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Abstract. In this paper, we characterize a set of physically acceptable boundary conditions

that ensure the existence and uniqueness of a subsonic irrotational flow in a finitely long flat

nozzle. Our results show that if the incoming flow is horizontal at the inlet and an appropriate

pressure is prescribed at the exit, then there exist two positive constants m0 and m1 with

m0 < m1, such that a global smooth irrotational subsonic flow exists uniquely in the nozzle,

provided that the incoming mass flux m ∈ [m0, m1). The horizontal velocity of the flow is always

positive in the whole nozzle and the maximum speed of the flow will approach the sonic speed

as the mass flux m tends to m1. The flow is governed by the steady compressible irrotational

Euler equations with nonlocal and nonlinear mixed boundary conditions. A new key issue is that

the Bernoulli’s constant of the irrotational flow is not given a priori, which can be determined

uniquely by the end pressure and the incoming mass flux. To handle the nonlocal boundary

condition raised from the mass flux, we introduce an auxiliary problem with Bernoulli’s constant

as a parameter, instead of the mass flux. Furthermore, the monotonicity between the mass flux

and the Bernoulli’s constant is established for given end pressure.
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1. Introduction

In this paper, we consider the inflow-outflow problem for steady subsonic irrotational gases
in a two-dimensional finitely long cylindrical nozzle, aiming at finding intrinsic (physically ac-
ceptable) boundary conditions in upstream and downstream, which arises from the classical
aerodynamics. In the Section 143 in the book [4], Courant and Friedrichs had presented some
facts and conjectures about boundary value problems for steady compressible flows and indicated
difficulties in formulating suitable boundary conditions.
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For compressible subsonic irrotational flows in infinitely long nozzles, proposed by L. Bers
[2], one may expect that there exists a critical value of the incoming mass flux such that a global
irrotational subsonic flow exists uniquely in a nozzle, provided that the incoming mass flux is less
than the critical value. Some progress have been made for giving a rigorous mathematical proof
to the assertion. Xie and Xin [23] proved that such a conjecture is valid for two-dimensional
infinitely long curved nozzles. In [7], the authors showed that the result holds for arbitrary
dimensional infinitely long nozzles. Concerning compressible subsonic flows with non-vanishing
vorticity in 2D infinitely long nozzles, Xie and Xin [25] explored the special structure of 2D Euler
system and reduced the Euler system to a single second order quasi-linear equation, which yields
the existence of subsonic flows when the variations of Bernoulli’s function in the upstream are
sufficiently small and mass flux is in a suitable regime with an upper critical value. Furthermore,
one may refer [6, 24] for similar results on the subsonic flows in 3D asymmetric infinitely long
nozzles.

In these works mentioned above, the subsonic flows problem can be formulated mathemati-
cally into an infinitely long nozzle problem, under the assumption that the length of the nozzle
is usually much larger than their cross-sections in practical applications. Compared with the
works about subsonic flows in an infinitely long nozzle, the main difficulty of the subsonic prob-
lem in a finitely long nozzle is how to prescribe the parameters of the flow in the upstream and
the downstream physically. It is of great importance to know that under what circumstances a
steady smooth subsonic flow in a finitely long nozzle is uniquely determined by the conditions
at entrance, and when further conditions at the exit are appropriate.

There have been several types works on steady flow patterns in finitely long nozzles in the
literature. One is the transonic shock problem in de Lavel nozzles in [4, 3, 16, 17, 18, 26, 27].
As proposed by Courant and Friedrichs in Section 147 in [4], a natural and physical boundary
condition at the exit for transonic shock problems is to prescribe the various end pressure, called
receiver pressure. In that case the boundary conditions behind the shock wave are determined
naturally by the Rankine-Hugoniot conditions. So the solution in subsonic region is governed
by the compressible Euler equations with the impermeable boundary condition on nozzle walls,
the Rankine-Hugoniot conditions on shock surface and the end pressure at the exit. The main
difficulty in transonic shock problems is that the shock surface is a free boundary, which should
be determined by the transonic shock solution simultaneously. Another important wave pattern
is smooth transonic flows through a finitely long nozzle. In view of the works [20, 21, 22]
on irrotational smooth transonic flows in de Lavel nozzles, the angle and the mass flux of the
incoming flows are imposed at the entrance and the sonic condition is prescribed naturally on the
sonic line. Thus, the irrotational flows in subsonic regions are governed by the potential equation
with given flow angles at the inlet, the Neumann boundary condition on the nozzle walls and
the sonic condition on the possible sonic line. On the other hand, it should be mentioned again
that as proposed by Bers in [2], the mass flux is an important physical quantity not only in
infinitely long nozzles but also in finitely long nozzles, although it induces a nonlocal boundary
condition which may cause some difficulties mathematically.

Motivated by these studies on boundary conditions for steady flow patterns in finite nozzles,
in this paper, we will characterize a class of physical boundary conditions and establish the well-
posedness of the subsonic flows through a finitely long nozzle under these boundary conditions.
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Roughly speaking, we consider a finitely long flat nozzle given by Ω = [0, 1]× [0, 1]. Assume that
the incoming flow is horizontal at the entrance and an appropriate pressure pe(x) is prescribed
at the exit. We will look for a unique smooth subsonic flow through the nozzle with the given
incoming mass flux m which lies in an appropriate interval [m0,m1). Here m1 is expected to
be the critical mass flux in the sense that the maximal speed of the subsonic flow in the nozzle
approaches to the sound speed as m tends to m1.

Ω

x1

x2

1

0
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flow

pe(x2)

pressure

1

Entry Exit

Figure 1. Subsonic problem in a finitely long nozzle

More precisely, we can formulate the boundary value problem as follows: Steady isentropic
ideal gases are governed by the compressible Euler equations





(ρu1)x1 + (ρu2)x2 = 0,

(ρu2
1)x1 + (ρu1u2)x2 + px1 = 0,

(ρu1u2)x1 + (ρu2
2)x2 + px2 = 0,

(1.1)

where u = (u1, u2) is the velocity field, p is the pressure and ρ is the density. For ideal polytropic
gases, the equation of state is

p(ρ) = Aργ , for ρ > 0, (1.2)

with A being a positive constant depending on the specific entropy and γ ∈ (1, 3) being the

adiabatic exponent. For simplicity, we take A =
1
γ

throughout this paper.

The quantity c(ρ) =
√

p′(ρ) =
√

ργ−1 is the sound speed, and the subsonic flow means that
|u| < c(ρ).

Moreover, the flow is assumed to be irrotational, that is ∂1u2 − ∂2u1 ≡ 0. Then one can
obtain the strong form of the Bernoulli’s Law(see Section 14 in [4])

1
2
(u2

1 + u2
2) + h(ρ) = constant, (1.3)

where h(ρ) is the enthalpy with h′(ρ) =
p′(ρ)

ρ
. And it is easy to prove that if the Bernoulli’s

function is a uniform constant and the flow does not contain any stagnation points and vacuum,
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then the flow will be irrotational. Since we are looking for a subsonic irrotational flow with-
out stagnation points and vacuum, throughout this paper, we will use the strong form of the
Bernoulli’ law instead of the zero vorticity condition.

At the inlet of the nozzle Ω = (0, 1)× (0, 1), the incoming flow is assumed to be horizontal,
i.e.

u2(0, x2) = 0 and u1(0, x2) > 0 for x2 ∈ [0, 1]. (1.4)

The positivity of the horizontal velocity guarantees that the flow goes into the nozzle at the
entrance.

The nozzle walls are assumed to be solid so that

u2 = 0 for x2 = 0 or x2 = 1. (1.5)

At the exit of the nozzle, the receiver pressure is imposed

p(ρ) = pe(x2) on x1 = 1, (1.6)

with compatibility conditions p′e(0) = p′e(1) = 0.

It follows from the continuity equation in (1.1) and the slip boundary condition (1.5) that

m(x1) =
∫ 1

0
ρ(x1, x2)u1(x1, x2)dx2 = m (1.7)

is a constant for any x1 ∈ [0, 1], which is called the mass flux.

The subsonic flow problem in this finite flat nozzle is stated as follows.

Problem 1. (Subsonic problem in finitely long nozzles)
For a given appropriate receiver pressure pe(x2) at the exit and mass flux m > 0, find a unique
smooth subsonic solution (ρ, u1, u2), which satisfies the Euler equations (1.1), the equation of
state (1.2), the Bernoulli’s law (1.3), the boundary conditions (1.4)-(1.6), the mass flux condition
(1.7), and the subsonic condition u2

1 + u2
2 < c2(ρ) = ργ−1.

The main results in this paper can be stated as follows. Suppose that the incoming flow is
horizontal at the entrance, for given end pressure function pe(x2) ∈ C2,α([0, 1]), whose variation
is not too large (see condition (2.7)), there exists a unique irrotational subsonic flow throughout
the finitely long flat nozzle, provided that the incoming mass flux m lies in an appropriate
interval [m0,m1). The maximum speed of the flow will approach the sonic speed as the mass
flux m tends to m1. This interval [m0,m1) depends on the receiver pressure, the equation of
state.

