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Abstract

This paper concerns the global well-posedness and large time asymptotic be-
havior of strong and classical solutions to the Cauchy problem of the Navier-Stokes
equations for viscous compressible barotropic flows in two or three spatial dimen-
sions with vacuum as far field density. For strong and classical solutions, some a
priori decay with rates (in large time) for both the pressure and the spatial gradient
of the velocity field are obtained provided that the initial total energy is suitably
small. Moreover, by using these key decay rates and some analysis on the expan-
sion rates of the essential support of the density, we establish the global existence
and uniqueness of classical solutions (which may be of possibly large oscillations)
in two spatial dimensions, provided the smooth initial data are of small total en-
ergy. In addition, the initial density can even have compact support. This, in
particular, yields the global regularity and uniqueness of the re-normalized weak
solutions of Lions-Feireisl to the two-dimensional compressible barotropic flows for
all adiabatic number γ > 1 provided that the initial total energy is small.

1 Introduction

We consider the Navier-Stokes equations{
ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− µ∆u− (µ+ λ)∇divu+∇P (ρ) = 0,
(1.1)

for viscous compressible barotropic flows. Here, t ≥ 0 is time, x ∈ Ω ⊂ RN (N = 2, 3)
is the spatial coordinate, and ρ = ρ(x, t), u = (u1, · · · , uN )(x, t), and

P (ρ) = Rργ (R > 0, γ > 1) (1.2)
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are the fluid density, velocity and pressure, respectively. Without loss of generality, it
is assumed that R = 1. The constant viscosity coefficients µ and λ satisfy the physical
restrictions:

µ > 0, 2µ+Nλ ≥ 0. (1.3)

Let Ω = RN and we consider the Cauchy problem for (1.1) with (ρ, u) vanishing at
infinity (in some weak sense) with given initial data ρ0 and u0, as

ρ(x, 0) = ρ0(x), ρu(x, 0) = ρ0u0(x), x ∈ Ω = RN . (1.4)

There are huge literatures on the large time existence and behavior of solutions to
(1.1). The one-dimensional problem has been studied extensively, see [9, 18, 29, 30]
and the references therein. For the multi-dimensional case, the local existence and
uniqueness of classical solutions are known in [25, 31] in the absence of vacuum and
recently, for strong solutions also, in [3–5,19,28] for the case that the initial density need
not be positive and may vanish in open sets. The global classical solutions were first
obtained by Matsumura-Nishida [24] for initial data close to a non-vacuum equilibrium
in some Sobolev space Hs. In particular, the theory requires that the solution has small
oscillations from a uniform non-vacuum state so that the density is strictly away from
vacuum. Later, Hoff [10,11,13] studied the problem for discontinuous initial data. For
the existence of solutions for arbitrary data, the major breakthrough is due to Lions [22]
(see also Feireisl [6,7]), where the global existence of weak solutions when the exponent
γ is suitably large are achieved. The main restriction on initial data is that the initial
total energy is finite, so that the density vanishes at far fields, or even has compact
support. However, little is known on the structure of such weak solutions, in particular,
the regularity and the uniqueness of such weak solutions remain open. This is a subtle
issue, as Xin [32] showed that in the case that the initial density has compact support,
any smooth solution in C1([0, T ] : Hs(Rd))(s > [d/2]+2) to the Cauchy problem of the
full compressible Navier-Stokes system without heat conduction blows up in finite time
for any space dimension d ≥ 1, and the same holds for the isentropic case (1.1), at least
in one-dimension. The assumptions of [32] that the initial density has compact support
and that the smooth solution has finite energy are removed recently by Xin-Yan [33] for
a large class of initial data containing vacuum. However, this blow-up theory does not
apply to the isentropic flows in general, at least in the case of R3. Indeed, very recently,
for the case that the initial density is allowed to vanish and even has compact support,
Huang-Li-Xin [16] established the quite surprising global existence and uniqueness of
classical solutions with constant state as far field which could be either vacuum or non-
vacuum to (1.1)-(1.4) in three-dimensional space with smooth initial data which are of
small total energy but possibly large oscillations. Moreover, it was also showed in [16]
that for any p > 2,

lim
t→∞

(
‖P (ρ)− P (ρ̃)‖Lp(R3) + ‖∇u‖L2(R3)

)
= 0, (1.5)

where ρ̃ is the constant far field density. This not only generalizes the classical results
of Matsumura-Nishida [24], but also yields the regularity and uniqueness of the weak
solutions of Lions and Feireisl [6, 7, 22] with initial data of small total energy. Then a
natural question arises whether the theory of Huang-Li-Xin [16] remains valid for the
case of R2. This is interesting partially due to the following reasons: First, a positive
answer would yield immediately the regularity and uniqueness of weak solutions of
Lions-Feireisl with small initial total energy whose existence has been proved for all
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γ > 1, see [6, 7]. Second, this question may be subtle due to the recent blow-up
result in [23] where it is shown that non-trivial two-dimensional spherically symmetric
solution in C1([0, T ];Hs(R2)(s > 2)) with initial compactly supported density blows
up in finite time. Technically, it is not easy to modify the three-dimensional analysis
of [16] to the two-dimensional case with initial density containing vacuum since the
analysis of [16] depends crucially on the a priori L6-bound on the velocity. For two-
dimensional problems, only in the case that the far field density is away from vacuum,
the techniques of [16] can be modified directly since at this case, for any p ∈ [2,∞),
the Lp-norm of a function u can be bounded by ‖ρ1/2u‖L2 and ‖∇u‖L2 , and the similar
results can be obtained ( [23]). However, when the far field density is vacuum, it
seems difficult to bound the Lp-norm of u by ‖ρ1/2u‖L2 and ‖∇u‖L2 for any p ≥ 1,
so the global existence and large time behavior of strong or classical solutions to the
Cauchy problem are much subtle and remain open. Therefore, the main aim of this
paper is to study the global existence and large time behavior of strong or classical
solutions to (1.1)-(1.4) in some homogeneous Sobolev spaces in two-dimensional space
with vacuum as far field density, and at the same time to investigate the decay rates
of the pressure and the gradient of velocity in both two and three dimensional spaces
provided the initial energy is suitably small, which turn out to be one of the keys for
the two-dimensional global well-posedness theory.

Before stating the main results, we first explain the notations and conventions used
throughout this paper. For R > 0 and Ω = RN (N = 2, 3), set

BR , {x ∈ Ω| |x| < R} ,
∫
fdx ,

∫
Ω
fdx.

Moreover, for 1 ≤ r ≤ ∞, k ≥ 1, and β > 0, the standard homogeneous and inhomoge-
neous Sobolev spaces are defined as follows:

Lr = Lr(Ω), Dk,r = Dk,r(Ω) = {v ∈ L1
loc(Ω)|∇kv ∈ Lr(Ω)},

D1 = D1,2, W k,r = W k,r(Ω), Hk = W k,2,

Ḣβ =

{
f : Ω→ R

∣∣∣∣‖f‖2Ḣβ =

∫
|ξ|2β|f̂(ξ)|2dξ <∞

}
,

where f̂ is the Fourier transform of f. Next, we also give the definition of strong solutions
as follows:

Definition 1.1 If all derivatives involved in (1.1) for (ρ, u) are regular distributions,
and equations (1.1) hold almost everywhere in Ω× (0, T ), then (ρ, u) is called a strong
solution to (1.1).

For Ω = RN (N = 2, 3), the initial total energy is defined as:

C0 =

∫
Ω

(
1

2
ρ0|u0|2 +

1

γ − 1
P (ρ0)

)
dx.

We consider first the two-dimensional case, that is, Ω = R2. Without loss of generality,
assume that the initial density ρ0 satisfies∫

R2

ρ0dx = 1, (1.6)
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which implies that there exists a positive constant N0 such that∫
BN0

ρ0dx ≥
1

2

∫
ρ0dx =

1

2
. (1.7)

We can now state our first main result, Theorem 1.1, concerning the global existence
of strong solutions.

Theorem 1.1 Let Ω = R2. In addition to (1.6) and (1.7), suppose that the initial data
(ρ0, u0) satisfy for any given numbers M > 0, ρ̄ ≥ 1, a > 1, q > 2, and β ∈ (0, 1],

0 ≤ ρ0 ≤ ρ̄, x̄aρ0 ∈ L1 ∩H1 ∩W 1,q, u0 ∈ Ḣβ ∩D1, ρ
1/2
0 u0 ∈ L2, (1.8)

and
‖u0‖Ḣβ + ‖ρ0x̄

a‖L1 ≤M, (1.9)

where
x̄ , (e+ |x|2)1/2 log2(e+ |x|2). (1.10)

Then there exists a positive constant ε depending on µ, λ, γ, a, ρ̄, β,N0, and M such that
if

C0 ≤ ε, (1.11)

the problem (1.1)-(1.4) has a unique global strong solution (ρ, u) satisfying for any
0 < T <∞,

0 ≤ ρ(x, t) ≤ 2ρ̄, (x, t) ∈ R2 × [0, T ], (1.12)

ρ ∈ C([0, T ];L1 ∩H1 ∩W 1,q),

x̄aρ ∈ L∞(0, T ;L1 ∩H1 ∩W 1,q),
√
ρu, ∇u, x̄−1u,

√
t
√
ρut ∈ L∞(0, T ;L2),

∇u ∈ L2(0, T ;H1) ∩ L(q+1)/q(0, T ;W 1,q),√
t∇u ∈ L2(0, T ;W 1,q),
√
ρut,

√
t∇ut,

√
tx̄−1ut ∈ L2(R2 × (0, T )),

(1.13)

and

inf
0≤t≤T

∫
BN1(1+t) log

α(e+t)

ρ(x, t)dx ≥ 1

4
, (1.14)

for any α > 1 and some positive constant N1 depending only on α,N0, and M. More-
over, (ρ, u) has the following decay rates, that is, for t ≥ 1,

‖∇u(·, t)‖Lp ≤ C(p)t−1+1/p, for p ∈ [2,∞),

‖P (·, t)‖Lr ≤ C(r)t−1+1/r, for r ∈ (1,∞),

‖∇ω(·, t)‖L2 + ‖∇F (·, t)‖L2 ≤ Ct−1,

(1.15)

where
ω , ∂1u

2 − ∂2u
1, F , (2µ+ λ)divu− P, (1.16)

are respectively the vorticity and the effective viscous flux, and C(α) depends on α
besides µ, λ, γ, a, ρ̄, β, N0, and M.
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Remark 1.1 It should be noted here that the decay rate estimates (1.15) combined
with the estimate on upper bound of the expansion rate of the essential support of the
density (1.14) play a crucial role in deriving the global existence of strong and classical
solutions to the two-dimensional problem (1.1)-(1.4). This is in contrast to the three-
dimensional case ( [16]) where the global existence of classical solutions to (1.1)-(1.4)
was achieved without any bounds on the decay rates of the solutions partially due to the
a priori L6-bounds on the velocity field. As will be seen in the proof, the key observation
is the decay with a rate for the mean-square norm of the pressure in (1.15).

