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Abstract. In this paper, we study the finite time blow up of smooth solutions to the Com-

pressible Navier-Stokes system when the initial data contain vacuums. We prove that any

classical solutions of viscous compressible fluids without heat conduction will blow up in finite

time, as long as the initial data has an isolated mass group (see Definition 2.2). The results

hold regardless of either the size of the initial data or the far fields being vacuum or not. This

improves the blowup results of Xin [22] by removing the crucial assumptions that the initial

density has compact support and the smooth solution has finite total energy. Furthermore, the

analysis here also yields that any classical solutions of viscous compressible fluids without heat

conduction in bounded domains or periodic domains will blow up in finite time, if the initial

data have an isolated mass group satisfying some suitable conditions.

1. Introduction

Consider the following well-known compressible Navier-Stokes equations for viscous com-

pressible fluids, 

∂ρ

∂t
+ div(ρu) = 0,

∂(ρu)

∂t
+ div(ρu⊗ u) +∇p = divT, (x, t) ∈ Ω× R+,

∂(ρE)

∂t
+ div(ρEu+ pu) = div(uT ) + κ∆θ.

(1.1)

The initial data can be taken as

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), E(x, 0) = E0(x), x ∈ Ω, d ≥ 2. (1.2)

Here Ω ⊆ Rd is a smooth domain in Rd or periodic domain Td, and ρ, u, p, θ denote the density,

velocity, pressure, internal energy and temperature respectively. The specific total energy E =
1

2
|u|2 + e, and T is the stress tensor given by

T = µ(∇u+∇ut) + λ(divu)I. (1.3)

µ and λ are the coefficient of viscosity and second coefficient of viscosity, respectively. κ is the

coefficient of heat conduction. The pressure p is determined by the equation of state

p = Rρθ, p = (γ − 1)ρe, (1.4)

where R > 0 and γ > 1 are constants.
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In the case that the domain Ω has boundary, the standard no-slip boundary condition or

Navier-slip boundary condition will be supplemented.

In this paper, it will be always assumed that

µ > 0, λ+
2

d
µ > 0, κ = 0. (1.5)

As one of the most important systems in continuum mechanics, the theory of global well-

posedness of solutions to the Cauchy problem and initial-boundary-value problem for the system

(1.1) has been studied extensively in[2, 1, 5, 3, 6, 8, 7, 14, 15, 17, 18, 19, 20, 22, 10, 11, 12, 13, 16]

and the references therein. In particular, non-vacuum small perturbations of a uniform non-

vacuum constant state have been shown existing globally in time and remain smooth in any

space dimensions [19, 20, 17, 18, 6], while for general data which may contain vacuum states,

only weak solutions are shown to exist for the isentropic compressible Navier-Stokes system in

multi-dimension with special equation of state as in [15, 5], yet the uniqueness and regularity

of these weak solutions remain unknown. In contrary to the one-dimensional case [8], it is still

open whether vacuum states can form in finite time from non-vacuum initial and boundary data

for the compressible Navier-Stokes systems in higher space dimensions. Despite the progress on

various blow-up criterion [13, 10, 11], and the surprising results on global well-posedness of the

classical solution to the 3-dimensional compressible Isentropic Navier-Stokes system for initial

data with small total energy but possible large oscillations and containing vacuum states [12],

the behavior near vacuum of solutions to the system (1.1) remains to be one of the central issues

for the global well-posedness of smooth solutions to the general full compressible Navier-Stkes

system (1.1), as is illustrated in the following result of blow-up of smooth solutions for the full

compressible Navier-Stokes system (1.1) without heat conduction (i.e. satisfying (1.5)):

Theorem 1.1. (from Theorem 1.3 in [22]) Consider the compressible Navier-Stokes system

(1.1) without heat-conduction, i.e. (1.5) is satisfied. Then there is no non-trivial solution in

C1([0,∞),Hm(Rd)) to the Cauchy problem, (1.1) and (1.2), provided that the initial density has

compact support.

This is the first result of finite time blow-up of smooth solutions for viscous compressible

fluids proved by Xin in [22], which was generalized by Cho and Jin [3] to the case of κ > 0.

