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AN UPDATE OF QUANTUM COHOMOLOGY OF

HOMOGENEOUS VARIETIES

NAICHUNG CONAN LEUNG AND CHANGZHENG LI

Abstract. We describe recent progress on QH∗ (G/P ) with special emphasis
of our own work.

1. Introduction

How many intersection points are there for two given lines in a plane? How
many lines pass through two given points in a plane? It is the main concern in
enumerative geometry to find solutions to such questions of counting numbers of
geometric objects that satisfy certain geometric conditions. There are two issues
here. First, we should impose conditions so that the expected solution to a counting
problem is a finite number. Second, we will work in the complex projective space,
so that Schubert’s principle of conservation of number holds. Then we ask for this
invariant. For instance to either of the aforementioned questions, the solution is a
constant number 1, if the condition is imposed precisely as “two distinct given lines
(resp. points) in a complex projective plane P2”.

Information on counting numbers of geometric objects may be packaged to form
an algebra. For instance for the case of a complex projective line P1, basic geo-
metric objects are either a point or the line P1 itself. There are only two pieces of
non-trivial enumerative information among three basic geometric objects. Namely,
(a) 〈pt, line, line〉0,3,0 = 1, telling us that a point and two (same) lines intersect at
a unique intersection point; (b) 〈pt, pt, pt〉0,3,1 = 1, telling us that there is a unique
line passing through three (distinct) given points. Incorporating all these enumera-
tive information together, we obtain the algebra C[x, q]/〈x2 − q〉. Here the identity
1 and the element x stand for the basic geometric objects, a line and a point, respec-
tively; q stands for a line, the geometric object to be counted; the aforementioned
counting numbers are then read off directly from the algebraic relations 1 ∗ x = x
and x ∗ x = q, in terms of the coefficient Nx,0

1,x of x and the coefficient N1,q
x,x of q,

respectively. In modern language, we are saying that the quantum cohomology ring
QH∗(P1) of P1 is isomorphic to C[x, q]/〈x2 − q〉 as an algebra.

The concept of quantum cohomology of a smooth projective complex variety
arose from the subject of string theory in theoretic physics in 1990s, and the termi-
nology was introduced by the physicists [99]. The coefficients for the quantum mul-
tiplication are genus zero Gromov-Witten invariants, which were rigorously defined
later (by means of virtual fundamental classes in general) via symplectic geometry
[95] and via algebraic geometry [54]. As a first surprising application of the big
quantum cohomology, Kontsevich solved an old problem in enumerative geometry
on counting the number of rational curves of degree d passing through 3d−1 points
in general position in P2, by giving a recursive formula in 1994. We note that a
rational curve of degree 1 is a complex projective line. The space P1 can be written
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as the quotient of the special linear group SL(2,C) by its subgroup of upper trian-

gular matrices
(
a b
0 a−1

)

, and it is a special case of the so-called homogeneous

variety G/P . In the present article, we will be concerned only with the (small)
quantum cohomology ring QH∗(G/P ) of G/P , which is an algebra deforming the
classical cohomology ring H∗(G/P ) by incorporating all genus zero, three-point
Gromov-Witten invariants as the coefficients for the (small) quantum multiplica-
tion. Namely, it consists of all information on counting numbers of rational curves
of various (fixed) degrees that pass through three given projective subvarieties. The
study of the ring structure of QH∗(G/P ) is referred to as the quantum Schubert
calculus, which is not only a branch of algebraic geometry, but also of great interest
in mathematical physics, algebraic combinatorics, representation theory, and so on.

In the present article, we will give a brief review of the developments on quantum
Schubert calculus since Fulton’s beautiful lecture [35], with a focus on the authors’
work [71, 72, 73, 74, 75]. We apologize to the many whose work less related with
the four problems listed in section 2.4 has not been cited, and apologize to those
whose work we did not notice.

2. A brief review of Schubert calculus and generalizations

2.1. Classical Schubert calculus for homogeneous varieties G/P . Like Grimm’s
fairy tales for the children, the next enumerative problem is known to everybody
in the world of Schubert calculus:

How many lines in P3 intersect four given lines in general position?
The solution to it is 2, in modern language, obtained by a calculation in the coho-
mology ring of the complex Grassmannian Gr(2, 4) (see e.g. [52]).

A complex Grassmannian Gr(k, n) consists of k-dimensional vector subspaces
in Cn, i.e., one-step flags V 6 Cn. In particular, Pn−1 = Gr(1, n). A direct
generalization of it is the variety of partial flags

Fℓn1,··· ,nr;n := {Vn1
6 · · · 6 Vnr

6 Cn | dim Vni
= ni, ∀1 ≤ i ≤ r},

where [n1, · · · , nr] is a fixed subsequence of [1, 2, · · · , n − 1]. Every partial flag
variety Fℓn1,··· ,nr;n is a quotient SL(n,C)/P of SL(n,C) by one parabolic subgroup
P that consists of block-upper triangular matrices of the following type:











M1 ∗ ∗ ∗
0 M2 ∗ ∗
...

. . .
. . .

...
0 · · · 0 Mr+1











n×n

,

where Mi is an (ni − ni−1) × (ni − ni−1) invertible matrix for 1 ≤ i ≤ r, and
n0 := 0, nr+1 := n. These are called homogeneous varieties (or flag varieties) of Lie
type An−1.

