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1 INTRODUCTION

The shape of many planets and moons is, to a first approximation, spheri-
cal. It is well known, however, that, because of the rapid rotation of planets
and moons as well as the interaction among the Sun, planets and moons,
many astrophysical bodies are non-spherical and in the shape of a spheroid
or a triaxial ellipsoid [16]. As a result of non-spherical geometry, planets and
moons are usually rotating non-uniformly and undergo forced libration [18].
It is recently revealed, through an asymptotic theory [24], that fluid motion
in a synchronously rotating spheroidal planet can resonate with planetary lat-
itudinal libration, leading to a large amplitude O(E−1/2) of the librationally
driven flow, where the Ekman number E is extremely small for many rapidly
rotating planets. It suggests an alternative driving mechanism for the dynamo
action of planets and moons that are thermally or chemically non-convective.
The libration-driven mechanism is feasible because the two conditions for reso-
nance – nearly synchronous rotation and small but non-zero eccentricity of the
shape – can be approximately met by many synchronous planets and moons.

In comparison with spherical geometry, direct numerical simulation in triax-
ial ellipsoidal geometry is mathematically and computationally less tractable.
Although ellipsoidal geometry can be, in principle, accommodated by a coordi-
nate transformation that maps an ellipsoidal domain into the spherical domain
[17] or by complicated non-spherical coordinates [20], there are computational
disadvantages in the pseudo-spectral approximation with the poloidal-toroidal
decomposition and, particularly, the mathematical equations resulting from
the coordinate transformation are highly complicated. Moreover, the harmonic
expansion must lead to the global integration that requires an intensive global
communication, making it less efficient on modern massively parallel com-
puters. It is hence desirable to seek an alternative numerical method that is
non-spectral and can be readily implemented on modern parallel computers
for solving the problem of fluid mechanics in librating triaxial ellipsoids.

The present study concerns with a finite element method suitable for sim-
ulating the nonlinear flow of a homogeneous fluid of viscosity ν driven by
latitudinal libration and confined within a triaxial ellipsoidal cavity. The tri-
axial ellipsoidal cavity of arbitrary eccentricity E is described by

x2

a2
+

y2

a2(1 + E2)
+

z2

a2(1− E2)
= 1, (1)

where 0 < E < 1, which also defines Cartesian coordinates (x, y, z) used in the
numerical analysis. The ellipsoidal container rotates rapidly with an angular
velocity Ω0 fixed in an inertial frame and, at the same time, undergoes weak
latitudinal libration with the libration vector Ωlat which results in a periodic
variation of the z-axis of the ellipsoid towards and away from its mean direc-
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tion. Through both viscous and topographic coupling between the container
and the interior fluid, latitudinal libration can drive fluid motion against vis-
cous dissipation. There are three key parameters that characterize the problem
of librationally driven flow in triaxial ellipsoidal cavities: the Ekman number
E = ν/(a2Ω0), where Ω0 = |Ω0|, provides the measure of relative importance
between the typical viscous force and the Coriolis force, the eccentricity E
measures the degree of topographic coupling between the container and its
interior fluid, and the Poincaré number Po quantifies the strength of Poincaré
force resulting from the libration. All these three parameters are believed to be
small for a typical planet and, hence, we shall focus on the case with Po ≪ 1
and E ≪ 1.

For simulating fluid motion driven by latitudinal libration in triaxial ellipsoids,
we shall employ an EBE (Element-By-Element) finite element method that
has been effectively used for the numerical solution of the dynamo problem
in spherical geometry [1,2]. While the practical aspects of the finite element
method, such as how to perform temporal discretization and spatial tetrahe-
dral discretization, have been discussed, its key theoretical properties, partic-
ularly the numerical stability of the finite element scheme and the numerical
error of the finite element solution, have not been studied for librationally
driven flows in triaxial ellipsoidal geometry. Such theoretical studies will be
essential for the geophysical and astrophysical application of the numerical
method. The primary purpose of this paper is to understand the theoretical
aspects of the finite element method – which is based on the three-dimensional
triangulation of the triaxial domain together with the velocity and pressure
being represented by continuous piecewise quadratic and linear finite elements
– for simulating a nonlinear flow in latitudinally librating triaxial ellipsoids.
By providing the mathematical analysis on the numerical stabilities and er-
ror estimates, we build a mathematically sound framework for numerically
simulating a nonlinear flow in latitudinally librating triaxial ellipsoids.

In what follows we shall begin by presenting the model and governing equa-
tions of the numerical problem in Section 2. The theoretical problem of the
finite element method is discussed in Section 3 and Section 4. Numerical re-
sults are presented in Section 5 and the paper closes in Section 6 with a brief
summary and concluding remarks.

2 MODEL AND GOVERNING EQUATIONS

Consider a homogeneous fluid of viscosity ν confined within a triaxial ellip-
soidal cavity defined by (1). Suppose that the ellipsoidal container rotates
rapidly with an angular velocity Ω0 which is fixed in the inertial frame and,
at the same time, undergoes latitudinal libration with the libration vector Ωlat

3
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which results in a periodic variation of the z-axis slightly towards and away
from the rotation axis Ω0. Motivated by its application to synchronous planets
and moons, we assume that the overall angular velocity, Ω = Ω0+Ωlat, of the
triaxial ellipsoidal container can be expressed as

Ω = Ω0 + x̂Ω0Po sin (ω̂Ω0t) , (2)

where x̂ is a unit vector that is fixed in a frame of reference attached to the
container, the mantle frame of reference, and perpendicular to the angular
velocity Ω0, and Po/ω̂ represents the maximum angular displacement of lati-
tudinal libration with 0 < ω̂ < 2. This study is only concerned with some key
mathematical properties of finite element method for simulating librationally
driven flow in a triaxial ellipsoidal cavity.