Before getting into the details, we would like to give some comments on the key issues in
this paper.

Remark 1.1. In view of the recent works ([7, 23, 24]) on irrotational subsonic flows through
infinitely long nozzles, the nozzles are assumed to be asymptotically flat at the far field and the
asymptotic behavior of the flows at the entrance and the exit can be derived by the mass flux
and the shape of the nozzles. In another words, the results on subsonic irrotational flows in
infinitely long nozzles indicate that the flows are determined uniquely by the mass flux and the
geometry of the infinitely long nozzles. However, in finitely long nozzles except for the mass flux
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condition, some additional physically acceptable conditions should be imposed not only at the
inlet but also at the exit. These additional boundary conditions make it difficult to adapt the
analysis for the infinitely long nozzle in [7, 23, 24] to the current case. Some new approaches are
needed to obtain some key properties such as positivity of the horizontal velocity and uniqueness
of the flow, which play key roles in establishing the well-posedness of Problem 1.

Remark 1.2. In the previous works on the subsonic irrotational flows in unbounded domain
(including the subsonic flows past a given obstacle [1, 5, 10, 11, 12] and the subsonic flows
through an infinitely long nozzle [7, 23, 24]), the Bernoulli’s constant can be determined by
the asymptotic behavior at far field, which is always normalized to be 1. In present situation,
the Bernoulli’s constant should not be determined a priori, in fact, it should be determined by
the mass flux and the receiver pressure at the exit. However, the mass flux condition (1.7) is
a nonlocal boundary condition, which is difficult to use. To overcome this difficulty, we first
introduce an auxiliary problem regarding the Bernoulli’s constant as a parameter as follows. If
the upstream flow remains horizontal at the inlet and a proper end pressure pe(x2) is imposed
at the exit, the global smooth subsonic flow exists uniquely in the nozzle, provided that the
Bernoulli’s constant B lies in some appropriate interval [B0, B1). Fortunately, a monotonic
relationship between the mass flux and the Bernoulli’s constant is established and Problem 1
can be solved.

Remark 1.3. In the works [7, 23, 24, 27] on irrotational flows, the potential function formulation
or the stream function formulation was introduced to analyze the irrotational flows problem.
However, the arguments can not be employed directly to deal with the existence of the Problem
1 in this paper, due to the possible absence of the obliqueness of the boundary condition at
the exit. In other words, one has to find a mechanism to guarantee that the flow possesses the
positive horizontal velocity in the whole nozzle. The key ingredient in this paper is based on
the reformulation of the Euler equations in terms of density and angular velocity, which has
been introduced in [16] to deal with the transonic shock problem. (See also [3] for transonic
shock wave in a tube). Unlike the case in the study of the transonic shock problem in a
divergent nozzle [16], the elliptic system of first order to the density and the angular velocity
here always satisfies the compatibility conditions, so it is possible to apply the standard Leray-
Schauder fixed point argument to obtain the existence of the subsonic solutions. However, the
positivity of the horizontal velocity is crucial to this argument. For the transonic shock problem
in [3, 16, 26, 27], the transonic shock solution is expected to be adjacent to some background
solution, which possesses the positive horizontal velocity. It implies the absence of the vanishing
horizontal velocity of the flows. However, for subsonic flows established in this paper, there is
no background solution to start with. One of the main difficulties here is how to guarantee the
positivity of the horizontal velocity in the whole nozzle. In this paper, we apply a standard
Moser iteration to obtain the L∞-estimate of the angular velocity, which gives the positivity of
the horizontal velocity.

Remark 1.4. For steady compressible ideal flows with non-vanishing vorticity, the main diffi-
culty is that the 2D steady Euler equations is a hyperbolic-elliptic coupled system for subsonic
flows. In this paper, the analysis depends crucially on the standard theory of the elliptic equa-
tions, which can not be used to deal with the mixed-type equations directly. In [25], a stream
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function formulation is introduced to solve the mixed-type equations effectively in infinitely long
nozzles. However, we have not been able to adapt this approach for finitely long nozzles, due to
the mixed boundary conditions being imposed, especially at the exit.

The rest of this paper is organized as follows. In Section 2, we reduce the original problem to
an auxiliary problem with a parameter B. Main results for the auxiliary problem and Problem
1 are stated at the end of Section 2. In Section 3, we give the rigorous proof to the existence and
the uniqueness for the auxiliary problem. A reformulation of the 2D isentropic Euler equations
involving the density and the angular velocity is given. The existence of the auxiliary problem
is based on the Leray-Schauder fixed point arguments. One of the key points is to establish the
a priori estimate of the flow angle, which guarantees the positivity of the horizontal velocity.
On the other hand, the uniqueness of the subsonic irrotational flow is obtained by a maximum
principle argument to the velocity potential function. In Section 4, for given end pressure at the
exit, the monotonic property between the mass flux and the Bernoulli’s constant is established.
Hence, it follows from the monotonic property that we can obtain the proof of the main results
to the Problem 1.

2. Reduction of the problem and main results

In this section, we will introduce an auxiliary problem to simplify the Problem 1, and state
the main results in this paper.

2.1. An auxiliary problem.

One of the main difficulties to solve the Problem 1 is how to localize the nonlocal condition
(1.7) on the mass flux. Our strategy is to introduce the following auxiliary problem involving
the Bernoulli’s constant as a parameter and try to find a monotonic property between the mass
flux and the Bernoulli’s constant.

Problem 2. (Auxiliary subsonic problem in finitely long nozzles.) For given an ap-
propriate receiver pressure pe(x2) at the exit and the Bernoulli’s constant B > 0, find a unique
smooth subsonic solution (ρ, u1, u2), which satisfies the Euler equations (1.1), the equation of
state (1.2), the Bernoulli’s law

u2
1 + u2

2

2
+

1
γ − 1

ργ−1 = B, (2.1)

the boundary conditions (1.4)-(1.6) and the subsonic condition u2
1 + u2

2 < c2(ρ).

2.2. Restrictions on the end pressure.

Before stating the main results in this paper, we would like to mention that the receiver
pressure should satisfy some necessary conditions to guarantee the subsonicity of the flows at
the exit.

For the given end pressure pe(x2) at the exit, the end density and the speed at the exit are
defined to be

ρe(x2) = (γpe(x2))1/γ and qe(x2) =

√
2
(

B − 1
γ − 1

ργ−1
e (x2)

)
,
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respectively.

Denote the maximal and minimal pressure, density, speed at the exit, respectively by

p̄ = max
x2∈[0,1]

pe(x2), p = min
x2∈[0,1]

pe(x2), (2.2)

ρ̄ = max
x2∈[0,1]

ρe(x2) = (γp̄)1/γ , ρ = min
x2∈[0,1]

ρe(x2) = (γp)1/γ , (2.3)

and

q̄ = max
x2∈[0,1]

qe(x2), q = min
x2∈[0,1]

qe(x2). (2.4)

Thus, it follows from the strong form of the Bernoulli’s law in (1.3) that

B =
1
2
q̄2 +

1
γ − 1

ργ−1 =
1
2
q2 +

1
γ − 1

ρ̄γ−1. (2.5)

Since we are looking for a subsonic flow without any stagnation points in the whole nozzle, the
following conditions are required,

q > 0, q̄2 < c2(ρ) = ργ−1.

Hence, combining this with (2.5) yields

1
γ − 1

ρ̄γ−1 < B <
1
2
ργ−1 +

1
γ − 1

ργ−1 =
γ + 1

2(γ − 1)
ργ−1,

which implies that the end density should be restricted with the following condition

ρ̄/ρ <

(
γ + 1

2

) 1
γ−1

. (2.6)

Hence one can conclude that if the irrotational flow remains subsonic at the exit, the ratio
of the maximum to the minimum of the end pressure remains below a certain critical value, i.e.

p̄/p <

(
γ + 1

2

) γ
γ−1

, p > 0, (2.7)

which means the oscillation of the receiver pressure is not too large.

Remark 2.1. The condition (2.7) above is necessary for the existence of the smooth subsonic
irrotational flows. In other words, if the condition (2.7) is not valid then there does not exist a
smooth subsonic irrotational flow, even for the curved nozzles. We also note that the condition
(2.7) involves no restriction on the magnitude of the receiver pressure pe(x2) other than its
oscillation.

2.3. Main results.

Now, we state the main results in this paper as follows.