In general, homogeneous varieties are X = G/P , where G is a simply-connected
complex simple Lie group, and P a parabolic subgroup. These are classified by
data from Dynkin diagrams, i.e., by a pair (∆,∆P ) of sets ∆P ⊂ ∆. In particular,
the parabolic subgroup corresponding to the empty subset of ∆ is called a Borel
subgroup, denoted as B instead. Let W denote the Weyl group of G, and WP

denote the Weyl subgroup corresponding to P . There is always an accompanied
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combinatorial subset WP ⊂ W bijective to W/WP , which consists of minimal
length representatives of the cosets in W/WP with respect to a canonical length
function ℓ : W → Z≥0. Every σu is the class of a Schubert variety Ωu of complex

codimension ℓ(u), and therefore is in H2ℓ(u)(X,Z). The coefficients Nw
u,v in the cup

product in H∗(X),

σu ∪ σv =
∑

w

Nw
u,vσ

w,

count the number of intersection points of three Schubert varieties gΩu, g
′Ωv, g

′′Ωw♯

with generic elements g, g′, g′′ ∈ G, where w♯ ∈WP parameterizes the dual basis of
H∗(G/P ) to {σu} with respect to the bilinear form (σu, σv) :=

∫

[G/P ] σ
u ∪ σv. In

particular, the structure constants Nw
u,v are nonnegative integers, which are known

as Littlewood-Richardson coefficients in the special case of complex Grassmannians.
Those unfamiliar with the general theory may just note the following two points,
and then refer to [35] for a very nice introduction to Gr(k, n).

(1) When G/P = Fℓn1,··· ,nr;n, the Weyl group W of G is the group Sn of
permutations of {1, · · · , n}. The subset ∆P is ∆ \ {αn1

, · · · , αnr
}, provided that

∆ = {α1, · · · , αn−1} is a base of simple roots of Lie(G) whose Dynkin diagram is

canonical, i.e., given by ◦−−◦ · · · ◦−−◦
α1 α2 αn−1

. In particular, G/B = Fℓ1,2,··· ,n−1;n.

(2) When G/P = Gr(k, n), the combinatorial subset WP is given by

WP := {w ∈ Sn | w(1) < w(2) < · · · < w(k);w(k + 1) < w(k + 2) < · · · < w(n)}.

Take a partition λ = (λ1, · · · , λk) with n − k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, and a
complete flag F• of vector subspaces {0} =: F0 6 F1 6 · · · 6 Fn−1 6 Fn := Cn

with dimC Fi = i for 0 ≤ i ≤ n. We have the Schubert variety

Ωλ(F•) := {V 6 Cn | dim(V ∩ Fn−k+i−λi
) ≥ i, ∀1 ≤ i ≤ k} ⊂ Gr(k, n).

Then Nw
u,v counts the number of intersection points of three Schubert varieties

Ωλ(u)(F•), Ωλ(v)(F
′
•), Ωλ(w♯)(F

′′
• ) with respect to three general flags and the parti-

tions λ(u) = (u(k)−k, · · · , u(2)−2, u(1)−1), λ(v) = (v(k)−k, · · · , v(2)−2, v(1)−1)
and λ(w♯) = (n− k + 1− w(1), n− k + 2− w(2), · · · , n− w(k)).

A thorough study of H∗(X) includes (but not limited to) a combinatorial de-
scription of the Littlewood-Richardson coefficients, a ring presentation of H∗(X)
with certain generators, and an expression of every Schubert class σu in terms of
polynomial in the aforementioned generators. In the case of complex Grassman-
nians, there have been nice answers to all the above through various approaches.
Much is also known about H∗(G/P ). However, a manifestly positive combinatorial
rule for the structure constants Nw

u,v is still lacking in general. To the authors’
knowledge, such rules have been shown only for two-step flag varieties Fℓn1,n2;n

[29] (and there is a preprint [30]), besides (co)minuscule Grassmannians. One may
have noted that every Schubert variety admits a resolution by an associated Bott-
Samelson manifold, which is a tower of P1-fibrations. Using the topology of the
Bott-Samelson resolution, Duan obtained a nice algorithm for computing Nw

u,v for
general G/P in [33], though it involves sign cancellation.

2.2. Equivariant Schubert calculus. Every parabolic subgroup P of G contains
a Borel subgroup B. Let K be a maximal compact Lie subgroup of G, such that
T = K ∩ B is a maximal torus of K. We consider the T -equivariant cohomology
H∗

T (G/P ) = H∗
T (G/P,Q), which is a module over the ring S := H∗

T (pt) which is a
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polynomial ring Q[α1, · · · , αn] freely generated by simple roots αj ’s of G. H
∗
T (G/P )

has an S-basis of Schubert classes σu’s, indexed by the same combinatorial setWP .
The structure constants pwu,v’s in the equivariant product in H∗

T (G/P ),

σu ◦ σv =
∑

w

pwu,vσ
w,

are homogeneous polynomials of degree ℓ(u)+ ℓ(v)− ℓ(w) in S (by which we mean
the zero polynomial if the degree is negative). The evaluation of the polynomial
pwu,v(α1, · · · , αn) at the origin coincides with the intersection numberNw

u,v. Geomet-
ric meanings of pwu,v’s are not completely clear. Nevertheless, pwu,v enjoys the positiv-
ity property, lying inside Q≥0[α1, · · · , αn] (or enjoys a form of positivity conjectured
by Peterson and proved by Graham [44], as an element in Q≥0[−α1, · · · ,−αn], up
to the choice of Schubert varieties that determine the equivariant Schubert classes
). The study of H∗

T (G/P ) is referred to as the equivariant Schubert calculus.

2.3. Affine Schubert calculus. The affine Kac-Moody group G associated to G
is an algebraic analog of the free (smooth) loop space LK = Map

(

S1,K
)

. The
Dynkin diagram of G is precisely the affine Dynkin diagram of G, namely it has an
extra simple root, called the affine root α0, attached to the simple root correspond-
ing to the adjoint representation of G. In particular ∆aff = ∆ ∪ {α0} is a base of
G.

A natural generalization of G/P is the infinite dimensional projective ind-variety
G/P , where P denotes a parabolic subgroup of G. The two extreme cases B, Pmax

correspond to the subsets ∅, ∆ of ∆aff respectively1. The corresponding ind-varieties
G/B and G/Pmax are called affine flag manifolds and affine Grassmannians respec-
tively. Indeed G/B is homotopy equivalent to LK/T and G/Pmax is homotopy
equivalent to the base loop group ΩK = {f ∈ LK | f(idS1) = idK}. Both of them
inherit the T -action. One may study the T -equivariant cohomology rings of LK/T
and ΩK. Both of them admit an S-basis of affine Schubert classes.