Later, Rozanova [21] obtained a similar blowup result under rapidly decay assumptions instead

of compact support assumptions of initial data. Then, Luo and Xin [16] proved the finite time

blowup of symmetric smooth solutions to two dimensional isentropic Navier-Stokes equations

and analyzed the blowup behavior at infinity time for one point vacuum initial data. Recently,

Du, Li and Zhang [4] show the blowup of smooth solutions to the isothermal case for one

dimensional case and two dimensional case with spherically symmetric assumptions.

It should be noted that all the results mentioned above on the blowup of smooth solutions

are for Cauchy problems of the compressible Navier-Stokes equations, i.e., Ω = Rd, and there



ON BLOWUP OF CLASSICAL SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS 3

are two crucial assumptions that the density has compact support spatially (at least, the far

field must be in vacuum state), and the velocity field must be in C1([0,∞),Hm(Rd)) (which

implies in particular that the solution has finite energy so that the velocity is well-defined even

in the vacuum region). The first natural question is whether the far field being in vacuum (in

particular, the density has compact support) is a necessary condition for the finite time blow-

up of smooth solutions. Indeed, for isentropic compressible Navier-Stokes equations in two or

three space dimensions, when the far fields are non-vacuum, there exist smooth global small

energy solutions which may contain vacuum for the Cauchy problem, [12]. It is an open problem

whether the similar theory holds for the full compressible Navier-Stokes system (1.1). Another

important question is whether one can remove the assumption that u ∈ Hm(Rd) for suitable

large m. It should be emphasized that this is a very strict assumption which plays a crucial role

in the analysis of the blow-up results in [22, 3, 16, 4, 21]. Yet, it is not clear physically why the

velocity field has the asymptotic behavior at vacuum. Furthermore, even the local existence of

smooth solutions for the Cauchy problems with initial data containing vacuum are proved only

in the case that the velocity fields are in some suitable homogeneous space (in particular the

velocity fields are not square integrable on Rd, [2, 1]. It should be also noted that the global well-

posedness of smooth solutions which may contain vacuum states and large oscillations for the

Cauchy problem of the isentropic compressible Navier-Stokes in R3 are in homogeneous spaces

also [12]. Thus it is desirable to generalize the blow-up results in Theorem 1.1 to general classical

solutions to the compressible Navier-Stokes system without the assumption that u ∈ Hm(Rd).

Finally, since all the the previous blow-up results of smooth solutions concern only with Cauchy

problems and it seems difficult to adapt the available methods to deal with the initial-boundary

value problems and periodic problems which are also very important issues for compressible

Navier-Stokes equations.

In this paper, we will answer all three main questions mentioned above. First, we show the

finite time blow up of classical solutions to the Cauchy problem for the compressible Navier-

Stokes equations (1.1) without heat conduction for a class of initial data containing vacuum but

without any restrictions on the velocity fields at vacuum beyond the regularity. The class of

initial data includes the case that the initial density has compact support. The proof is based

on the key observation that if initially a positive mass is surrounded by a bounded vacuum

region, then the time evolution remains uniformly bounded for all time. Then this analysis can

be modified easily to show the finite time blowup of classical solutions to initial-boundary value

problems and periodic problems under some suitable conditions.

The rest of this paper is organized as follows. In section 2, we give some notions, state main

results, and describe the main ideas of the proof. Then the key estimates and the complete

proofs of the results are given in section 3 and section 4.



ON BLOWUP OF CLASSICAL SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS 4

2. Notations and main theorems

Before stating the main results, we introduce some notations. Recall that the classical

solutions to the compressible Navier-Stokes equations can be defined as follows:

Definition 2.1. (Classical solutions) Let T be positive. A triple (ρ(x, t), u(x, t), E(x, t)) is called

a classical solution to the compressible Navier-Stokes system (1.1) on Ω× (0, T ) if ρ ∈ C1(Ω×
[0, T )), (u,E) ∈ C1([o, T ), C2(Ω)), and satisfies the system (1.1) point-wisely on Ω × (0, T ). It

is called a classical solution to the Cauchy problem (1.1) and (1.2) if it is a classical solution

to the system (1.1) on Rd × (0, T ) and takes on the initial data (1.2) continuously. Similarly,

it is called a classical solution to the initial-boundary-value problem for the system (1.1) if it is

a classical solution to the system (1.1), takes the initial data (1.2), and satisfies the boundary

conditions continuously.