Theorem 2.1. (Unique solvability of Problem 2)
Given two constants p̄ and p satisfying (2.7), define

B0 =
1

γ − 1
(γp̄)

γ−1
γ + δ and B1 =

γ + 1
2(γ − 1)

(γp)
γ−1

γ , (2.8)
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where 0 < δ <
1

(γ − 1)

(
γ + 1

2
(γp)

γ−1
γ − (γp̄)

γ−1
γ

)
. Fix a constant Θ0 ∈

(
1,

π

2

)
, suppose that

the Bernoulli’s constant B ∈ [B0, B1) and the end pressure at the exit pe(x2) ∈ C2,α([0, 1])
satisfies

p′e(0) = p′e(1) = 0, p̄ = max
x2∈[0,1]

pe(x2), p = min
x2∈[0,1]

pe(x2), (2.9)

and

C(p, p̄, Ω)δ−5‖p′e‖4
L∞‖p′e‖L2 ≤

(
1− 1

Θ0

)4

Θ0, (2.10)

where C(p, p̄, Ω) is a positive constant depending on p, p̄ and Ω, then the auxiliary problem

has a unique smooth subsonic irrotational solution (ρ, u1, u2) ∈
(

C2,α(Ω̄)
)3

, which satisfies the

following properties,
(1). the horizontal velocity of the flow is positive in the whole nozzle, namely u1 > 0 in Ω̄;

(2). the flow angle is bounded by Θ0, ie. sup
x∈Ω̄

∣∣∣∣arctan
u2

u1

∣∣∣∣ ≤ Θ0;

(3). the minimal speed of the flow in the nozzle is greater than
√

δ > 0, which achieves at the
exit;
(4). the maximal speed of the flow will approach the sonic speed as the Bernoulli’s constant B

tends to B1.

Moreover, for given receiver pressure pe(x2) with (2.7), one can show that the incoming mass
flux m is a continuous and monotone increasing function of B, provided that the horizontal
velocity is always positive in the nozzle, which yields the following theorem for the original
problem 1.

Theorem 2.2. (Unique solvability of Problem 1)
Given two constants p and p̄ satisfying (2.7), one can choose δ as in Theorem 2.1. Fix a

constant Θ0 ∈
(
1,

π

2

)
, suppose that the end pressure at the exit pe(x2) ∈ C2,α([0, 1]) satisfies the

conditions (2.9) and (2.10), then there exist two constants m1 > m0 > 0 depending on pe(x2),
δ, γ and Ω, such that if the incoming mass flux m ∈ [m0,m1), then there exists a unique smooth

subsonic irrotational flow (ρ, u1, u2) ∈
(

C2,α(Ω̄)
)3

to the subsonic problem 1, which satisfies

the following properties,
(1). the horizontal velocity of the flow is positive in the whole nozzle, namely u1 > 0 in Ω̄;

(2). the flow angle is bounded by Θ0, ie. sup
x∈Ω̄

∣∣∣∣arctan
u2

u1

∣∣∣∣ ≤ Θ0;

(3). the minimal speed of the flow in the nozzle is greater than
√

δ > 0, which achieves at the
exit;
(4). the maximal speed of the flow will approach the sonic speed as the mass flux m tends to m1.

Remark 2.2. In fact, since the incoming flow is horizontal at the entrance, it follows from the
standard maximum principle and Hopf’s lemma that both of the maximum and minimum of the
density can be only achieved at the exit of the nozzle. Moreover, by Bernoulli’s law the speed
of the fluid achieves its maximum and minimum only at the exit. This property guarantees
immediately that the flow established here is subsonic throughout the whole nozzle, provided
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that the end pressure satisfies (2.7) at the exit. It suffices to restrict the Bernoulli’s constant

B =
1
2
q̄2 +

1
γ − 1

ργ−1 is less than B1, automatically, the flow remains subsonic globally in the

nozzle, which avoids the operation of subsonic truncation. Meanwhile, the square of the minimal
speed of the flows is larger than the positive parameter δ in the Theorems, which excludes the
stagnation points in the whole nozzle, provided that the Bernoulli’s constant or mass flux lies
in some proper intervals. Furthermore, for given the end pressure at the exit, the maximum
and minimum of flow speed in the whole nozzle are monotone increasing with respect to the
incoming mass flux.

Remark 2.3. To guarantee the positivity of the horizontal velocity of the fluid in the whole
nozzle, a sufficient condition (2.10) is imposed to the receiver pressure, which implies the flow
angle in the nozzle remains bounded by some fixed constant Θ0.

Remark 2.4. The results are still valid for the general two-dimensional finitely long nozzles
with variable cross sections, provided that the nozzle walls are perpendicular to the entrance or
exit. For simplicity, we only consider the cylinder case in this paper.

Remark 2.5. We remark that it is reasonable to give an upper and lower bound on the mass
flux in order to obtain a global smooth subsonic flow. Actually, if the mass flux is too large,
then a transonic bubble may emerge in the nozzle [14], and a global subsonicity is not available
anymore. If the mass flux is too small, one can not expect that the horizontal velocity remains
to be positive in the whole nozzle, the flow may turn around and stagnation point may appear in
the flow region. However, a rigorous mathematical proof for such interesting phenomena seems
to be a big challenge.

3. Unique solvability of the auxiliary problem

In this section, we will establish the existence and the uniqueness of the subsonic flow to the
auxiliary problem.

3.1. A reformulation of the auxiliary problem. It is a usual practice to describe irrotational
flows in terms of either velocity potential functions or stream functions. However, they are
not convenient to deal with the auxiliary problem in this paper due to the mixed boundary
conditions.



SUBSONIC IRROTATIONAL FLOWS IN A FINITELY LONG NOZZLE 10

In fact, if one introduces a velocity potential function ϕ such that (u1, u2) = (∂1ϕ, ∂2ϕ), then
the auxiliary problem can be rewritten as follows,





div
(

ρ
(|Dϕ|2;B)

Dϕ

)
= 0, in Ω,

ϕ = 0, ∂1ϕ > 0, on x1 = 0,

∂2ϕ = 0, on x2 = 0 ∪ x2 = 1,

(∂1ϕ)2 + (∂2ϕ)2 = q2
e(x2;B), on x1 = 1,

sup
x∈Ω̄

|Dϕ(x)|2 < c2(ρ),

(3.1)

where the density ρ can be regarded as a function of speed by strong form of Bernoulli’s Laws

with parameter B > 0, and q2
e(x2;B) = 2

(
B− 1

γ − 1
ργ−1

e (x2)
)

. Then the main difficulty is the

loss of obliqueness of the boundary condition at the exit. To avoid it, one way to proceed may
be to introduce a truncated boundary condition

T (∂1ϕ)∂1ϕ + (∂2ϕ)2 = q2
e(x2;B), (3.2)

where T (x) is a smooth truncated function. Then solve the problem (3.1) with truncated
boundary condition (3.2) instead of the original boundary condition at the exit. This can be
done easily. However, to recover the original boundary condition on x1 = 1, one has to require
that ‖p′e‖C1,α([0,1]) to be sufficiently small, which implies the variation of the end pressure is
sufficiently small. As a consequence, the flow established has to be adjacent to some constant
state. Similar difficulties arise for the stream function formulation.

In this subsection, we will use a different reformulation to avoid the difficulty caused by the
loss of obliqueness and give a sufficient condition (2.10) instead of the smallness of ‖p′e‖C1,α([0,1])

to guarantee the positivity of the horizontal velocity. Motivated by the discussion in [16] for
transonic shock problem, the Euler system (1.1) can be reformulated into a first order elliptic
system in terms of the angular velocity w =

u2

u1
and the density, provided that the horizontal

velocity u1 > 0 in the nozzle and the flow is subsonic in the whole nozzle.

Multiplying the first equation in (1.1) by
−ui−1

ρu2
1

, dividing the i-th equation in (1.1) by ρu2
1

and adding them together for i = 2, 3 yield




∂1w − w

ρ
∂1ρ +

1
ρ

(
c2(ρ)
u2

1

− w2

)
∂2ρ = 0,

1
ρ

(
c2(ρ)
u2

1

− 1
)

∂1ρ− ∂2w − w

ρ
∂2ρ = 0.

(3.3)

It follows from the Bernoulli’s law (2.1) that

u2
1 =

2(B − h(ρ))
1 + w2

. (3.4)
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Substituting this into (3.3) yields




∂1w − w

ρ
∂1ρ +

1
ρ

(
c2(ρ)(1 + w2)
2(B − h(ρ))

− w2

)
∂2ρ = 0,

1
ρ

(
c2(ρ)(1 + w2)
2(B − h(ρ))

− 1
)

∂1ρ− ∂2w − w

ρ
∂2ρ = 0,

w(0, x2) = 0, and u1(0, x2) > 0, for x2 ∈ [0, 1],

w(x1, 0) = w(x1, 1) = 0, for x1 ∈ [0, 1],

ρ(1, x2) = ρe(x2), for x2 ∈ [0, 1].

(3.5)

We will apply the following Leray-Schauder theorem to prove the existence theorem for the
problem (3.5).