On the other hand the (equivariant) homology HT
∗ (ΩK) (in the sense of Borel-

Moore homology) also admits a natural ring structure, called the Pontryagin prod-
uct which is induced by the group multiplication of K. The space HT

∗ (ΩK) is
further equipped with a Hopf algebra structure, with the coproduct structure in-
duced from the (equivariant) cohomology ring structure of ΩK. The study of this
structure is referred to as the (equivariant) affine Schubert calculus. A surprising
fact, as will be discussed in the next section, is that HT

∗ (ΩK) is essentially the same
as the equivariant quantum cohomology of G/B.

2.4. Quantum Schubert calculus. The (small) quantum cohomology ringQH∗(G/P )
is part of the intersection theory on the moduli space of stable maps to G/P (see
e.g. [36]). It contains the ordinary H∗(G/P ) as G/P is a connected component of
the moduli space of stable maps to G/P , namely the component of constant maps.
QH∗(G/P ) = (H∗(G/P )⊗Q[q1, · · · , qr], ∗) also has a basis of Schubert classes σu

over Q[q1, · · · , qr], where r = dimH2(G/P ). We identify H2(G/P,Z) with Zr with
basis given by two (real) dimensional Schubert cycles in G/P .

1If the subset of ∆aff contains α0, then G/P reduces to G/P .
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Given d = (d1, · · · , dr) ∈ Zr = H2(G/P,Z), we denote qd := qd1

1 · · · qdr
r . The

structure constants Nw,d
u,v in the quantum multiplication,

σu ∗ σv =
∑

w∈WP ,d∈H2(G/P,Z)

Nw,d
u,v σ

wqd,

are genus zero, three-point Gromov-Witten invariants. Geometrically, Nw,d
u,v counts

the cardinality of the set

{f : P1 → G/P | f∗([P
1]) = d; f(0) ∈ gΩu, f(1) ∈ g′Ωv, f(∞) ∈ g′′Ωw♯ ; f is holomorphic}

with generic g, g′, g′′ ∈ G. In particular, Nw,d
u,v ∈ Z≥0, and it is zero unless di ≥ 0 for

all i. A holomorphic map f : P1 → G/P of degree 0 is a constant map. Therefore
Nw,0

u,v = Nw
u,v for the cup product.

The study of QH∗(G/P ) is referred to as the quantum Schubert calculus, which
includes at least the following as pointed out in [35].

(1) A presentation of the ring, QH∗(G/P ) = Q[x1, · · · , xN , q1, · · · , qr]/(relations).
See section 3.1.

(2) A manifestly positive combinatorial rule for the structure constants Nw,d
u,v .

(3) A “quantum Giambelli” formula, which expresses each Schubert class σu

as a polynomial in the generators xi and qj . See section 3.4.
Because of the lack of functoriality for quantum products in general,

we also have the following problem.
(4) A comparison between QH∗(G/B) and QH∗(G/P ). See section 3.2.

We can consider the T -equivariant version QH∗
T (G/P ) of the quantum cohomol-

ogy in a similar fashion, which is a module over S[q1, · · · , qr] generated by Schubert

classes σu’s. The structure constants Ñw,d
u,v ’s in the equivariant quantum product

σu ⋆ σv =
∑

w,d

Ñw,d
u,v σ

wqd,

are again homogeneous polynomials in S, enjoying the positivity property (provided
that a choice of positive/negative simple roots is chosen properly) [82]. They contain

information on both QH∗(G/P ) and H∗
T (G/P ): (i) Ñ

w,0
u,v coincides with pwu,v for the

T -equivariant product σu ◦ σv and (ii) the evaluation of the polynomial Ñw,d
u,v ∈ S

at the origin coincides with Nw,d
u,v for the quantum product.

We remark that it is possible to define QH∗
T (G/P ) over Z, instead of C.

3. An overview on (equivariant) quantum Schubert calculus

3.1. Ring presentations. In order to find a ring presentation of QH∗(G/P ), it is
natural to start with an explicit ring presentation of the ordinary cohomology ring
H∗ (G/P ), say

H∗(G/P ) ∼=
Q[x1, · · · , xN ]

〈f1(x), · · · , fm(x)〉
.

Such a presentation is know in many cases. Then a lemma of Siebert and Tian
[96] (or Proposition 11 of [36]) shows that the ring structure on QH∗(G/P ) =
H∗(G/P )⊗Q[q1, · · · , qr] can be obtained by deforming the relations fi’s, i.e.

QH∗(G/P ) ∼=
Q[x1, · · · , xN , q1, · · · , qr]

〈f1(x) − g1(x,q), · · · , fm(x)− gm(x,q)〉
.
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Here each gi(x,q) is computed by fi after replacing the cup product by the quantum
product. This is usually difficult to compute.

For instance,H∗(P1)
∼=
→ Q[x]/〈x2〉, which sends the hyperplane classH (Poincaré

dual to [pt]) to x. Since H ∗H = q in QH∗(P1), we have QH∗(P1) ∼= Q[x]/〈x2− q〉.
Most known ring presentations of QH∗(G/P ) are obtained in this way. Such

G/P ’s include Fℓn1,··· ,nr ;n [39],[48],[3] and various Grassmannians [96],[58],[59],[20],[15],[23].
Some Grassmannians of exceptional Lie types are still unknown.

There is another way to get a ring presentation of QH∗(G/P ), by finding “quan-
tum differential equations”. Givental’s J-function is a H∗(G/P )-valued function,
involving gravitational correlators (a class of invariants more general than Gromov-
Witten invariants). It was introduced for any smooth projective variety X , and
played an important role in mirror symmetry. Quantum differential equations are
certain differential operators annihilating J . Every quantum differential equation
gives rise to a relation in QH∗(X). (See e.g. Example 10.3.1.1 of [32] for the case of
P1). With this method, Kim studied the quantum D-module of G/B and obtained
the following ring presentation of QH∗(G/B) for general G.