In the mantle frame of reference, the dynamics of latitudinally librational
driven flow, under the assumptions Po ≪ 1 and (Po/ω̂) ≪ 1, is governed by
the dimensional equations:

∂u

∂t
+ u · ∇u+ 2Ω0 [ẑ+ x̂Po sin (Ω0ω̂t)− ŷ (Po/ω̂) cos (Ω0ω̂t)]× u+

1

ρ
∇p

= ν∇2u+ PoΩ2
0 [ω̂r× x̂ cos (Ω0ω̂t) + r× (ẑ× x̂) sin (Ω0ω̂t)] , (3)

∇ · u=0, (4)

where r is the position vector, (x̂, ŷ, ẑ) denotes the corresponding unit vectors
for the Cartesian coordinates (x, y, z), p is a reduced pressure and u is the
three-dimensional velocity field. The final two terms on the right-hand side of
(3) are known as the Poincaré force which results from latitudinal libration
and drives fluid motion. Employing the semi axis a as the length scale, Ω−1

0

as the unit of time and ρa2Ω2
0 as the unit of pressure, the non-dimensional

envelope of a triaxial ellipsoidal cavity is then described by

x2

1
+

y2

1 + E2
+

z2

1− E2
= 1, (5)

while the non-dimensional governing equations are

∂u

∂t
+ u · ∇u+ 2ẑ× u+∇p

=E∇2u+ 2Po [(1/ω̂) ŷ × u cos (ω̂t)− x̂× u sin (ω̂t)]

+Po [ω̂r× x̂ cos (ω̂t) + r× (ẑ× x̂) sin (ω̂t)] , (6)

∇ · u=0. (7)

Note that the centrifugal force is combined with all other conservative forces
to form the reduced pressure p. Librationally driven flow on the bounding

4
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surface, S, of the triaxial ellipsoidal cavity (5) is at rest, requiring that

n̂ · u = 0 (8)

and

n̂× u = 0, (9)

where n̂ denotes the normal to the bounding surface, S, of the ellipsoidal
cavity. The problem defined by (6) and (7) subject to the boundary conditions
(8) and (9) for triaxial ellipsoidal geometry (5) will be solved subject to the
initial condition

u(r, 0) = u0(r)

by direct three-dimensional simulation using a finite element method.

3 FINITE ELEMENT METHOD WITH FIRST-ORDER TEM-
PORAL SCHEME

3.1 Theoretical Preliminaries

For the sake of exposition, we shall rewrite the governing equations in the
form

∂u

∂t
+ u · ∇u+ Z(ω̂, t)× u+∇p=E∇2u+ f(ω̂, x, y, z, t), (10)

∇ · u=0, (11)

where

Z(ω̂, t) = 2
[
ẑ+ Pox̂ sin(ω̂ t)− Poω̂−1ŷ cos(ω̂ t)

]
and

f(ω̂, x, y, z, t) = P0

[
ω̂ r× x̂ cos(ω̂ t) + r× (ẑ× x) sin(ω̂ t)

]
.

We also introduce the following trilinear functional

d(w,u,v) =
1

2
{(w · ∇u,v)− (w · ∇v,u)} ∀w,u,v ∈ H1

0(Ω), (12)

where (g, h) means the inner product of the two functions g and h. For the
coupled system (10) and (11) governing the flow u and the pressure p in
the triaxial ellipsoid Ω, we are interested in its variational formulation: Find
u ∈ L∞(0, T ;L2(Ω)3) ∩ L2(0, T ;H1

0(Ω)) and p ∈ L2(0, T ;L2
0(Ω)) such that

5
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(
∂u

∂t
,v) + E(∇u,∇v)− (p,∇ · v) + d(u,u,v) + (Z× u,v)

= (f ,v) ∀v ∈ L2(0, T ;H1
0(Ω)), (13)

−(∇ · u, q)= 0 ∀ q ∈ L2(0, T ;L2
0(Ω)). (14)

We first introduce a few auxiliary inequalities and estimates which will be
used in the later analysis. For the trilinear functional d(w,u,v), we can easily
check that for all w,u,v ∈ H1

0(Ω),

d(w,u,v) =
1

2
{(w · ∇u,v)−(w · ∇v,u)}=(w · ∇u,v) +

1

2
((∇ ·w)u,v).(15)

Evidently, for any w,u ∈ H1
0(Ω) we have

(Z(t)× u,u) = 0, d(w,u,u) = 0 ,

and for all w,u,v ∈ H1
0(Ω),

|d(w,u,v)| ≤C ∥∇w∥0 ∥∇u∥0 ∥∇v∥0 ,
|d(w,u,v)| ≤C

√
∥w∥0 ∥∇w∥0 ∥∇u∥0 ∥∇v∥0 ,

where C is constant, while for all w,v ∈ H1
0(Ω) and u ∈ H2(Ω) ∩ H1

0(Ω) it
holds that

|d(w,u,v)| ≤C (∥u∥L∞ + ∥∇u∥L3)∥w∥0 ∥∇v∥0 ,
|d(w,u,v)| ≤C ∥∇w∥0(∥u∥L∞ + ∥∇u∥L3)∥v∥0 .

We also need the following simple equality:

(u− v,u) =
1

2
∥u∥20 −

1

2
∥v∥20 +

1

2
∥u− v∥20 ,

which holds for any vector-valued functions u,v ∈ Rn and the estimate |a×
b| ≤

√
2|a| |b| which holds for any two vectors a,b ∈ L2(Ω)3.

Next we discuss the discretization of the variational system (13) and (14). We
start with the partition of the time interval [0, T] and the triangulation of
the physical ellipsoidal domain Ω. We divide the time interval [0, T] into M
equally spaced subintervals using the following nodal points

0 = t0 < t1 < t2 < . . . < tM = T,

where tn = n τ for n = 0, 1, . . . ,M and τ = T/M . For any given discrete time
sequence {un}Mn=0 with each un lying in L2(Ω) or L2(Ω)3, we define the first

6
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order backward finite differences and the averages as follows:

∂τu
n =

un − un−1

τ
, ūn =

1

τ

∫ tn

tn−1

u(·, s) ds.

If u(r, t) is a function which is continuous with respect to t, we shall often
write un(·) = u(·, tn) for n = 0, 1, . . . ,M .