Theorem 3.1. (Theorem 11.3 in [13]) Let T be a compact mapping of a Banach space B into
itself, and suppose there exists a constant M such that

‖x‖B ≤ M.

for all x ∈ B and σ ∈ [0, 1] satisfying x = σTx. Then T has a fixed point.

Remark 3.1. The above theorem holds also for a compact mapping from a closed convex set
to itself by checking the proof in [13] carefully.

3.2. Existence of the subsonic flows.

Fix a constant B ∈ [B0, B1) and define a mapping T of the set

Σ =
{

(ρ,w) ∈
(

C1,α(Ω̄)
)2

: ρ ≤ ρ ≤ ρ̄, w(0, x2) = w(x1, 0) = w(x1, 1) = 0,

∂2ρ(x1, 0) = ∂2ρ(x1, 1) = 0
}

,

(3.6)

by letting (ρ,w) = T (ρ̃, w̃) be the unique solution of the linear problem




∂1w − w̃

ρ̃
∂1ρ +

1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− w̃2

)
∂2ρ = 0,

1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− 1
)

∂1ρ− ∂2w − w̃

ρ̃
∂2ρ = 0,

w = 0, on x1 = 0,

w = 0, on x2 = 0 or x2 = 1,

ρ = ρe(x2), on x1 = 1,

(3.7)

for (ρ̃, w̃) ∈ Σ.

Next, we first show that T maps the convex set Σ into itself.
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Lemma 3.2. For any (ρ̃, w̃) ∈ Σ, there exists a unique solution (ρ,w) ∈ C2,α(Ω̄) to (3.7).

Proof. It is easy to derive that ρ satisfies the following second order elliptic equation,





∂1

(
1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− 1
)

∂1ρ− w̃

ρ̃
∂2ρ

)
+ ∂2

(
− w̃

ρ̃
∂1ρ +

1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− w̃2

)
∂2ρ

)
= 0,

−1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− 1
)

∂1ρ +
w̃

ρ̃
∂2ρ = 0, on x1 = 0,

− w̃

ρ̃
∂1ρ +

1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− w̃2

)
∂2ρ = 0, on x2 = 0 or x2 = 1,

ρ = ρe(x2), on x1 = 1.

(3.8)

Consider the weak formulation for (3.8): To find a solution ρ = ρe + W , such that

∫

Ω

{(
1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− 1
)

∂1ρ− w̃

ρ̃
∂2ρ

)
∂1η+

(
− w̃

ρ̃
∂1ρ+

1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− w̃2

)
∂2ρ

)
∂2η

}
dx = 0,

(3.9)
for η ∈ W = {η ∈ H1(Ω), η|x1=1 = 0}.

It follows from Lax-Milgram theorem that there exists a unique weak solution ρ to (3.9). By
the standard elliptic estimates, we have ρ ∈ C2,α(Ω̄1) for any smooth domain Ω̄1 ⊂ Ω̄ \ S and
S = {(0, 0), (0, 1), (1, 0), (1, 1)}. The boundary conditions are satisfied in the classical sense. We
apply the reflection method to deal with the singularity near the corners. Rewrite the elliptic
equation in (3.8) into the non-divergent form

2∑

i,j=1

aij∂ijρ +
2∑

i=1

bi∂iρ = 0.

Since (ρ̃, w̃) ∈ Σ, it is easy to check that a12(x1, 0) = a12(x1, 1) = 0 and b2(x1, 0) = b2(x1, 1) = 0.

For −1 < x2 < 0, we can extend ρ as ρ̆(x1, x2) = ρ(x1,−x2). And then extend ρ̆ periodically
to −∞ < x2 < +∞ with period 2, i.e.

ρ̆(x1, x2) = ρ̆(x1, x2 + 2n), if− 1 ≤ x2 + 2n ≤ 1.

Similarly, the coefficients can be extended as

ăii(x1, x2) = aii(x1,−x2), ă12(x1, x2) = −a12(x1,−x2),

for i = 1, 2, and

b̆1(x1, x2) = b1(x1,−x2), b̆2(x1, x2) = −b2(x1,−x2),

for −1 < x2 < 0 and then extend them periodically to −∞ < x2 < +∞ with period 2.

It follows from ρ′e(0) = ρ′e(1) = 0 that the end density function ρe(x2) can be extended
to ρ̆e(x2) in a similar way. Hence, it is easy to check that the extended function ρ̆ solves the
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following problem in Ωe = {(x1, x2) : 0 ≤ x1 ≤ 1, x2 ∈ R},




2∑

i,j=1

ăij∂ij ρ̆ +
2∑

i=1

b̆i∂iρ̆ = 0, in Ωe,

∂1ρ̆ = 0, on x1 = 0,

ρ̆ = ρ̆e(x2), on x1 = 1.

(3.10)

Then it follows from the standard elliptic estimates that ρ̆ ∈ C2,α(Ω̄e), which implies ρ solves
the problem (3.8) uniquely in C2,α(Ω̄). Moreover, by maximum principle and Hopf’s lemma, ρ

only attains its maximum and minimum at the exit of the nozzle, hence one has ρ ≤ ρ ≤ ρ̄.

Once ρ is obtained, one can consider the following problem for w





∂1w =
w̃

ρ̃
∂1ρ− 1

ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− w̃2

)
∂2ρ,

∂2w =
1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− 1
)

∂1ρ− w̃

ρ̃
∂2ρ,

w = 0, on x2 = 0 or x2 = 1,

w = 0, on x1 = 0.

(3.11)

For the solvability of the problem (3.11), it suffices to check the compatibility conditions near
the corners at the entrance.

In fact, at the entrance x1 = 0, it holds that

1
ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− 1
)

∂1ρ− w̃

ρ̃
∂2ρ = 0,

which implies ∂2w = 0 on x1 = 0. On the other hand, on the nozzle walls x2 = 0, 1, one has

w̃

ρ̃
∂1ρ− 1

ρ̃

(
c2(ρ̃)(1 + w̃2)
2(B − h(ρ̃))

− w̃2

)
∂2ρ = 0,

which gives ∂1w = 0 for x2 = 0, 1. These imply that the compatibility conditions for the system
(3.11) are always satisfied. So, the system (3.11) has a unique solution w ∈ C2,α(Ω̄). Hence, the
proof of Lemma 3.2 is completed. ¤

Thanks to the Lemma 3.2 and the properties of (ρ,w), we can conclude that T maps the set
Σ into itself. Furthermore, T is a continuous and compact operator due to the standard elliptic
estimates.

Now we will apply Theorem 3.1 to obtain the existence result to the problem (3.5).
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The equation (ρ,w) = σT (ρ,w) in Σ with σ ∈ [0, 1] is equivalent to the following problem
with elliptic system of first order,





∂1w − w

ρ
∂1ρ +

1
ρ

(
c2(ρ)(1 + w2)
2(B − h(ρ))

− w2

)
∂2ρ = 0,

1
ρ

(
c2(ρ)(1 + w2)
2(B − h(ρ))

− 1
)

∂1ρ− ∂2w − w

ρ
∂2ρ = 0,

w = 0, on x1 = 0,

w = 0, on x2 = 0 or x2 = 1,

ρ = σρe(x2), on x1 = 1.

(3.12)

We may conclude from the Schauder fixed point theorem that T has a fixed point (ρ,w) =
T (ρ,w) in Σ, provided that the solution (ρ,w) to the problem (3.12) is uniformly bounded in
C1,α, which is independent of σ. First, we derive a L∞-estimate of the density by the maximum
principle arguments.

Lemma 3.3. (L∞-estimate of ρ ) For any (ρ,w) satisfying (3.12) for some σ ∈ [0, 1], then the
following estimate holds

‖ρ‖L∞(Ω̄) ≤ ‖ρe(x2)‖L∞([0,1]).

Proof. It follows from the equations in (3.12) that ρ satisfies the following second order elliptic
system




∂1

(
1
ρ

(
c2(ρ)(1 + w2)
2(B − h(ρ))

− 1
)

∂1ρ− w

ρ
∂2ρ

)
+ ∂2

(
− w

ρ
∂1ρ +

1
ρ

(
c2(ρ)(1 + w2)
2(B − h(ρ))

− w2

)
∂2ρ

)
= 0,

∂1ρ = 0, on x1 = 0,

∂2ρ = 0, on x2 = 0 or x2 = 1,

ρ = σρe(x2), on x1 = 1.

(3.13)
So the maximum principle and Hopf’s lemma show that the maximum density in the nozzle is
achieved only at the exit, namely,

‖ρ‖L∞(Ω) ≤ σ‖ρe(x2)‖L∞([0,1]) ≤ ‖ρe(x2)‖L∞([0,1]).