Theorem 3.1 ([49]). The small quantum cohomology ring QH∗(G/B,C) is canon-
ically isomorphic to

C[p1, · · · , pl, q1, · · · , ql]/I,

where l denotes the rank of G, and I is the ideal generated by the nonconstant
complete integrals of motions of the Toda lattice for the Langlands-dual Lie group
(G∨, B∨, (TC)∨) of (G,B, TC).

There have been the descriptions of J-function for general G/P [10],[11]. Neverthe-
less, even for complex Grassmannians, there are no closed formulas on the quantum
differential equations, to the authors’ knowledge.

In his unpublished lecture notes [89], Dale Peterson announced a uniform pre-
sentation of QH∗(G/P ) (and its T -equivariant extension) for all P . The so-called
Peterson variety Y is subvariety in G∨/B∨, which is equipped with a C∗-action.
The C∗-fixed points yP ’s are isolated and parameterized by the finite set of (con-
jugacy classes of) parabolic subgroups P . (See [93],[45] for precise descriptions for
type A case.) By considering y ∈ Y with z · y approaching yP with various P ’s as
z ∈ C∗ goes to 0 or infinity, we obtain two stratifications of Y by affine varieties
Y +
P ’s or Y −

P ’s respectively.
Peterson claimed that the spectra of the quantum cohomology ring QH∗(G/P )

is Y +
P , or equivalently QH∗(G/P ) ∼= C[Y +

P ] as algebras. This was proved by Rietsch
[93] for all SL(n,C)/P , and by Cheong [26] when G/P is a Lagrangian Grassman-
nian or an orthogonal Grassmannian.

Peterson also interpreted all C[Y −
P ] as the homology of based loop groups. In

particular, Y −
G is birational to Y +

B and C[Y −
G ] ∼= H∗(ΩK), where K is a maximal

compact subgroup of G. Its consequence has become the following theorem now,
as was firstly proved by Lam and Shimozono. There is also an alternative proof by
the authors.

Theorem 3.2 ([89],[65],[72]). The equivariant quantum cohomology ring QH∗
T (G/B)

is isomorphic to the equivariant homology HT
∗ (ΩK) as algebras, after localization.
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The above isomorphism is explicit, sending a (localized) S-basis σwqd ofQH∗
T (G/B)

to a (localized) S-basis of Schubert homology classes of HT
∗ (ΩK). The proof in [65]

also showed that QH∗
T (G/P ) is isomorphic to a quotient of HT

∗ (ΩK), after local-
ization.

The algebraic structures of QH∗
T (G/B), or more generally QH∗

T (G/P ), is com-
pletely determined by the equivariant quantum Chevalley formula (i.e. quantum
multiplication by elements in H2(G/P ) in section 3.3) together with a few natu-
ral properties. This criterion was obtained by Mihalcea [83]. Using this criterion,
the proof of the above theorem can be reduced to explicit computations of certain
products in HT

∗ (ΩK). These products were first obtained by Lam and Shimozono,
mainly by using Peterson’s j-isomorphism [61] together with properties of Kostant
and Kumar’s nilHecke algebras [57]. Later we realized that they can also be ob-
tained by carefully analyzing a combinatorial formula on the structure constants
(to be described in section 3.3). Despite the two aforementioned (combinatorial)
proofs, a satisfactory understanding of the above theorem is still lacking.

When G = SL(n,C), the connections among Givental-Kim’s presentation [39,
49], Peterson’s presentation above, and Kostant’s solution to Toda lattice [56], are
now becoming better understood [66],[67]. In this case, the quantum cohomology
QH∗(SL(n,C)/B) is also closely related with Dunkl elements, which leads to some
relevant applications [50]. Some other characterizations for QH∗(G/B) can be
found for example in [77],[78].

Finally, we remark that there are some studies on the quantum differential equa-
tions for the cotangent bundle of a complete flag variety G/B [6] or of a partial
flag variety Fℓn1,··· ,nr;n [80], [42], [97]. This might lead to nice applications to the
quantum cohomology of the corresponding flag variety by taking an appropriate
limit. For instance, an application to the Chevalley-type formula was given in [6]
(as will be discussed in section 3.3.2). The cotangent bundle of a partial flag variety
is a Nakajima quiver variety. The quantum cohomology of it can be related with
the integral systems and quantum groups [85],[6],[80]. The relation between such an
approach and the aforementioned Peterson’s approach for complex Grassmannians
is studied in [41].

3.2. Comparing QH∗(G/P ) with QH∗(G/B). The inclusionsB ⊂ P ⊂ G induce
a fiber bundle

π : G/B → G/P

with fiber P/B, which is again a complete flag variety.

Example 3.3. For G = SL(3,C) with B ( P ( G, we have G/B = Fℓ1,2;3
and G/P = Gr(2, 3) ∼= P2; π coincides with the natural forgetful map, sending a
flag V1 6 V2 6 C3 in G/B to the partial flag V2 6 C3 in G/P ; the fiber of π is
P/B = P1.

For ordinary cohomologies, the Leray-Serre spectral sequence relates the co-
homology ring of G/B with those of G/P and P/B. For instance the induced
homomorphism π∗ : H∗(G/P ) → H∗(G/B) is injective, sending the Schubert class
σu
P for G/P (where u varies over the combinatorial subset WP ⊂W =WB) to the

Schubert class σu
B for G/B.

For quantum cohomologies, there is no such functoriality in general. For instance,
the pullback map π∗ on H∗ does not even have a quantum analog. Nevertheless,
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such functoriality does exist in our specific case. The analog of π∗ is a comparison
formula stated by Peterson [89] and proved by Woodward [98].

