*“M) does not contain 0%(p,u, ), one gets from (2.19) that

// ao‘MLMé?a d{dx—// P (0*M LM(‘?D‘Gg
R3 R3

< C(VE[) +mo +)D(t) + Ce(t + to) ™ + M|0*G|2.
Thus, to estimate the third term on the left hand side of (3.36), one only needs to
estimate [, [gs 8"‘MLM8"‘G<$_ — ﬁ)dﬁdm. For this, it follows from (2.19) that

/ 9o ML (’)O“G(]\l/[ —%)dfdw

)0“G? 1 12
<C’)\// | — —dédx + Oy // E)|0*M|>M_ — —| déd.
B Ts N MPM-|57 - 7]

For the second term on the right hand side of the above inequality, one has

a2
//£>R 8|0 M| M_‘M_—_‘ dfdx_/ /£|>R )0 M| ‘1 ‘Qdfdx.

Taking R > 0 large enough and 7y > 0 small enough, when Z 5 <0_<0and

o= p-|+u—u|+1]0=0-| <o,
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one has

A /E - ANy A e

< C(VE®) + 1m0+ €)D(t) + CN||0%(p, u, ) ||* + Ce(t + to)~*>.
On the other hand, it holds that

QIO MPM_ | M P2
]QA/;<R — ‘1 _NL_‘dgdx

< C(WVEW) +m + €)D(t) + C|0%(p,u, 0)||* + Ce(t + to) V2.

By (2.18) and a similar argument as for Lemma 2.8, one can obtain

(67

o} a—aq o 0°G
/ RaQ(@ G, 07 (M M,))M

déda

< C(WVEWM) +no + )D(t) + Ce(t +to) 3 + C(A +no) | 0°G|%.

Combining all the estimates above and choosing A, 7y and € small enough, one has
d [0} (0%
ZN0 P+ ClloGl;

< C(VE(®) + 10 + e)D(t) + Celt + to) ™ + C(A + 10+ €)0%(p, . )|*. (3.38)

For any 2 < |a| < N, the summation of (3.38) over || through a suitable linear

combination gives

S [T+ CloGlz] < O(VER +m + D)

2<[a|<N

+Ce(t+1o) P+ CA+m+e) Y [0%p,u 0. (3.39)

2<[o]<N

We now turn to the estimate on the macroscopic components, that is, the fluid
variables. Note that in the following estimates, Burnett functions play an important

role.

To obtain the estimates on 9“M, one may apply Py to (1.1) to yield
M; + Po(&M,) + Po(6G,) = 0. (3.40)

Consider the case when |a| = 1 first. Applying 0% to (3.40) gives

1d 0% Py(£,M,)0* M 0% Py(£1G,)0°M
9 M |2 -—U/‘ 0 dédz -—U/Q déd.

(3.41)
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The first term the right hand side of (3.41) can be estimated as follows. Since

4 4
3apo(§1Mw) = Po(flaaMx) —+ Z<§1M:C7 Xj>aan —+ Z /1;{3 glMx(%)xd§Xﬁ (342)
j=0 Jj=0

it holds that

Py(§10° M, )0 M / (&[0 M*) M, /
— dédx = dédx < O s Uz, 0,)|°dx
/R><R3 M RxR3 2M> | P )|

< C(VER) +EM)D(t) + Ce(t + to) /3. (3.43)
And it is straightforward to check that the other two terms on the right hand side

of (3.42) have the same upper bound as the first one.
To take care of the difference in weights, that is, M and M_, we claim that the
following inequality holds

1 1
fe% fed o < —4/3
/RXRS O“Py(£,M,)0 M(—M —M_)dfdx < Ce(t + )
+C(VE(E) + EW)D(E) + CA+ €)(| (B T 0)” + | (s U, ) [7)- (3.44)

First, note that
Po(& M) = &0 M, —0aP1(51 2);

M, = (We_%:;)x — M<p_pl“ _ % ;Rl;;e +Z Uiy fz — U )

To prove (3.44), by (3.19) and the two equalities above, it sufﬁces to estimate the

following term as the other terms can be estimated similarly. Set
VR . £—u 1 1
olpnt) = [ TGO — g
Since a(p, u, #) is bounded and differentiable under the assumption (1.24) and (1.25),
one has
p_m\/ﬁemA §—u M2 1
/R><R3 o o M Gr M_)