We now identify a class of initial data which contains vacuum states. Let the initial data for

a classical solution (ρ(x, t), u(x, t), E(x, t)) to the system (1.1) be defined in (1.2).

Definition 2.2. (Non-periodic case) Suppose Ω be a smooth domain in Rd. The pair (V,U) is

called an isolated mass group of ρ0(x), if both V ⊂ Ω and U ⊂ Ω are bounded open sets, U is

connected, and satisfy V ⊂ V ⊂ U,

ρ0(x) = 0, in U − V,
(2.1)

and ρ0(x) is not identically equal to zero on V . If U ⊆ BR(x̄) for some x̄, then (V,U) is said to

have radius R. For simplicity, (V,U) is called an isolated mass group.

In the periodic case, this definition is modified as follows:

Definition 2.3. (Periodic case) Suppose Ω = Td. The pair (V,U) is called an isolated mass

group of ρ0(x), if the pair (V,U) is an isolated mass group of ρ0(x) in the sense of Definition

2.2 after periodic extension Td to Rd. If, after periodic extension, U ⊆ BR(x̄) ⊂ Rd for some x̄,

(V,U) is said to have radius R.

Remark 2.1. It is noted that BR in Definition 2.3 may not be contained in Td.

Remark 2.2. Since the Navier-Stokes equations are invariant under translation, without loss

generation, it will be assumed that x̄ = 0 in this paper without explicit declaration.

Let (V,U) be an isolated mass group with radius R1. Denote by m0, x0 the initial mass and

initial centroid of the isolated mass group V respectively. That is,

m0 =

∫
V
ρ0(x)dx > 0, x0 =

1

m0

∫
V
ρ0(x)xdx. (2.2)
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Set

m1 =

∫
V
ρ0(x)u0(x)dx, m2 =

∫
V
|x|2ρ0(x)dx > 0,

m3 =

∫
V
ρ0(x)(u0(x)−

m1

m0
) · xdx, m4 =

∫
V
ρ0(x)(

1

2
|u0(x)−

m1

m0
|2 + e0(x))dx > 0.

(2.3)

Denote by T ∗ the only positive root of

min(2, d(γ − 1))m4t
2 + 2m3t− ((2R1 + |x0|)2m0 −m2) = 0. (2.4)

Let cl(U) be the closed convex hull of U .

Then the main results in this paper are the following three theorems. The first theorem

concerns with the Cauchy problem.

Theorem 2.4. Consider the full compressible Navier-Stokes system (1.1) without heat-conduction,

i.e., satisfying (1.5). Assume that initial density has an isolated mass group. Then there is no

global in time classical solution to the Cauchy problem for the Navier-Stokes system (1.1) and

(1.2).

In the case of periodic domains, we have:

Theorem 2.5. Consider the viscous compressible flows without heat-conduction in the periodic

domain Td. Suppose that the viscosity coefficients µ, λ satisfy (1.5) and the initial density has

an isolated mass group (V,U). Then there is no global in time classical solution to the Cauchy

problem for the compressible Navier-Stokes system (1.1) with initial data (1.2).

Finally, we deal with the initial boundary value problem.

Theorem 2.6. Consider the viscous compressible flows without heat-conduction in a smooth

domain Ω ⊂ Rd. Suppose that the viscocity coefficients µ, λ satisfy (1.5). and the initial density

has an isolated mass group (V,U) with radius R1. Assume further that

B
2R1+|x0|+ |m1|

m0
T ∗(0) ⊂ Ω, (2.5)

where T ∗ is defined in (2.4). Then there is no global in time classical solution to the initial-

boundary value problem for the compressible Navier-Stokes system (1.1) with initial data (1.2)

and suitable boundary conditions.

One of the interesting corollaries of Theorem 2.4 is the following strong version of the blow-up

results of Xin [22]:

Corollary 2.7. Assume that the viscosity coefficients satisfy the condition (1.5). Then there

is no non-trivial global in time classical solution to the Cauchy problem for the compressible

Navier-Stokes system (1.1) with initial data (1.2), provided that the initial density has compact

support, i.e.,

suppρ0(x) ⊂⊂ BR0(0). (2.6)
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Remark 2.3. Theorem 2.6 holds independent of the boundary conditions on ∂Ω.