Theorem 3.4 (Peterson-Woodward comparison formula). Every structure con-
stant Nw,λP

u,v for the quantum product σu
P ∗σv

P in QH∗(G/P ) coincides with a struc-

ture constant Nww̃,λB
u,v for σu

B∗σ
v
B in QH∗(G/B), where (w̃, λB) ∈WP×H2(G/B,Z)

is uniquely and explicitly determined by λP ∈ H2(G/P,Z).

We remark that the equivariant quantum extension of the above comparison formula
is implicitly contained in Corollary 10.22 of [65] (see [46] for more details).

For ordinary cohomologies, H∗(G/B) admits a Z2-filtration F , which induces
an isomorphism GrF (H∗(G/B)) ∼= H∗(P/B) ⊗ H∗(G/P ) of Z2-graded algebras,
by the spectral sequence. In order to generalize this to quantum cohomologies, we
need to find a nice grading on QH∗(G/B). This is quite tricky indeed.
Example 3.3. (continued) The Weyl group W of SL(3,C) is the permutation
group S3, generated by transpositions s1 = (12) and s2 = (23). The cohomology
degree of a Schubert class σu is 2ℓ(u). Explicitly ℓ(u) =0, 1, 1, 2, 2, 3 when u =
1, s1, s2, s1s2, s2s1, s1s2s1 respectively. The Z2-grading gr(σu) of σu∈H∗(Fℓ1,2;3),
as given by the spectral sequence for π :Fℓ1,2;3 → Gr(2, 3), are (0, 0), (1, 0), (0, 1), (0, 2), (1, 1), (1, 2)
respectively. This grading gives a number of nice consequences on H∗(Fℓ1,2;3).

The quantum cohomology QH∗(Fℓ1,2;3) = H∗(Fℓ1,2;3)⊗Q[q1, q2] has a Q-basis
σwqa1q

b
2. The above Z2-grading map extends to QH∗(Fℓ1,2;3), by defining

gr(σuqa1q
b
2) := gr(σu) + (2a− b, 3b).

It is tricky to find this grading, e.g. gr(q2) = (−1, 3). This is the correct grading
as all consequences from spectral sequence have natural quantum generalizations
for QH∗(Fℓ1,2;3). (See Example 1.1 of [71] for precise descriptions.)

In general, we need to take a maximal chain of parabolic subgroups Pj , i.e.,

B := P0 ( P1 ( · · · ( Pr−1 ( Pr = P ( G,

where r is the rank of the Levi subgroup of P . This corresponds to a chain of
subsets ∅ := ∆0 ( ∆1 ( · · · ( ∆r−1 ( ∆r = ∆P with |∆i| = i.

We can always find Pj ’s such that Pj/Pj−1’s are all projective spaces PNj , with
at most one exception occurring at the last step Pr/Pr−1. For instance, for P ⊂
Sp(8,C) with Sp(8,C)/P ≃ P7, we have r = 3 with P1/B = P1, P2/P1 = P2

and P/P2 = LGr(3, 6) is a Lagrangian Grassmannian. Precise choices are made
in Table 2 of [71] when P/B is of type A (and its associated Dynkin diagram is
connected), and in section 3.5 of [71] (or Table 1 of [75]) for a general P/B.

The key point of the whole story, is to find a nice Zr+1-grading on QH∗(G/B)
with respect to the chosen chain. The Peterson-Woodward comparison formula
plays a key role in defining such a grading2. With this grading, the authors ob-
tained certain functorial properties among quantum cohomologies of homogeneous
varieties in the following sense3.

Theorem 3.5 ([71], [75]). Let π : G/B → G/P denote the natural projection, and
r denote the rank of the Levi subgroup of P .

2The original definition of this grading was made recursively in [71]. It was greatly simplified
in [75], by proving a conjecture due to a referee of [71].

3We remark that part of the statements were only proved for P/B of type A in [71], and are
proved for all general cases in [75] recently.
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(1) There exists a Zr+1-filtration F on QH∗(G/B), respecting the quantum
product structure.

(2) There exist an ideal I of QH∗(G/B) and a canonical algebra isomorphism

QH∗(G/B)/I
≃
−→ QH∗(P/B).

(3) There exists a subalgebra A of QH∗(G/B) together with an ideal J of A,
such that QH∗(G/P ) is canonically isomorphic to A/J as algebras.

(4) There exists a canonical injective morphism of graded algebras

Ψr+1 : QH∗(G/P ) →֒ GrF(r+1) ⊂ GrF (QH∗(G/B))

together with an isomorphism of graded algebras after localization

GrF (QH∗(G/B)) ∼=
(

r
⊗

j=1

QH∗(Pj/Pj−1)
)

⊗

GrF(r+1),

where Pj’s are parabolic subgroups constructed in a canonical way, forming
a chain B := P0 ( P1 ( · · · ( Pr−1 ( Pr = P ( G.

Furthermore, Ψr+1 is an isomorphism if and only if Pj/Pj−1 is a pro-
jective space for any 1 ≤ j ≤ r.

All the relevant ideals, subalgebras and morphisms above could be described con-
cretely.

When only quantum multiplication with an element in H2(G/B) is involved, this
theorem is reduced to the quantum Chevalley formula. To prove the theorem, we
use induction with respect to the length ℓ(u) of Schubert classes σu. The Peterson-
Woodward comparison formula is used frequently and the positivity of the structure
constants turns out to be needed as well. The most dedicated arguments occur in
the proof of (1) and in the part to show Ψr+1 is an morphism for the general case.
The notion of virtual coroot was introduced to reduce many cases in general Lie
types to type A, while there are still a number of cases that require individual
discussions.

The functorial properties of QH∗(G/P ), as given in theorems 3.4 and 3.5, have
many applications in finding combinatorial rules on certain Nw,d

u,v ’s, especially on
the so-called quantum to classical principle. We could also relate certain Gromov-
Witten invariants between G/P and G′/P ′ for G 6= G′. We will discuss these
next.