We now introduce the triangulation of the ellipsoidal domain Ω. For the sake
of technical treatments, we shall assume that the boundary of domain Ω is
a closed convex polyhedron; the actual curved boundary case can be treated
using some well-developed technicalities for the curved boundary (see., e.g.,
[3,6]) in combination with the finite element error estimates established here.
Then we suppose that Th is a quasi-uniform triangulation of the polyhedral
domain Ω. Let Vh ⊂ H1

0(Ω) and Ph ⊂ L2
0(Ω) be the continuous piecewise

quadratic and linear finite element spaces associated with Th.

We shall need the following approximate divergence-free finite element space
V0h:

V0h = {vh ∈ Vh; (∇ · vh, qh) = 0 ∀qh ∈ Ph}.

We know from [12–14] that the couple (Vh, Ph) and V0h satisfy the following
approximation properties:

Property (A). For each v ∈ Hi(Ω)∩H1
0(Ω) with ∇·v = 0 and q ∈ H i−1(Ω)∩

L2
0(Ω) with i = 1, 2, 3, there exist approximations πhv ∈ V0h and ρhq ∈ Ph

such that

∥∇(v − πhv)∥0 ≤ chi−1∥v∥i, ∥q − ρhq∥0 ≤ chi−1∥q∥i−1.

In our subsequent analysis, we shall need the following standard inverse in-
equality [4]:

∥∇vh∥0 ≤ ch−1∥vh∥0, vh ∈ Vh;

and the inf-sup condition [8]: for each qh ∈ Ph, there exists vh ∈ Vh,vh ̸= 0
such that

d(vh, qh) ≥ β∥qh∥0∥∇vh∥0 .

The constants c and β above are positive, depending only on Ω. Also, we shall
use a L2-projection operator from L2(Ω)3 to V0h, denoted as Ih. It follows
from Property (A) that

∥v − Ihv∥0,Ω + h∥∇(v − Ihv)∥0,Ω ≤ chi∥v∥i,Ω ∀v ∈ Hi(Ω) ∩V0 (16)

7
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for some positive constant c and i = 1, 2, 3, withV0 = {v ∈ H1
0(Ω);∇·v = 0}.

Using the first order semi-implicit scheme, we can now formulate the finite
element approximation of the system (13) and (14):

Find {un
h} ⊂ Vh and {pnh} ⊂ Ph for n = 0, 1, · · · ,M such that u0

h = Ihu0 and

(∂τu
n
h,vh) + E(∇un

h,∇vh)− (pnh,∇ · vh) + d(un−1
h ,un

h,vh) (17)

+(Zn × un
h,vh) = (fn,vh) ∀vh ∈ Vh

−(∇ · un
h, qh) = 0 ∀ qh ∈ Ph. (18)

We refer to the classic monographs [7,8,22] for basic finite element approxima-
tions of the standard Navier-Stokes equations. In the case of the fully discrete
finite element approximation of the two-dimensional Navier-Stokes equations,
we refer to [10] and [11] for the first order semi-implicit and implicit/explicit
temporal schemes and for the stability and convergence under the restric-
tions τ ≤ C| lnh|−1 and τ ≤ C with the regularity of u ∈ L∞(0, T ;H2) and
p ∈ L∞(0, T ;H1). Here we will demonstrate the stability and optimal con-
vergence of the finite element solution (un

h, p
n
h) to the first order semi-implicit

scheme (17) and (18) in three dimensions without having any restriction on
the time step size τ under the following regularities for the exact solution
(u, p):

(A1) u ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)),

p ∈ L2(0, T ;H2(Ω)), ut ∈ L2(0, T ;H1
0(Ω)).

Remark. If domain Ω is sufficiently smooth, (A1) can be derived from
the Navier-Stokes equations and the condition u ∈ L∞(0, T ;H2) and p ∈
L∞(0, T ;H1).

3.2 Stability and error estimates of finite element solutions

In this section we establish the stability and error estimates of the discrete
solution {un

h, p
n
h} to the finite element system (17) and (18).

First for the stability, we take vh = τun
h in (17) to derive

1

2
∥un

h∥20 −
1

2
∥un−1

h ∥20 +
1

2
τ 2∥∂τun

h∥20 + E τ ∥∇un
h∥20 ≤ τ∥fn∥0 ∥un

h∥0 ,

then summing over n = 1, 2, · · · , k ≤ M and using the Poincaré and Young’s
inequalities, we obtain the stability estimate:

8
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max
1≤n≤M

∥un
h∥20 +

M∑
n=1

(
τ 2∥∂τun

h∥20 + Eτ∥∇un
h∥20

)
≤ C(∥u0

h∥20 +
M∑
n=1

τ∥fn∥20) . (19)

Next, we demonstrate that the finite element solution {un
h, p

n
h} has the optimal

error estimates, as stated in the following theorem.

Theorem 3.1 Let (u, p) be the solution to the variational system (13) and
(14) with the regularities (A1), and {(un

h, p
n
h)} be the fully discrete solution to

the finite element system (17) and (18). Then we have the following optimal
error estimates

max
1≤n≤M

∥un
h − un∥20 + τE

M∑
n=1

∥∇(un
h − un)∥20 ≤ C(τ 2 + h4) . (20)

Proof. It suffices to derive the estimate for un
h − Ihu

n by using the relation

un
h − un = (un

h − Ihu
n) + (Ihu

n − un) (21)

and the triangle inequality and the projection approximation (16). So we will
estimate un

h − Ihu
n below, and set εnh = un

h − Ihu
n.

Integrating both sides of (13) and (14) over the time interval (tn−1, tn) respec-
tively, we deduce for any v ∈ H1

0(Ω) and q ∈ L2(0, T ;L2
0(Ω)),

(∂τu
n,v) +E(∇ūn,∇v)− (p̄n,∇ · v) + (u · ∇u n,v) + (Z× u n,v)=(f̄n,v), (22)

and

−(∇ · ūn, q) = 0 . (23)

Subtracting (22) from (17), we get the following equation for εnh:

(∂τε
n
h,vh) + E(∇εnh,∇vh)− (pnh − p̄n,∇ · vh)

= (fn − f̄n,vh) +
(
u · ∇u n − un−1

h · ∇un
h,vh

)
+
(
Z× u n − Zn × un

h,vh

)
+E(∇(ūn − Ihu

n),∇vh) .