If the initial data (ρ0, u0) satisfy some additional regularity and compatibility condi-
tions, the global strong solutions obtained by Theorem 1.1 become classical ones, that
is,

Theorem 1.2 Let Ω = R2. In addition to the assumptions in Theorem 1.1, assume
further that (ρ0, u0) satisfy

∇2ρ0, ∇2P (ρ0) ∈ L2 ∩ Lq, x̄δ0∇2ρ0, x̄
δ0∇2P (ρ0), ∇2u0 ∈ L2, (1.17)

for some constant δ0 ∈ (0, 1), and the following compatibility condition:

−µ4u0 − (µ+ λ)∇divu0 +∇P (ρ0) = ρ
1/2
0 g, (1.18)

with some g ∈ L2. Then, in addition to (1.12)-(1.15), the strong solution (ρ, u) obtained
by Theorem 1.1 satisfies for any 0 < T <∞,

∇2ρ, ∇2P (ρ) ∈ C([0, T ];L2 ∩ Lq),
x̄δ0∇2ρ, x̄δ0∇2P (ρ), ∇2u ∈ L∞(0, T ;L2),
√
ρut,

√
t∇ut,

√
tx̄−1ut, t

√
ρutt, t∇2ut ∈ L∞(0, T ;L2),

t∇3u ∈ L∞(0, T ;L2 ∩ Lq),
∇ut, x̄−1ut, t∇utt, tx̄−1utt ∈ L2(0, T ;L2),

t∇2(ρu) ∈ L∞(0, T ;L(q+2)/2).

(1.19)

Remark 1.2 The solution obtained in Theorem 1.2 becomes a classical one for positive
time ( [19]). Although it has small energy, yet whose oscillations could be arbitrarily
large. In particular, both interior and far field vacuum are allowed. There is no re-
quirement on the size of the set of vacuum states. Therefore, the initial density may
have compact support. Moreover, by the strong-weak uniqueness theorem of Lions [22],
Theorem 1.1 and Theorem 1.2 can be regarded as uniqueness and regularity theory
of Lions-Feireisl’s weak solutions with small initial energy, whose existence has been
proved for all γ > 1 in [6, 22].

Remark 1.3 It is worth noting that the conclusions in Theorem 1.2 and Theorem
1.1 are somewhat surprising since for the isentropic compressible Navier-Stokes equa-
tions (1.1), any non-trivial two-dimensional spherically symmetric solution (ρ, u) ∈
C1([0, T ], Hs)(s > 2) with initial compact supported density blows up in finite time
( [23]). Indeed, as in [32], the key point of [23] to prove the blowup phenomena is
based on the fact that the support of the density will not grow in time in the space
C([0, T ];Hm). However, in the current case, though the density ρ ∈ C([0, T ];H2), yet
the velocity u satisfies only ∇u ∈ C((0, T ];Hk). Note that the function u ∈ {∇u ∈ Hk}
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decays much slower for large values of the spatial variable x than u ∈ Hk+1. Therefore,
it seems that it is the slow decay of the velocity field for large values of the spatial vari-
able x that leads to the global existence of smooth solutions. Unfortunately, such an
argument cannot be valid for the full compressible Navier-Stokes system since the blow-
up results of Xin-Yan in [33] work for any classical solutions with compactly supported
initial density.

For the three-dimensional case, that is, Ω = R3, we have the following results concern-
ing the decay properties of the global classical solutions whose existence is essentially
due to [16].

Theorem 1.3 Let Ω = R3. For given numbers M > 0, ρ̄ ≥ 1, β ∈ (1/2, 1], and
q ∈ (3, 6), suppose that the initial data (ρ0, u0) satisfy

ρ0, P (ρ0) ∈ H2 ∩W 2,q, P (ρ0), ρ0|u0|2 ∈ L1, u0 ∈ Ḣβ, ∇u0 ∈ H1, (1.20)

0 ≤ ρ0 ≤ ρ̄, ‖u0‖Ḣβ ≤M, (1.21)

and the compatibility condition

−µ4u0 − (µ+ λ)∇divu0 +∇P (ρ0) = ρ
1/2
0 g, (1.22)

for some g ∈ L2. Moreover, if γ > 3/2, assume that

ρ0 ∈ L1. (1.23)

Then there exists a positive constant ε depending on µ, λ, γ, ρ̄, β, and M such that if

C0 ≤ ε, (1.24)

the Cauchy problem (1.1)-(1.4) has a unique global classical solution (ρ, u) in R3×(0,∞)
satisfying for any 0 < τ < T <∞,

0 ≤ ρ(x, t) ≤ 2ρ̄, x ∈ R3, t ≥ 0, (1.25)
ρ ∈ C([0, T ];L3/2 ∩H2 ∩W 2,q),

P ∈ C([0, T ];L1 ∩H2 ∩W 2,q), u ∈ L∞(0, T ;L6),

∇u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) ∩ L∞(τ, T ;H2 ∩W 2,q),

∇ut ∈ L2(0, T ;L2) ∩ L∞(τ, T ;H1) ∩H1(τ, T ;L2).

(1.26)

Moreover, for r ∈ (1,∞), there exist positive constants C(r) and C depending on µ, λ, γ,
ρ̄, β, and M such that for t ≥ 1,

‖∇u(·, t)‖Lp ≤ Ct−1+1/p, for p ∈ [2, 6],

‖P (·, t)‖Lr ≤ C(r)t−1+1/r, for r ∈ (1,∞),

‖∇(∇× u)(·, t)‖L2 + ‖∇((2µ+ λ)divu− P )(·, t)‖L2 ≤ Ct−1,

(1.27)

where if γ > 3/2, C(r) and C both depend on ‖ρ0‖L1(R3) also.
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Remark 1.4 It should be pointed out that the large time asymptotic decay with rates
of the global strong or classical solutions, (1.15) and (1.27), are completely new for
the multi-dimensional compressible Navier-Stokes equations (1.1) in the presence of
vacuum. They show in particular that the L2-norm of both the pressure and the gradient
of the velocity decay in time with a rate t−1/2, and the gradient of the vorticity and
the effective viscous flux decay faster than themselves. However, whether the second
derivatives of the velocity field decay or not remains open. This is an interesting problem
and left for the future.

We now make some comments on the analysis of this paper. Note that for initial data
in the class satisfying (1.8), (1.9), (1.17), and (1.18) except u0 ∈ Ḣβ, the local existence
and uniqueness of classical solutions to the Cauchy problem, (1.1)-(1.4), have been
established recently in [19]. Thus, to extend the classical solution globally in time, one
needs some global a priori estimates on smooth solutions to (1.1)-(1.4) in suitable higher
norms. It turns out that as in the three-dimensional case [16], the key issue here is to
derive both the time-independent upper bound for the density and the time-depending
higher norm estimates of the smooth solution (ρ, u), so some basic ideas used in [16]
will be adapted here, yet new difficulties arises in the two-dimensional case. Indeed, the
analysis in [16] relies heavily on the basic fact that, for the three-dimensional case, the
L6-norm of v ∈ D1(R3) can be bounded by the L2-norm of the gradient of v which fails
for v ∈ D1(R2). In fact, for two-dimensional case, some of the main new difficulties are
due to the appearance of vacuum at far field and the lack of integrability of the velocity
and its material derivatives in the whole two-dimensional space. To overcome these
difficulties, first, using the L1-integrability of the density, we observe that the L2-norm
in both space and time of the pressure is time-independent (see (3.18)). This is crucial
to show that the H1-norm of the effective viscous flux decays at the rate of t−1/2 for
large time (see (3.61)) which plays a key role in obtaining the decay property of the L∞-
norm of the effective viscous flux. Then, after some careful estimates of the expansion
rates of the essential support of the density (see (3.39)), we succeed in obtaining that,
for large time, the Lp-norm of the gradient of the effective viscous flux (see (1.16) for
the definition) can be bounded by the product of (1+ t)5 and some function g(t) whose
temporal L2-norm is independent of time (see (3.59)). Based on these key ingredients,
we are able to obtain the desired estimates on L1(0,min{1, T}; L∞(R2))-norm and the
time-independent ones on L4(min{1, T}, T ; L∞(R2))-norm of the effective viscous flux
(see (3.62)). Then, motivated by [20], we deduce from these estimates and Zlotnik’s
inequality (see Lemma 2.6) that the density admits a time-uniform upper bound which
is the key for global estimates of classical solutions. The next main step is to bound
the gradients of the density and the velocity. Similar to [14–16], such bounds can
be obtained by solving a logarithm Gronwall inequality based on a Beale-Kato-Majda
type inequality (see Lemma 2.7) and the a priori estimates we have just derived, and
moreover, such a derivation yields simultaneously also the bound for L1(0, T ;L∞(R2))-
norm of the gradient of the velocity, see Lemma 4.1 and its proof. Finally, with these
a priori estimates on the gradients of the density and the velocity at hand, one can
estimate the higher order derivatives by using the same arguments as in [14, 19] to
obtain the desired results.

The rest of the paper is organized as follows: In Section 2, we collect some elementary
facts and inequalities which will be needed in later analysis. Sections 3 and 4 are devoted
to deriving the necessary a priori estimates on classical solutions which are needed to
extend the local solution to all time. Then finally, the main results, Theorems 1.1-1.3,
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are proved in Section 5.

2 Preliminaries

In this section, for Ω = R2, we will recall some known facts and elementary inequal-
ities which will be used frequently later.

We begin with the local existence of strong and classical solutions whose proof can
be found in [19].

Lemma 2.1 Let Ω = R2. Assume that (ρ0, u0) satisfies (1.8) except u0 ∈ Ḣβ. Then
there exist a small time T > 0 and a unique strong solution (ρ, u) to the problem (1.1)-
(1.4) in R2 × (0, T ) satisfying (1.13) and (1.14). Moreover, if (ρ0, u0) satisfies (1.17)
and (1.18) besides (1.8), (ρ, u) satisfies (1.19) also.

Next, the following well-known Gagliardo-Nirenberg inequality (see [26]) will be used
later.

Lemma 2.2 (Gagliardo-Nirenberg) For p ∈ [2,∞), q ∈ (1,∞), and r ∈ (2,∞),
there exists some generic constant C > 0 which may depend on p, q, and r such that
for f ∈ H1(R2) and g ∈ Lq(R2) ∩D1,r(R2), we have

‖f‖p
Lp(R2)

≤ C‖f‖2L2(R2)‖∇f‖
p−2
L2(R2)

, (2.1)

‖g‖
C(R2) ≤ C‖g‖

q(r−2)/(2r+q(r−2))
Lq(R2)

‖∇g‖2r/(2r+q(r−2))
Lr(R2)

. (2.2)

The following weighted Lp bounds for elements of the Hilbert space D1(R2) can be
found in [21, Theorem B.1].