3.3. Combinatorial rules. The problem of finding a manifestly positive combi-
natorial rule for the Gromov-Witten invariants, or equivalently the structure con-
stants, Nw,d

u,v of QH∗(G/P ) is open. Even the special case when d = 0, namely the
counterpart for classical cohomology H∗(G/P ), is still not solved except in very
limited cases, including complex Grassmannians.

3.3.1. A combinatorial formula on Nw,d
u,v with signs cancellations. If we do not re-

quire coefficients of the combinatorial rule to be all positive, namely we allow signs
cancellations, then it suffices to find one for QH∗(G/B) because of the Peterson-
Woodward comparison formula. Using the relationship between QH∗ (G/B) and
H∗(ΩK), we obtained such a formula as we explain next.

Let ∆ = {α1, · · · , αn} ⊂ h∗ denote a base of simple roots of G and ρ (resp. ρ∨)
denote the sum of fundamental (co)weights. Then H2(G/B,Z) is canonically iden-
tified with the coroot lattice Q∨ :=

⊕n
i=1 Zα

∨
i . For the affine flag manifold LK/T ,
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H∗
T (LK/T ) has an S-basis of Schubert classes S

x, with x = wtλ, parametrized by
the affine Weyl group Waf =W ⋉Q∨. Here tλ denotes the translation by λ.

To describe the combinatorial rule, we define the Kostant (homogeneous) poly-
nomial dy,[x] and a rational function cx,[y] as below: (i) dx,y is the coefficient pyx,y of

Sy in Sx ·Sy =
∑

pzx,yS
z; (ii) cx,[y] =

∑

w∈W cx,yw with
(

cx′,y′

)

being the trans-

pose inverse of the (infinitely dimensional invertible) matrix
(

dx,y
)

. They both have
combinatorial descriptions [57, 60].

Theorem 3.6 ([72]). The structure constants Nw,λ
u,v in the quantum product of

QH∗ (G/B),

σu ∗ σv =
∑

w∈W,λ∈Q∨

Nw,λ
u,v σ

wqλ,

are given by the constant function

Nw,λ
u,v =

∑

λ1,λ2∈Q∨

cutA,[tλ1
]cvtA,[tλ2

]dwt2A+λ,[tλ1+λ2
]

where A := −12n(n+ 1)ρ∨, provided that 〈2ρ, λ〉 = ℓ(u) + ℓ(v) − ℓ(w) and λ < 0,
and zero otherwise.

The proof of this theorem uses the fact that HT
∗ (ΩK) has a basis ψtλ parametrized

by translation representatives ofWaf/W for which the Pontryagin product is simple:
ψtλ1

· ψtλ2
= ψtλ1+λ2

; the change of bases to Schubert classes is known explicitly

by localization and the relationship between QH∗ (G/B) and H∗(ΩK).

3.3.2. Combinatorial formulae of Pieri-Chevalley type. There are manifestly posi-
tive combinatorial formulas for quantum multiplication by special Schubert classes
σv. When ℓ(v) = 1, i.e. v = si is a simple refection in W , it is called the
Chevalley formula for H∗(G/P ). The quantum version of Chevalley formula for
QH∗(G/P ) was conjectured by Peterson [89], and was first proved by Fulton and
Woodward [37]. It is also called the quantum Monk formula in the special case
of G/P = Fℓ1,··· ,n−1;n [34], and it has an alternative description when G/P is a
(co)minuscule Grassmannian [20].

The T -equivariant generalization was also conjectured by Peterson [89]. It was
first proved by Mihalcea [81, 83] in a combinatorial way, and there is also a geometric
approach [18] by the technique of curve neighborhoods. A special case of it is stated
as follows, for which there is another proof by using the Springer resolution [6].

Theorem 3.7 (Equivariant quantum Chevalley formula for G/B). In QH∗
T (G/B),

σu ⋆ σsi = (χi − u(χi))σ
u +

∑

〈χi, γ
∨〉σusγ +

∑

〈χi, γ
∨〉qγ

∨

σusγ ,

where χi denotes a fundamental weight, the first sum is over positive roots γ with
ℓ(usγ) = ℓ(u) + 1, and the second sum is over positive roots γ with ℓ(usγ) =
ℓ(u) + 1− 〈2ρ, γ∨〉.

The corresponding formula for G/P is slightly more complicated.

When G/P is a complex Grassmannian Gr(k, n), there is an exact sequence of
tautological bundles over it: 0 → S → Cn → Q → 0. The fiber of S over [V ] ∈
Gr(k, n) is given by the vector subspace V in Cn itself. The ordinary cohomology
H∗(Gr(k, n)), as a ring, is generated by Chern classes cp(S)’s (or cp(Q)’s). A
(manifestly positive) combinatorial formula on the multiplication by either sets of
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Chern classes is referred to as a Pieri rule. The quantum version of a Pieri rule
was first given by Bertram [5].

The analog of Gr (k, n) for other Lie types is G/Pmax with Pmax a maximal
parabolic subgroup of G. When G is a classical group, G/Pmax parameterizes
linear subspaces which are isotropic with respect to a non-degenerate bilinear form
which is skew-symmetric (for type C) or symmetric (for type B and D). Therefore
such a G/Pmax is usually called an isotropic Grassmannian. The corresponding
quantum Pieri rules with respect to Chern classes of tautological quotient bundles
have been obtained by Buch, Kresch and Tamvakis [58, 59], [15].

For instance when G/P = IG(k, 2n) is a (non-maximal) isotropic Grassmannian
of type C, Schubert classes can also labeled by (n− k)-strict partitions, with cp(Q)
corresponding to a class σp of the special (n − k)-strict partition p. In terms of
(n − k)-strict partitions, one has a quantum Pieri rule with respect to cp(Q)’s in
the following form.

Theorem 3.8 ([15]).

σp ∗ σλ =
∑

µ

2N(λ,µ)σµ +
∑

ν

2N(λ,ν♯)−1σνq,

where ν♯ is an (n − k)-strict partition for IG(k + 1, 2n + 2), associated to the
(n− k)-partition ν for IG(k, 2n).