— / a(p,u,0)(pebes + ﬁwém + ﬁxgm)dac = / a(p,u,0)(ppbes + ﬁxgm)dx
R R

dfdx—/a(p,u,@)pﬁmdx
R

—/wmwmmﬁ+wm%mww%@m@m
R

< COF+) (1B T, O 1P+ (025 s B |1*) + Ce(t410) P+ C(VEB) +E())D(1),
where A > 0 is small enough.
Thus, it follows from (3.43) and (3.44) that

0 Py(&1M )0 M )
_/ (&) dédr < COA+ €) (1P, U, 02)17 + || (Paes U O ||)
RxR?3 M-
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+C(VE[) + E)D(t) + Ce(t +to) 2.
Next we consider the second term on the right hand side of (3.41). Due to (1.10),
it holds that

4 4
PO(&IGx) = Z &G anj Z &G, X] xXj — / &G ng]
7=0

4
ZL Pl (&1x;), Pr(& M, ij+ZL Pl (&1x;), P1©)ax;— Z 51 ( )ngJ
=0

Jj=0 7=0

By using the Burnett functions, one has for j = 1,2, 3,

_ _ RO E—u N 2VRO . €& —u
L/ P =0, L/P ) = By Ly P = A :

M 1(€1X0) ) M 1(€1Xj) \/R_pe 1]( \/@)7 M 1(§1X4) \/@ 1( \/ﬁ)
On the other hand, one also has

_ € —uPle  (E—w)-uey _ VRO, Ou; -

P, = PaM{ e s Ve M+Z B“ V77 51

Then one can obtain from Lemma 2.5 that
4 3

Z<LX41P1(§1XJ')7P1(§1Mx)>ij = —(M)xm—é(ﬂum)wm—Z( () Wjz) X -

= V6pR0 3V Rpb = v Rpb
(3.45)
It is straightforward to show that for j =1, 2, 3,
_ ] _ V60l
<X]7MSC> - Reu]xa <X4aMaz> - 29 3
4 4
9" Po(§:Ge Z w Pr&xg), Pu(EMy))ea X + Z(Lﬁpl(lej), P& M) e Xja
§=0 5=0
4 4 N
+Z (Ly; Pi(&1x;), PO mef‘Z (Ly Pu(&ixs), PrO)aXju— Z( 3§1G(M])xd§Xj> :
7=0 =0 R T

According to the expressions above, the first term of (0*Fy(&1G.), M,) satisfies

/R<L]T/[1P1(£1X4)a Py (&1 My)) 22 {Xa, My)dx = — n ?//ﬁé—ggg) \/;9
= [ e (). (Gagi) - e () 2 ). ) e
and for j = 1,2, 3,

0
/R<LX41P1(§1X]'),Pl(flMx»m(Xj,Mx)dx = —/R(%p)eujx)m %ujxdx

= [ TR+ (V) (i) o et (). () )
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Therefore, by assumption H3 and Lemma 3.2, we obtain

—Z/ (Las Pr&G), Pr(€iMa))aa (s, Mo )dw < —do|(taa, Oua) P+l (P 1, )| s

< —do| (tta: O 1P +HCN (2t 0) || (P s o) | (| (B Tiras O |2+ (B T, 6) 1)
< —dy|(Ugg, O22)||* + CEX)D(t) + Ce(t + o) 43, (3.46)

and

M-

4
- [P PUEM D [ oMl = gp)dsds

= i/R@MlPl(ﬁlXj),P1(51M1)>z(/RS ij\/[gc(ML — %)dg)xdx

< C (Mo + M| (Pas Uzas Ozz)||* + CER)D(t) + Ce(t + to) ™43, (3.47)
Combining (3.46) and (3.47) and taking A and 7y small enough give

_Z/ (Ly Pi( (&1x5), P& M) 2w

< —ds | (s G) |I* + C110 + Nllpac||® + CE@R)D(E) + Ce(t + 1) ™% (3.48)
Thanks to (3.45), the second term in (0*FPy(&1G,), M) is bounded by