Lemma 2.3 For m ∈ [2,∞) and θ ∈ (1 +m/2,∞), there exists a positive constant C
such that we have for all v ∈ D1,2(R2),(∫

R2

|v|m

e+ |x|2
(log(e+ |x|2))−θdx

)1/m

≤ C‖v‖L2(B1) + C‖∇v‖L2(R2). (2.3)

The combination of Lemma 2.3 with the Poincaré inequality yields

Lemma 2.4 For x̄ as in (1.10), suppose that ρ ∈ L∞(R2) is a function such that

0 ≤ ρ ≤M1, M2 ≤
∫
BN∗

ρdx, ρx̄α ∈ L1(R2), (2.4)

for N∗ ≥ 1 and positive constants M1,M2, and α. Then, for r ∈ [2,∞), there exists a
positive constant C depending only on M1,M2, α, and r such that(∫

R2

ρ|v|rdx
)1/r

≤ CN3
∗ (1 + ‖ρx̄α‖L1(R2))

(
‖ρ1/2v‖L2(R2) + ‖∇v‖L2(R2)

)
, (2.5)

for each v ∈
{
v ∈ D1(R2)

∣∣ ρ1/2v ∈ L2(R2)
}
.
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Proof. First, for f ∈ L1(BN∗), denote the average of f over BN∗ by

fBN∗ ,
1

|BN∗ |

∫
BN∗

f(x)dx.

It then follows from (2.4) that

∣∣ρBN∗vBN∗ ∣∣ =

∣∣∣∣∣ 1

|BN∗ |

∫
BN∗

(
ρBN∗ − ρ

)
(v − vBN∗ )dx+

1

|BN∗ |

∫
BN∗

ρvdx

∣∣∣∣∣
≤2M1N

−1
∗ ‖v − vBN∗‖L2(BN∗ ) +M

1/2
1 N−1

∗ ‖ρ1/2v‖L2(BN∗ )

≤8M1‖∇v‖L2(BN∗ ) +M
1/2
1 N−1

∗ ‖ρ1/2v‖L2(BN∗ ),

(2.6)

where in the last inequality one has used the following Poincaré inequality ( [8, (7.45)])

‖v − vBN∗‖L2(BN∗ ) ≤ 4N∗‖∇v‖L2(BN∗ ). (2.7)

Then, it follows from (2.6) and (2.4) that∣∣vBN∗ ∣∣ ≤ C(M1,M2)N2
∗ ‖∇v‖L2(BN∗ ) + C(M1,M2)N∗‖ρ1/2v‖L2(BN∗ ),

which together with (2.7) leads to∫
BN∗

|v|2dx ≤ 2

∫
BN∗

|v − vBN∗ |
2dx+ 2|BN∗ ||vBN∗ |

2

≤ C(M1,M2)N6
∗ ‖∇v‖2L2(BN∗ ) + C(M1,M2)N4

∗ ‖ρ1/2v‖2L2(BN∗ ).

(2.8)

Finally, it follows from Holder’s inequality, (2.3), (2.8), and (2.4) that for r ∈ [2,∞)
and σ = 4/(4 + α) ∈ (0, 1),∫

R2

ρ|v|rdx ≤ ‖(ρx̄α)σ‖L1/σ(R2)‖|v|
rx̄−ασ‖L4/(ασ)(R2)‖ρ‖

1−σ
L∞(R2)

≤ C
(
1 + ‖ρx̄α‖L1(R2)

) (
N3
∗

(
‖ρ1/2v‖L2(R2) + ‖∇v‖L2(R2)

))r
,

which gives (2.5). This completes the proof of Lemma 2.4.

Next, for ∇⊥ , (−∂2, ∂1), denoting the material derivative of f by ḟ , ft+u ·∇f, we
state some elementary estimates which follow from (2.1) and the standard Lp-estimate
for the following elliptic system derived from the momentum equations in (1.1):

4F = div(ρu̇), µ4ω = ∇⊥ · (ρu̇), (2.9)

where F and ω are as in (1.16).

Lemma 2.5 Let Ω = R2 and (ρ, u) be a smooth solution of (1.1). Then for p ≥ 2 there
exists a positive constant C depending only on p, µ, and λ such that

‖∇F‖Lp(R2) + ‖∇ω‖Lp(R2) ≤ C‖ρu̇‖Lp(R2), (2.10)

‖F‖Lp(R2) + ‖ω‖Lp(R2) ≤ C‖ρu̇‖
1−2/p
L2(R2)

(
‖∇u‖L2(R2) + ‖P‖L2(R2)

)2/p
, (2.11)

‖∇u‖Lp(R2) ≤ C‖ρu̇‖
1−2/p
L2(R2)

(
‖∇u‖L2(R2) + ‖P‖L2(R2)

)2/p
+ C‖P‖Lp(R2). (2.12)
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Proof. On the one hand, the standard Lp-estimate for the elliptic system (2.9) yields
(2.10) directly, which, together with (2.1) and (1.16), gives (2.11). On the other hand,
since −∆u = −∇divu−∇⊥ω, we have

∇u = −∇(−∆)−1∇divu−∇(−∆)−1∇⊥ω. (2.13)

Thus applying the standard Lp-estimate to (2.13) shows

‖∇u‖Lp(R2) ≤ C(p)(‖divu‖Lp(R2) + ‖ω‖Lp(R2))

≤ C(p)‖F‖Lp(R2) + C(p)‖ω‖Lp(R2) + C(p)‖P‖Lp(R2),

which, along with (2.11), gives (2.12). The proof of Lemma 2.5 is completed.

Next, to get the uniform (in time) upper bound of the density ρ, we need the following
Zlotnik inequality.

Lemma 2.6 ( [34]) Let the function y satisfy

y′(t) = g(y) + b′(t) on [0, T ], y(0) = y0,

with g ∈ C(R) and y, b ∈W 1,1(0, T ). If g(∞) = −∞ and

b(t2)− b(t1) ≤ N0 +N1(t2 − t1) (2.14)

for all 0 ≤ t1 < t2 ≤ T with some N0 ≥ 0 and N1 ≥ 0, then

y(t) ≤ max
{
y0, ζ

}
+N0 <∞ on [0, T ],

where ζ is a constant such that

g(ζ) ≤ −N1 for ζ ≥ ζ. (2.15)

Finally, the following Beale-Kato-Majda type inequality, which was proved in [1,17]
when divu ≡ 0, will be used later to estimate ‖∇u‖L∞ and ‖∇ρ‖L2∩Lq(q > 2).

Lemma 2.7 For 2 < q <∞, there is a constant C(q) such that the following estimate
holds for all ∇u ∈ L2(R2) ∩D1,q(R2),

‖∇u‖L∞(R2) ≤ C
(
‖divu‖L∞(R2) + ‖ω‖L∞(R2)

)
log(e+ ‖∇2u‖Lq(R2))

+ C‖∇u‖L2(R2) + C.

3 A priori estimates(I): lower order estimates

In this section, for Ω = R2, we will establish some necessary a priori bounds for
smooth solutions to the Cauchy problem (1.1)-(1.4) to extend the local strong and
classical solutions guaranteed by Lemma 2.1. Thus, let T > 0 be a fixed time and
(ρ, u) be the smooth solution to (1.1)-(1.4) on R2 × (0, T ] with smooth initial data
(ρ0, u0) satisfying (1.8) and (1.9).

Set σ(t) , min{1, t}. Define

A1(T ) , sup
0≤t≤T

(
σ‖∇u‖2L2

)
+

∫ T

0
σ

∫
ρ|u̇|2dxdt, (3.1)

and

A2(T ) , sup
0≤t≤T

σ2

∫
ρ|u̇|2dx+

∫ T

0

∫
σ2|∇u̇|2dxdt. (3.2)

We have the following key a priori estimates on (ρ, u).
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Proposition 3.1 Under the conditions of Theorem 1.1, there exists some positive con-
stant ε depending on µ, λ, γ, a, ρ̄, β, N0, and M such that if (ρ, u) is a smooth solution
of (1.1)-(1.4) on R2 × (0, T ] satisfying

sup
R2×[0,T ]

ρ ≤ 2ρ̄, A1(T ) +A2(T ) ≤ 2C
1/2
0 , (3.3)

the following estimates hold

sup
R2×[0,T ]

ρ ≤ 7ρ̄/4, A1(T ) +A2(T ) +

∫ T

0
σ‖P‖2L2dt ≤ C1/2

0 , (3.4)

provided C0 ≤ ε.

The proof of Proposition 3.1 will be postponed to the end of this section.

In the following, we will use the convention that C denotes a generic positive constant
depending on µ, λ, γ, a, ρ̄, β, N0, and M , and use C(α) to emphasize that C depends
on α.

We begin with the following standard energy estimate for (ρ, u) and preliminary L2

bounds for ∇u and ρu̇.

Lemma 3.2 Let (ρ, u) be a smooth solution of (1.1)-(1.4) on R2 × (0, T ]. Then there
is a positive constant C depending only on µ, λ, and γ such that

sup
0≤t≤T

∫ (
1

2
ρ|u|2 +

1

γ − 1
P

)
dx+ µ

∫ T

0

∫
|∇u|2dxdt ≤ C0, (3.5)

A1(T ) ≤ CC0 + C sup
0≤t≤T

‖P‖2L2 + C

∫ T

0
σ

∫ (
|∇u|3 + P |∇u|2

)
dxdt, (3.6)

and

A2(T ) ≤ CA1(T ) + C

∫ T

0
σ2
(
‖∇u‖4L4 + ‖P‖4L4

)
dt. (3.7)

Proof. First, the standard energy inequality reads:

sup
0≤t≤T

∫ (
1

2
ρ|u|2 +

P

γ − 1

)
dx+

∫ T

0

∫ (
µ|∇u|2 + (µ+ λ)(divu)2

)
dxdt ≤ C0,

which together with (1.3) shows (3.5).

Next, multiplying (1.1)2 by u̇ and then integrating the resulting equality over R2

lead to∫
ρ|u̇|2dx = −

∫
u̇ · ∇Pdx+ µ

∫
4u · u̇dx+ (µ+ λ)

∫
∇divu · u̇dx. (3.8)

Since P satisfies
Pt + u · ∇P + γPdivu = 0, (3.9)

integration by parts yields that

−
∫
u̇ · ∇Pdx =

∫
((divu)tP − (u · ∇u) · ∇P )dx

=

(∫
divuPdx

)
t

+

∫ (
(γ − 1)P (divu)2 + P∂iuj∂jui

)
dx

≤
(∫

divuPdx

)
t

+ C

∫
P |∇u|2dx.

(3.10)
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Integration by parts also implies that

µ

∫
4u · u̇dx = −µ

2

(
‖∇u‖2L2

)
t
− µ

∫
∂iuj∂i(uk∂kuj)dx

≤ −µ
2

(
‖∇u‖2L2

)
t
+ C

∫
|∇u|3dx,

(3.11)

and that

(µ+ λ)

∫
∇divu · u̇dx = −λ+ µ

2

(
‖divu‖2L2

)
t
− (λ+ µ)

∫
divudiv(u · ∇u)dx

≤ −λ+ µ

2

(
‖divu‖2L2

)
t
+ C

∫
|∇u|3dx.