¤

It remains to obtain the L∞-bound for w, which implies the positivity of the horizontal
velocity of the flows in the nozzle.
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It follows from (3.5) that w satisfies the second order elliptic equation,




∂1ρ = I
1

(1 + w2)

[
− 2(B − h(ρ))w

(1 + w2)
∂1w +

(
c2(ρ)− 2(B − h(ρ))w2

(1 + w2)

)
∂2w

]
,

∂2ρ = I
1

(1 + w2)

[
2(B − h(ρ))w

(1 + w2)
∂2w −

(
c2(ρ)− 2(B − h(ρ))

(1 + w2)

)
∂1w

]
,

(3.14)

where I =
2ρ(B − h(ρ))

c2(ρ)(c2(ρ)− 2(B − h(ρ)))
. Combining the boundary conditions for w in (3.12), we

obtain the following elliptic problem




∂1

{
I

(1 + w2)

[(
c2(ρ)− 2(B − h(ρ))

(1 + w2)

)
∂1w − 2(B − h(ρ))w

(1 + w2)
∂2w

]}
+

∂2

{
I

(1 + w2)

[
− 2(B − h(ρ))w

(1 + w2)
∂1w +

(
c2(ρ)− 2(B − h(ρ))w2

(1 + w2)

)
∂2w

]}
= 0,

w = 0, on x1 = 0,

w = 0, on x2 = 0 or x2 = 1,

I

(1 + w2)

[
2(B − h(ρ))w

(1 + w2)
∂2w −

(
c2(ρ)− 2(B − h(ρ))

(1 + w2)

)
∂1w

]
= σρ′e(x2), on x1 = 1.

(3.15)

Set

A = (A1, A2)t =
I

(1 + w2)




(
c2(ρ)− 2(B − h(ρ))

(1 + w2)

)
∂1w − 2(B − h(ρ))w

(1 + w2)
∂2w

−2(B − h(ρ))w
(1 + w2)

∂1w +
(

c2(ρ)− 2(B − h(ρ))w2

(1 + w2)

)
∂2w




=
I

(1 + w2)
M




∂1w

∂2w


 ,

where the matrix M is


c2(ρ)− 2(B − h(ρ))
(1 + w2)

−2(B − h(ρ))w
(1 + w2)

−2(B − h(ρ))w
(1 + w2)

c2(ρ)− 2(B − h(ρ))w2

(1 + w2)




.

A direct computation yields that the eigenvalues of the matrix M are

λ1 = c2(ρ)− 2(B − h(ρ)) and λ2 = c2(ρ),

hence

(∂1w, ∂2w) ·A ≥ 2ρ(B − h(ρ))
c2(ρ)(1 + w2)

(
(∂1w)2 + (∂2w)2

) ≥ C(p, p̄)δ
1

1 + w2
|Dw|2,

provided B > B0. This implies that the equation in (3.15) for the angular velocity w is not
uniformly elliptic apriorily. To deal with this difficulty, we introduce a new variable the flow
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angle Θ = arctanw, and fortunately Θ = arctanw satisfies the following uniformly elliptic
equation,





∂1

{
I

[(
c2(ρ)− 2(B − h(ρ))

(1 + w2)

)
∂1Θ− 2(B − h(ρ))w

1 + w2
∂2Θ

]}
+

∂2

{
I

[
− 2(B − h(ρ))w

(1 + w2)
∂1Θ +

(
c2(ρ)− 2(B − h(ρ))w2

(1 + w2)

)
∂2Θ

]}
= 0,

Θ = 0, on x1 = 0,

Θ = 0, on x2 = 0 or x2 = 1,

I

[
2(B − h(ρ))w

(1 + w2)
∂2Θ−

(
c2(ρ)− 2(B − h(ρ))

(1 + w2)

)
∂1Θ

]
= σρ′e(x2), on x1 = 1.

(3.16)

The L∞ estimate of w can be obtained by the standard Moser’s iteration arguments.

Lemma 3.4. (L∞ estimate of w )
For any (ρ,w) satisfying (3.12) for some σ ∈ [0, 1] and some fixed constant Θ0 ∈

(
1,

π

2

)
, if

C(p, p̄, Ω)δ−5‖p′e‖4
L∞‖p′e‖L2 ≤

(
1− 1

Θ0

)4

Θ0, then we have

‖w‖L∞(Ω̄) ≤ tanΘ0.

Proof. The proof is based on the Moser’s iteration argument in [15]. Consider the weak formu-
lation of the problem (3.16),

∫

Ω
IM(∂1Θ, ∂2Θ)t ·Dηdx +

∫ 1

0
−σρ′e(x2)η(1, x2)dx2 = 0, (3.17)

for any test function η ∈ H1(Ω) ∩ C(Ω̄) with η(0, x2) = η(x1, 0) = η(x1, 1) = 0.

Set µ = 4q − 3 for q > 1, and choose

η =
(

1− 1
|Θ|

)µ

+

|Θ|q−2Θ,

where
(

1− 1
|Θ|

)

+

= max
{

1− 1
|Θ| , 0

}
, then

Dη = q1

(
1− 1

|Θ|
)µ−1

+

|Θ|q−2DΘ, (3.18)

where q1 = (q − 1)
(

1− 1
|Θ|

)

+

+ µ
1
|Θ| . Inserting η into (3.17) gives

∫

Ω
IM(∂1Θ, ∂2Θ)t ·Dηdx ≥ C(p, p̄)δ

∫

Ω1

q1

(
1− 1

|Θ|
)µ−1

|Θ|q−2|DΘ|2dx, (3.19)

and ∣∣∣∣
∫ 1

0
σρ′e(x2)η(1, x2)dx2

∣∣∣∣ ≤
∫ 1

0
|σρ′e(x2)|

(
1− 1

|Θ|
)µ

+

|Θ|q−1dx2

≤ ‖ρ′e(x2)‖L∞

∫ 1

0

(
1− 1

|Θ|
)µ

+

|Θ|qdx2,

(3.20)
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where Ω1 = {x ∈ Ω : |Θ(x)| > 1}.
Using the trace theorem (see also Lemma 2.1 in [15]), one can obtain

∫ 1

0

(
1− 1

|Θ|
)µ

+

|Θ|qdx2

≤ K(Ω)
∫

Ω

(
1− 1

|Θ|
)µ

+

|Θ|qdx +
∫

Ω

∣∣∣∣D
[(

1− 1
|Θ|

)µ

+

|Θ|q
]∣∣∣∣ dx

≤ K(Ω)
∫

Ω

∣∣∣∣D
[(

1− 1
|Θ|

)µ

+

|Θ|q
]∣∣∣∣ dx

≤ K(Ω)q2

∫

Ω

(
1− 1

|Θ|
)µ−1

+

|Θ|q−1|DΘ|dx,

(3.21)

where q2 = q

(
1− 1

|Θ|
)

+

+ µ
1
|Θ| .

Combining (3.17)-(3.21) and using Young’s inequality yield

C(p, p̄)δ
∫

Ω1

q1

(
1− 1

|Θ|
)µ−1

+

|Θ|q−2|DΘ|2dx

≤ ‖ρ′e(x2)‖L∞

∫ 1

0

(
1− 1

|Θ|
)µ

+

|Θ|qdx2

≤ C(p, p̄)δq2ε

∫

Ω

(
1− 1

|Θ|
)µ−1

+

|Θ|q−2|DΘ|2dx

+
Cq2

C(p, p̄)δε
‖ρ′e(x2)‖2

L∞

∫

Ω

(
1− 1

|Θ|
)µ−1

+

|Θ|qdx.

(3.22)

That is

C(p, p̄)δ
∫

Ω1

|DΘ|2|Θ|q−2

(
1− 1

|Θ|
)µ−1

(q1 − εq2)dx

≤ ‖ρ′e‖2
L∞

∫

Ω

(
1− 1

|Θ|
)µ−1

+

|Θ|q Cq2

C(p, p̄)δε
dx.

(3.23)

Choosing ε =
1
3

in (3.23) gives

∫

Ω1

|DΘ|2|Θ|q−2

(
1− 1

|Θ|
)µ−1

+

dx ≤ C(p, p̄, Ω)δ−2‖ρ′e‖2
L∞

∫

Ω

(
1− 1

|Θ|
)µ−1

+

|Θ|qdx. (3.24)

The Poincaré inequality yields

( ∫

Ω
h4dx

) 1
2

≤ C0

( ∫

Ω
h2dx

) 1
2
( ∫

Ω
|Dh|2dx

) 1
2

≤ C0

∫

Ω
|Dh|2dx. (3.25)

Set h2 =
(

1− 1
|Θ|

)µ+1

+

|Θ|q, and

Dh =
(

1− 1
|Θ|

)µ−1
2

+

|Θ| q2−2Θ
[
µ + 1

2
1
|Θ| +

q

2

(
1− 1

|Θ|
)

+

]
DΘ. (3.26)



SUBSONIC IRROTATIONAL FLOWS IN A FINITELY LONG NOZZLE 18

By the inequalities (3.24)-(3.25), one can obtain
( ∫

Ω

((
1− 1

|Θ|
)µ+1

+

|Θ|q
)2

dx

) 1
2

≤ C0

[
(max{µ + 1, q})2

∫

Ω
|DΘ|2|Θ|q−2

(
1− 1

|Θ|
)µ−1

+

dx

]

≤ (max{µ + 1, q})2 ‖ρ′e‖2
L∞C(p, p̄, Ω)δ−2

∫

Ω

(
1− 1

|Θ|
)µ−1

+

|Θ|qdx.