Remark 2.4. Theorem 2.4 shows that any classical solution to the compressible Navier-Stokes

system without heat conduction will blow up in finite time, as long as its initial data has an

isolated mass group, no matter how small the initial data is and no matter whether the states

of its far fields are vacuum or not.

Remark 2.5. It should be noted that the condition (2.5) can be loosen slightly to

cl(B2R1+|x0|(0) ∪B2R1+|x0|(
m1

m0
T ∗)) ⊂ Ω. (2.7)

These conditions guarantee that the boundaries of isolated mass groups are away from the

boundary of the domain in the lifespan of the classical solution.

Now, we make some comments on the main ideas of the proofs. Recall that there are two

crucial elements in the proof of the blowup result, Theorem 1.1, in [22]. The first is that the

total pressure over Rd decays fast in time, and the second is the support of the density grows

sub-linearly in time. It is noted that the decay of the total pressure involves some integrability

of powers of the density, which can be guaranteed by the condition that the density has compact

support, but has nothing to do with the integrability of the velocity field over Rd. However,

the assumption u ∈ Hm plays an essential role to show that u(x) = 0 in (unbounded) vacuum

regions which ensures that the support of density is preserved in time, and thus contradicts to

the fact that the second moment increases in the order at least as t2 as t → ∞ [22, 3, 4, 16].

To deal with the general case here, we note that the argument in [22] show that, for classical

solutions to the compressible Navier-Stokes equations (1.1) without heat conduction, it holds

that in vacuum regions, divT = 0,

div(uT ) = 0.
(2.8)

It follows from (2.8) and (1.5) that in vacuum regions, ∂iui = 0, 1 ≤ i ≤ d,

∂iuj + ∂jui = 0, i ̸= j.
(2.9)

For the special case that density has compact support, (2.9), together with the assumption

u ∈ Hm, implies that u = 0 in unbounded vacuum regions. For the general case, one of the key

observations in this paper is that (2.9) implies that in the vacuum regions,

u(x, t) = A(t)x+ b(t), (2.10)

where A(t) is a antisymmetric matrix. Thus, in general, u(x, t) may not be zero and may not

even be integrable in vacuum regions and the interfaces between the fluids and the vacuum

states vary in time. Thus the previous analysis cannot work in general. In this paper, instead

studying the evolution of the initial states over Rd, we consider only the dynamic motion of an

isolated mass group. It will be shown that (2.8) and (2.10) guarantee that the mass, momentum,
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energy, and centroid of the time evolution of the initial isolated mass group are time invariant,

and the diameter of the time evolution of the initial isolated mass group remains uniformly

bounded up to a translation. Intuitively, the A(t)x term of u(x, t) expresses the motions in the

direction perpendicular to x and so does not increase the bounds on the diameter of the initial

isolated mass groups. While the term of b(t) in u(x, t) means that the isolated mass group may

translate. The translations of such isolated mass group can be controlled by the motion of its

centroid and thus be controlled by the momentums. But the momentums of isolated mass group

are conserved due to the Navier-Stokes euations (1.1) and the behaviors of classical solutions in

vacuum regions.

3. Proof of Theorem 2.4, Theorem 2.5 and Corollary 2.7.

In this section, we prove Theorem 2.4, Theorem 2.5 and Corollary 2.7. Let (ρ, u,E)(x, t) be

a classical solution to the Navier-Stokes equation (1.1) without heat conduction and (V,U) be

an isolated mass group for the corresponding initial density. Without loss of generality, it will

be assumed that the initial total momentum of V is zero, i.e.

m1 = 0. (3.1)

Otherwise, one can take the following Galilean transformation to achieve this:
t′ = t, x′ = x+

m1

m0
t,

ρ′(x′, t′) = ρ(x, t), u′(x′, t′) = u(x, t)− m1

m0
, e′(x′, t′) = e(x, t).

Assume that the isolated mass group (V,U) has a radius of R1, i.e.

U ⊂ BR1(0).

Let X(α, t) be the particle path starting at α when t = 0,
d

dt
X(α, t) = u(X(α, t), t),

X(α, 0) = α.