(3.12)

Putting (3.10)-(3.12) into (3.8) leads to

B′(t) +

∫
ρ|u̇|2dx ≤ C

∫
P |∇u|2dx+ C‖∇u‖3L3 , (3.13)

where

B(t) ,
µ

2
‖∇u‖2L2 +

λ+ µ

2
‖divu‖2L2 −

∫
divuPdx (3.14)

satisfies
µ

4
‖∇u‖2L2 − C‖P‖2L2 ≤ B(t) ≤ C‖∇u‖2L2 + C‖P‖2L2 . (3.15)

Then, integrating (3.13) multiplied by σ over (0, T ) and using (3.15) and (3.5) yield
(3.6) directly.

Finally, to prove (3.7), we will use the basic estimates of u̇ due to Hoff [10]. Operating
∂/∂t+ div(u·) to (1.1)j2, one gets by some simple calculations that

ρ(u̇j)t + ρu · ∇u̇j − µ4u̇j − (µ+ λ)∂j(divu̇)

= µ∂i(−∂iu · ∇uj + divu∂iu
j)− µdiv(∂iu∂iu

j)

− (µ+ λ)∂j
(
∂iu · ∇ui − (divu)2

)
− (µ+ λ)div(∂judivu)

+ (γ − 1)∂j(Pdivu) + div(P∂ju).

(3.16)

Multiplying (3.16) by u̇ and integrating the resulting equation over R2 lead to(∫
ρ|u̇|2dx

)
t

+ µ

∫
|∇u̇|2dx ≤ C‖∇u‖4L4 + C‖P‖4L4 , (3.17)

which multiplied by σ2 gives (3.7) and completes the proof of Lemma 3.2.

Remark 3.1 It is easy to check that the estimates (3.13) and (3.17) also hold for
Ω = R3.

Next, we give a key observation that pressure decays in time.

Lemma 3.3 Let (ρ, u) be a smooth solution of (1.1)-(1.4) on R2 × (0, T ] satisfying
(3.3). Then there exists a positive constant C(ρ̄) depending only on µ, λ, γ, and ρ̄ such
that

A1(T ) +A2(T ) +

∫ T

0
σ‖P‖2L2dt ≤ C(ρ̄)C0. (3.18)
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Proof. First, it follows from (2.12), (3.5), and (3.3) that∫ T

0
σ2
(
‖∇u‖4L4 + ‖P‖4L4

)
dt

≤ C
∫ T

0
σ‖ρu̇‖2L2

(
σ‖∇u‖2L2 + σ‖P‖2L2

)
dt+ C

∫ T

0
σ2‖P‖4L4dt

≤ C(ρ̄) (A1(T ) + C0)

∫ T

0
σ‖ρ1/2u̇‖2L2dt+ C(ρ̄)

∫ T

0
σ2‖P‖2L2dt.

(3.19)

To estimate the last term on the right-hand side of (3.19), noticing that (1.1)2 gives

P = (−∆)−1div(ρu̇) + (2µ+ λ)divu, (3.20)

we obtain from Hölder’s and Sobolev’s inequalities that∫
P 2dx ≤C‖(−∆)−1div(ρu̇)‖L4γ‖P‖L4γ/(4γ−1) + C‖∇u‖L2‖P‖L2

≤C‖ρu̇‖L4γ/(2γ+1)‖ρ‖1/2L1 ‖ρ‖
γ−1/2
L2γ + C‖∇u‖L2‖P‖L2

≤C‖ρ1/2‖L4γ‖ρ1/2u̇‖L2‖ρ‖1/2
L1 ‖ρ‖

γ−1/2
L2γ + C‖∇u‖L2‖P‖L2

≤C‖P‖L2‖ρ1/2u̇‖L2 + C‖∇u‖L2‖P‖L2 ,

where in the last inequality, one has used∫
ρdx =

∫
ρ0dx = 1, (3.21)

due to the mass conservation equation (1.1)1. Thus, we arrive at

‖P‖L2 ≤ C‖ρ1/2u̇‖L2 + C‖∇u‖L2 , (3.22)

which, along with (3.6), (3.7), (3.19), (3.5), and (3.3) gives

A1(T ) +A2(T ) ≤C(ρ̄)C0 + C(ρ̄)

∫ T

0
σ‖∇u‖3L3dt. (3.23)

Then, on the one hand, one deduces from (2.12), (3.5), and (3.3) that∫ σ(T )

0
σ‖∇u‖3L3dt ≤ C

∫ σ(T )

0
σ‖ρ1/2u̇‖L2

(
‖∇u‖2L2 + ‖P‖2L2

)
dt+ C(ρ̄)C0

≤ CA1/2
2 (σ(T ))

∫ σ(T )

0

(
‖∇u‖2L2 + ‖P‖2L2

)
dt+ C(ρ̄)C0

≤ C(ρ̄)C0.

(3.24)

On the other hand, Hölder’s inequality, (3.19), (3.3), and (3.22) imply∫ T

σ(T )
σ‖∇u‖3L3dt ≤ δ

∫ T

σ(T )
‖∇u‖4L4dt+ C(δ)

∫ T

σ(T )
‖∇u‖2L2dt

≤ δC(ρ̄)A1(T ) + C(δ)C(ρ̄)C0.

(3.25)

Finally, putting (3.24) and (3.25) into (3.23) and choosing δ suitably small lead to

A1(T ) +A2(T ) ≤ C(ρ̄)C0,
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which together with (3.22) and (3.5) gives (3.18) and completes the proof of Lemma
3.3.

Next, we derive the rates of decay for ∇u and P , which are essential to obtain the
uniform (in time) upper bound of the density for large time.

Lemma 3.4 For p ∈ [2,∞), there exists a positive constant C(p, ρ̄) depending only on
p, µ, λ, γ, and ρ̄ such that, if (ρ, u) is a smooth solution of (1.1)-(1.4) on R2 × (0, T ]
satisfying (3.3), then

sup
σ(T )≤t≤T

(
tp−1(‖∇u‖pLp + ‖P‖pLp) + t2‖ρ1/2u̇‖2L2

)
≤ C(p, ρ̄)C0. (3.26)

Proof. First, for p ≥ 2, multiplying (3.9) by pP p−1 and integrating the resulting
equality over R2, one gets after using divu = 1

2µ+λ(F + P ) that

(
‖P‖pLp

)
t
+
pγ − 1

2µ+ λ
‖P‖p+1

Lp+1 = − pγ − 1

2µ+ λ

∫
P pFdx

≤ pγ − 1

2(2µ+ λ)
‖P‖p+1

Lp+1 + C(p)‖F‖p+1
Lp+1 ,

(3.27)

which together with (2.11) gives

2(2µ+ λ)

pγ − 1

(
‖P‖pLp

)
t
+ ‖P‖p+1

Lp+1 ≤ C(p)‖F‖p+1
Lp+1

≤ C(p)
(
‖∇u‖2L2 + ‖P‖2L2

)
‖ρu̇‖p−1

L2 .

(3.28)

In particular, choosing p = 2 in (3.28) shows(
‖P‖2L2

)
t
+

2γ − 1

2(2µ+ λ)
‖P‖3L3 ≤ δ‖ρ1/2u̇‖2L2 + C(δ)

(
‖∇u‖4L2 + ‖P‖4L2

)
. (3.29)

Next, it follows from (3.13) and (2.12) that

B′(t) +

∫
ρ|u̇|2dx ≤ C‖P‖3L3 + C‖∇u‖3L3

≤ C1‖P‖3L3 + C‖ρu̇‖L2

(
‖∇u‖2L2 + ‖P‖2L2

)
≤ C1‖P‖3L3 + δ‖ρ1/2u̇‖2L2 + C(ρ̄, δ)

(
‖∇u‖4L2 + ‖P‖4L2

)
.

(3.30)

Choosing C2 ≥ 2 + 2(2µ+ λ)(C1 + 1)/(2γ − 1) suitably large such that

µ

4
‖∇u‖2L2 + ‖P‖2L2 ≤ B(t) + C2‖P‖2L2 ≤ C‖∇u‖2L2 + C‖P‖2L2 , (3.31)

adding (3.29) multiplied by C2 to (3.30), and choosing δ suitably small lead to

2
(
B(t) + C2‖P‖2L2

)′
+

∫ (
ρ|u̇|2 + P 3

)
dx ≤ C‖P‖4L2 + C‖∇u‖4L2 , (3.32)

which multiplied by t, together with Gronwall’s inequality, (3.31), (3.18), (3.5), and
(3.3) yields

sup
σ(T )≤t≤T

t
(
‖∇u‖2L2 + ‖P‖2L2

)
+

∫ T

σ(T )
t

∫ (
ρ|u̇|2 + P 3

)
dxdt ≤ C(ρ̄)C0. (3.33)
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Next, multiplying (3.17) by t2 together with (2.12) gives(
t2
∫
ρ|u̇|2dx

)
t

+ µt2
∫
|∇u̇|2dx

≤ 2t

∫
ρ|u̇|2dx+ C(ρ̄)t2‖ρu̇‖2L2

(
‖∇u‖2L2 + ‖P‖2L2

)
+ C̃(ρ̄)t2‖P‖4L4 .

(3.34)

Choosing p = 3 in (3.28) and adding (3.28) multiplied by (C̃ + 1)t2 to (3.34) lead to(
t2
∫
ρ|u̇|2dx+

2(2µ+ λ)(C̃ + 1)

3γ − 1
t2‖P‖3L3

)
t

+ µt2‖∇u̇‖2L2 + t2‖P‖4L4

≤ Ct
∫ (

ρ|u̇|2 + P 3
)
dx+ C(ρ̄)t2‖ρ1/2u̇‖2L2

(
‖∇u‖2L2 + ‖P‖2L2

)
,

which combined with Gronwall’s inequality, (3.33), and (3.3) yields

sup
σ(T )≤t≤T

t2
∫ (

ρ|u̇|2 + P 3
)
dx+

∫ T

σ(T )
t2
(
‖∇u̇‖2L2 + ‖P‖4L4

)
dt ≤ C(ρ̄)C0. (3.35)

Finally, we claim that for m = 1, 2, · · · ,

sup
σ(T )≤t≤T

tm‖P‖m+1
Lm+1 +

∫ T

σ(T )
tm‖P‖m+2

Lm+2dt ≤ C(m, ρ̄)C0, (3.36)

which together with (2.12), (3.33), and (3.35) gives (3.26). We shall prove (3.36) by
induction. In fact, (3.33) shows that (3.36) holds for m = 1. Assume that (3.36) holds
for m = n, that is,

sup
σ(T )≤t≤T

tn‖P‖n+1
Ln+1 +

∫ T

σ(T )
tn‖P‖n+2

Ln+2dt ≤ C(n, ρ̄)C0. (3.37)

Multiplying (3.28) where p = n+ 2 by tn+1, one obtains after using (3.35)

2(2µ+ λ)

(n+ 2)γ − 1

(
tn+1‖P‖n+2

Ln+2

)
t
+ tn+1‖P‖n+3

Ln+3

≤ C(n, ρ̄)tn‖P‖n+2
Ln+2 + C(n, ρ̄)C0

(
‖∇u‖2L2 + ‖P‖2L2

)
.

(3.38)

Integrating (3.38) over [σ(T ), T ] together with (3.37) and (3.18) shows that (3.36) holds
for m = n+ 1. By induction, we obtain (3.36) and finish the proof of Lemma 3.4.