Taking vn
h = τεnh, we obtain

9
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1

2
∥εnh∥20 −

1

2
∥εn−1

h ∥20 + τE∥∇εnh∥20 ≡
10∑
i=1

(I)i

=
∫ tn

tn−1

(t− tn−1)(ft(t), ε
n
h)dt−

∫ tn

tn−1

(t− tn−1)dt(u,u, ε
n
h)dt

+ τd(u(tn)− u(tn−1),u(tn), ε
n
h) + d(u(tn−1)− Ihu(tn−1) + εn−1

h ,u(tn), ε
n
h)

+ τd(un−1
h ,u(tn)− Ihu(tn), ε

n
h) + τ(ρhp̄

n − p̄n,∇ · εnh)

+
∫ tn

tn−1

(t− tn−1)(Zt × u+ Z× ut, ε
n
h)dt+ (Z(tn)× (u(tn)− Ihu(tn)), ε

n
h)

−E
∫ tn

tn−1

(t− tn−1)(∇ut,∇εnh)dt+ Eτ(∇(u(tn)− Ihu(tn)),∇εnh), (24)

where, by some standard techniques using the Hölder, Poincaré and Young
inequalities, we can derive all estimates from (I)1 to (I)10 as follows:

(I)1 ≤ Cτ
3
2 (
∫ tn

tn−1

∥ft∥20dt)
1
2∥εnh∥0 ≤

E

16
∥∇εnh∥20τ + Cτ 2

∫ tn

tn−1

∥ft∥20dt,

(I)2 ≤ Cτ
3
2 (
∫ tn

tn−1

∥ut∥20∥u∥22dt)
1
2∥∇εnh∥0 ≤

E

16
∥∇εnh∥20τ + Cτ 2

∫ tn

tn−1

∥ut∥20∥u∥22dt,

(I)3 ≤ Cτ
3
2 (
∫ tn

tn−1

∥ut∥20dt)
1
2∥u(tn)∥2∥∇εnh∥0 ≤

E

16
∥∇εnh∥20τ + Cτ 2

∫ tn

tn−1

∥ut∥20∥u(tn)∥22dt,

(I)4 ≤ Cτ∥εn−1
h ∥0∥u(tn)∥2∥∇εnh∥0 + Cτ∥∇(u(tn−1)− Ihu(tn−1))∥0∥∇u(tn)∥0∥∇εnh∥0

≤ E

16
∥∇εnh∥20τ + Cτ∥∇(u(tn−1)− Ihu(tn−1))∥20∥∇u(tn)∥20 + cτ∥εn−1

h ∥20∥u(tn)∥22,

(I)5 ≤ Ch−1τ∥εn−1
h ∥0∥∇(u(tn)− Ihu(tn))∥0∥∇εnh∥0

+Cτ∥∇(Ihu(tn−1)∥0∥∇(u(tn)− Ihu(tn))∥0∥∇εnh∥0

≤ E

16
∥∇εnh∥20τ + Cτ∥∇u(tn−1)∥0∥∇(u(tn)− Ihu(tn))∥20 + Cτ∥εn−1

h ∥20∥u(tn)∥22,

(I)6 ≤ Cτ∥p̄n − ρhp̄
n∥0∥∇εnh∥0 ≤

E

16
∥∇εnh∥20τ + Ch4

∫ tn

tn−1

∥p∥22dt,

(I)7 ≤ Cτ
3
2 (
∫ tn

tn−1

(|Zt|2∥u∥20 + |Z|2∥ut∥20)dt)
1
2∥∇εnh∥0

≤ E

16
∥∇εnh∥20τ + Cτ 2

∫ tn

tn−1

(|Zt|2∥u∥20 + |Z|2∥ut∥20)dt,

(I)8 ≤ Cτ |Z(tn)|∥u(tn)− Ihu(tn)∥0∥εnh∥0

≤ E

16
∥∇εnh∥20τ + Cτ |Z(tn)|2∥∇(u(tn)− Ihu(tn))∥20,

(I)9 ≤ Cτ
3
2 (
∫ tn

tn−1

∥∇ut∥20dt)
1
2∥∇εnh∥0 ≤

E

16
∥∇εnh∥20τ + Cτ 2

∫ tn

tn−1

∥∇ut∥20dt,

(I)10 ≤ Cτ∥∇(u(tn)− Ihu(tn))∥0∥∇εnh∥0 ≤
E

16
∥∇εnh∥20τ + Cτ∥∇(u(tn)− u(tn))∥20.

Summing (24) from n = 1 to n = m and using the above estimates and the
regularities (A1), we obtain

10
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∥εmh ∥20 + Eτ
m∑

n=1

∥∇εnh∥20 ≤ C(τ 2 + h4)
∫ T

0

(
∥ft∥20 + ∥u∥20 + ∥ut∥21 + ∥p∥22

)
dt

+Cτ
M∑
n=1

∥∇(u(tn)− Ihu(tn))∥20 + Cτ
m−1∑
n=1

∥u(tn+1)∥22∥εnh∥20. (25)

Applying the Gronwall lemma to (25) and using (A1), we further deduce

∥εmh ∥20 +Eτ
m∑

n=1

∥∇εnh∥20

≤ exp{Cτ
m−1∑
n=1

∥u(tn+1)∥22}{C(τ 2 + h4)
∫ T

0
[∥ft∥20 + ∥u∥20 + ∥ut∥21 + ∥p∥22]dt

+exp{Cτ
m−1∑
n=1

∥u(tn+1)∥22}Cτ
M∑
n=1

∥∇(u(tn)− Ihu(tn))∥20. (26)