4
—jZO/R@XjH(&Xj%P1(§1Mx)>z /R3 XJM—dgdx

X; My
S ded
R3 M_ é-x

< O (Pas U, Osa) || + CLE(®)D(t) + Ce(t + to) /2. (3.49)
By the expression (1.11) of ©, Lemma 2.9, 2.10, 3.2, 3.3 and assumption H3, the
first term involving © in (0*Fy(&G,), M,) can be estimated as follows:

4
M,
> [ 03P 662+ Q6.6 [ M deda

R3 —

Xij

AT df)zdx

= — i/R<LM1P1(£1Xj)7€1Gx +Q(G, G)>:r(

< Cmo+e+ A)(Il(pm,um,@m)ll2 +GI1?)
C(VE() +10)D(t) + Ce(t + to) ™3 + C||Gyal|?,

and

- d i M,
/R<LMlP1<§1Xj>7Gt>m s M, dt <L P1<51X]) > Rgﬁ

dédx



o[ (R o) (S ae) e [ e 61 [ 7

d i M,
< — [ Ly Pi(bix; ==
>~ dt R< M 1(£1X])7G>m: - M,

+O(VE) +nmo)D(t) + Ce(t + o)™ + C| G-

Therefore, we obtain

4 M
j=0 /R -

22 deda + OO+ )|l (Paas Uae, Ous) ||

R3
‘L d XM,
<> [P0 6 ;4 A CO ) (1o e, ) G
= R3 _
+C(VE[) +n0)D(t) + Ce(t + to) ™ + C| G| (3.50)

Similarly, the second term involving © in (0“Py(&1Gy), M,) satisfies

4
Z/(LJPl(&xj),Pl@>z/ Xdegdx
j:0 R RS _

4
d _ Xja M
< Zd_/R<LM1P1(§1Xj),G>$ /R JM_ d&da+C (no+e+N) (|| (pres s, O P+ GI2)

C(VE(t) +mo)D(t) + Ce(t + to) ™% + C|| Gua 2. (3.51)
For the last term in (0*FPy(£1G.), M. ) we have

—Z/ ngl (X dg)

< C(HWEM)+E(t t) + Ce(t +to)~ 4/3+C€H(pmaum’ w:v)HQ

Combining the above estimates and choosing 79 > 0, A > 0 and ¢ > 0 small enough,
one derives from (3.41) that

d ! XM
_ i 2 L—1P ) jitx
s =3 | @i piex). 6 [ M dcis

4
-3 [ @i nn). 6 [ Needede} + ol 0)
=0

SCA+et no)(!\(ﬁmﬂxﬁ WP+ IGIE) + Clno + €+ Ml a1

C(VE[) +no)D(t) + Ce(t + to) ™3 + C||Gaa?
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Similarly, for any 1 < |a| < N — 1, it holds that

Z dt{”aa]\/[H2 chal/ aal 1P1<51Xj),G>x

1<]al<N-1 7=0 a1<a

o—a1y, O [
x/ Mdfdm}+d4 S @, 0°0)|?
R3

M_
2<[a|<N

< OO+ e+ 10) (| (P T O)IP + IGI2) + Clno+e+2) > 0%

1<]al<N-1

C(VE®M) +mo)D(t) + Ce(t +to) >+ C Y [0°Gall2.

1<|a|<N-1

To recover the estimate on 9%p,, one may use Lemma 3.3 to deduce that

Z dt{”aa]\/[”2 chal/ aal 1P1<51Xj),G>x

1<]a|<N-1 7=0 a1 <«

=1, AT
y / OGO M e v / O wdpudr b +ds S [0%(p,u,0)]
R3 R

M_
2<|a|<N

< COA+ e+ m0)([|(Pas T O)IP + G +C D 0°Gal?