Next, the following Lemma 3.5 combined with Lemma 2.4 will be useful to estimate
the Lp-norm of ρu̇ and obtain the uniform (in time) upper bound of the density for
large time.

Lemma 3.5 Let (ρ, u) be a smooth solution of (1.1)-(1.4) on R2× (0, T ] satisfying the
assumptions in Theorem 1.1 and (3.3). Then for any α > 0, there exists a positive
constant N1 depending only on α, N0, and M such that for all t ∈ (0, T ],∫

BN1(1+t) log
α(1+t)

ρ(x, t)dx ≥ 1

4
. (3.39)
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Proof. First, multiplying (1.1)1 by (1+ |x|2)1/2 and integrating the resulting equality
over R2, we obtain after integration by parts and using both (3.5) and (3.21) that

d

dt

∫
ρ(1 + |x|2)1/2dx ≤ C

∫
ρ|u|dx

≤ C
(∫

ρdx

)1/2(∫
ρ|u|2dx

)1/2

≤ C.

This gives

sup
0≤s≤t

∫
ρ(1 + |x|2)1/2dx ≤ C(M)(1 + t). (3.40)

Next, for ϕ(y) ∈ C∞0 (R2) such that

0 ≤ ϕ(y) ≤ 1, ϕ(y) =

{
1 if |y| ≤ 1,

0 if |y| ≥ 2,
|∇ϕ| ≤ 2,

multiplying (1.1)1 by ϕ(y) with y = δ̃x(1 + t)−1 log−α(e+ t) for small δ̃ > 0 which will
be determined later, we obtain

d

dt

∫
ρϕ(y)dx =

∫
ρ∇yϕ · ytdx+

δ̃

(1 + t) logα(e+ t)

∫
ρu · ∇yϕdx

≥ − Cδ̃

(1 + t)2 logα(e+ t)

∫
ρ|x|dx− Cδ̃

(1 + t) logα(e+ t)

≥ − C(M)δ̃

(1 + t) logα(e+ t)
,

where in the last inequality we have used (3.40). Since α > 1, this yields∫
ρϕ (y) dx ≥

∫
ρ0(x)ϕ(xδ̃)dx− C(α,M)δ̃ ≥ 1

4
, (3.41)

where we choose δ̃ = (N0 + 4C(α,M))−1.

Finally, it follows from (3.41) that for N1 , 2δ̃−1 = 2(N0 + 4C(α,M)),∫
BN1(1+t) log

α(e+t)

ρdx ≥
∫
ρϕ
(
δ̃x(1 + t)−1 log−α(e+ t)

)
dx ≥ 1

4
,

which finishes the proof of Lemma 3.5.

Next, to obtain the upper bound of the density for small time, we still need the
following lemma.

Lemma 3.6 Let (ρ, u) be a smooth solution of (1.1)-(1.4) on R2 × (0, T ] satisfying
(3.3) and the assumptions in Theorem 1.1. Then there exists a positive constant K
depending only on µ, λ, γ, a, ρ̄, β, N0, and M such that

sup
0≤t≤σ(T )

t1−β‖∇u‖2L2 +

∫ σ(T )

0
t1−β

∫
ρ|u̇|2dxdt ≤ K(ρ̄,M). (3.42)
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Proof. First, set

ν , min

{
µ1/2

2(1 + 2µ+ λ)1/2
,

β

1− β

}
∈ (0, 1/2].

If β ∈ (0, 1), Sobolev’s inequality implies∫
ρ0|u0|2+νdx ≤

∫
ρ0|u0|2dx+

∫
ρ0|u0|2/(1−β)dx

≤ C(ρ̄) + C(ρ̄)‖u0‖2/(1−β)

Ḣβ
≤ C(ρ̄,M).

(3.43)

For the case that β = 1, one obtains from (2.5) that∫
ρ0|u0|2+νdx ≤ C(ρ̄)

(∫
ρ0|u0|2dx+

∫
|∇u0|2dx

)(2+ν)/2

≤ C(ρ̄,M). (3.44)

Then, multiplying (1.1)2 by (2 + ν)|u|νu and integrating the resulting equation over
R2 lead to

d

dt

∫
ρ|u|2+νdx+ (2 + ν)

∫
|u|ν

(
µ|∇u|2 + (µ+ λ)(divu)2

)
dx

≤ (2 + ν)ν

∫
(µ+ λ)|divu||u|ν |∇u|dx+ C

∫
ργ |u|ν |∇u|dx

≤ 2 + ν

2

∫
(µ+ λ)(divu)2|u|νdx+

(2 + ν)µ

4

∫
|u|ν |∇u|2dx

+ C

∫
ρ|u|2+νdx+ C

∫
ρ(2+ν)γ−ν/2dx,

which together with Gronwall’s inequality, (3.43), and (3.44) thus gives

sup
0≤t≤σ(T )

∫
ρ|u|2+νdx ≤ C(ρ̄,M). (3.45)

Next, as in [12], for the linear differential operator L defined by

(Lw)j , ρwjt + ρu · ∇wj − (µ∆wj + (µ+ λ)∂jdivw)

= ρẇj − (µ∆wj + (µ+ λ)∂jdivw), j = 1, 2,

let w1 and w2 be the solution to:

Lw1 = 0, w1(x, 0) = w10(x), (3.46)

and
Lw2 = −∇P (ρ), w2(x, 0) = 0, (3.47)

respectively. A straightforward energy estimate of (3.46) shows that:

sup
0≤t≤σ(T )

∫
ρ|w1|2dx+

∫ σ(T )

0

∫
|∇w1|2dxdt ≤ C(ρ)

∫
|w10|2dx. (3.48)
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Then, multiplying (3.46) by w1t and integrating the resulting equality over R2 yield
that for t ∈ (0, σ(T )],

1

2

(
µ‖∇w1‖2L2 + (µ+ λ)‖divw1‖2L2

)
t
+

∫
ρ|ẇ1|2dx

=

∫
ρẇ1(u · ∇w1)dx

≤ C(ρ̄)‖ρ1/2ẇ1‖L2‖ρ1/(2+ν)u‖L2+ν‖∇2w1‖2/(2+ν)
L2 ‖∇w1‖ν/(2+ν)

L2

≤ 1

2

∫
ρ|ẇ1|2dx+ C(ρ̄,M)‖∇w1‖2L2 ,

(3.49)

where in the last inequality we have used (3.45) and the following simple fact:

‖∇2w1‖L2 ≤ C‖ρẇ1‖L2 ,

due to the standard L2-estimate of the elliptic system (3.46). Gronwall’s inequality
together with (3.49) and (3.48) gives

sup
0≤t≤σ(T )

‖∇w1‖2L2 +

∫ σ(T )

0

∫
ρ|ẇ1|2dxdt ≤ C(ρ̄,M)‖∇w10‖2L2 , (3.50)

and

sup
0≤t≤σ(T )

t‖∇w1‖2L2 +

∫ σ(T )

0
t

∫
ρ|ẇ1|2dxdt ≤ C(ρ̄,M)‖w10‖2L2 . (3.51)

Since the solution operator w10 7→ w1(·, t) is linear, by the standard Stein-Weiss
interpolation argument ( [2]), one can deduce from (3.50) and (3.51) that for any
θ ∈ [β, 1],

sup
0≤t≤σ(T )

t1−θ‖∇w1‖2L2 +

∫ σ(T )

0
t1−θ

∫
ρ|ẇ1|2dxdt ≤ C(ρ̄,M)‖w10‖2Ḣθ , (3.52)

with a uniform constant C independent of θ.

Finally, we estimate w2. It follows from a similar way as for the proof of (2.10) and
(2.12) that

‖∇((2µ+ λ)divw2 − P )‖L2 + ‖∇(∇⊥ · w2)‖L2 ≤ C‖ρẇ2‖L2 , (3.53)

and that for p ≥ 2,

‖∇w2‖Lp ≤ C(‖(2µ+ λ)divw2 − P‖Lp + C‖P‖Lp + ‖∇⊥ · w2‖Lp

≤ δ‖ρẇ2‖L2 + C(ρ̄, p, δ)‖∇w2‖L2 + C(ρ̄, p, δ)C
1/p
0 .

(3.54)

Multiplying (3.47) by w2t and integrating the resulting equation over R2 yield that for
t ∈ (0, σ(T )],

1

2

(
µ‖∇w2‖2L2 + (µ+ λ)‖divw2‖2L2 − 2

∫
Pdivw2dx

)
t

+

∫
ρ|ẇ2|2dx

=

∫
ρẇ2(u · ∇w2)dx−

∫
Ptdivw2dx

≤ C(ρ̄)‖ρ1/2ẇ2‖L2‖ρ1/(2+ν)u‖L2+ν‖∇w2‖L2(2+ν)/ν −
∫
Ptdivw2dx

≤ C(ρ̄,M)δ‖ρ1/2ẇ2‖2L2 + C(δ, ρ̄,M)
(
‖∇w2‖2L2 + ‖∇u‖2L2 + 1

)
,

(3.55)
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where in the last inequality we have used (3.54), (3.45), and the following simple fact:

−
∫
Ptdivw2dx = − 1

2µ+ λ

∫
Pu · ∇((2µ+ λ)divw2 − P )dx

+
1

2(2µ+ λ)

∫
P 2divudx

≤ C‖Pu‖L2‖ρẇ2‖L2 + C‖P 2‖L2‖∇u‖L2

≤ δ‖ρ1/2ẇ2‖2L2 + C(δ, ρ̄)
(
‖∇u‖2L2 + 1

)
,

due to (3.9) and (3.53). Gronwall’s inequality together with (3.55) gives

sup
0≤t≤σ(T )

‖∇w2‖2L2 +

∫ σ(T )

0

∫
ρ|ẇ2|2dxdt ≤ C(ρ̄,M). (3.56)

Taking w10 = u0 so that w1 + w2 = u, we then derive (3.42) from (3.52) and (3.56)
directly. Thus, we finish the proof of Lemma 3.6.

We now proceed to derive a uniform (in time) upper bound for the density, which
turns out to be the key to obtain all the higher order estimates and thus to extend the
classical solution globally. We will use an approach motivated by our previous study
on the two-dimensional Stokes approximation equations ( [20]), see also [16].

Lemma 3.7 There exists a positive constant ε0 = ε0(ρ̄,M) depending on µ, λ, γ, a, ρ̄, β,
N0, and M such that, if (ρ, u) is a smooth solution of (1.1)-(1.4) on R2×(0, T ] satisfying
(3.3) and the assumptions in Theorem 1.1, then

sup
0≤t≤T

‖ρ(t)‖L∞ ≤
7ρ̄

4
, (3.57)

provided C0 ≤ ε0.

Proof. First, we rewrite the equation of the mass conservation (1.1)1 as

Dtρ = g(ρ) + b′(t), (3.58)

where

Dtρ , ρt + u · ∇ρ, g(ρ) , − ργ+1

2µ+ λ
, b(t) , − 1

2µ+ λ

∫ t

0
ρFdt.