Noting

τ∥∇(u(tn)− Ihu(tn))∥20
≤ 3τ∥∇(u(tn)− ūn)∥20 + 3τ∥∇(ūn − Ihū

n)∥20 + 3τ∥∇(Ihū
n − Ihu(tn))∥20

≤Cτ∥∇(u(tn)− ūn)∥20 + Cτ∥∇(ūn − Ihū
n)∥20

≤Cτ 2
∫ tn

tn−1

∥∇ut∥20dt+ Ch4τ∥ūn∥23

≤C(τ 2 + h4)
∫ tn

tn−1

[∥∇ut∥20 + ∥u∥23]dt , (27)

the desired estimate (20) follows from (21) by the triangle inequality, (26) and
(27), and the projection approximation (16). ♯

4 A FINITE ELEMENT METHOD WITH SECOND-ORDER
TEMPORAL SCHEME

In the previous section we have discussed a fully discrete finite element method
with first order time scheme. But for our highly nonlinear libration system,
it seems the first order time scheme is not always sufficient to capture the
accuracy of the flow in an effective and stable manner. In this section we shall
present a more accurate time discretization, the second order Crank-Nicolson
scheme. The subsequent notations for the time and space discretizations as
well as the finite element spaces are all carried over from the previous section.

Now we are going to use the implicit second order Crank-Nicolson scheme for
time derivative and the explicit second order extrapolation to deal with the

11
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nonlinear term, namely the following approximations:

un+1/2 =
(
3

2
un − 1

2
un−1

)
+

3

8
τ 2u

n+1/2
ttt +O(τ 3) ,

u
n+1/2
t =

un+1 − un

τ
− 1

24
τ 2u

n+1/2
ttt +O(τ 3) .

For convenience, we shall also write

ūn+1/2 =
1

τ

∫ tn+1

tn
u(s) ds , un+1/2 =

un+1 + un

2
, u

n+1/2
h =

un+1
h + un

h

2

and

Tn(u) =
3

2
un − 1

2
un−1 or Tn(uh) =

3

2
un
h −

1

2
un−1
h .

Using these approximations in time along with the same finite element approx-
imations as used in the previous section in space, we propose the following fully
discrete finite element scheme for the system (13) and (14):

Find {un
h} ⊂ Vh and {pnh} ⊂ Ph for n = 0, 1, · · · ,M such that u0

h = Ihu0 and

(
∂τu

n+1
h ,vh

)
+ E(∇u

n+1/2
h ,∇vh)− (p

n+1/2
h ,∇ · vh) (28)

+d
(
Tn(uh),u

n+1/2
h ,vh

)
+
(
Zn+1/2 × u

n+1/2
h ,vh

)
= (fn+1/2,vh)∀vh ∈ Vh,

−(∇ · un+1/2
h , qh) = 0 ∀ qh ∈ Ph. (29)

Here we shall establish for the first time the stability and optimal convergence
of the discrete solution (un

h, p
n
h) to the finite element system (28) and (29)

in three dimensions without imposing any restriction on the time step size τ
under the following regularities on the exact solution (u, p):

(A2)

u ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)), p ∈ L2(0, T ;H2(Ω)),

ut ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), utt ∈ L2(0, T ;H1(Ω)).

4.1 Stability and error estimates of finite element solutions

In this section we establish the stability and error estimate of the discrete
solutions {un

h, p
n
h} to the finite element system (28) and (29).

First for the stability, we choose vh = τu
n+1/2
h in (28) to obtain

1

2
∥un+1

h ∥20 −
1

2
∥un

h∥20 + E τ ∥∇u
n+1/2
h ∥20 ≤

E

2
∥∇un

h∥20 + Cτ∥fn+1/2∥20 ,

12
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then summing over n = 1, 2, · · · , k ≤ M , we derive the stability estimate:

max
1≤n≤M

∥un
h∥20 + E

M∑
n=1

τ ∥∇u
n+1/2
h ∥20 ≤ C(∥u0

h∥20 +
M∑
n=1

τ∥fn∥20) . (30)

In the remainder of this section we will demonstrate the optimal error estimate
of the finite element solutions {un

h, p
n
h} to the system (28) and (29), as stated

in the following theorem.

Theorem 4.1 Let (u, p) be the solution to the variational system (13) and
(14) with the regularities (A2), and {(un

h, p
n
h)} be the fully approximate solu-

tion to the finite element system (28) and (29). Then we have the following
optimal error estimates

max
1≤n≤M

∥un
h − un∥20 + τE

M∑
n=1

∥∇(un
h − un)∥20 ≤ C(τ 4 + h4) . (31)

Proof. Similarly as we argued in the proof of Theorem 3.1, it suffices to estimate
the error εnh = un

h − Ihu
n. To derive the equation satisfied by εnh, we integrate

both sides of (13) and (14) over the time interval (tn, tn+1) respectively to
deduce for any v ∈ H1

0(Ω) and q ∈ L2
0(Ω),

(∂τu
n+1,v) + E(∇ūn+1/2,∇v)− (p̄n+1/2,∇ · v) + (u · ∇u n+1/2,v)

+ (Z× u n+1/2,v) = (f̄n+1/2,v) , (32)

−(∇ · ūn+1/2, q) = 0. (33)

Subtracting (32) from (28) we obtain the following equation for the error
function εnh:

(∂τε
n+1
h ,vh) + E(∇ε

n+1/2
h ,∇vh)− (p

n+1/2
h − p̄n+1/2,∇ · vh)

= (fn+1/2 − f̄n+1/2,vh) +
(
u · ∇u n+1/2 − Tn(uh) · ∇u

n+1/2
h ,vh

)
+
(
Z× u n+1/2 − Zn+1/2 × u

n+1/2
h ,vh

)
+ (∂τ (u

n+1 − Ihu
n+1),vh)

+E(∇(ūn+1/2 − Ihu
n+1/2),∇vh) .