Define 
Ω1(t) = {X(α, t)

∣∣ α ∈ V },

Ω2(t) = {X(α, t)
∣∣ α ∈ U},

Ω0(t) = {X(α, t)
∣∣ α ∈ U − V }.

(3.2)

Then,

Ω2(t) = Ω1(t) ∪ Ω0(t).

Since ρ0(x) = 0 in U − V , it follows from the mass equation that

ρ(x, t) = 0, in Ω0(t).

Then our first observation is the form of the velocity field in the vacuum region Ω0(t) as follows.
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Lemma 3.1. There exist an antisymmetric matrix A(t) and a vector b(t) such that

u(x, t) = A(t)x+ b(t), x ∈ Ω0(t). (3.3)

Moreover,

T (x, t) = 0, x ∈ Ω0(t), (3.4)

and ∫
Ω2(t)

(divT ) · xdx = 0. (3.5)

Proof. Under the condition (1.5), it follows from the arguments of Xin in [22] that

∇u+∇tu(x, t) = 0, x ∈ Ω0(t), (3.6)

or

∂iuj + ∂jui = 0, 1 ≤ i, j ≤ d, x ∈ Ω0(t).

Then, for any 1 ≤ i, j, k ≤ d,

∂2
ijuk = ∂i(∂juk) = −∂i(∂kuj) = −∂2

ikuj .

On the other hand,

∂2
ijuk = ∂j(∂iuk) = −∂j(∂kui) = −∂k(∂jui) = ∂k(∂iuj) = ∂2

ikuj .

Therefore,

∂2
ijuk = 0, 1 ≤ i, j, k ≤ d, x ∈ Ω0(t).

This yields that there exist a matrix A(t) and a vector b(t) such that

u(x, t) = A(t)x+ b(t), x ∈ Ω0(t). (3.7)

Substituting (3.7) into (3.6) gives

A(t) +At(t) = 0.

So A(t) is antisymmetric. This in turn implies (3.4) trivially.

Now we turn to prove (3.5). Direct calculations show that∫
Ω2(t)

div(T ) · xdx = −
∫
Ω2(t)

trac(T )dx = −(2µ+ dλ)

∫
Ω2(t)

divu(x, t)dx

= −(2µ+ dλ)

∫
∂Ω2(t)

u(x, t) · nds = −(2µ+ dλ)

∫
∂Ω2(t)

(A(t)x+ b(t)) · nds

= −(2µ+ dλ)

∫
Ω2(t)

div(A(t)x+ b(t))dx = −(2µ+ dλ)

∫
Ω2(t)

trac(A(t))dx

= 0.

�
Based on this lemma, the diameter of the time evolution of the isolated mass group, i.e., the
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diameter of Ω2(t), can be estimated. To this end, we define D(t) to be a smooth vector function

of t satisfying 
dD(t)

dt
= A(t)D(t) + b(t),

D(0) = 0.

(3.8)

Since A(t) and b(t) are smooth, D(t) is well-defined by the classical theory of ordinary differential

equations. Then we can get

Lemma 3.2. It holds that

|X(α, t)−D(t)| = |α| ≤ R1, for any α ∈ U − V, (3.9)

and

|x−D(t)| ≤ R1, x ∈ Ω0(t). (3.10)

and

Ω2(t) ⊂ BR1(D(t)), cl(Ω2(t)) ⊆ BR1(D(t)). (3.11)

Proof. Let Y (α, t) = X(α, t)−D(t). Direct calculations yield that

dY (α, t)

dt
= A(t)Y (α, t), Y (α, 0) = α, α ∈ U − V.

Since A(t) is antisymmetric,

1

2

d(|Y (α, t)|2)
dt

= Y (α, t) · (A(t)Y (α, t)) = 0, α ∈ U − V.

Therefore,

|X(α, t)−D(t)| = |Y (α, t)| = |Y (α, 0)| = |α|, ∀ x ∈ U − V.

Consequently, (3.10) and then (3.11) follow trivially by a simple topological argument. �

To study the conservation laws for the evolution of the isolated mass group, one needs the

following elementary transportation formula.