1<]al<N-1

+O(VE[R) +m0)D(t) + Ce(t +to) /. (3.52)

By using (3.35), (3.39) and (3.52), a suitable linear combination gives the following

high order estimate with spatial derivatives:

He X e X 1orepet S (oMo [ onopds

2<|a|<N 1<|a|<N-1 1<|a|<N-1

_Z > C‘“/ O (L 1P1(§1Xj)aG>x/ aa_a;\/[ﬂdfd@}

71=0 a1 <« R?
oD w0+ Y 10°GI2)
2<]a|<N 1<]a|<N

< C+et00)([|(Pes T, 02) [P+ GII2)+C(VEE)+mo+€) D(t)+Cel(t+0) %, (3.53)

where 5’2 > 0 and 63 > () are some large constants with C’3 > 62.
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3.4. High order estimates with velocity derivatives. Next we estimate the
velocity derivatives of G. Taking 9 (1 < |3] < N) over (3.27) and multiplying the
resulting equation by wQ\ﬂlagé /M_ and then integrating the resulting equality over
R x R?, one can get

w28l w28l
R3

M_ M_
/ / M'%G%Q(G M — M_) d§dx+/ / 2lﬁlaﬁgaﬁQ(G G>d§d
R3 R3 M-
w |5|8BG85P1 [{1( 2R02 5;01 w89,G0,5G
ddx—// OB i dy
/ /R 5 v . i3 54)

We will estimate each term of (3.54). For the second term on the left hand side, it

follows from Lemma 2.13 that

w?lBl L

95GOp L dgd;c > |w!9,G|2 — A w19, G2 = Cy||GI2.

fe] B1
R? M- 1811<18]

For the third term on the left hand side, since

4
s P1(61Gr) = §105G, + flaﬁaz + Z 05,6105, G — Z(&qu X;j)95X;, (3.55)

1B1|=1 j=0
the inner product of the first term in (3.55) with w?#l9;G with the weight M_
vanishes. And by Lemma 2.5 and (2.40), the inner product with the second term is

bounded by
‘ / / wP€,0,G,05G deds
R R3 M_

~ 2|16]|¢|2,,—1 2
<o,z +y [ [ OO e,
R /R3S

M-
< CE)D(t) + Ce(t + o)~ + N|w!?9,G 2.
For the inner product with the third term in (3.55), one has

Z // w9, 51(% 5,G,05G dedz
R3

|B1|=1
<O N w3055, Gal? + AP+ 95G 1
|B1|=1
<Oy Y WP s_p G2 + NwP 952,
|B1|=1

Here, one has used (1.16) and the fact that |3 — (1] = |5] — 1.
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For the inner product with the last term in (3.55), one has
2A8106,G x5 105G -
[ [ R da| < GG+ A0,
- M
Next, we handle the terms on the right hand side of (3.54). First, it follows from
Lemma 2.2 that

w218l M — M_
/ / GBG%%G dedo < Ompllu0,Gl2+Cno 3 w10y, Gl
R? _ |B11<18]

Lemma 2.11 implies that
2181 9.7
/ / w aﬁGaﬂQ(G’G)dfdx
RB

M_

< CA(VER) +E®)D(t) + Ce(t+1o) ™+ e|w G2+ C(A+e) Y w105, G2
BL<pB
For the third term of the right hand side of (3.54), one has

wl93Gos Py 51(|£ i+ )M ; 0,
/ / [ 2RO RO ]dfdx < Mw?95G|2 + Cyl| (T, 62|
R3

It follows from Lemma 2.5, Lemma 3.2 and Lemma 3.3 that

| / /R w'?\fjfaﬁthgdx‘

< M w35G 2 + Coll| @rar, Bat) | + [|Tre, Be) - (e, 6,)])
< MW 0G| 2+Cr(VER)+E () D(£)+Ce(t+to) ™/ +Ce|| G| +Cell (P T, 02 ||
Therefore, collecting all the estimates above and choosing A, 1y and e small
enough, one deduces that

%leﬂlaﬁéw + Cllw35G |2 < C(VE[) + E))D(t) + Ce(t + to) /3

+O|[ (P W )| +C D w0 GLllz +C Y w9, G2 (3.56)
[B1|<N-1 B1<B8
Hence, for any 1 < |8 < N, the summation of (3.56) over 1 < || < N through a

suitable linear combination gives

> [%Hwﬁ'aﬁénz+C\|w'ﬁ|aﬂé\|ﬁ] < C(VE®) +EM))D(t) + Ce(t +to) ™3

I<|BI<N

+O||(Pr o 0) P+ C > w105, Go |12+ C|| G2 (3.57)

[Bi|<N-1
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Next, we will estimate 95G with [a|+[3] < N with [a] > 1 and [3| > 1. Applying
95 to (1.9) gives