(3.27)

Now set Θ̄ =
(

1− 1
|Θ|

)4

+

|Θ|, dx′ = I1

(
1− 1

|Θ|
)−4

+

dx, where I1(x) = 1 if |Θ| > 1, and

I1(x) = 0 otherwise. Then the last inequality (3.27) can be rewritten as
(∫

Ω
|Θ̄|2qdx′

) 1
2

≤ c1q
2

∫

Ω
|Θ̄|qdx′,

where c1 = ‖ρ′e‖2
L∞C(p, p̄, Ω)δ−2.

Setting q = 2k, k = 2, 3, 4, · · · , then we obtain

‖Θ̄‖L∞(Ω) ≤ c2

( ∫

Ω
|Θ̄|22

dx′
) 1

22

,

where c2 = cβ
12β1 ,

β =
∞∑

k=2

2−k =
1
2
, β1 = 2

∞∑

k=2

k2−k.

Now we estimate the Lp norm of the flow angle. Choosing η = Θ, then we obtain
∫

Ω

2ρ(B − h(ρ))
c2(ρ)(c2(ρ)− 2(B − h(ρ)))

M(∂1Θ, ∂2Θ)t ·DΘdx =
∫ 1

0
σρ′eΘ(1, x2)dx2.

Hence

C(p, p̄)δ
∫

Ω
|DΘ|2dx ≤ ‖ρ′e‖L2([0,1])‖Θ(1, x2)‖L2([0,1]) ≤ C(Ω)‖ρ′e‖L2([0,1])‖DΘ‖L2(Ω).

So, it gives the uniform H1
0 -estimate to Θ,

‖DΘ‖L2(Ω) ≤ C(p, p̄, Ω)δ−1‖ρ′e‖L2 ,

which implies a uniform Lq-estimate

‖Θ‖Lq(Ω) ≤ C(p, p̄, Ω, q)δ−1‖ρ′e‖L2 ,

for q ∈ [1,+∞).

Since lim
q→+∞

(∫

Ω
|Θ̄|qdx′

) 1
q

= sup
Ω
|Θ̄|, we obtain

sup
Ω
|Θ̄| ≤ c

1
22

2

(∫

Ω
|Θ̄|22

dx′
) 1

22 ≤ c
1
22

2 (sup
Ω
|Θ̄|)1− 1

22 (
∫

Ω
|Θ̄|dx′)

1
22 .

Hence

sup
Ω
|Θ̄| = sup

Ω

(
1− 1

|Θ|
)4

+

|Θ| ≤ c4
2

∫

Ω
|Θ̄|dx′ ≤ c4

2

∫

Ω
|Θ|dx. (3.28)
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If |Θ| ≥ Θ0, we have 1− 1
|Θ| ≥ 1− 1

Θ0
> 0, hence |Θ| ≤

(
1− 1

Θ0

)−4

c4
2

∫

Ω
|Θ|dx.

Finally, we obtain

sup
Ω
|Θ| ≤ max

{
Θ0,

(
1− 1

Θ0

)−4

c4
2

∫

Ω
|Θ|dx

}
. (3.29)

If

c4
2

∫

Ω
|Θ|dx ≤ C(p, p̄, Ω)δ−5‖ρ′e‖4

L∞‖ρ′e‖L2 ≤ C(p, p̄, Ω)δ−5‖p′e‖4
L∞‖p′e‖L2 ≤

(
1− 1

Θ0

)4

Θ0,

then one has ‖Θ‖L∞(Ω̄) ≤ Θ0 and ‖w‖L∞(Ω̄) ≤ tanΘ0.

¤

Remark 3.2. Since the flow does not contain any stagnation points, the boundedness of the
angular velocity w =

u2

u1
will guarantee that the horizontal velocity is always positive.

In the following, we always assume that C(p, p̄, Ω)δ−5‖p′e‖4
L∞‖p′e‖L2 ≤

(
1− 1

Θ0

)4

Θ0, so we

have ‖w‖L∞ ≤ tanΘ0.

Next, we begin to estimate the gradient of ρ and w.

Lemma 3.5. (Gradient estimate of ρ and w) For any (ρ,w) satisfying the problem (3.12) for
some σ ∈ [0, 1], then the following estimate holds

‖(Dρ, Dw)‖L∞(Ω̄) ≤ C(p, p̄, δ, Θ0)
(‖p′e‖L∞ + νe2νM

)
,

where ν = ν(‖pe‖C2 , δ, Θ0), C(p, p̄, δ, Θ0) are positive constants depending continuously on ‖pe‖C2,
p, p̄, δ, Θ0 and M = C(p̄, p,Θ0).

Proof. Set ρ̌ = ρ− σρe. Then ρ̌ solves the following problem,



Q̌ρ̌ =
2∑

i,j=1

ǎij∂ij ρ̌+
2∑

k,l=1

b̌kl∂kρ̌∂lρ̌ + ǧ = 0,

∂1ρ̌ = 0, on x1 = 0,

∂2ρ̌ = 0, on x2 = 0, 1,

ρ̌ = 0, on x1 = 1,

(3.30)

where

ǎ11(x) =
1
ρ

(
c2(1 + w2)
2(B − h(ρ))

− 1
)

, ǎ12 = ǎ21 = −w

ρ
, ǎ22 =

1
ρ

(
c2(1 + w2)
2(B − h(ρ))

− w2

)
,

and ǧ(x) = σǎ22ρ′′e + σ2b̌22(ρ′e)
2, b̌kl (k, l = 1, 2) are functions of ρ and w. We omit the explicit

forms of these functions here.

Next we will use the barrier function to obtain the boundary gradient estimate. Let

b̌(x,p) = b̌klpkpl + ǧ, and ∆(p) = ǎijpipj ,
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for P = (p1, p2). Then there exists a positive constant ν = ν(‖pe‖C2[0,1], δ, Θ0) such that

|b̌(x,p)| ≤ ν∆(p) for any x ∈ Ω̄ and |p| ≥ ν.

Define v+(x1, x2) = ψ(d) =
1
ν

ln(1 + κd) in Ω̄, where d = 1 − x1 is the distant function and

κ = ν2eνM for M = C(p̄, p,Θ0) ≥ ‖ρ̌‖L∞(Ω) + ‖w‖L∞(Ω).

Then if |Dv+| ≥ ν, a direct computation yields

Q̌v+ = ǎij∂ijv
+ + b̌(x,Dv+) = ψ′ǎij∂ijd +

ψ′′

(ψ′)2
∆(Dv+) + b̌(x,Dv+)

=
ψ′′

(ψ′)2
∆(Dv+) + b̌(x,Dv+) ≤

(
ψ′′

(ψ′)2
+ ν

)
∆(Dv+).

Note that ψ′′ + ν(ψ′)2 = 0, we have

Q̌v+ ≤ 0, if |Dv+| ≥ ν.

Restrict the domain in a small neighborhood N = {x ∈ Ω | d(x) < a} for some a > 0 to be
determined later. On the interior boundary {x ∈ Ω | d(x) = a}, one can choose a such that

v+ = ψ(a) =
1
ν

ln(1 + κa) = M ≥ ‖ρ̌‖L∞(Ω),

on the other boundary one has v+ = ψ ≡ 0. And in the neighborhood N , we have

|Dv+| = ψ′(d) =
κ

ν(1 + κd)
≥ κ

ν(1 + κa)
=

κ

νeνM
= ν.

Hence, for any point (1, x2,0) at the exit, the function v+ = ψ(d) is an upper barrier at (1, x2,0)
for the operator Q̌ and the function ρ̌.

Similarly, we can construct a lower barrier as v− = −ψ(d). Hence we obtain

|∂x1 ρ̌(1, x2,0)| ≤ ψ′(0) = νeνM .

While ∂x2 ρ̌(1, x2,0) = 0, one has

|Dρ(1, x2,0)| ≤ (νeνM + ‖ρ′e‖L∞).

for any x2,0 ∈ (0, 1). Then we obtain the gradient estimate of the density at the exit.

In view of the equations in (3.12), the gradient of w can be expressed as linear combinations
of the gradient of ρ, one also obtains the gradient estimate at the exit

|Dw(1, x2,0)| ≤ C(p, p̄, δ, Θ0)(νeνM + ‖p′e‖L∞).