Lemma 3.3. For any F (x, t) ∈ C1(Rd × R+),

d

dt

∫
Ω2(t)

F (x, t)dx =

∫
Ω2(t)

∂tF (x, t)dx+

∫
∂Ω2(t)

F (x, t)(u(x, t) · n)ds.

Proof. The proof is a simple calculation, and so is omitted. �
Then we have the following conserved quantities for the time evolution of the isolated mass

group.

Lemma 3.4. The total mass, total momentum, total energy, and centroid of Ω2(t) are conserved,

i.e. ∫
Ω2(t)

ρ(x, t)dx = m0, (3.12)∫
Ω2(t)

ρ(x, t)u(x, t)dx = m1 = 0, (3.13)
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Ω2(t)

ρEdx = m4, (3.14)

and ∫
Ω2(t)

ρ(x, t)xdx∫
Ω2(t)

ρ(x, t)dx
= x0. (3.15)

Proof. Integrating the mass equation, momentum equation and energy equation on Ω2(t) re-

spectively and using Lemma 3.3 and Lemma 3.1, one can derive the conservation of the total

mass, (3.12), total momentum, (3.13), and total energy, (3.14), over Ω2(t) easily. The invariance

of the centroid, (3.15), follows from the calculations in the proof of the next lemma. �

Next, we estimate the sizes of D(t) and Ω1(t).

Lemma 3.5. (Key estimates) It holds that

|D(t)| ≤ R1 + |x0|, (3.16)

and

Ω1(t) ⊂ Ω2(t) ⊆ B2R1+|x0|. (3.17)

Proof. Multiplying the mass equation by x, integrating on Ω2(t) and using Lemma 3.3 and

Lemma 3.4, one gets that

d

dt

∫
Ω2(t)

ρ(x, t)xdx = −
∫
Ω2(t)

xdiv(ρu)dx = −
∫
Ω2(t)

div(ρu⊗ x)dx+

∫
Ω2(t)

ρudx

=

∫
Ω2(t)

ρudx = m1 = 0.

(3.18)

where ∫
∂Ω2(t)

xρ(x, t)(u(x, t) · n)ds = 0.

(3.18) yields that ∫
Ω2(t)

ρ(x, t)xdx =

∫
U
ρ0(x)xdx =

∫
V
ρ0(x)xdx = m0x0. (3.19)

Since the mass over Ω2(t) is conserved, thus x0 is contained in the closed convex hull of Ω2(t),

that is,

x0 ∈ cl(Ω2(t)) ⊆ BR1(D(t)). (3.20)

(3.20) implies

|x0 −D(t)| ≤ R1.

This yields the estimate (3.16). (3.17) is a direct consequence of (3.11) and (3.16). �

With the estimate (3.17) on the size of the isolated mass group (Ω1(t),Ω2(t) at hand, The-

orem 2.4 can be proved by using a similar argument in [22] (see also [3]) with some proper

modifications. For completeness, we will give the details here.
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Proof of Theorem 2.4. Multiplying the mass equation by |x|2 and using Lemma 3.3 show

d

dt

∫
Ω2(t)

ρ|x|2dx = 2

∫
Ω2(t)

ρu · xdx,

and ∫
Ω2(t)

ρ|x|2dx = m2 + 2

∫ t

0

∫
Ω2(s)

ρu · xdxds. (3.21)

Taking inner product of the momentum equations with x, integrating by part, and using

(3.5) lead to
d

dt

∫
Ω2(t)

ρu · xdx =

∫
Ω2(t)

ρ|u|2dx+ d

∫
Ω2(t)

pdx.

Then ∫
Ω2(t)

ρu · xdx = m3 +

∫ t

0

∫
Ω2(s)

ρ|u|2dxds+ d

∫ t

0

∫
Ω2(s)

pdxds. (3.22)

It follows from (3.22), (3.14), and the equations of state (1.4) that∫
Ω2(t)

ρu · xdx = m3 + 2

∫ t

0

∫
Ω2(s)

ρ(x, s)E(x, s)dxds+ (d− 2

γ − 1
)

∫ t

0

∫
Ω2(s)

p(x, s)ds

= m3 + 2m4t+ (d(γ − 1)− 2)

∫ t

0

∫
Ω2(s)

ρ(x, s)e(x, s)dxds.