035G + 05 P1(61G,) + 05 Pi(§& M) = 05 Ly G+ 205Q(G, M — M_) + 05Q(G, G).
Multiplying the above equation by 95G /M_ and then integrating over R x R? yield

w?lAl (30‘G 2 261921, GoeG
/ / ’ ‘ dr — / / v pM-775 dédx
2 dt RS 7 R R3 M

2198Q(G, M — M_)93G WI92Q(G, G)ILG
:2// o5 )% dfdas+// WTOROUG GIRE e
R /R3 M- R JR3 M

29195 P (€,G,)05G LA
_// w fe] 1(51 ) 8 dfdfv—// w B 1(51 )[3 dfdx (358)
r JR3 M_ R JR3 M-

By Lemma 2.8, 2.12, 2.13 and a similar argument as for (3.56), one can obtain

d _
E||w|ﬂ‘5gG||2 + ClwlPO5G|2 < Ce(t + to) ™2 + C(VE®) + 1m0 + €)D(2)

+O10%(pay s, )P+ C Y 900Gl +C Y ™85Gl
laz[<|af 1B1]<IBl
Summing over |a| + [f] < N with |a] > 1 and |3] > 1 through a suitable linear

combination of the above inequality implies

> [dtnw'ﬁ‘aac}nz+C||w'ﬁ‘aﬁG|| ] < C(WVE®) +mo+€)D(t) + Ce(t + to) 43
(a,B)EA

+C Y 0 un 0P+ C Y (107G, (3.59)

1<|al<N-1 1<]al<N
with the set of indices defined as A = {|a|+ |G| < N,|a| > 1, |B] > 1}.
Then a suitable linear combination of (3.57) and (3.59) gives the following high

order estimate:

X aGR Y Jutiasel)

I<IBISN (o, B)EA
+0( Y P0G+ > fwasG)?)
L<IBISN (e,B)EA
Ol T BIP+ 3 10%(0 w0+ Y 10°GI2 +GI2)
2<|a|<N 1<|a|<N
+C(VEM) 4 1o + €)D(t) + Ce(t + to)~/3, (3.60)

where Cy > 0 is a large constant.
Finally, a suitable linear combination of (3.31), (3.53) and (3.60) implies that
d

EE(HCB ) < C1(WE( +770+6+)\D()



+Cae(t + to) % + Cog () [IV/n(®)[1%, (3.61)

with £(t) and D(t) defined by (1.20) and (1.21) respectively, and E(t) given by

~ SO _ 3 G

Et) = HGH2+01(/ n(t)dm—// Lyt P 0 M), M — S, &M | T-déda

100w [(Wpde)+C{C0 Y I Y oG Y (o
R 2<|a|<N 1<a|<N-1 1<lal<N-1

4
_ 0%~ x,;0°M
o a %1 le%1 1
+C /R 0w 0% ppdr=Y_ Y C /R LTI P (E1x)), G /R 3 Tidgdx)}

j=0 a1 <a
1 ~ ~

+5< > W 9,GE+ Gy Y wosGlR),
6 1<|pI<N (a,B)eA

Here, by choosing 56 > 0 and C~’5 > () as some large constants, one can show easily
that there exists a positive constant C' > 1 such that C~Y(E(t) — ((ty)) < € <

C(E(t) + ((ty)) where ((ty) — 0 as tg — 0.
Assume a priorily that £(0) < aey and for some T > 0,

sup E(t) < b(ey + €),
0<t<T

with b = max{3aC?,3CC,}. We can choose €, 1y and A small enough such that for
0<t<T)

CLEV 4y + e+ \) < C,.

Then (3.61) and H4 implies that

sup E(t) < £(0) + Coe + CoCye sup E(1).