Taking vn
h = τε

n+1/2
h in the above equation and using the approximation

property (16) of projection Ih, we can write

13
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1

2
∥εn+1

h ∥20 −
1

2
∥εnh∥20 + τE∥∇ε

n+1/2
h ∥20 ≡

12∑
i=1

(I)i

=
1

2

∫ tn+1

tn
(t− tn)(tn+1 − t)(ftt, ε

n+1/2
h )dt

− 1

2

∫ tn+1

tn
(t− tn)(tn+1 − t)(Ztt × u+ 2Zt × ut + Z× utt, ε

n+ 1
2

h )

+
τ

4
((Z(tn+1)− Z(tn))× (u(tn+1)− u(tn)), ε

n+ 1
2

h )

+ τ(Zn+ 1
2 × (un+ 1

2 − Ihu
n+ 1

2 ), ε
n+ 1

2
h )

− E

2

∫ tn+1

tn
(t− tn)(tn+1 − t)(∇utt,∇ε

n+ 1
2

h )dt+ Eτ(∇(un+ 1
2 − Ihu

n+ 1
2 ),∇εnh)

+ τ(ρhp̄
n+ 1

2 − p̄n+
1
2 ,∇ · εn+

1
2

h )− 1

2

∫ tn+1

tn
(t− tn)(tn+1 − t)dtt(u,u, ε

n+ 1
2

h )dt

+
τ

4
d(u(tn+1)− u(tn),u(tn+1)− u(tn), ε

n
h)

+
τ

2
d(u(tn+1 − 2u(tn) + u(tn−1),u

n+ 1
2 , ε

n+ 1
2

h )

+τd(Tn(u)−IhTn(u) + Tn(εh),u
n+ 1

2 , ε
n+ 1

2
h )+τd(Tn(uh),u

n+ 1
2−Ihun+ 1

2 , ε
n+ 1

2
h ),(34)

where, by the standard techniques, we can estimate (I)1 to (I)7 as

(I)1 ≤Cτ
5
2 (
∫ tn+1

tn
∥∥ftt∥20dt)

1
2∥εn+

1
2

h ∥0 ≤
E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ 4
∫ tn+1

tn
∥ftt∥20dt,

(I)2 ≤Cτ
5
2 (
∫ tn+1

tn
[|Ztt|2∥u∥20 + |Zt|2∥ut∥20 + |Z|2∥utt∥20]dt)

1
2∥εn+

1
2

h ∥0

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ 4
∫ tn

tn−1

[∥u∥20 + ∥ut∥20 + ∥utt∥20]dt,

(I)3 ≤Cτ
∫ tn+1

tn
|Zt|dt

∫ tn+1

tn
∥ut∥0dt∥ε

n+ 1
2

h ∥0

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ 4
∫ tn+1

tn
∥ut∥20dt,

(I)4 ≤Cτ |Zn+ 1
2 |∥un+ 1

2 − Ihu
n+ 1

2∥0∥ε
n+ 1

2
h ∥0

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥20,

(I)5 ≤Eτ
5
2 (
∫ tn+1

tn
∥∇utt∥20dt)

1
2∥∇ε

n+ 1
2

h ∥0 ≤
E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ 4
∫ tn+1

tn
∥∇utt∥20dt,

(I)6 ≤Cτ∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥0∥∇ε

n+ 1
2

h ∥0

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥20,

(I)7 ≤Cτh2∥∇ε
n+ 1

2
h ∥0∥p̄n+

1
2∥2 ≤

E

16
∥∇ε

n+ 1
2

h ∥20τ + Ch4
∫ tn+1

tn
∥p∥22dt,

while (I)8 to (I)12 are in the form

14
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(I)8≤Cτ
5
2 (
∫ tn+1

tn
[∥utt∥20∥u∥22 + ∥ut∥22∥ut∥20]dt)

1
2∥∇εnh∥0

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ 4
∫ tn

tn−1

[∥utt∥20∥u∥22 + ∥ut∥22∥ut∥20]dt,

(I)9≤Cτ∥∇ε
n+ 1

2
h ∥0(

∫ tn+1

tn
∥∇ut∥0dt)2

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ 4 sup
0≤t≤T

∥∇ut(t)∥20
∫ tn+1

tn
∥∇ut∥20dt,

(I)10 ≤Cτ
5
2∥∇ε

n+ 1
2

h ∥0∥un+ 1
2∥2(

∫ tn+1

tn−1

∥utt∥20dt)
1
2

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ 4 sup
0≤t≤T

∥u(t)∥22
∫ tn+1

tn
∥utt∥20dt,

(I)11 ≤Cτ∥∇ε
n+ 1

2
h ∥0(∥∇(Tn(u)− IhTn(u))∥0∥∇un+ 1

2∥0 + ∥Tn(εh)∥0∥un+ 1
2∥2)

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ∥∇(Tn(u)− IhTn(u))∥20∥∇un+ 1
2∥20

+Cτ∥Tn(εh)∥20∥un+ 1
2∥22,

(I)12 ≤Cτ(h−1∥Tn(εh)∥0 + ∥∇Tn(Ihu)∥0)∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥0∥∇ε

n+ 1
2

h ∥0

≤ E

16
∥∇ε

n+ 1
2

h ∥20τ + Cτ∥Tn(εh)∥20∥un+ 1
2∥22

+Cτ∥∇Tn(u)∥20∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥20.

Summing (34) from n = 1 to n = m− 1 and using the above inequalities and
the regularities (A2) lead to

∥εmh ∥20 +Eτ
m∑

n=1

∥∇εnh∥20

≤C(τ 4 + h4)
∫ T

0
[∥ftt∥20 + ∥u∥20 + ∥p∥22 + ∥ut∥22 + ∥∇utt∥20]dt

+Cτ
M−1∑
n=1

[∥∇(Tn(u)− IhTn(u))∥20 + ∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥20]

+ τ
m−1∑
n=1

dn∥εnh∥20 , (35)

where we write dM−1 = C(∥u(tM)∥22 + ∥u(tM−1)∥22), and

dn = C(∥u(tn+2)∥22 + ∥u(tn+1)∥22 + ∥u(tn)∥22)

for n = 1, · · · ,M − 2. On applying the Gronwall lemma to (35) and using the
regularities (A2), we deduce
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∥εmh ∥20 + Eτ
m∑

n=1

∥∇εnh∥20

≤ exp{τ
m−1∑
n=1

dn}
{
C(τ 4 + h4)