Next, it follows from (2.10), (3.40), (3.39), and (2.5) that for t > 0 and p ∈ [2,∞),

‖∇F (·, t)‖Lp ≤ C(p)‖ρu̇(·, t)‖Lp

≤ C(p, ρ̄,M)(1 + t)5
(
‖ρ1/2u̇(·, t)‖L2 + ‖∇u̇(·, t)‖L2

)
,

(3.59)

which, together with the Gagliardo-Nirenberg inequality (2.2) for q = 2, yields that for
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r , 4 + 4/β and δ0 , (2r + (1− β)(r − 2))/(3r − 4) ∈ (0, 1),

|b(σ(T ))|

≤ C(ρ̄)

∫ σ(T )

0
σ(β−1)(r−2)/(4(r−1))

(
σ1−β‖F‖2L2

)(r−2)/(4(r−1))
‖∇F‖r/(2(r−1))

Lr dt

≤ C(ρ̄,M)

∫ σ(T )

0
σ−(2r+(1−β)(r−2))/(4(r−1))

(
σ2‖∇F‖2Lr

)r/(4(r−1))
dt

≤ C(ρ̄,M)

(∫ σ(T )

0
σ−δ0dt

)(3r−4)/(4(r−1))(∫ σ(T )

0
σ2‖∇F‖2Lrdt

)r/(4(r−1))

≤ C(ρ̄,M)

(∫ σ(T )

0

(
σ2‖ρ1/2u̇‖2L2 + σ2‖∇u̇‖2L2

)
dt

)r/(4(r−1))

≤ C(ρ̄,M)C
r/(4(r−1))
0 ,

where in the second, fourth, and last inequalities one has used respectively (3.42),
(3.59), and (3.18). This combined with (3.58) yields that

sup
t∈[0,σ(T )]

‖ρ‖L∞ ≤ ρ̄+ C(ρ̄,M)C
1/4
0 ≤ 3ρ̄

2
, (3.60)

provided
C0 ≤ ε1 , min{1, (ρ̄/(2C(ρ̄,M)))4}.

Next, it follows from (2.10) and (3.26) that for t ∈ [σ(T ), T ],

‖F (·, t)‖H1 ≤ C (‖∇u(·, t)‖L2 + ‖P (·, t)‖L2 + ‖ρu̇(·, t)‖L2)

≤ C(ρ̄)C
1/2
0 t−1/2,

(3.61)

which together with (2.2) and (3.59) shows∫ T

σ(T )
‖F (·, t)‖4L∞dt

≤ C
∫ T

σ(T )
‖F (·, t)‖35/9

L72 ‖∇F (·, t)‖1/9
L72dt

≤ C(ρ̄,M)C
35/18
0

∫ T

σ(T )
t−25/18(‖ρ1/2u̇‖L2 + ‖∇u̇‖L2)1/9dt

≤ C(ρ̄,M)C
35/18
0 ,

(3.62)

where in the last inequality, one has used (3.3). This shows that for all σ(T ) ≤ t1 ≤
t2 ≤ T,

|b(t2)− b(t1)| ≤ C(ρ̄)

∫ t2

t1

‖F (·, t)‖L∞dt

≤ 1

2µ+ λ
(t2 − t1) + C(ρ̄,M)

∫ T

σ(T )
‖F (·, t)‖4L∞dt

≤ 1

2µ+ λ
(t2 − t1) + C(ρ̄,M)C

35/18
0 ,
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which implies that one can choose N1 and N0 in (2.14) as:

N1 =
1

2µ+ λ
, N0 = C(ρ̄,M)C

35/18
0 .

Hence, we set ζ̄ = 1 in (2.15) since for all ζ ≥ 1,

g(ζ) = − ζγ+1

2µ+ λ
≤ −N1 = − 1

2µ+ λ
.

Lemma 2.6 and (3.60) thus lead to

sup
t∈[σ(T ),T ]

‖ρ‖L∞ ≤
3ρ̄

2
+N0 ≤

7ρ̄

4
, (3.63)

provided

C0 ≤ ε0 , min{ε1, ε2}, for ε2 ,

(
ρ̄

4C(ρ̄,M)

)18/35

.

The combination of (3.60) with (3.63) completes the proof of Lemma 3.7.

With Lemmas 3.3 and 3.7 at hand, we are now in a position to prove Proposition
3.1.

Proof of Proposition 3.1. It follows from (3.18) that

A1(T ) +A2(T ) +

∫ T

0
σ‖P‖2L2dt ≤ C1/2

0 , (3.64)

provided
C0 ≤ ε3 , (C(ρ̄))−2.

Letting ε , min{ε0, ε3}, we obtain (3.4) directly from (3.57) and (3.64) and finish the
proof of Proposition 3.1.

4 A priori estimates (II): higher order estimates

Form now on, for smooth initial data (ρ0, u0) satisfying (1.8) and (1.9), assume that
(ρ, u) is a smooth solution of (1.1)-(1.4) on R2× (0, T ] satisfying (3.3). Then, we derive
some necessary uniform estimates on the spatial gradient of the smooth solution (ρ, u).

Lemma 4.1 There is a positive constant C depending only on T, µ, λ, γ, a, ρ̄, β,N0,M,
and ‖ρ0‖H1∩W 1,q such that

sup
0≤t≤T

(
‖ρ‖H1∩W 1,q + ‖∇u‖L2 + t‖∇2u‖2L2

)
+

∫ T

0

(
‖∇2u‖2L2 + ‖∇2u‖(q+1)/q

Lq + t‖∇2u‖2Lq
)
dt ≤ C.

(4.1)

Proof. First, it follows from (3.32), (3.31), Gronwall’s inequality, and (3.5) that

sup
t∈[0,T ]

‖∇u‖2L2 +

∫ T

0

∫
ρ|u̇|2dxdt ≤ C, (4.2)
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which together with (2.12) shows∫ T

0
‖∇u‖4L4dt ≤ C. (4.3)

Multiplying (3.17) by t and integrating the resulting inequality over (0, T ) combined
with (4.2) and (4.3) lead to

sup
0≤t≤T

t

∫
ρ|u̇|2dx+

∫ T

0
t‖∇u̇‖2L2dt ≤ C. (4.4)

Next, we prove (4.1) by using Lemma 2.7 as in [15]. For p ∈ [2, q], |∇ρ|p satisfies

(|∇ρ|p)t + div(|∇ρ|pu) + (p− 1)|∇ρ|pdivu

+ p|∇ρ|p−2(∇ρ)t∇u(∇ρ) + pρ|∇ρ|p−2∇ρ · ∇divu = 0.

Thus,
d

dt
‖∇ρ‖Lp ≤ C(1 + ‖∇u‖L∞)‖∇ρ‖Lp + C‖∇2u‖Lp

≤ C(1 + ‖∇u‖L∞)‖∇ρ‖Lp + C‖ρu̇‖Lp ,
(4.5)

due to
‖∇2u‖Lp ≤ C (‖ρu̇‖Lp + ‖∇P‖Lp) , (4.6)

which follows from the standard Lp-estimate for the following elliptic system:

µ∆u+ (µ+ λ)∇divu = ρu̇+∇P, u→ 0 as |x| → ∞.

Next, it follows from the Gargliardo-Nirenberg inequality, (4.2), and (2.10) that

‖divu‖L∞ + ‖ω‖L∞ ≤ C‖F‖L∞ + C‖P‖L∞ + C‖ω‖L∞

≤ C(q) + C(q)‖∇F‖q/(2(q−1))
Lq + C(q)‖∇ω‖q/(2(q−1))

Lq

≤ C(q) + C(q)‖ρu̇‖q/(2(q−1))
Lq ,

(4.7)

which, together with Lemma 2.7, yields that

‖∇u‖L∞ ≤ C (‖divu‖L∞ + ‖ω‖L∞) log(e+ ‖∇2u‖Lq) + C‖∇u‖L2 + C

≤ C
(

1 + ‖ρu̇‖q/(2(q−1))
Lq

)
log(e+ ‖ρu̇‖Lq + ‖∇ρ‖Lq) + C

≤ C (1 + ‖ρu̇‖Lq) log(e+ ‖∇ρ‖Lq).

(4.8)

Next, it follows from the Hölder inequality and (3.59) that

‖ρu̇‖Lq ≤ ‖ρu̇‖2(q−1)/(q2−2)
L2 ‖ρu̇‖q(q−2)/(q2−2)

Lq2

≤ C‖ρu̇‖2(q−1)/(q2−2)
L2

(
‖ρ1/2u̇‖L2 + ‖∇u̇‖L2

)q(q−2)/(q2−2)

≤ C‖ρ1/2u̇‖L2 + C‖ρ1/2u̇‖2(q−1)/(q2−2)
L2 ‖∇u̇‖q(q−2)/(q2−2)

L2 ,

which combined with (4.2) and (4.4) implies that∫ T

0

(
‖ρu̇‖1+1/q

Lq + t‖ρu̇‖2Lq
)
dt

≤ C
∫ T

0

(
‖ρ1/2u̇‖2L2 + t‖∇u̇‖2L2 + t−(q3−q2−2q−1)/(q3−q2−2q)

)
dt

≤ C.

(4.9)
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Then, substituting (4.8) into (4.5) where p = q, we deduce from Gronwall’s inequality
and (4.9) that

sup
0≤t≤T

‖∇ρ‖Lq ≤ C,

which, along with (4.6) and (4.9), shows∫ T

0

(
‖∇2u‖(q+1)/q

Lq + t‖∇2u‖2Lq
)
dt ≤ C. (4.10)

Finally, taking p = 2 in (4.5), one gets by using (4.10), (4.2), and Gronwall’s inequal-
ity that

sup
0≤t≤T

‖∇ρ‖L2 ≤ C,

which, together with (4.6), (4.4), and (4.10), yields (4.1). The proof of Lemma 4.1 is
completed.

Lemma 4.2 There is a positive constant C depending only on T, µ, λ, γ, a, ρ̄, β,N0,M,
and ‖∇(x̄aρ0)‖L2∩Lq such that

sup
0≤t≤T

‖x̄aρ‖L1∩H1∩W 1,q ≤ C. (4.11)

Proof. First, it follows from (2.3), (3.40), (3.39), and (2.8) that for any η ∈ (0, 1] and
any s > 2,

‖ux̄−η‖Ls/η ≤ C(η, s). (4.12)

Multiplying (1.1)1 by x̄a and integrating the resulting equality over R2 lead to

d

dt

∫
ρx̄adx ≤ C

∫
ρ|u|x̄a−1 log2(e+ |x|2)dx

≤ C‖ρx̄a−1+8/(8+a)‖L(8+a)/(7+a)‖ux̄−4/(8+a)‖L8+a

≤ C
∫
ρx̄adx+ C.