0<t<Ty 0<t<Ty

Choosing € > 0 small enough so that CyCje < %, we can obtain

sup E(t) < C sup E(t) 4+ Cl(to) < 2(E(0) + Cye) + CC(ty)

0<t<Ty 0<t<T}

< 2C(CE(0) + Cye) +4C(¢(tg) < 3C(aCey + Oye) < bleg + €),

where t is chosen to be large enough. This together with the local existence theorem

yields the global existence of classical solutions for small perturbations.
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4. APPLICATION TO NONLINEAR STABILITY OF RAREFACTION WAVES

Now we apply Theorem 1.1 to study the large time asymptotic behavior of the
global solution f(t,z, &) to the Boltzmann equation when the initial data is a small

perturbation of a rarefaction wave profile. Let

a2
pi exp<—'f uz|)’ £ — —00,

t — 21 RO 2R0
f( ,$,§)|t_0 fo(x,f) ( Pr v \S—u:|2
(27w RO;)3 I < 2R6, )7 T — Q. (41)

Here p,, 0, > 0, u, = (u1,,0,0) and p;, 6, > 0, u; = (uq;,0,0) are constants such that
the Riemann problem of the compressible Euler equations
pe+ (pur)e = 0,

(pur)e + (pui +p). = 0,
(pui>t + (pug)w =0, 1 =2,3,

<p(e+%)>t+ <pu1(e+g+pu1))xzo, (4.2)

(T T _ (pluuhgl)’ r <0,
(p, u, 8)<t,x)|t:0 — (po;u(]?e())(‘r) - { (pr’ur707,>’ xr > O, (43)

admits a centered rarefaction wave solution of the third family. Here the equations
of state are corresponding to the monatomic gas, e = 6 and p = %p@ with the
gas constant R = %
(P, u®, 07)(z/t) with (p,,u,,0,) € Rs(p,u, 0;), satisfies

Ry, w1,00) = { (p, 0, 0) | =3, ul—@pvs exp () = wn — Vil exp (3)

A centered rarefaction wave in the third family, denoted by

Up = U3z = O, U < Uy, p< pr};
where
S = —glnp—i—ln(‘%?r@) +1= —%lnpl +1n(§7r91) +1

=—2Inp, +In(370,) +1 =5,
k=5 (4.4)

Note that along a given R3 wave curve, the third characteristic speed, A, satisfies

the inviscid Burgers equation
At + A\, = 0.

Hence, a smooth rarefaction wave profile can be constructed as [20] with a parameter
e > 0 as follows. Let \ satisfies

At + A\ =0,

A0, z) = %()\T +N) + %(Ar — \) tanh(ex), (4.5)
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where
AN = /\3(PZ,U1,91), A = /\3(Pr7ur,‘9r)-

Then the smooth rarefaction profile (5,1, )(t, ) is defined by
(p.3,0)(t,2) = (p", u, 07)(t + to, ), (4.6)

where t; = (h% with d; > 0, and (p?, u?, 04)(t, x) satisfies

uf(t,z) + @(p’%t, :U))1/3 exp (g) = \t,z), 1=1,3,
uft — \/15_k(pA(t, x))1/3 exp (g) = uy, — V15kp!/? exp (g),

3 2/3__
04 (t,x) = §k(pA(t,a:‘)) S, uy =ug =0. (4.7)
In what follows we assume
o1 = prl + |w — we| + 100 — 0, < no, (4.8)
1 _ _
- 0t < inf  0(t,z). 4.9
wp Bt,o) < nf B(t.2) (49

2 (t2)eRs xR
Notice that e appears in the initial data for (4.5) for the spreading of the wave, while

no represents the strength of the wave in condition (4.8).
We recall some properties of (p,,0)(t, z) from [20] in the following lemma.

Lemma 4.1. The smooth rarefaction wave (5,4, 6)(t, z) constructed in (4.6) has

the following properties:

(i) Ui (t,x) > 0 for all (t,z) € Ry x R.
(i) For any p (1 < p < 00), there exists a constant C(p) > 0 depending on p such

that
_ a1
1,7, 0)a(t, )| r < C(p)(t + to) ™",
Jj>2.

J _
o= (.1, 0) (¢, )| < C)(E+10) 7,
(iil) (p, 1, 0)(t, ) solves
pt + (p_ul)w - 07
(pt1): + (Ui +P). = 0,
‘2

(=), Gulee e om)), -0

lim sup |(p, @, 0)(t, x) — (p, u'*, 65)(x/t)| = 0.

(iv)
t—o00 zeR
It follows from Lemma 4.1 and a direct calculation that the smooth rarefaction

profile (4.6) satisfies all the assumptions H1-H4. Hence, the nonlinear asymptotic
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stability theorem of the smooth rarefaction wave, Theorem 1.2, is a consequence of
Theorem 1.1.
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