×
∫ T

0
[∥ftt∥20 + ∥u∥20 + ∥p∥22 + ∥ut∥22 + ∥∇utt∥20]dt

+Cτ
M∑
n=1

[∥∇(Tn(u)− IhTn(u))∥20 + ∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥20]

}

≤C(τ 4 + h4)
∫ T

0
[∥ftt∥20 + ∥u∥20 + ∥p∥22 + ∥ut∥22 + ∥∇utt∥20]dt

+Cτ
M∑
n=1

[∥∇(Tn(u)− IhTn(u))∥20 + ∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥20]. (36)

But the last two terms in (36) can be estimated as follows:

τ∥∇(un+ 1
2 − Ihu

n+ 1
2 )∥20

≤ 3τ∥∇(un+ 1
2 − ūn+ 1

2 )∥20 + 3τ∥∇(ūn+ 1
2 − Ihū

n+ 1
2 )∥20 + 3τ∥∇(Ihū

n+ 1
2 − Ihu

n+ 1
2 )∥20

≤Cτ∥∇(un+ 1
2 − ūn+ 1

2 )∥20 + Cτ∥∇(ūn+ 1
2 − Ihū

n+ 1
2 )∥20

≤Cτ 4
∫ tn+1

tn
∥∇utt∥20dt+ Ch4τ∥ūn+ 1

2∥23 ≤ C(τ 4 + h4)
∫ tn+1

tn
[∥∇utt∥20 + ∥u∥23]dt, (37)

and

τ∥∇(Tn(u)− IhTn(u))∥20
= τ∥∇[(un+ 1

2 − un+ 1
2 − Tn(u))− Ih(u

n+ 1
2 − un+ 1

2 − Tn(u)))∥20
≤ 3τ∥∇un+ 1

2 − Ihu
n+ 1

2 )∥20 + 3τ∥∇
∫ tn+1

tn
(ut − Ihut)dt∥20

+3τ∥∇
∫ tn

tn−1

(ut − Ihut)dt∥20

≤ 3τ∥∇(un+ 1
2 − ūn+ 1

2 )∥20 + Cτ 2h2
∫ tn+1

tn
∥ut∥22dt

≤C(τ 4 + h4)
∫ tn+1

tn
[∥∇utt∥20 + ∥ut∥22 + ∥u∥23]dt. (38)

Now the desired estimate (31) follows from (21) by the triangle inequality and
(36)–(38) and the projection approximation (16). ♯
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5 NUMERICAL IMPLEMENTATION AND APPLICATION

5.1 Triaxial ellipsoidal tetrahedral mesh

The essential strategy for generating a tetrahedral mesh suitable for a triaxial
ellipsoidal cavity is first to construct a spherical tetrahedral mesh [5] which
is then deformed into a triaxial ellipsoidal geometry by introducing the ec-
centricity E as a geometric parameter of the triaxial ellipsoidal mesh. More
precisely, all nodes (xi, yi, zi) in a spherical tetrahedral mesh within the unit
sphere satisfying

x2
i + y2i + z2i = r2i , 0 < ri ≤ 1,

can be transformed by

xE
i = xi, yEi = yi

√
1 + E2, zEi = zi

√
1− E2

such that the deformed nodes (xE
i , y

E
i , z

E
i ) satisfy

(xE
i )

2 +
(yEi )

2

1 + E2
+

(zEi )
2

1− E2
= r2i , 0 < ri ≤ 1.

For the purpose of resolving the thin viscous boundary layer, we can construct
more nodes in the vicinity of the bounding surface of the triaxial ellipsoidal
cavity by stretching the spherical mesh points (xi, yi, zi) radially before the
deformation, for example,


xi

yi

zi

 =
1

ri
sin

(
π

2
ri

)2/3


xi

yi

zi

 .

The spherical mesh itself begins with approximating the sphere by an icosahe-
dron which is then further divided into 20 identical tetrahedra based on its 20
triangular facets and the center of the sphere. This initial tetrahedral mesh is
then refined recursively by subdividing each of the tetrahedra into eight sub-
tetrahedra. The three-dimensional tetrahedralization of the triaxial ellipsoid
produces a finite element mesh that does not have pole or central numerical
singularities. When E is very close to 1, representing a highly flatted triax-
ial ellipsoidal disk, an alternative meshing algorithm should be used. This is
because a regular shaped tetrahedron after transformation may become too
stretched and, consequently, lead to a poor finite element approximation. In
this case, a general mesh generation algorithm based on the Delaunay trian-
gulation can be employed instead.
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Fig. 1. Kinetic energies, Ekin(t), obtained with two different numerical schemes
are shown as a function of the scaled time (T = 2π/ω̂) at a fixed E = 0.5 for
E = 10−4, ω̂ = 1.2 and Po = 0.3. The solid line is obtained using the implicit
scheme while the dashed line from the explicit scheme.

(a) (b)

(c) (d)

Fig. 2. Isosurfaces of the radial component of the librating flow for E = 0.5,
E = 10−4, ω̂ = 1.2 and Po = 0.3: (a) from the explicit scheme and (b) from the
implicit scheme. Isosurfaces of the latitudinal component of the flow for E = 0.5,
E = 10−4, ω̂ = 1.2 and Po = 0.3: (c) from the explicit scheme and (d) from the
implicit scheme.
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5.2 Finite element schemes

We shall focus on the fully discrete finite element method with the second
order Crank-Nicolson scheme in this section. Both implicit and explicit ver-
sions are described. We refer to the finite element system (28) and (29) the
implicit Crank-Nicolson scheme which is re-written below with detailed terms
for the purpose of numerical implementation. The subscript h shall be dropped
through out this section for simplicity.