This gives

sup
0≤t≤T

∫
ρx̄adx ≤ C. (4.13)

Then, one derives from (1.1)1 that v , ρx̄a satisfies

vt + u · ∇v − avu · ∇ log x̄+ vdivu = 0,

which, together with some estimates as for (4.5), gives that for any p ∈ [2, q]

(‖∇v‖Lp)t ≤ C(1 + ‖∇u‖L∞ + ‖u · ∇ log x̄‖L∞)‖∇v‖Lp
+ C‖v‖L∞

(
‖|∇u||∇ log x̄|‖Lp + ‖|u||∇2 log x̄|‖Lp + ‖∇2u‖Lp

)
≤ C(1 + ‖∇u‖W 1,q)‖∇v‖Lp

+ C‖v‖L∞
(
‖∇u‖Lp + ‖ux̄−2/5‖L4p‖x̄−3/2‖L4p/3 + ‖∇2u‖Lp

)
≤ C(1 + ‖∇2u‖Lp + ‖∇u‖W 1,q)(1 + ‖∇v‖Lp + ‖∇v‖Lq),

(4.14)
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where in the second and the last inequalities, one has used (4.12) and (4.13). Choosing
p = q in (4.14), we obtain after using Gronwall’s inequality and (4.1) that

sup
0≤t≤T

‖∇(ρx̄a)‖Lq ≤ C. (4.15)

Finally, setting p = 2 in (4.14), we deduce from (4.1) and (4.15) that

sup
0≤t≤T

‖∇(ρx̄a)‖L2 ≤ C,

which combined with (4.13) and (4.15) thus gives (4.11) and finishes the proof of Lemma
4.2.

Lemma 4.3 There is a positive constant C depending only on T, µ, λ, γ, a, ρ̄, β,N0,M,
and ‖∇(x̄aρ0)‖L2∩Lq such that

sup
0≤t≤T

t
(
‖ρ1/2ut‖2L2 + ‖∇u‖2H1

)
+

∫ T

0
t‖∇ut‖2L2dt ≤ C. (4.16)

Proof. Differentiating (1.1)2 with respect to t gives

ρutt + ρu · ∇ut − µ∆ut − (µ+ λ)∇divut

= −ρt(ut + u · ∇u)− ρut · ∇u−∇Pt.
(4.17)

Multiplying (4.17) by ut and integrating the resulting equation over R2, we obtain after
using (1.1)1 that

1

2

d

dt

∫
ρ|ut|2dx+

∫ (
µ|∇ut|2 + (µ+ λ)(divut)

2
)
dx

= −2

∫
ρu · ∇ut · utdx−

∫
ρu · ∇(u · ∇u · ut)dx

−
∫
ρut · ∇u · utdx+

∫
Ptdivutdx

≤ C
∫
ρ|u||ut|

(
|∇ut|+ |∇u|2 + |u||∇2u|

)
dx+ C

∫
ρ|u|2|∇u||∇ut|dx

+ C

∫
ρ|ut|2|∇u|dx+ C(δ)‖Pt‖2L2 + δ‖∇ut‖2L2 .

(4.18)

Each term on the right-hand side of (4.18) can be estimated as follows:

First, the combination of (4.12) with (4.11) gives that for any η ∈ (0, 1] and any
s > 2,

‖ρηu‖Ls/η + ‖ux̄−η‖Ls/η ≤ C(η, s). (4.19)

Moreover, it follows from (2.5), (3.40), and (3.39) that

‖ρ1/2ut‖L6 ≤ C‖ρ1/2ut‖L2 + C‖∇ut‖L2 , (4.20)

which together with (4.19), (4.2), and Holder’s inequality yields that for δ ∈ (0, 1),∫
ρ|u||ut|

(
|∇ut|+ |∇u|2 + |u||∇2u|

)
dx

≤ C‖ρ1/2u‖L6‖ρ1/2ut‖1/2L2 ‖ρ1/2ut‖1/2L6

(
‖∇ut‖L2 + ‖∇u‖2L4

)
+ C‖ρ1/4u‖2L12‖ρ1/2ut‖1/2L2 ‖ρ1/2ut‖1/2L6 ‖∇2u‖L2

≤ C‖ρ1/2ut‖1/2L2

(
‖ρ1/2ut‖L2 + ‖∇ut‖L2

)1/2 (
‖∇ut‖L2 + ‖∇2u‖L2 + 1

)
≤ δ‖∇ut‖2L2 + C(δ)

(
‖∇2u‖2L2 + ‖ρ1/2ut‖2L2 + 1

)
.

(4.21)
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Next, Holder’s inequality, (4.19), and (4.20) lead to∫
ρ|u|2|∇u||∇ut|dx+

∫
ρ|ut|2|∇u|dx

≤ C‖ρ1/2u‖2L8‖∇u‖L4‖∇ut‖L2 + ‖∇u‖L2‖ρ1/2ut‖3/2L6 ‖ρ1/2ut‖1/2L2

≤ δ‖∇ut‖2L2 + C(δ)
(
‖∇2u‖2L2 + ‖ρ1/2ut‖2L2 + 1

)
.

(4.22)

Next, it follows from (4.19), (4.2), and (4.11) that

‖Pt‖L2 ≤ C‖x̄−au‖L2q/(q−2)‖ρ‖γ−1
L∞ ‖x̄

a∇ρ‖Lq + C‖∇u‖L2 ≤ C. (4.23)

Finally, putting (4.21)-(4.23) into (4.18) and choosing δ suitably small, we obtain
after using (4.6) and (4.1) that

d

dt

∫
ρ|ut|2dx+ µ

∫
|∇ut|2dx ≤ C

∫
ρ|ut|2dx+ C

∫
ρ|u̇|2dx+ 1. (4.24)

It follows from (4.6) and (4.19) that

‖∇u‖H1 + ‖ρ1/2u · ∇u‖L2

≤ C + C‖ρ1/2u̇‖L2 + C‖ρ1/2u‖L6‖∇u‖2/3
L2 ‖∇2u‖1/3

L2

≤ C + C‖ρ1/2u̇‖L2 +
1

2
‖∇2u‖L2 ,

which together with (4.2) shows

‖∇u‖H1 + ‖ρ1/2ut‖L2 ≤ C‖ρ1/2u̇‖L2 + C. (4.25)

This combined with (4.24), (4.2), and Gronwall’s inequality gives (4.16) and finishes
the proof of Lemma 4.3.

¿From now on, assume that (ρ, u) is a smooth solution of (1.1)-(1.4) on R2 × (0, T ]
satisfying (3.3) for smooth initial data (ρ0, u0) satisfying (1.8), (1.9), (1.17), and (1.18).
Moreover, in addition to T, µ, λ, γ, a, ρ̄, β,N0,M, and ‖∇(x̄aρ0)‖L2∩Lq , the generic pos-
itive constant C may depend on ‖∇2u0‖L2 , ‖x̄δ0∇2ρ0‖L2 , ‖x̄δ0∇2P (ρ0)‖L2 , and ‖g‖L2 ,
with g as in (1.18).

Lemma 4.4 It holds that

sup
0≤t≤T

(
‖ρ1/2ut‖L2 + ‖∇u‖H1

)
+

∫ T

0
‖∇ut‖2L2dt ≤ C. (4.26)

Proof. Taking into account on the compatibility condition (1.18), we can define

√
ρu̇(x, t = 0) = g. (4.27)

Integrating (3.17) over (0, T ) together with (4.27) and (4.3) yields directly that

sup
0≤t≤T

‖ρ1/2u̇‖L2 +

∫ T

0
‖∇u̇‖2L2dt ≤ C,

which, along with (4.25) and (4.24), gives (4.26) and finishes the proof of Lemma 4.4.

The following higher order estimates of the solutions which are needed to guarantee
the extension of local classical solution to be a global one are similar to those in [19],
so we omit their proofs here.
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Lemma 4.5 The following estimates hold:

sup
0≤t≤T

(
‖x̄δ0∇2ρ‖L2 + ‖x̄δ0∇2P‖L2

)
≤ C, (4.28)

sup
0≤t≤T

t‖∇ut‖2L2 +

∫ T

0
t
(
‖ρ1/2utt‖2L2 + ‖∇2ut‖2L2

)
dt ≤ C, (4.29)

sup
0≤t≤T

(
‖∇2ρ‖Lq + ‖∇2P‖Lq

)
≤ C, (4.30)

sup
0≤t≤T

t
(
‖ρ1/2utt‖L2 + ‖∇3u‖L2∩Lq + ‖∇ut‖H1 + ‖∇2(ρu)‖L(q+2)/2

)
+

∫ T

0
t2
(
‖∇utt‖2L2 + ‖uttx̄−1‖2L2

)
dt ≤ C.

(4.31)

5 Proofs of Theorems 1.1-1.3

With all the a priori estimates in Sections 3 and 4 at hand, we are ready to prove
the main results of this paper in this section.

Proof of Theorem 1.1. By Lemma 2.1, there exists a T∗ > 0 such that the Cauchy
problem (1.1)-(1.4) has a unique strong solution (ρ, u) on R2 × (0, T∗]. We will use
the a priori estimates, Proposition 3.1 and Lemmas 4.1-4.3, to extend the local strong
solution (ρ, u) to all time.

First, it follows from (3.1), (3.2), and (1.8) that

A1(0) +A2(0) = 0, ρ0 ≤ ρ̄.

Therefore, there exists a T1 ∈ (0, T∗] such that (3.3) holds for T = T1.

Next, set

T ∗ = sup{T | (3.3) holds}. (5.1)

Then T ∗ ≥ T1 > 0. Hence, for any 0 < τ < T ≤ T ∗ with T finite, one deduces from
(4.16) that for any q ≥ 2,

∇u ∈ C([τ, T ];L2 ∩ Lq), (5.2)

where one has used the standard embedding

L∞(τ, T ;H1) ∩H1(τ, T ;H−1) ↪→ C ([τ, T ];Lq) , for any q ∈ [2,∞).

Moreover, it follows from (4.1), (4.11), and [21, Lemma 2.3] that

ρ ∈ C([0, T ];L1 ∩H1 ∩W 1,q). (5.3)

Finally, we claim that
T ∗ =∞. (5.4)

Otherwise, T ∗ < ∞. Then by Proposition 3.1, (3.4) holds for T = T ∗. It follows from
(3.5), (4.11), (5.2) and (5.3) that (ρ(x, T ∗), u(x, T ∗)) satisfies (1.8) except u(·, T ∗) ∈ Ḣβ.
Thus, Lemma 2.1 implies that there exists some T ∗∗ > T ∗, such that (3.3) holds for
T = T ∗∗, which contradicts (5.1). Hence, (5.4) holds. Lemmas 2.1 and 4.1-4.3 thus
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show that (ρ, u) is in fact the unique strong solution defined on R2 × (0, T ] for any
0 < T < T ∗ =∞. The proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, one can prove Theorem
1.2 by using Lemma 2.1, Proposition 3.1, and Lemmas 4.1-4.5.

To prove Theorem 1.3, we need the following elementary estimates similar to those
of Lemma 2.5 whose proof can be found in [16, Lemma 2.3].