Since w satisfies the Dirichlet boundary condition at the inlet, one can construct a barrier
function to obtain the boundary gradient estimate of w as the one of ρ as above. So, we obtain
the gradient estimate on the boundary

‖(Dρ, Dw)‖L∞(∂Ω) ≤ C(p, p̄, δ, Θ0)
(‖p′e‖L∞ + νe2νM

)
. (3.31)

For the gradient estimate of ρ in the whole nozzle Ω, applying the Theorem 15.8 in [13] and
Theorem 15.9 in [13] to (3.13), where the structure conditions listed in these two theorems hold
for τ = 0, yields

‖(Dρ, Dw)‖L∞(Ω) ≤ C(p, p̄, δ, Θ0)
(
νeνM + ‖p′e‖L∞

)
. (3.32)
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¤

Lemma 3.6. (Hölder estimate of the gradient of ρ and w.) For any (ρ,w) satisfying (3.12) for
some σ ∈ [0, 1], we have

‖(Dρ, Dw)‖Cτ (Ω̄) ≤ C(p, p̄, δ, Θ0, ‖pe‖C2([0,1])),

for some τ ∈ (0, 1), where C(p, p̄, δ, Θ0, ‖pe‖C2([0,1])) is a positive constant depending continuously
on p, p̄, δ, Θ0, ‖pe‖C2([0,1]).

Proof. We consider the interior estimate first. Since ρ satisfies (3.13), applying Theorem 13.1 in
[13], we obtain

[Dρ]τ ;Ω′ ≤ C(p, p̄, δ, Θ0,K)d−τ ,

for any Ω′ ⊂⊂ Ω, where τ = τ(p, p̄, δ, Θ0), d = dist(Ω′, ∂Ω) and K = ‖ρ‖C1(Ω̄) + ‖w‖C1(Ω̄).

While for the boundary estimate, Theorem 13.2 in [13] gives

[Dρ]τ ;Bε(x0)
⋂

Ω ≤ C(p, p̄, δ, Θ0,K, Φ),

where x0 is a boundary point at the exit, τ = τ(p, p̄, δ, Θ0,Ω), Φ = ‖ρe‖C2([0,1]).

On the other boundaries except the exit, note that w satisfies a uniformly elliptic equation
with Dirichlet boundary conditions, we can also apply Theorem 13.2 in [13] to w and obtain a
similar estimate as above. Then we use the relation between ρ and w to get a global estimate
on the whole domain for ρ and w. ¤

Lemma 3.7. (Hölder estimate of the second order derivative of ρ and w ) For any (ρ,w)
satisfying (3.12) for some σ ∈ [0, 1], it holds that

‖(D2ρ,D2w)‖Cτ (Ω̄) ≤ C
(
p, p̄, δ, Θ0, ‖pe‖C2,α([0,1])

)
,

for some τ ∈ (0, 1), where C
(
p, p̄, δ, Θ0, ‖pe‖C2,α([0,1])

)
is a positive constant depending continu-

ously on p, p̄, δ, Θ0, ‖pe‖C2,α([0,1]).

Proof. Note that ρ̌ = ρ− σρe solves the following problem



Q̌ρ =
2∑

i,j=1

ǎij∂ij ρ̌ +
2∑

k=1

b̌k∂kρ̌ + ǧ = 0,

∂1ρ̌ = 0, on x1 = 0,

∂2ρ̌ = 0, on x2 = 0, 1

ρ̌ = 0, on x1 = 1,

(3.33)

where b̌k =
2∑

l=1

b̌kl∂lρ̌. Thanks to the Lemma 3.7, it is easy to see that ǎij , b̌k and ǧ have

a uniform Hölder estimate with exponent τ . It follows from the Corollary 6.3 in [13] for the
C2,τ -estimates in the interior domain that

‖ρ̌‖C2,τ (Ω′) ≤ C
(
p, p̄, δ, Θ0, ‖ρe‖C2

) (
‖ρ̌‖L∞(Ω̄) + ‖ḡ‖Cτ (Ω̄)

)
d−(2+τ)

≤ C
(
p, p̄, δ, Θ0, ‖pe‖C2,α([0,1])

)
d−(2+τ),
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for any Ω′ ⊂⊂ Ω, where d = dist(Ω′, ∂Ω).

The boundary estimates can be derived by Lemma 6.5 in [13]. Hence we obtain the global
estimates as follows

‖(ρ,w)‖C2,τ (Ω̄) ≤ C
(
p, p̄, δ, Θ0, ‖pe‖C2,α([0,1])

)
.

¤

The C2,τ uniform estimate of ρ and w implies the uniform C1,α estimate of ρ and w. hence
we have the solvability of the problem (3.5) in Σ. Since the fluid does not contain stagnation
points and vacuum, the angular velocity is also bounded, then u1 can not change sign in the

whole nozzle. Set u1 =

√
2(B − h(ρ))

1 + w2
, u2 = u1w, then there exists a subsonic solution (ρ, u1, u2)

to auxiliary problem as long as B ∈ [B0, B1).

Thus, we have completed the proof of the existence results in Theorem 2.1.

3.3. Uniqueness of subsonic flow.

In this subsection, we will investigate the uniqueness of smooth subsonic solutions with
positive horizontal velocity to the auxiliary problem. More precisely, we will show that there
exists at most one subsonic irrotational flow, with same Bernoulli’s constant and the end pressure
being imposed at the exit.

Since the coefficients of the elliptic system (3.5) depend on the density and the angular
velocity, the deviation of two possible densities does not satisfy the maximum principle due
to the attendance of the lower order terms. So the reformulation of the subsonic problem in
Subsection 3.1 is not suitable to deal with the uniqueness of the subsonic irrotational flow.

It turns out that the potential function formulation is more convenient to obtain the unique-
ness, since the coefficients of the potential equation depend only on the gradient of the potential
function, hence the difference of two velocity potential functions with same Bernoulli’s constant
satisfies the maximum principle. It is noted that the assumption that the incoming flow is
horizontal at the entrance also plays a crucial role in the proof.

Proposition 3.8. (Uniqueness of the auxiliary problem)
Under the assumptions in Theorem 2.1, then the smooth subsonic solution with positive hor-
izontal velocity and the same Bernoulli’s constant to auxiliary problem in the whole nozzle is
unique.

Proof. Suppose that (ρk, u1,k, u2,k) for k = 1, 2 are two subsonic solutions to Problem 2. It
suffices to prove that

(ρ1, u1,1, u2,1) = (ρ2, u1,2, u2,2) .

Since the flow is irrotational, we can introduce the velocity potential function ϕk such that
ui,k = ∂iϕk for i = 1, 2. By the strong form of Bernoulli’s law, we have

ρk = ρk (|Dϕk|) = (γ − 1)
1

γ−1

(
B − 1

2
|Dϕk|

) 1
γ−1

.

It follows from the continuity equation that we obtain the following potential equation

div
(

ρ
(|Dϕk|2

)
Dϕk

)
= 0.
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Without loss of generality, we assume that ϕk(0, 0) = 0, and the auxiliary problem can be
reformulated as follows




div
(

ρ(|Dϕk|2)Dϕk

)
= 0, in Ω,

ϕk = 0, ∂1ϕk > 0 on x1 = 0,

∂2ϕk = 0, on x2 = 0 ∪ x2 = 1,

(∂1ϕk)2 + (∂2ϕk)2 = q2
e(x2), ∂1ϕk > 0 on x1 = 1,

sup
x∈Ω̄

|Dϕk(x)|2 < c2 (ρk) ,

(3.34)

where q2
e(x2) = 2

(
B − 1

γ − 1
ργ−1

e (x2)
)

.

Let ψ = ϕ1 − ϕ2 be the deviation of the two solutions, which satisfies the following elliptic
equation

div
(

ρ(|Dϕ1|2)Dψ +
(
ρ(|Dϕ1|2)− ρ(|Dϕ2|2)

)
Dϕ2

)
= 0,

which contains no lower order terms of ψ.

On the boundaries,
ψ = 0 on x1 = 0,

∂2ψ = 0, on x2 = 0, 1,

and
∂1(ϕ1 + ϕ2)∂1ψ + ∂2(ϕ1 + ϕ2)∂2ψ = 0, on x1 = 1. (3.35)

It follows from the maximum principle that ψ can not achieve its minimum in the interior of Ω
unless it is a constant.

Assume that the minimum of ψ is achieved at the point (1, x0), then Hopf’s lemma implies
that ∂1ψ(1, x0) < 0 and ∂2ψ(1, x0) = 0.

Thanks to the positivity of ∂1ϕk on x1 = 1, then substituting these into (3.35) leads a
contradiction.