(3.23)

If (d(γ − 1)− 2) ≥ 0, (3.23) gives∫
Ω2(t)

ρu · xdx ≥ m3 + 2m4t.

If (d(γ − 1)− 2) ≤ 0, combining

∫
Ω2(t)

ρedx ≤
∫
Ω2(t)

ρEdx = m4 with (3.23) yields that

∫
Ω2(t)

ρu · xdx ≥ m3 + 2m4t− (2− d(γ − 1))

∫ t

0

∫
Ω2(s)

ρedxds

≥ m3 + 2m4t− (2− d(γ − 1))m4t

= m3 + d(γ − 1)m4t.

Therefore, it always holds that∫
Ω2(t)

ρu · xdx ≥ m3 +min(2, d(γ − 1))m4t. (3.24)

Substituting (3.24) into (3.21) shows that∫
Ω2(t)

ρ|x|2dx ≥ m2 + 2m3t+min(2, d(γ − 1))m4t
2. (3.25)

On the other hand, it follows from (3.17) that∫
Ω2(t)

ρ|x|2dx ≤ R2
2

∫
Ω2(t)

ρdx = R2
2m0. (3.26)

with R2 = 2R1 + |x0|.

Combining (3.25) with (3.26) yields that

m2 + 2m3t+min(2, d(γ − 1))m4t
2 ≤ R2

2m0.
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This leads to a finite bound on the life span of the classical solution. Thus the theorem is proved.

�

Proof of Theorem 2.5. This follows by taking periodic extension and then using Theorem

2.4. �

Proof of Corollary 2.7. Taking V = BR0 and U = B2R0 in Theorem 2.4 yields the desired

conclusion. �

4. Proof of Theorem 2.6

In this section, we will prove Theorem 2.6. Note that the key procedure in the proof of

Theorem 2.4 is the analysis of the time evolution of the isolated mass group. It follows clearly

from the analysis in the previous section that to prove Theorem 2.6, it suffices to show that,

under the given conditions, the time evolution of the isolated mass group (V,U) does not touch

the boundary of the physical domain.

Proof of Theorem 2.6. We will use the same notations as the previous section. Consider the

case m1 = 0 first. Assume a priori that, for any t in the lifespan [0, T ) of the classical solution,

dist(∂Ω2(t), ∂Ω) > 0 or Ω2(t) ⊂⊂ Ω, 0 ≤ t < T. (4.1)

Then, the same analysis as in section 3 shows that

cl(Ω2(t)) ⊂ B2R1+|x0|(0), (4.2)

and

m2 + 2m3t+min(2, d(γ − 1))m4t
2 ≤ (2R1 + |x0|)2m0.

Therefore,

T ≤ T ∗. (4.3)

Since (4.2), (4.3) and (2.5) (or (2.7)) guarantee (4.1), so Theorem 2.6 holds for the case m1 = 0.

Now, consider the case m1 ̸= 0. Take the following Galilean transformation,
t′ = t, x′ = x+

m1

m0
t,

ρ′(x′, t′) = ρ(x, t), u′(x′, t′) = u(x, t)− m1

m0
, e′(x′, t′) = e(x, t).

Since (2.2), (2.3) and (2.4) are invariant under above Galilean transformation, then the results

can proved just as the case m1 = 0, except that the boundary of the domain, ∂Ω(t), becomes

unsteady with the constant velocity
m1

m0
.

In this case, the condition (4.1) becomes

Ω2(t) ⊂⊂ Ω+
m1

m0
t, 0 ≤ t < T.
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However, it should be clear that this indeed can be deduced from the assumption (2.5) or (2.7).

So the proof Theorem 2.6 is completed. �

Remark 4.1. Previous analysis also applies to the full Navier-Stokes equations with positive heat

conduction under the assumption that the specific entropy is finite in vacuum regions (e.g. the

case in [3]). We omit the details here.

Remark 4.2. It is worth noting that, recently, Huang and Li [9] proved the global existence of

the classical solutions with small energy to the full Compressible Navier-Stokes equations with

positive heat conduction in the whole space Rd, if the initial data tend to a constant non-vacuum

state in far fields and initial vacuum is allowed. However, the global classical solutions obtained

in [9] must have positive absolute temperature θ in vacuum regions (thus the specific entropy is

infinity at vacuum regions).
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