Lemma 5.1 Let Ω = R3 and (ρ, u) be a smooth solution of (1.1). Then there exists a
generic positive constant C depending only on µ and λ such that for any p ∈ [2, 6]

‖∇F‖Lp + ‖∇ω‖Lp ≤ C‖ρu̇‖Lp , (5.5)

‖F‖Lp + ‖ω‖Lp ≤ C‖ρu̇‖(3p−6)/(2p)
L2 (‖∇u‖L2 + ‖P‖L2)(6−p)/(2p) , (5.6)

‖∇u‖Lp ≤ C (‖F‖Lp + ‖ω‖Lp) + C‖P‖Lp , (5.7)

where F = (2µ + λ)divu − P and ω = ∇ × u are the effective viscous flux and the
vorticity respectively.

Proof of Theorem 1.3. It suffices to prove (1.27). In fact, it follows from [16, Propo-
sition 3.1 and (3.6)] that there exists some ε depending only on µ, λ, γ, ρ̄, β, and M
such that

sup
1≤t<∞

(
‖∇u‖L2 + ‖ρ‖Lγ∩L∞ + ‖ρ1/2u̇‖L2

)
+

∫ ∞
1

(
‖∇u‖2L2 + ‖ρ1/2u̇‖2L2 + ‖∇u̇‖2L2

)
dt ≤ C,

(5.8)

provided C0 ≤ ε.
If γ ≤ 3/2, it then holds that

sup
1≤t<∞

‖ρ‖L3/2 ≤ C sup
1≤t<∞

‖ρ‖2γ/3Lγ ≤ C. (5.9)

If γ > 3/2, since ρ0 ∈ L1, (1.1)1 yields that for t ≥ 0,∫
ρ(x, t)dx =

∫
ρ0(x)dx,

which combined with (5.8) implies

sup
1≤t<∞

‖ρ‖L3/2 ≤ C sup
1≤t<∞

‖ρ‖2/3
L1 ≤ C. (5.10)

Similar to (3.20), one deduces from (1.1)2 that

P = (−∆)−1div(ρu̇) + (2µ+ λ)divu,

which together with the Sobolev inequality gives

‖P‖L2 ≤C‖(−∆)−1div(ρu̇)‖L2 + C‖∇u‖L2

≤C‖ρu̇‖L6/5 + C‖∇u‖L2

≤C‖ρ‖1/2
L3/2‖ρ1/2u̇‖L2 + C‖∇u‖L2

≤C‖ρ1/2u̇‖L2 + C‖∇u‖L2 ,
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where in the last inequality one has used (5.9) and (5.10). This combined with (5.8)
leads to ∫ ∞

1
‖P‖2L2dt ≤ C. (5.11)

Next, similar to (3.27), for p ≥ 2, we have(
‖P‖pLp

)
t
+
pγ − 1

2µ+ λ
‖P‖p+1

Lp+1 = − pγ − 1

2µ+ λ

∫
P pFdx, (5.12)

which together with Holder’s inequality yields(
‖P‖pLp

)
t
+

pγ − 1

2(2µ+ λ)
‖P‖p+1

Lp+1 ≤ C(p)‖F‖p+1
Lp+1 . (5.13)

Next, for B(t) defined as in (3.14), it follows from (3.13) and (5.7) that

B′(t) +

∫
ρ|u̇|2dx ≤ C‖P‖3L3 + C‖∇u‖3L3

≤ C1‖P‖3L3 + C‖F‖3L3 + C‖ω‖3L3 .

(5.14)

Choosing C2 ≥ 2 + 2(2µ+ λ)(C1 + 1)/(2γ − 1) suitably large such that

µ

4
‖∇u‖2L2 + ‖P‖2L2 ≤ B(t) + C2‖P‖2L2 ≤ C‖∇u‖2L2 + C‖P‖2L2 , (5.15)

setting p = 2 in (5.13), and adding (5.13) multiplied by C2 to (5.14) yield that for
t ≥ 1,

2
(
B(t) + C2‖P‖2L2

)′
+ 2

∫ (
ρ|u̇|2 + P 3

)
dx

≤ C‖F‖3L3 + C‖ω‖3L3

≤ ‖ρ1/2u̇‖2L2 + C
(
‖∇u‖4L2 + ‖P‖4L2

)
,

(5.16)

where in the second inequality we have used (5.6) and (5.8). Multiplying (5.16) by t,
along with Gronwall’s inequality, (5.15), (5.8), and (5.11), gives

sup
1≤t<∞

t
(
‖∇u‖2L2 + ‖P‖2L2

)
+

∫ ∞
1

t

∫ (
ρ|u̇|2 + P 3

)
dxdt ≤ C. (5.17)

Then, multiplying (3.17) by t2 together with (5.7) gives(
t2
∫
ρ|u̇|2dx

)
t

+ µt2
∫
|∇u̇|2dx

≤ 2t

∫
ρ|u̇|2dx+ Ct2‖F‖4L4 + Ct2‖ω‖4L4 + C̃t2‖P‖4L4 .

(5.18)

Setting p = 3 in (5.13) and adding (5.13) multiplied by 2(2µ+ λ)(C̃ + 1)t2/(3γ − 1) to
(5.18) lead to(

t2
∫
ρ|u̇|2dx+

2(2µ+ λ)(C̃ + 1)

3γ − 1
t2‖P‖3L3

)
t

+ µt2‖∇u̇‖2L2 + t2‖P‖4L4

≤ Ct
∫ (

ρ|u̇|2 + P 3
)
dx+ Ct2‖F‖4L4 + Ct2‖ω‖4L4

≤ Ct
∫ (

ρ|u̇|2 + P 3
)
dx+ Ct2‖ρ1/2u̇‖3L2 (‖∇u‖L2 + ‖P‖L2)

≤ Ct
∫ (

ρ|u̇|2 + P 3
)
dx+ Ct2‖ρ1/2u̇‖2L2

(
‖ρ1/2u̇‖2L2 + ‖∇u‖2L2 + ‖P‖2L2

)
,
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where in the second inequality we have used (5.6). This combined with Gronwall’s
inequality, (5.17), (5.8), and (5.11) yields

sup
1≤t<∞

t2
∫ (

ρ|u̇|2 + P 3
)
dx+

∫ ∞
1

t2
(
‖∇u̇‖2L2 + ‖P‖4L4

)
dt ≤ C. (5.19)

This combined with (2.12) gives (1.27) provided we show that for m = 1, 2, · · · ,

sup
1≤t<∞

tm‖P‖m+1
Lm+1 +

∫ ∞
0

tm‖P‖m+2
Lm+2dt ≤ C(m), (5.20)

which will be proved by induction. Since (5.17) shows that (5.20) holds for m = 1, we
assume that (5.20) holds for m = n, that is,

sup
1≤t<∞

tn‖P‖n+1
Ln+1 +

∫ ∞
1

tn‖P‖n+2
Ln+2dt ≤ C(n). (5.21)

Setting p = n+ 2 in (5.12) and multiplying (5.12) by tn+1 give

2(2µ+ λ)

(n+ 2)γ − 1

(
tn+1‖P‖n+2

Ln+2

)
t
+ tn+1‖P‖n+3

Ln+3

≤ C(n)tn‖P‖n+2
Ln+2 + C(n)tn+1‖P‖n+2

Ln+2‖F‖L∞ .
(5.22)

It follows from the Gagliardo-Nirenberg inequality, (5.5), and (5.19) that∫ ∞
1
‖F‖L∞dt ≤ C

∫ ∞
1
‖F‖1/2

L6 ‖∇F‖
1/2
L6 dt

≤ C
∫ ∞

1
‖ρu̇‖1/2

L2 ‖ρu̇‖
1/2
L6 dt

≤ C
∫ ∞

1
t−1/2‖∇u̇‖1/2

L2 dt

≤ C,

which, along with (5.22), (5.21), and Gronwall’s inequality, thus shows that (5.20) holds
for m = n+ 1. By induction, we obtain (5.20) and finish the proof of (1.27). The proof
of Theorem 1.3 is completed.
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[7] Feireisl, E.; Novotny, A.; Petzeltová, H. On the existence of globally defined weak
solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 (2001), no. 4,
358-392.

[8] Gilbarg D.; Trudinger N. S. Elliptic partial differential equations of second order.
Second edition. Springer-Verlag, Berlin (1983).

[9] Hoff, D. Global existence for 1D, compressible, isentropic Navier-Stokes equations
with large initial data. Trans. Amer. Math. Soc. 303 (1987), no. 1, 169-181.

[10] Hoff, D. Global solutions of the Navier-Stokes equations for multidimensional com-
pressible flow with discontinuous initial data. J. Differ. Eqs. 120 (1995), no. 1,
215-254.

[11] Hoff, D. Strong convergence to global solutions for multidimensional flows of com-
pressible, viscous fluids with polytropic equations of state and discontinuous initial
data. Arch. Rational Mech. Anal. 132 (1995), 1-14.

[12] Hoff, D. Dynamics of singularity surfaces for compressible, viscous flows in two
space dimensions. Comm. Pure Appl. Math. 55(2002), no. 11, 1365-1407.

[13] Hoff, D. Compressible flow in a half-space with Navier boundary conditions. J.
Math. Fluid Mech. 7 (2005), no. 3, 315-338.

[14] Huang, X. D.; Li, J.; Xin Z. P. Blowup criterion for viscous barotropic flows with
vacuum states. Comm. Math. Phys. 301 (2011), no. 1, 23-35.

[15] Huang, X. D.; Li, J.; Xin Z. P. Serrin type criterion for the three-dimensional
compressible flows. SIAM J. Math. Anal., 43 (2011), no. 4, 1872C1886.

[16] Huang, X. D.; Li, J.; Xin, Z. P. Global well-posedness of classical solutions with
large oscillations and vacuum to the three-dimensional isentropic compressible
Navier-Stokes equations. Comm. Pure Appl. Math. 65, 549–585 (2012)

[17] Kato, T. Remarks on the Euler and Navier-Stokes equations in R2. Proc. Symp.
Pure Math. Vol. 45, Amer. Math. Soc., Providence, 1986, 1-7.

[18] Kazhikhov, A. V.; Shelukhin, V. V. Unique global solution with respect to time
of initial-boundary value problems for one-dimensional equations of a viscous gas.
Prikl. Mat. Meh. 41 (1977), 282-291.

[19] Li, J.; Liang, Z. On classical solutions to the Cauchy problem of the
two-dimensional barotropic compressible Navier-Stokes equations with vacuum.
http://arxiv.org/abs/1306.4752

[20] Li, J.; Xin, Z. Some uniform estimates and blowup behavior of global strong
solutions to the Stokes approximation equations for two-dimensional compressible
flows. J. Differ. Eqs. 221 (2006), no. 2, 275-308.

[21] Lions, P. L. Mathematical topics in fluid mechanics. Vol. 1. Incompressible models.
Oxford University Press, New York, 1996.

30



[22] Lions, P. L. Mathematical topics in fluid mechanics. Vol. 2. Compressible models.
Oxford University Press, New York, 1998.

[23] Z. Luo. Global existence of classical solutions to two-dimensional Navier-Stokes
equations with Cauchy data containing vacuum, Math. Methods Appl. Sci., in
press. DOI: 10.1002/mma.2896.

[24] Matsumura, A.; Nishida, T. The initial value problem for the equations of motion
of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1980), no. 1, 67-104.

[25] Nash, J. Le problème de Cauchy pour les équations différentielles d’un fluide
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