Thus, the minimum of ψ must be achieved at the inlet of the nozzle. Similar argument leads
to the same conclusion that the maximum of ψ must be achieved on x1 = 0. Hence we have
ψ ≡ 0. That is ϕ1(x) = ϕ2(x) and (ρ1, u1,1, u2,1) = (ρ2, u1,2, u2,2) in Ω̄. ¤

Collecting all results obtained in Subsection 3.2 and Subsection 3.3, we complete the proof
of Theorem 2.1.

4. The relationship between the mass flux m and the Bernoulli’s constant B

To solve the original subsonic problem in finitely long flat nozzles, we will establish the
monotonic property between the mass flux m and the Bernoulli’s constant B. Actually, for
given receiver pressure pe(x2) at the exit, the mass flux is a continuous, monotonic increasing
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function with respect to B, provided that the flow is subsonic and the horizontal velocity is
positive in the nozzle.

Proposition 4.1. (Continuous dependence between m and B ) Suppose that the end pressure
pe(x2) ∈ C2,α([0, 1]) satisfies (2.7). Let (ρ, u1, u2) ∈ C2,α(Ω̄) be a smooth subsonic solution to
the auxiliary problem with the Bernoulli’s constant B ∈ [B0, B1). Then the mass flux m defined
in (1.7) is a continuous function of B.

Proof. Consider the normalized Bernoulli’s law
1
2

(
û2

1 + û2
2

)
+

1
γ − 1

ρ̂γ−1 = 1, (4.1)

where
û1 =

u1√
B

, û2 =
u2√
B

and ρ̂ =
ρ

B
1

γ−1

.

Also we have
ŵ =

û2

û1
= w and û2

1 =
2(1− h(ρ̂))
(1 + ŵ2)

.

As in Section 3, one can get that the normalized density and angular velocity (ρ̂, ŵ) satisfy
the following first order elliptic system,




∂1ŵ − ŵ

ρ̂
∂1ρ̂ +

1
ρ̂

(
c2(ρ̂)(1 + ŵ2)
2(1− h(ρ̂))

− ŵ2

)
∂2ρ̂ = 0,

1
ρ̂

(
c2(ρ̂)(1 + ŵ2)
2(1− h(ρ̂))

− 1
)

∂1ρ̂− ∂2ŵ − ŵ

ρ̂
∂2ρ̂ = 0,

ŵ = 0 on x1 = 0,

ŵ = 0 on x2 = 0 or x2 = 1,

ρ̂ = B
− 1

γ−1 ρe(x2) on x1 = 1.

(4.2)

For any fixed B ∈ [B0, B1), we can take a sequence Bk ∈ [B0, B1) for k = 1, 2, . . . such
that Bk → B. Thanks to the uniform C1,α-estimate for the solutions (ρ̂k(x;Bk), ŵk(x;Bk)) in
Section 3, one can obtain

‖ρ̂k, ŵk‖C1,α(Ω̄) ≤ C,

where C depends on B, ρe(x2),Ω, but independent of k. Furthermore, by the algebraic relation-
ships (4.1), we have the following uniform estimates

‖ρ̂k, û1,k, û2,k‖C1,α(Ω̄) ≤ C.

Hence, it follows from Arzela-Ascoli lemma and a diagonal procedure that there exists a
subsequence

{
ρ̂kj

, û1,kj
, û2,kj

}∞
j=1

such that

(ρ̂kj
, û1,kj

, û2,kj
) → (ρ̂0, û1,0, û2,0) in C1,µ(Ω̄) as j →∞, for some µ ∈ (0, α).

Clearly, (ρ̂0, û1,0, û2,0) solves the problem (4.2). However, recalling that (ρ̂, û1, û2) is also a
solution of problem (4.2), by the uniqueness, we have

(ρ̂0, û1,0, û2,0) = (ρ̂, û1, û2).



SUBSONIC IRROTATIONAL FLOWS IN A FINITELY LONG NOZZLE 25

Thus,

m(Bkj
) = B

1
2
kj

∫ 1

0
û1,kj

(1, x2)ρe(x2)dx2 → B
1
2

∫ 1

0
û1(1, x2)ρe(x2)dx2 = m(B),

which implies the continuity of the mass flux m(B) with respect to B. ¤

Moreover, we can establish the following monotonic property between the Bernoulli’s con-
stant and the mass flux.

Proposition 4.2. (Monotonicity of m(B)) For given end pressure pe(x2), the mass flux m(B)
defined in (1.7) is monotonic increasing with respect to B, provided that the subsonic flow pos-
sesses positive horizontal velocity at the exit.

Proof. For any given constants B2 and B3 such that B0 ≤ B2 < B3 < B1, let

(ρk(x), u1,k(x), u2,k(x)) = (ρ(x;Bk), u1(x;Bk), u2(x;Bk)) for k = 2, 3,

solve the auxiliary problem with the Bernoulli’s constant Bk, respectively.

Consider the normalized flows û1,k =
u1,k√
Bk

, û2,k =
u2,k√
Bk

and ρ̂k =
ρk

B
1

γ−1

k

, for k = 2, 3.

In this case, the mass flux can be expressed as

m(Bk) = B
γ+1

2(γ−1)

k

∫ 1

0
ρ̂k(x1, x2)û1,k(x1, x2)dx2,

for any x1 ∈ [0, 1].

Consider the mass flux at the entrance, we claim that the momentum at the entrance is
strictly increasing respect to the Bernoulli’s constant, that is

ρ̂2(0, x2)û1,2(0, x2) < ρ̂3(0, x2)û1,3(0, x2)

for x2 ∈ [0, 1]. In view of the fact that ρ̂(q2)q is monotone increasing in q for subsonic flows and
the incoming flow is horizontal at the entrance, it suffices to show that

û1,2(0, x2) < û1,3(0, x2) for x2 ∈ [0, 1].

In fact, consider the velocity potential function formulation again, and define a velocity
potential ϕ̂k, such that (∂1ϕ̂k, ∂2ϕ̂k) = (u1,k, u2,k) with ϕ̂k(0, 0) = 0 for k = 2, 3. By the
normalized Bernoulli’s law (4.1), one obtains

1
2
|Dϕ̂k|2 +

1
γ − 1

ρ̂γ−1
k = 1.

Hence, the density can be regarded as a function of the speed of the subsonic flows

ρ̂k = ρ̂(|Dϕ̂k|2) = (γ − 1)
1

γ−1

(
1− |Dϕ̂k|2

2

) 1
γ−1

.
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So ϕ̂k solves the following quasilinear elliptic equation with mixed boundary conditions




div
(

ρ̂(|Dϕ̂k|2)Dϕ̂k

)
= 0, in Ω,

ϕ̂k = 0, on x1 = 0,

∂2ϕ̂k = 0, on x2 = 0, 1,

(∂1ϕ̂k)2 + (∂2ϕ̂k)2 = 2− 2
γ − 1

ργ−1
e (x2)

Bk
, on x1 = 1,

(4.3)

for k = 2, 3.

Set ψ̂ = ϕ̂3 − ϕ̂2. Then ψ̂ satisfies the following elliptic equation

div
(

ρ̂(|Dϕ̂3|2)Dψ̂ +
(
ρ̂(|Dϕ̂3|2)− ρ̂(|Dϕ̂2|2)) Dϕ̂2

)
= 0,

which does not contain the zero order terms of ψ̂.

Furthermore, the deviation ψ̂ satisfies the following boundary conditions

ψ̂ = 0 on x1 = 0,

∂2ψ̂ = 0, on x2 = 0, 1,

and

∂1(ϕ̂2 + ϕ̂3)∂1ψ̂ + ∂2(ϕ̂2 + ϕ̂3)∂2ψ̂ = − 2
γ − 1

ργ−1
e

(
1

B3
− 1

B2

)
> 0, on x1 = 1. (4.4)

Clearly, maximum principle for ψ̂ yields that ψ̂ can not achieve its minimum in the interior of
Ω unless it is a constant.

Assume that the minimum of ψ̂ is achieved at the point (1, x0), then Hopf’s lemma implies
that ∂1ψ̂(1, x0) < 0 and ∂2ψ̂(1, x0) = 0.

Thanks to the positivity of ∂1ϕ̂k on x1 = 1, then substituting these into (4.4) leads a
contradiction.

Thus, the minimum of ψ̂ must be achieved at the entrance x1 = 0. Applying Hopf’s lemma
again, one has

∂1ψ̂(x) > 0 on x1 = 0,

which completes the proof of the claim. As a direct consequence, the proof of the monotonicity
is completed. ¤

Consequently, one can conclude that the mass flux of the flow is strictly increasing and
dependent continuously with respect to the Bernoulli’s constant for the given end pressure.
Hence, we can define m0 = lim

B→B0

m(B), m1 = lim
B→B1

m(B), then for any m ∈ [m0,m1), there

exists a unique B(m) ∈ [B0, B1). The solution (ρ, u1, u2) to the auxiliary problem associated
with B(m) is the unique solution to the original Problem 1. Thus the proof of Theorem 2.2 is
completed.
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