The classical part of the above formula is new even for the classical cohomology
H∗(IG(k, 2n)).

The quantum Pieri rules with respect to cp(S)’s have been studied by the authors
in [74]. For instance, when G/P = IG(k, 2n), there is another parameterization of
the Schubert classes by shapes, which are pairs of partitions. In terms of shapes,
every Chern class cp(S∗) corresponds to a class σp of special shape p, and one has
a quantum Pieri rule with respect to these Chern classes in the following form.

Theorem 3.9 ([74]).

σp ⋆ σa =
∑

b

2e(a,b)σb +
∑

c

2e(ã,c̃)σcq,

where ã and c̃ are shapes for IG(k − 1, 2n), associated to the shapes a and c for
IG(k, 2n) respectively.

The classical part of the above formula is the classical Pieri rule of Pragacz and
Ratajski [92]. We remark that when G/P is a non-maximal isotropic Grassmanian
of type B or D, the above formula does involve sign cancellations even for some
degree one Gromov-Witten invariants, thus it is not quite satisfactory.

For homogeneous varieties of type A, namely partial flag varieties, there are
natural forgetting maps to complex Grassmannians πni

: Fℓn1,··· ,nr;n → Gr(ni, n).
The ring QH∗(Fℓn1,··· ,nr;n) is generated by the pull-back of Chern classes of the
tautological subbundle (or quotient bundle) over Gr(ni, n) for all i. The quantum
Pieri rule with respect to these classes was obtained by Ciocan-Fontanine [27]. The
equivariant quantum version of it has been obtained in [46] recently.

All these quantum Pieri rules are obtained by determining relevant Gromov-
Witten invariants Nw,d

u,v of QH∗(G/P ) explicitly.
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3.3.3. Calculations of Nw,d
u,v . Each Nw,d

u,v is an intersection number of cycles in the
moduli space of stable maps, which is the stable maps compactification of the
space of morphisms from P1 to G/P . Bertram [5] used a different compactifica-
tion, namely the quot schemes compactification, in order to calculate the relevant
Gromov-Witten invariants. This method was further used in [27], [58, 59].

For Gr(k, n), because of H2 = Z, Nw,d
u,v counts the number of rational curves

C of degree d passing through three Schubert subvarieties of Gr(k, n). Buch [12]
introduced the span (resp. kernel) of C as the smallest (resp. largest) subspace of
Cn containing (resp. contained in) all the k-dimensional subspaces parametrized
by points of C. Buch showed that the span (resp. kernel) of C determines a point
in a related Schubert subvariety of Gr(k+ d, n) (resp. Gr(k − d, n)). Furthermore,
he related Gromov-Witten invariants involved in a quantum Pieri rule for Gr(k, n)
to classical intersection numbers (of Pieri type) of Gr(k + 1, n), thus giving an
elementary proof [12].

This idea was later used by Buch, Kresch and Tamvakis to show that all Gromov-
Witten invariants Nw,d

u,v for complex Grassmannians, Lagrangian Grassmannians
and (maximal) orthogonal Grassmannians are classical. Such a phenomenon is
now referred to as the quantum to classical principle. It was further shown to
hold for the remaining two (co)minuscule Grassmannians of exceptional Lie type,
i.e., Cayley plane E6/P1 and the Freudenthal variety E7/P7. Combining both
statements, we have

Theorem 3.10 ([14], [20]). All genus zero, three-point Gromov-Witten invariants
for a (co)minuscule Grassmannian G/P are equal to classical intersection numbers
on some auxiliary homogeneous varieties of G .

Such a statement has been extended to the equivariant quantum K-theory setting in
[17], [24]. The above theorem leads to a manifestly positive combinatorial formula
for all Nw,d

u,v for Gr(k, n), because of the known positive formula on the classical
intersection numbers on two-step partial flag varieties [29]. The kernel-span tech-
nique was also used in [15] to derive the quantum Pieri rules with respect to cp(Q)’s
for non-maximal isotropic Grassmannians.

There is another (combinatorial) approach to show the “quantum to classical”
principle by the authors [73]: As a consequence of the special case of Theorem
3.5 with π : G/B → G/P being a P1-bundle, the authors obtained vanishing and
identities among various Gromov-Witten invariants. For any simple root α, we
introduce a map sgnα : W → {0, 1} defined by sgnα(w) := 1 if ℓ(w)− ℓ(wsα) > 0,
and 0 otherwise.

Theorem 3.11 ([73]). For any u, v, w ∈ W and for any λ ∈ Q∨ ≃ H2(G/B,Z),
we have the following for QH∗ (G/B)

(1) Nw,λ
u,v = 0 unless sgnα(w) + 〈α, λ〉 ≤ sgnα(u) + sgnα(v) for all α ∈ ∆.

(2) Suppose sgnα(w) + 〈α, λ〉 = sgnα(u) + sgnα(v) = 2 for some α ∈ ∆, then

Nw,λ
u,v = Nw,λ−α∨

usα,vsα =







Nwsα,λ−α∨

u,vsα , if sgnα(w) = 0

Nwsα,λ
u,vsα , if sgnα(w) = 1 .

Combining the above theorem with the Peterson-Woodward comparison formula,
the authors obtained a lot of nice applications, including the quantum Pieri rules
with respect to cp(S)’s for isotropic Grassmannians [74]. There are T -equivariant
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generalization [46] of these results, giving nice applications on equivariant quantum
Schubert calculus, including equivariant quantum Pieri rules for all SL(n,C)/P ’s.

There are some other ways to compute (part of) Nw,d
u,v in a few cases (see [1], [9],

[91], [55], [53], [40] etc.). For instance for Gr(k, n), the structure constants Nw,d
u,v

can also be computed from the classical intersection numbers on Gr(k, 2n) [8]. The
equivariant quantum situation of this method is studied in [7]. For two-step flag
variety Fℓn1,n2;n, the quantum to classical principle holds for certain Nw,d

u,v ’s as well
[31].