∫
V

(
un+1 − un

τ

)
· v dV +

∫
V
E∇un+1 + un

2
· ∇v dV

+
1

2

{ ∫
V

(
3

2
un − 1

2
un−1

)
· ∇un+1 + un

2
· v dV

−
∫
V

(
3

2
un − 1

2
un−1

)
· ∇v · u

n+1 + un

2
dV

}
+
∫
V
2ẑ× un+1 + un

2
· v dV −

∫
V

pn+1 + pn

2
∇ · v dV

=
∫
V
2Po

[
ω̂−1ŷ × un+1 + un

2
cos(ω̂tn+1/2)− x̂× un+1 + un

2
sin(ω̂tn+1/2)

]
· v dV

+
∫
V
Po
[
ω̂r× x̂ cos

(
ω̂tn+1/2

)
+ r× (ẑ× x̂) sin

(
ω̂tn+1/2

) ]
· v dV, (39)

−
∫
V
q∇ · u

n+1 + un

2
dV = 0, (40)

where V denotes the triaxial ellipsoidal volume. Note the implicit non-linear
term has been symmetrized (cf. Equation (12)). We also present an explicit
Crank-Nicolson scheme in which the nonlinear term u · ∇u at t = tn+1/2 is
expressed as

un+1/2 · ∇un+1/2 =
3

2
(un · ∇un)− 1

2
(un−1 · ∇un−1) +O(τ 2). (41)

The explicit analogy of (39) and (40) is
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∫
V

(
un+1 − un

τ

)
· v dV +

∫
V
E∇un+1 + un

2
· ∇v dV

+
∫
V

[
3

2
(un · ∇un)− 1

2
(un−1 · ∇un−1)

]
· v dV

+
∫
V
2ẑ× un+1 + un

2
· v dV −

∫
V

pn+1 + pn

2
∇ · v dV

=
∫
V
2Po

[
ω̂−1ŷ × un+1 + un

2
cos(ω̂tn+1/2)− x̂× un+1 + un

2
sin(ω̂tn+1/2)

]
· v dV

+
∫
V
Po
[
ω̂r× x̂ cos

(
ω̂tn+1/2

)
+ r× (ẑ× x̂) sin

(
ω̂tn+1/2

) ]
· v dV, (42)

−
∫
V
q∇ · u

n+1 + un

2
dV = 0. (43)

It should be pointed out that, since the Coriolis term ẑ×un+1 is primarily dom-
inant, two other Coriolis terms in (39) and (42), Poω̂−1ŷ × un+1 cos(ω̂tn+1/2)
and Pox̂×un+1 sin(ω̂tn+1/2), are small and insignificant when Po ≪ 1. There
exist no noticeable differences between the numerical solutions obtained with
or without having the two small Coriolis terms.

Mixed finite element of the Hood-Taylor type [9] is used in the numerical
implementation. The pressure pn+1 is uniquely determined up to an additive
constant. An additional condition pn+1(r0) = constant is imposed at a selected
point r0 numerically. The equations of implicit and explicit Crank-Nicolson
schemes are solved efficiently on modern parallel computers, starting from an
arbitrary initial condition to find un+1, pn+1 from given un and un−1 together
with the non-slip boundary condition.

5.3 Application and results

For the purpose of understanding the effect of different numerical schemes
on simulating a nonlinear flow in librating triaxial ellipsoids, we have imple-
mented the finite element method for two different codes based on the implicit
and explicit Crank-Nicolson schemes. Starting from the same initial condition
with exactly the same parameters of the problem, we have simulated various
librating flows for testing two different numerical schemes.

Figure 1 shows the time-dependent kinetic energies, Ekin(t), defined as

Ekin(t) =
1

2V

∫
V
|u(r, t)|2dV, (44)

of the nonlinear librating flow as a function of time for E = 0.5, Po = 0.3 at
E = 10−4, where

∫
V denotes the integral over the triaxial ellipsoidal cavity.

Two different numerical solutions are displayed in the figure: the solid line
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is obtained from the implicit Crank-Nicolson scheme while the dashed line
from the explicit Crank-Nicolson scheme. Evidently, there are no noticeable
differences between the two different solutions that are obtained using different
numerical schemes. Figure 2 shows the spatial structure of the librating flows
from the two different solutions. It again reveals that there exist no substantial
differences between the implicit and explicit second-order schemes.

It is important to note, however, that the current numerical simulation is
limited to a weakly nonlinear regime of the parameter space. In other words,
the nonlinear effect is not predominant in these nonlinear numerical solutions.
We cannot exclude the possibility that the librationally resonant flow at very
small Ekman number E and sufficiently large Po requires the implicit Crank-
Nicolson scheme in order to accurately capture the nonlinear effect of the
numerical solution.

6 SUMMARY AND REMARKS

As a result of rapid rotation and interaction between planets and stars, many
planetary bodies are in the shape of a triaxial ellipsoid. This paper presents
the theoretical analysis for a finite element method that can be used to com-
pute nonlinear time-dependent librating flows confined in librating triaxial
ellipsoidal cavities with arbitrary eccentricity 0 ≤ E < 1, providing a math-
ematical foundation for the geophysical and astrophysical application of the
numerical method.

In comparison to the spectral method, the finite element method is based
on the three-dimensional triangulation of a triaxial ellipsoidal domain with
the velocity and pressure being represented by continuous piecewise quadratic
and linear finite elements. We have discussed the stability properties of the
finite element solution and estimated the numerical errors of the finite ele-
ment approximation. Additionally, we have implemented two different tem-
poral schemes with the same spatial tetrahedral discretization for simulating
fluid motion in a librating triaxial ellipsoid. To authors’ best knowledge, this
paper represents the first theoretical study on a finite element scheme for
simulating a nonlinear librating flow in triaxial ellipsoidal geometry.

The numerical scheme presented in this paper would be also suitable for sim-
ulating dynamo action taking place in nearly synchronous planets and moons
that are thermally or chemically non-convective. Although it is widely ac-
cepted that thermal or chemical buoyancy within planetary fluid cores drive
their dynamos, exceptional cases exist for certain planets, such as Mercury
and Ganymede, which may require an alternative mechanism of sustaining
their dynamos. But the extension of a similar theoretical study to include
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both the effect of the magnetic field on the flow and the dynamo equation [23]
in a librating triaxial ellipsoid is highly challenging and will be addressed in
a future paper.
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