3.4. Quantum Giambelli formulae. These are formulae to express each Schu-
bert class σu as a polynomial in the generators xi and qj in a presentationQH∗(G/P ) =
Q[x,q]/(relations). There are limited results as even such a ring presentation is still
open in many cases, as discussed in section 3.1.

Schubert classes of H∗(Gr(k, n)) are labeled by partitions. Partitions corre-
sponding cp(S

∗)’s (or cp(Q)’s) are called special. The Giambelli formula expresses
Schubert classes in terms of determinants with special Schubert classes as entries.
The first quantum version of Giambelli formula, due to Bertram [5], was obtained
by evaluation in the classical cohomology ring of quot schemes. Similar ideas were
applied to the case of Lagrangian Grassmannians and orthogonal Grassmannians
[58, 59]. There is an alternative way to obtain a quantum Giambelli formula, by
using a quantum Pieri rule and the classical Giambelli formula. This was used to
reprove a quantum Giambelli formula for complex Grassmannians by Buch [12], and
to obtain one for non-maximal isotropic Grassmannian by Buch, Kresch and Tam-
vakis [16]. There are also known formulas for some Grassmannians of exceptional
types by using software [25].

For complete flag variety SL(n,C)/B, Formin, Gelfand, and Postnikov con-
structed quantum Schubert polynomials [34] that represent the quantum Schubert
classes. For partial flag varieties SL(n,C)/P , the quantum Giambelli formula are
obtained by Ciocan-Fontanine [27] by using a geometric tool of moving lemma for
quot scheme. In general, there could be a third way to get a quantum Giambelli
formula, by studying the equivariant quantum version first and then taking the
non-equivariant limit. The equivariant quantum cohomology ring QH∗

T (G/P ) con-
tains more information than the quantum cohomology, but behaves more simply
than QH∗(G/P ) in the sense that it is essentially determined by the equivariant
quantum Chevalley formula due to a criterion by Mihalcea [83]. Suppose that
we already have an expectation on a ring presentation of QH∗

T (G/P ), together
with an expected formula on the equivariant quantum Schubert classes. Then we
can prove our expectation by checking that these candidate satisfy the equivari-
ant quantum Chevalley formula. In this way, Mihalcea obtained the equivariant
quantum Giambelli formula for complex Grassmannians [84], and Ikeda, Mihalcea
and Naruse have achieved the case of maximal isotropic Grassmannians recently
[47]. For SL(n,C)/B, there are quantum double Schubert polynomials studied
by Kirillov and Maeno [51], and by Ciocan-Fontanine and Fulton [28]. Lam and
Shimozono define the analogues for SL(n,C)/P and show them to represent the
equivariant quantum Schubert classes by using the third approach [69]. Such a
result has also been independently obtained by Anderson and Chen by deriving an
equivariant moving lemma for quot schemes [2].
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3.5. A few remarks. So far we have mainly focused on an overview of the develop-
ments on the four problems listed in section 2.4. There are many other interesting
problems in quantum Schubert calculus, for instance, the study of the symmetry
among (part of) QH∗(G/P ) or its T -equivariant extension [4], [90], [19],[22], [21],
[31]. While there are fewer results on QH∗

T (G/P ), especially on combinatorial
rules of the structure constants and on equivariant quantum Giambelli formulas,
our discussions are not made systematic.

On the other hand, because of Theorem 3.2, (equivariant) quantum Schubert
calculus is essentially part of (equivariant) affine Schubert calculus. For instance,
(equivariant) quantum Pieri rules [63], [68] can be obtained this way. We apologize
for not mentioning all such applications.

A natural generalization of (equivariant) quantum Schubert calculus is (equi-
variant) quantum K-theory of homogeneous varieties [38], [70]. However, very little
is known, including [17], [24], [13], [76], etc. Peterson’s approach to the homology
of affine Grassmannians could be generalized to obtain a K-theoretic analogue [64].
It is interesting to know:

Is there a K-theoretic analogue of Theorem 3.2, or more generally, of the state-
ments on strata data Y ±

P of the Peterson variety?4

There are other generalizations of the quantum Schubert calculus, say for some
inhomogeneous varieties, for instance odd symplectic Grassmannians [86].

The notion of quantum cohomology arose in string theory in mathematical
physics. It is natural to ask

What is mirror symmetry of quantum Schubert calculus?

Mirror symmetry predicts that the quantum cohomology ring QH∗(G/P ) is isomor-
phic to the Jacobian ring Jac(W ) of a mirror Landau-Ginzberg model (X∨,W ).
Recall that a Landau-Ginzberg model is pair (X∨,W ), consisting a non-compact
Kähler manifold X∨ together with a holomorphic function W : X∨ → C, which
is called a superpotential. For instance when G/P = P1, we have X∨ = C∗ and
W : C∗ → C is defined byW (z) = z+ q

z , where the quantum parameter q is treated

as a fixed nonzero complex number. Then we have QH∗(P1,C) = C[x]/〈x2 − q〉 ∼=
C[z, z−1]/〈1− q

z2 〉 = Jac(W ).
As we have already seen, such a mirror statement is about a ring presentation of

QH∗(G/P ). Using the presentation of QH∗(G/P ) announced by Peterson, Rietsch
constructed a mirror Landau-Ginzberg model of G/P [94]. We refer our readers to
[62] for some recent developments in the relations between the quantum Schubert
calculus and mirror symmetry (as well as the Whittaker functions) from an algebro-
combinatorial perspective.

Mirror symmetry also predicts an isomorphism between QH∗(G/P ) and Jac(W )
as Frobenius manifolds, matching flat coordinates of both sides. It would be very
interesting if one could get combinatorial rules on Nw,d

u,v by using the corresponding
basis of Jac(W ). In certain cases, Schubert classes do play special roles in mirror
symmetry [43], [87, 88],[79].

4Recently, Lam, Mihalcea, Shimozono and the second author have made such a conjectural
K-theoretic analogue.
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